51
|
Loo SK, Lenartowicz A, Norman LJ, Michelini G. Translating Decades of Neuroscience Research into Diagnostic and Treatment Biomarkers for ADHD. ADVANCES IN NEUROBIOLOGY 2024; 40:579-616. [PMID: 39562458 DOI: 10.1007/978-3-031-69491-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this chapter, we review scientific findings that form the basis for neuroimaging and neurophysiological biomarkers for ADHD diagnosis and treatment. We then highlight the different challenges in translating mechanistic findings into biomarkers for ADHD diagnosis and treatment. Population heterogeneity is a primary barrier for identifying biomarkers of ADHD diagnosis, which requires shifts toward dimensional approaches that identify clinically useful subgroups or prospective biomarkers that can identify trajectories of illness, function, or treatment response. Methodological limitations, including emphasis on group level analyses of treatment effects in small sample sizes, are the primary barriers to biomarker discovery in ADHD treatment. Modifications to clinical trials, including shifting towards testing biomarkers of a priori prediction of functionally related brain targets, treatment response, and side effects, are suggested. Finally, future directions for biomarker work are discussed.
Collapse
Affiliation(s)
- Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Agatha Lenartowicz
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Luke J Norman
- National Institute of Mental Health, Bethesda, MD, USA
| | - Giorgia Michelini
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
52
|
Kawamura M, Yoshimoto A, Ikegaya Y, Matsumoto N. Low Atmospheric Oxygen Attenuates Alpha Oscillations in the Primary Motor Cortex of Awake Rats. Biol Pharm Bull 2024; 47:462-468. [PMID: 38382999 DOI: 10.1248/bpb.b23-00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oxygen is pivotal for survival of animals. Their cellular activity and cognitive behavior are impaired when atmospheric oxygen is insufficient, called hypoxia. However, concurrent effects of hypoxia on physiological signals are poorly understood. To address this question, we simultaneously recorded local field potentials in the primary motor cortex, primary somatosensory, and anterior cingulate cortex, electrocardiograms, electroolfactograms, and electromyograms of rats under acute hypoxic conditions (i.e., 5.0% O2). Exposure to acute hypoxia significantly attenuated alpha oscillations alone in the primary motor cortex, while we failed to find any effects of acute hypoxia on the oscillatory power in the somatosensory cortex or anterior cingulate cortex. These area- and frequency-specific effects by hypoxia may be accounted for by neural innervation from the brainstem to each cortical area via thalamic relay nuclei. Moreover, we found that heart rate and respiratory rate were increased during acute hypoxia and high heart rate was maintained even after the oxygen level returned to the baseline. Altogether, our study characterizes a systemic effect of atmospheric hypoxia on neural and peripheral signals from physiological viewpoints, leading to bridging a gap between cellular and behavioral levels.
Collapse
Affiliation(s)
- Masashi Kawamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Institute for AI and Beyond, The University of Tokyo
- Center for Information and Neural Networks, National Institute of Information and Communications Technology
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Institute for AI and Beyond, The University of Tokyo
| |
Collapse
|
53
|
Ponomareva NV, Klyushnikov SA, Abramycheva N, Konovalov RN, Krotenkova M, Kolesnikova E, Malina D, Urazgildeeva G, Kanavets E, Mitrofanov A, Fokin V, Rogaev E, Illarioshkin SN. Neurophysiological hallmarks of Huntington's disease progression: an EEG and fMRI connectivity study. Front Aging Neurosci 2023; 15:1270226. [PMID: 38161585 PMCID: PMC10755012 DOI: 10.3389/fnagi.2023.1270226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide corroborative data on neurophysiological alterations in Huntington's disease (HD). However, the alterations in EEG and fMRI resting-state functional connectivity (rsFC), as well as their interrelations, at different stages of HD remain insufficiently investigated. This study aimed to identify neurophysiological alterations in individuals with preclinical HD (preHD) and early manifest HD (EMHD) by analyzing EEG and fMRI rsFC and examining their interrelationships. We found significant differences in EEG power between preHD individuals and healthy controls (HC), with a decrease in power in a specific frequency range at the theta-alpha border and slow alpha activity. In EMHD patients, in addition to the decrease in power in the 7-9 Hz range, a reduction in power within the classic alpha band compared to HC was observed. The fMRI analysis revealed disrupted functional connectivity in various brain networks, particularly within frontal lobe, putamen-cortical, and cortico-cerebellar networks, in individuals with the HD mutation compared to HC. The analysis of the relationship between EEG and fMRI rsFC revealed an association between decreased alpha power, observed in individuals with EMHD, and increased connectivity in large-scale brain networks. These networks include putamen-cortical, DMN-related and cortico-hippocampal circuits. Overall, the findings suggest that EEG and fMRI provide valuable information for monitoring pathological processes during the development of HD. A decrease in inhibitory control within the putamen-cortical, DMN-related and cortico-hippocampal circuits, accompanied by a reduction in alpha and theta-alpha border oscillatory activity, could potentially contribute to cognitive decline in HD.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | | | | | | | | | | | | | | | | | | | | | - Evgeny Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA, United States
| | | |
Collapse
|
54
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
55
|
Chang J, Chang C. Quantitative Electroencephalography Markers for an Accurate Diagnosis of Frontotemporal Dementia: A Spectral Power Ratio Approach. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2155. [PMID: 38138258 PMCID: PMC10744364 DOI: 10.3390/medicina59122155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Frontotemporal dementia (FTD) is the second most common form of presenile dementia; however, its diagnosis has been poorly investigated. Previous attempts to diagnose FTD using quantitative electroencephalography (qEEG) have yielded inconsistent results in both spectral and functional connectivity analyses. This study aimed to introduce an accurate qEEG marker that could be used to diagnose FTD and other neurological abnormalities. Materials and Methods: We used open-access electroencephalography data from OpenNeuro to investigate the power ratio between the frontal and temporal lobes in the resting state of 23 patients with FTD and 29 healthy controls. Spectral data were extracted using a fast Fourier transform in the delta (0.5 ≤ 4 Hz), theta (4 ≤ 8 Hz), alpha (8-13 Hz), beta (>13-30 Hz), and gamma (>30-45 Hz) bands. Results: We found that the spectral power ratio between the frontal and temporal lobes is a promising qEEG marker of FTD. Frontal (F)-theta/temporal (T)-alpha, F-alpha/T-theta, F-theta/F-alpha, and T-beta/T-gamma showed a consistently high discrimination score for the diagnosis of FTD for different parameters and referencing methods. Conclusions: The study findings can serve as reference for future research focused on diagnosing FTD and other neurological anomalies.
Collapse
Affiliation(s)
- Jinwon Chang
- Korean Minjok Leadership Academy, Hoengseong 25268, Republic of Korea
| | - Chul Chang
- College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
56
|
Tichelman NL, Foerges AL, Elmenhorst EM, Lange D, Hennecke E, Baur DM, Beer S, Kroll T, Neumaier B, Bauer A, Landolt HP, Aeschbach D, Elmenhorst D. A genetic variation in the adenosine A2A receptor gene contributes to variability in oscillatory alpha power in wake and sleep EEG and A 1 adenosine receptor availability in the human brain. Neuroimage 2023; 280:120345. [PMID: 37625500 DOI: 10.1016/j.neuroimage.2023.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
The EEG alpha rhythm (∼ 8-13 Hz) is one of the most salient human brain activity rhythms, modulated by the level of attention and vigilance and related to cerebral energy metabolism. Spectral power in the alpha range in wakefulness and sleep strongly varies among individuals based on genetic predisposition. Knowledge about the underlying genes is scarce, yet small studies indicated that the variant rs5751876 of the gene encoding A2A adenosine receptors (ADORA2A) may contribute to the inter-individual variation. The neuromodulator adenosine is directly linked to energy metabolism as product of adenosine tri-phosphate breakdown and acts as a sleep promoting molecule by activating A1 and A2A adenosine receptors. We performed sleep and positron emission tomography studies in 59 healthy carriers of different rs5751876 alleles, and quantified EEG oscillatory alpha power in wakefulness and sleep, as well as A1 adenosine receptor availability with 18F-CPFPX. Oscillatory alpha power was higher in homozygous C-allele carriers (n = 27, 11 females) compared to heterozygous and homozygous carriers of the T-allele (n(C/T) = 23, n(T/T) = 5, 13 females) (F(18,37) = 2.35, p = 0.014, Wilk's Λ = 0.487). Furthermore, a modulatory effect of ADORA2A genotype on A1 adenosine receptor binding potential was found across all considered brain regions (F(18,40) = 2.62, p = 0.006, Wilk's Λ = 0.459), which remained significant for circumscribed occipital region of calcarine fissures after correction for multiple comparisons. In female participants, a correlation between individual differences in oscillatory alpha power and A1 receptor availability was observed. In conclusion, we confirmed that a genetic variant of ADORA2A affects individual alpha power, while a direct modulatory effect via A1 adenosine receptors in females is suggested.
Collapse
Affiliation(s)
- Naemi L Tichelman
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Anna L Foerges
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany; RWTH Aachen University, Department of Neurophysiology, Institute of Zoology (Bio-II), Worringerweg 3, Aachen, North Rhine-Westphalia 52074, Germany
| | - Eva-Maria Elmenhorst
- German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, Cologne, North Rhine-Westphalia 51147, Germany; Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, North Rhine-Westphalia 52074, Germany
| | - Denise Lange
- German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, Cologne, North Rhine-Westphalia 51147, Germany
| | - Eva Hennecke
- German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, Cologne, North Rhine-Westphalia 51147, Germany
| | - Diego M Baur
- University of Zurich, Institute of Pharmacology & Toxicology, Winterthurerstrasse 190, Zurich 8057, Switzerland and Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Simone Beer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Tina Kroll
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-5), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Andreas Bauer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Hans-Peter Landolt
- University of Zurich, Institute of Pharmacology & Toxicology, Winterthurerstrasse 190, Zurich 8057, Switzerland and Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Daniel Aeschbach
- German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, Cologne, North Rhine-Westphalia 51147, Germany; Harvard Medical School, Division of Sleep Medicine, Suite BL-438, 221 Longwood Avenue, Boston, Massachusetts 02115, United States of America; Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Sigmund-Freud Str. 25, Bonn, North Rhine-Westphalia 53127, Germany
| | - David Elmenhorst
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, Division of Medical Psychology, Venusberg-Campus 1, Bonn, North Rhine-Westphalia 53127, Germany; University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Kerpener Strasse 62, Cologne, North Rhine-Westphalia 50937, Germany.
| |
Collapse
|
57
|
Babiloni C, Lopez S, Noce G, Ferri R, Panerai S, Catania V, Soricelli A, Salvatore M, Nobili F, Arnaldi D, Famà F, Massa F, Buttinelli C, Giubilei F, Stocchi F, Vacca L, Marizzoni M, D'Antonio F, Bruno G, De Lena C, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Yerlikaya D, Taylor JP, Schumacher J, McKeith I, Bonanni L, Pantano P, Piervincenzi C, Petsas N, Frisoni GB, Del Percio C, Carducci F. Relationship between default mode network and resting-state electroencephalographic alpha rhythms in cognitively unimpaired seniors and patients with dementia due to Alzheimer's disease. Cereb Cortex 2023; 33:10514-10527. [PMID: 37615301 PMCID: PMC10588004 DOI: 10.1093/cercor/bhad300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer's disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federico Massa
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo De Lena
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir School of Economics, Faculty of Medicine, Izmir, Turkey
| | - Deniz Yerlikaya
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Nikolaos Petsas
- Scuola di Specializzazione in Statistica Medica e Biometria, Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza University of Rome, Rome, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| |
Collapse
|
58
|
González-Trujano ME, Páez-Martínez N, Krengel F, Martínez-Vargas D, León-Santiago M, Cruz-López B, Puentes-Guerrero JM, Díaz-Cantón JK, Reyes-Chilpa R, Guzmán-Gutiérrez SL. Central nervous system activity of a Tabernaemontana arborea alkaloid extract involves serotonergic and opioidergic neurotransmission in murine models. Fitoterapia 2023; 169:105602. [PMID: 37423501 DOI: 10.1016/j.fitote.2023.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Tabernaemontana arborea (Apocynaceae) is a Mexican tree species known to contain ibogan type alkaloids. This study aimed at determining central nervous system-related activities of an alkaloid extract obtained from the root bark of T. arborea. A gas chromatography-mass spectrometry (GC-MS) analysis was performed to describe the alkaloid profile of the extract. A wide dosing range (0.1 to 56.2 mg/kg) of this extract was evaluated in different murine models. Electrical brain activity was examined by electroencephalography (EEG). The extract's effects on motor coordination, ambulatory activity, and memory were analyzed based on the rotarod, open field (OFT), and object recognition tests (ORT), respectively. Antidepressant and antinociceptive activities were determined using the forced swimming test (FST) and the formalin assay, respectively. In order to elucidate the underlying mechanisms of action, the 5-HT1A receptor antagonist WAY100635 (1 mg/kg) or the opioid receptor antagonist naloxone (1 mg/kg) was included in the latter experiments. GC-MS analysis (μg/mg extract) confirmed the presence of the monoterpenoid indole alkaloids (MIAs) voacangine (207.00), ibogaine (106.33), vobasine (72.81), coronaridine (30.72), and ibogamine (24.2) as principal constituents of the extract, which exhibited dose- and receptor-dependent antidepressant (0.1 to 1 mg/kg; 5-HT1A) and antinociceptive (30 and 56.2 mg/kg; opioid) effects, without altering motor coordination, ambulatory activity, and memory. EEG indicated CNS depressant activity at high doses (30 and 56.2 mg/kg). The root bark of T. arborea contains a mixture of alkaloids that may hold therapeutic value in pain relief and the treatment of psychiatric diseases without causing neurotoxic activity at effective doses.
Collapse
Affiliation(s)
- M E González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico
| | - N Páez-Martínez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; Laboratorio Integrativo Para el Estudio de Sustancias Inhalables Adictivas, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico
| | - F Krengel
- Laboratorio de Fitoquímica, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, UNAM. Av. Universidad 3000, Circuito Exterior s/n, Alcaldía Coyoacán, CP 04510, Ciudad Universitaria, CDMX, Mexico
| | - D Martínez-Vargas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico
| | - M León-Santiago
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P. 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - B Cruz-López
- Laboratorio Integrativo Para el Estudio de Sustancias Inhalables Adictivas, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico
| | - J M Puentes-Guerrero
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico
| | - J K Díaz-Cantón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P. 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - R Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P. 04510, Ciudad Universitaria, Ciudad de México, Mexico.
| | - S L Guzmán-Gutiérrez
- CONAHCyT-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Escolar S/N, Delegación Coyoacán, C.P. 04510, Ciudad Universitaria, Ciudad de México, Mexico.
| |
Collapse
|
59
|
Forster A, Rodrigues J, Ziebell P, Sanguinetti JL, Allen JJ, Hewig J. Investigating the role of the right inferior frontal gyrus in control perception: A double-blind cross-over study using ultrasonic neuromodulation. Neuropsychologia 2023; 187:108589. [PMID: 37302753 DOI: 10.1016/j.neuropsychologia.2023.108589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Being able to control inner and environmental states is a basic need of living creatures. The perception of such control is based on the perceived ratio of outcome probabilities given the presence and the absence of agentic behavior. If an organism believes that options exist to change the probability of a given outcome, control perception (CP) may emerge. Nonetheless, regarding this model, not much is known about how the brain processes CP from this information. This study uses low-intensity transcranial focused ultrasound neuromodulation in a randomized-controlled double blind cross-over design to investigate the impact of the right inferior frontal gyrus of the lateral prefrontal cortex (lPFC) on this process. 39 healthy participants visited the laboratory twice (once in a sham, once in a neuromodulation condition) and rated their control perception regarding a classical control illusion task. EEG alpha and theta power density were analyzed in a hierarchical single trial-based mixed modeling approach. Results indicate that the litFUS neuromodulation changed the processing of stimulus probability without changing CP. Furthermore, neuromodulation of the right lPFC was found to modulate mid-frontal theta by altering its relationship with self-reported effort and worrying. While these data indicate lateral prefrontal sensitivity to stimulus probability, no evidence emerged for the dependency of CP on this processing.
Collapse
Affiliation(s)
- André Forster
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Johannes Rodrigues
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Philipp Ziebell
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | | | | | - Johannes Hewig
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| |
Collapse
|
60
|
Vigué-Guix I, Soto-Faraco S. Using occipital ⍺-bursts to modulate behavior in real-time. Cereb Cortex 2023; 33:9465-9477. [PMID: 37365814 DOI: 10.1093/cercor/bhad217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Pre-stimulus endogenous neural activity can influence the processing of upcoming sensory input and subsequent behavioral reactions. Despite it is known that spontaneous oscillatory activity mostly appears in stochastic bursts, typical approaches based on trial averaging fail to capture this. We aimed at relating spontaneous oscillatory bursts in the alpha band (8-13 Hz) to visual detection behavior, via an electroencephalography-based brain-computer interface (BCI) that allowed for burst-triggered stimulus presentation in real-time. According to alpha theories, we hypothesized that visual targets presented during alpha-bursts should lead to slower responses and higher miss rates, whereas targets presented in the absence of bursts (low alpha activity) should lead to faster responses and higher false alarm rates. Our findings support the role of bursts of alpha oscillations in visual perception and exemplify how real-time BCI systems can be used as a test bench for brain-behavioral theories.
Collapse
Affiliation(s)
- Irene Vigué-Guix
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
61
|
Luo X, Liao J, Liu H, Tang Q, Luo H, Chen X, Ruan J. The micro and macro interactions in acute autoimmune encephalitis: a study of resting-state EEG. Front Neurol 2023; 14:1181629. [PMID: 37360339 PMCID: PMC10285084 DOI: 10.3389/fneur.2023.1181629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Objective Early recognition of autoimmune encephalitis (AIE) is often difficult and time-consuming. Understanding how the micro-level (antibodies) and macro-level (EEG) couple with each other may help rapidly diagnose and appropriately treat AIE. However, limited studies focused on brain oscillations involving micro- and macro-interactions in AIE from a neuro-electrophysiological perspective. Here, we investigated brain network oscillations in AIE using Graph theoretical analysis of resting state EEG. Methods AIE Patients (n = 67) were enrolled from June 2018 to June 2022. Each participant underwent a ca.2-hour 19-channel EEG examination. Five 10-second resting state EEG epochs with eyes closed were extracted for each participant. The functional networks based on the channels and Graph theory analysis were carried out. Results Compared with the HC group, significantly decreased FC across whole brain regions at alpha and beta bands were found in AIE patients. In addition, the local efficiency and clustering coefficient of the delta band was higher in AIE patients than in the HC group (P < 0.05). AIE patients had a smaller world index (P < 0.05) and higher shortest path length (P < 0.001) in the alpha band than those of the control group. Also, the AIE patients' global efficiency, local efficiency, and clustering coefficients decreased in the alpha band (P < 0.001). Different types of antibodies (antibodies against ion channels, antibodies against synaptic excitatory receptors, antibodies against synaptic inhibitory receptors, and multiple antibodies positive) showed distinct graph parameters. Moreover, the graph parameters differed in the subgroups by intracranial pressure. Correlation analysis revealed that magnetic resonance imaging abnormalities were related to global efficiency, local efficiency, and clustering coefficients in the theta, alpha, and beta bands, but negatively related to the shortest path length. Conclusion These findings add to our understanding of how brain FC and graph parameters change and how the micro- (antibodies) scales interact with the macro- (scalp EEG) scale in acute AIE. The clinical traits and subtypes of AIE may be suggested by graph properties. Further longitudinal cohort studies are needed to explore the associations between these graph parameters and recovery status, and their possible applications in AIE rehabilitation.
Collapse
Affiliation(s)
- Xin Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jie Liao
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hong Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Qiulin Tang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
62
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
63
|
Li W, Keil A. Sensing fear: fast and precise threat evaluation in human sensory cortex. Trends Cogn Sci 2023; 27:341-352. [PMID: 36732175 PMCID: PMC10023404 DOI: 10.1016/j.tics.2023.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Animal models of threat processing have evolved beyond the amygdala to incorporate a distributed neural network. In human research, evidence has intensified in recent years to challenge the canonical threat circuitry centered on the amygdala, urging revision of threat conceptualization. A strong surge of research into threat processing in the sensory cortex in the past decade has generated particularly useful insights to inform the reconceptualization. Here, synthesizing findings from both animal and human research, we highlight sensitive, specific, and adaptable threat representations in the sensory cortex, arising from experience-based sculpting of sensory coding networks. We thus propose that the human sensory cortex can drive smart (fast and precise) threat evaluation, producing threat-imbued sensory afferents to elicit network-wide threat responses.
Collapse
Affiliation(s)
- Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainsville, FL, USA
| |
Collapse
|
64
|
Lopez S, Del Percio C, Lizio R, Noce G, Padovani A, Nobili F, Arnaldi D, Famà F, Moretti DV, Cagnin A, Koch G, Benussi A, Onofrj M, Borroni B, Soricelli A, Ferri R, Buttinelli C, Giubilei F, Güntekin B, Yener G, Stocchi F, Vacca L, Bonanni L, Babiloni C. Patients with Alzheimer's disease dementia show partially preserved parietal 'hubs' modeled from resting-state alpha electroencephalographic rhythms. Front Aging Neurosci 2023; 15:780014. [PMID: 36776437 PMCID: PMC9908964 DOI: 10.3389/fnagi.2023.780014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Graph theory models a network by its nodes (the fundamental unit by which graphs are formed) and connections. 'Degree' hubs reflect node centrality (the connection rate), while 'connector' hubs are those linked to several clusters of nodes (mainly long-range connections). Methods Here, we compared hubs modeled from measures of interdependencies of between-electrode resting-state eyes-closed electroencephalography (rsEEG) rhythms in normal elderly (Nold) and Alzheimer's disease dementia (ADD) participants. At least 5 min of rsEEG was recorded and analyzed. As ADD is considered a 'network disease' and is typically associated with abnormal rsEEG delta (<4 Hz) and alpha rhythms (8-12 Hz) over associative posterior areas, we tested the hypothesis of abnormal posterior hubs from measures of interdependencies of rsEEG rhythms from delta to gamma bands (2-40 Hz) using eLORETA bivariate and multivariate-directional techniques in ADD participants versus Nold participants. Three different definitions of 'connector' hub were used. Results Convergent results showed that in both the Nold and ADD groups there were significant parietal 'degree' and 'connector' hubs derived from alpha rhythms. These hubs had a prominent outward 'directionality' in the two groups, but that 'directionality' was lower in ADD participants than in Nold participants. Discussion In conclusion, independent methodologies and hub definitions suggest that ADD patients may be characterized by low outward 'directionality' of partially preserved parietal 'degree' and 'connector' hubs derived from rsEEG alpha rhythms.
Collapse
Affiliation(s)
- Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Dario Arnaldi
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy
| | - Davide V. Moretti
- Alzheimer’s Disease Rehabilitation Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Department of Neuroscience, Tor Vergata Policlinic, Rome, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University “G. D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Görsev Yener
- Department of Neurology, Dokuz Eylül University Medical School, Izmir, Türkiye
- Faculty of Medicine, Izmir University of Economics, Izmir, Türkiye
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Roma, Rome, Italy
- Telematic University San Raffaele, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Roma, Rome, Italy
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- San Raffaele of Cassino, Cassino, Italy
| |
Collapse
|
65
|
Morrow A, Dou W, Samaha J. Individual alpha frequency appears unrelated to the latency of early visual responses. Front Neurosci 2023; 17:1118910. [PMID: 37113149 PMCID: PMC10126513 DOI: 10.3389/fnins.2023.1118910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
A large body of work has linked neural oscillations in the alpha-band (8-13 Hz) to visual perceptual outcomes. In particular, studies have found that alpha phase prior to stimulus onset predicts stimulus detection, and sensory responses and that the frequency of alpha can predict temporal properties of perception. These findings have bolstered the idea that alpha-band oscillations reflect rhythmic sampling of visual information, however the mechanisms of this are unclear. Recently two contrasting hypotheses have been proposed. According to the rhythmic perception account, alpha oscillations impose phasic inhibition on perceptual processing and primarily modulate the amplitude or strength of visual responses and thus the likelihood of stimulus detection. On the other hand, the discrete perception account proposes that alpha activity discretizes perceptual inputs thereby reorganizing the timing (not only the strength) of perceptual and neural processes. In this paper, we sought neural evidence for the discrete perception account by assessing the correlation between individual alpha frequencies (IAF) and the latency of early visual evoked event-related potential (ERP) components. If alpha cycles were responsible for shifting neural events in time, then we may expect higher alpha frequencies to be associated with earlier afferent visual ERPs. Participants viewed large checkerboard stimuli presented to either the upper or lower visual field that were designed to elicit a large C1 ERP response (thought to index feedforward primary visual cortex activation). We found no reliable correlation between IAF and the C1 latency, or subsequent ERP component latencies, suggesting that the timing of these visual-evoked potentials was not modulated by alpha frequency. Our results thus fail to find evidence for discrete perception at the level of early visual responses but leave open the possibility of rhythmic perception.
Collapse
|
66
|
Del Percio C, Lopez S, Noce G, Lizio R, Tucci F, Soricelli A, Ferri R, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Marizzoni M, Güntekin B, Yener G, Stocchi F, Vacca L, Frisoni GB, Babiloni C. What a Single Electroencephalographic (EEG) Channel Can Tell us About Alzheimer's Disease Patients With Mild Cognitive Impairment. Clin EEG Neurosci 2023; 54:21-35. [PMID: 36413420 DOI: 10.1177/15500594221125033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abnormalities in cortical sources of resting-state eyes closed electroencephalographic (rsEEG) rhythms recorded by hospital settings (10-20 montage) with 19 scalp electrodes characterized Alzheimer's disease (AD) from preclinical to dementia stages. An intriguing rsEEG application is the monitoring and evaluation of AD progression in large populations with few electrodes in low-cost devices. Here we evaluated whether the above-mentioned abnormalities can be observed from fewer scalp electrodes in patients with mild cognitive impairment due to AD (ADMCI). Clinical and rsEEG data acquired in hospital settings (10-20 montage) from 75 ADMCI participants and 70 age-, education-, and sex-matched normal elderly controls (Nold) were available in an Italian-Turkish archive (PDWAVES Consortium; www.pdwaves.eu). Standard spectral fast fourier transform (FFT) analysis of rsEEG data for individual delta, theta, and alpha frequency bands was computed from 6 monopolar scalp electrodes to derive bipolar C3-P3, C4-P4, P3-O1, and P4-O2 markers. The ADMCI group showed increased delta and decreased alpha power density at the C3-P3, C4-P4, P3-O1, and P4-O2 bipolar channels compared to the Nold group. Increased theta power density for ADMCI patients was observed only at the C3-P3 bipolar channel. Best classification accuracy between the ADMCI and Nold individuals reached 81% (area under the receiver operating characteristic curve) using Alpha2/Theta power density computed at the C3-P3 bipolar channel. Standard rsEEG power density computed from six posterior bipolar channels characterized ADMCI status. These results may pave the way toward diffuse clinical applications in health monitoring of dementia using low-cost EEG systems with a strict number of electrodes in lower- and middle-income countries.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | | | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), 27212Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), 27212Università di Genova, Italy
| | - Francesco Famà
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, 9311Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, 9311Sapienza University of Rome, Rome, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, 218502Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., 218502Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and 27212University of Geneva, Geneva, Switzerland
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| |
Collapse
|
67
|
Sun C, Longrois D, Holcman D. Spectral EEG correlations from the different phases of general anesthesia. Front Med (Lausanne) 2023; 10:1009434. [PMID: 36950512 PMCID: PMC10025404 DOI: 10.3389/fmed.2023.1009434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Electroencephalography (EEG) signals contain transient oscillation patterns commonly used to classify brain states in responses to action, sleep, coma or anesthesia. Methods Using a time-frequency analysis of the EEG, we search for possible causal correlations between the successive phases of general anesthesia. We hypothesize that it could be possible to anticipate recovery patterns from the induction or maintenance phases. For that goal, we track the maximum power of the α-band and follow its time course. Results and discussion We quantify the frequency shift of the α-band during the recovery phase and the associated duration. Using Pearson coefficient and Bayes factor, we report non-significant linear correlation between the α-band frequency and duration shifts during recovery and the presence of the δ or the α rhythms during the maintenance phase. We also found no correlations between the α-band emergence trajectory and the total duration of the flat EEG epochs (iso-electric suppressions) induced by a propofol bolus injected during induction. Finally, we quantify the instability of the α-band using the mathematical total variation that measures possible deviations from a flat line. To conclude, the present correlative analysis shows that EEG dynamics extracted from the initial and maintenance phases of general anesthesia cannot anticipate both the emergence trajectory and the extubation time.
Collapse
Affiliation(s)
- Christophe Sun
- Group of Data Modeling, Computational Biology and Predictive Medicine, Institut de Biologie (IBENS), École Normale Supérieure, Université PSL, Paris, France
| | - Dan Longrois
- Département d'Anesthésie-Réanimation, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - David Holcman
- Group of Data Modeling, Computational Biology and Predictive Medicine, Institut de Biologie (IBENS), École Normale Supérieure, Université PSL, Paris, France
- Churchill College, Cambridge, United Kingdom
- *Correspondence: David Holcman
| |
Collapse
|
68
|
What a single electroencephalographic (EEG) channel can tell us about patients with dementia due to Alzheimer's disease. Int J Psychophysiol 2022; 182:169-181. [DOI: 10.1016/j.ijpsycho.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
69
|
Decoding the cognitive states of attention and distraction in a real-life setting using EEG. Sci Rep 2022; 12:20649. [PMID: 36450871 PMCID: PMC9712397 DOI: 10.1038/s41598-022-24417-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/15/2022] [Indexed: 12/11/2022] Open
Abstract
Lapses in attention can have serious consequences in situations such as driving a car, hence there is considerable interest in tracking it using neural measures. However, as most of these studies have been done in highly controlled and artificial laboratory settings, we want to explore whether it is also possible to determine attention and distraction using electroencephalogram (EEG) data collected in a natural setting using machine/deep learning. 24 participants volunteered for the study. Data were collected from pairs of participants simultaneously while they engaged in Tibetan Monastic debate, a practice that is interesting because it is a real-life situation that generates substantial variability in attention states. We found that attention was on average associated with increased left frontal alpha, increased left parietal theta, and decreased central delta compared to distraction. In an attempt to predict attention and distraction, we found that a Long Short Term Memory model classified attention and distraction with maximum accuracy of 95.86% and 95.4% corresponding to delta and theta waves respectively. This study demonstrates that EEG data collected in a real-life setting can be used to predict attention states in participants with good accuracy, opening doors for developing Brain-Computer Interfaces that track attention in real-time using data extracted in daily life settings, rendering them much more usable.
Collapse
|
70
|
Candelaria-Cook FT, Schendel ME, Flynn L, Cerros C, Kodituwakku P, Bakhireva LN, Hill DE, Stephen JM. Decreased resting-state alpha peak frequency in children and adolescents with fetal alcohol spectrum disorders or prenatal alcohol exposure. Dev Cogn Neurosci 2022; 57:101137. [PMID: 35878441 PMCID: PMC9310113 DOI: 10.1016/j.dcn.2022.101137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can result in long-lasting changes to physical, behavioral, and cognitive functioning in children. PAE might result in decreased white matter integrity, corticothalamic tract integrity, and alpha cortical oscillations. Previous investigations of alpha oscillations in PAE/fetal alcohol spectrum disorder (FASD) have focused on average spectral power at specific ages; therefore, little is known about alpha peak frequency (APF) or its developmental trajectory making this research novel. Using resting-state MEG data, APF was determined from parietal/occipital regions in participants with PAE/FASD or typically developing controls (TDC). In total, MEG data from 157 infants, children, and adolescents ranging in age from 6 months to 17 years were used, including 17 individuals with PAE, 61 individuals with an FASD and 84 TDC. In line with our hypothesis, we found that individuals with PAE/FASD had significantly reduced APF relative to TDC. Both age and group were significantly related to APF with differences between TDC and PAE/FASD persisting throughout development. We did not find evidence that sex or socioeconomic status had additional impact on APF. Reduced APF in individuals with an FASD/PAE may represent a long-term deficit and demonstrates the detrimental impact prenatal alcohol exposure can have on neurophysiological processes.
Collapse
Affiliation(s)
| | - Megan E Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Lucinda Flynn
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Cassandra Cerros
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Piyadasa Kodituwakku
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ludmila N Bakhireva
- Substance Use Research and Education Center, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
71
|
Stokes PA, Rath P, Possidente T, He M, Purcell S, Manoach DS, Stickgold R, Prerau MJ. Transient oscillation dynamics during sleep provide a robust basis for electroencephalographic phenotyping and biomarker identification. Sleep 2022; 46:6701543. [PMID: 36107467 PMCID: PMC9832519 DOI: 10.1093/sleep/zsac223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Indexed: 01/19/2023] Open
Abstract
Transient oscillatory events in the sleep electroencephalogram represent short-term coordinated network activity. Of particular importance, sleep spindles are transient oscillatory events associated with memory consolidation, which are altered in aging and in several psychiatric and neurodegenerative disorders. Spindle identification, however, currently contains implicit assumptions derived from what waveforms were historically easiest to discern by eye, and has recently been shown to select only a high-amplitude subset of transient events. Moreover, spindle activity is typically averaged across a sleep stage, collapsing continuous dynamics into discrete states. What information can be gained by expanding our view of transient oscillatory events and their dynamics? In this paper, we develop a novel approach to electroencephalographic phenotyping, characterizing a generalized class of transient time-frequency events across a wide frequency range using continuous dynamics. We demonstrate that the complex temporal evolution of transient events during sleep is highly stereotyped when viewed as a function of slow oscillation power (an objective, continuous metric of depth-of-sleep) and phase (a correlate of cortical up/down states). This two-fold power-phase representation has large intersubject variability-even within healthy controls-yet strong night-to-night stability for individuals, suggesting a robust basis for phenotyping. As a clinical application, we then analyze patients with schizophrenia, confirming established spindle (12-15 Hz) deficits as well as identifying novel differences in transient non-rapid eye movement events in low-alpha (7-10 Hz) and theta (4-6 Hz) ranges. Overall, these results offer an expanded view of transient activity, describing a broad class of events with properties varying continuously across spatial, temporal, and phase-coupling dimensions.
Collapse
Affiliation(s)
- Patrick A Stokes
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Preetish Rath
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA,Department of Computer Science, Tufts University, Medford, MA, USA
| | - Thomas Possidente
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Mingjian He
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shaun Purcell
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael J Prerau
- Corresponding author. Michael J. Prerau, Brigham and Women's Hospital, Division of Sleep and Circadian Disorders, 221 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
72
|
Merkin A, Sghirripa S, Graetz L, Smith AE, Hordacre B, Harris R, Pitcher J, Semmler J, Rogasch NC, Goldsworthy M. Do age-related differences in aperiodic neural activity explain differences in resting EEG alpha? Neurobiol Aging 2022; 121:78-87. [DOI: 10.1016/j.neurobiolaging.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 08/12/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
|
73
|
Hou L, Chen L, Zhou R. Premenstrual syndrome is associated with an altered spontaneous electroencephalographic delta/beta power ratio across the menstrual cycle. Int J Psychophysiol 2022; 181:64-72. [PMID: 36029920 DOI: 10.1016/j.ijpsycho.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/16/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022]
Abstract
Premenstrual syndrome is associated with altered spontaneous brain activity in the late luteal phase, but the fluctuation patterns of brain activity throughout the menstrual cycle have not been revealed. Furthermore, it is also unknown whether the altered spontaneous brain activity during the whole menstrual cycle is further associated with their habitual use of maladaptive emotion regulation strategies. Based on the two reasons, electroencephalogram data and cognitive emotion regulation questionnaire from 32 women with high premenstrual symptoms (HPMS) and 33 women with low premenstrual symptoms (LPMS) were measured in the late luteal and follicular phases. Delta power, theta power, beta power, and the slow/fast wave ratios (SW/FW, including theta/beta power ratio [TBR] and delta/beta power ratio [DBR]) were calculated using both fixed frequency bands and individually adjusted frequency bands (based on the individual alpha peak frequency). The results showed that for the frontal and central DBR, as assessed both with fixed and individualized frequency bands, there was no difference between the two phases of the LPMS group, whereas there was a difference between the two phases of the HPMS group with a higher DBR in the late luteal phase than in the follicular phase. Further correlation results revealed that for women with HPMS in the late luteal phase, the frontal and central DBR values, as assessed both with fixed and individualized frequency bands, were positively correlated with self-blame and rumination. Consequently, HPMS was characterized by a fluctuation across the menstrual cycle in the DBR, which was further associated with maladaptive emotion regulation.
Collapse
Affiliation(s)
- Lulu Hou
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China; Department of Psychology, Nanjing University, Nanjing 210096, China
| | - Lirong Chen
- Department of Psychology, Nanjing University, Nanjing 210096, China; Department of Psychology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Renlai Zhou
- Department of Psychology, Nanjing University, Nanjing 210096, China; State Key Laboratory of Media Convergence Production Technology and Systems, Beijing 100803, China.
| |
Collapse
|
74
|
Wang K, Wei A, Fu Y, Wang T, Gao X, Fu B, Zhu Y, Cui B, Zhu M. State-dependent modulation of thalamocortical oscillations by gamma light flicker with different frequencies, intensities, and duty cycles. Front Neuroinform 2022; 16:968907. [PMID: 36081653 PMCID: PMC9445583 DOI: 10.3389/fninf.2022.968907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythmic light flickers have emerged as useful tools to modulate cognition and rescue pathological oscillations related to neurological disorders by entrainment. However, a mechanistic understanding of the entrainment for different brain oscillatory states and light flicker parameters is lacking. To address this issue, we proposed a biophysical neural network model for thalamocortical oscillations (TCOs) and explored the stimulation effects depending on the thalamocortical oscillatory states and stimulation parameters (frequency, intensity, and duty cycle) using the proposed model and electrophysiology experiments. The proposed model generated alpha, beta, and gamma oscillatory states (with main oscillation frequences at 9, 25, and 35 Hz, respectively), which were successfully transmitted from the thalamus to the cortex. By applying light flicker stimulation, we found that the entrainment was state-dependent and it was more prone to induce entrainment if the flicker perturbation frequency was closer to the endogenous oscillatory frequency. In addition, endogenous oscillation would be accelerated, whereas low-frequency oscillatory power would be suppressed by gamma (30-50 Hz) flickers. Notably, the effects of intensity and duty cycle on entrainment were complex; a high intensity of light flicker did not mean high entrainment possibility, and duty cycles below 50% could induce entrainment easier than those above 50%. Further, we observed entrainment discontinuity during gamma flicker stimulations with different frequencies, attributable to the non-linear characteristics of the network oscillations. These results provide support for the experimental design and clinical applications of the modulation of TCOs by gamma (30-50 Hz) light flicker.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin, China
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Aili Wei
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tianhui Wang
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Fu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Mengfu Zhu
- Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin, China
| |
Collapse
|
75
|
Exploring sex differences in alpha brain activity as a potential neuromarker associated with neuropathic pain. Pain 2022; 163:1291-1302. [PMID: 34711764 DOI: 10.1097/j.pain.0000000000002491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT Alpha oscillatory activity (8-13 Hz) is the dominant rhythm in the awake brain and is known to play an important role in pain states. Previous studies have identified alpha band slowing and increased power in the dynamic pain connectome (DPC) of people with chronic neuropathic pain. However, a link between alpha-band abnormalities and sex differences in brain organization in healthy individuals and those with chronic pain is not known. Here, we used resting-state magnetoencephalography to test the hypothesis that peak alpha frequency (PAF) abnormalities are general features across chronic central and peripheral conditions causing neuropathic pain but exhibit sex-specific differences in networks of the DPC (ascending nociceptive pathway [ANP], default mode network, salience network [SN], and subgenual anterior cingulate cortex). We found that neuropathic pain (N = 25 men and 25 women) was associated with increased PAF power in the DPC compared with 50 age- and sex-matched healthy controls, whereas slower PAF in nodes of the SN (temporoparietal junction) and the ANP (posterior insula) was associated with higher trait pain intensity. In the neuropathic pain group, women exhibited lower PAF power in the subgenual anterior cingulate cortex and faster PAF in the ANP and SN than men. The within-sex analyses indicated that women had neuropathic pain-related increased PAF power in the ANP, SN, and default mode network, whereas men with neuropathic pain had increased PAF power restricted to the ANP. These findings highlight neuropathic pain-related and sex-specific abnormalities in alpha oscillations across the DPC that could underlie aberrant neuronal communication in nociceptive processing and modulation.
Collapse
|
76
|
Liu Y, Chen Y, Fraga-González G, Szpak V, Laverman J, Wiers RW, Richard Ridderinkhof K. Resting-state EEG, Substance use and Abstinence After Chronic use: A Systematic Review. Clin EEG Neurosci 2022; 53:344-366. [PMID: 35142589 DOI: 10.1177/15500594221076347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Resting-state EEG reflects intrinsic brain activity and its alteration represents changes in cognition that are related to neuropathology. Thereby, it provides a way of revealing the neurocognitive mechanisms underpinning chronic substance use. In addition, it is documented that some neurocognitive functions can recover following sustained abstinence. We present a systematic review to synthesize how chronic substance use is associated with resting-state EEG alterations and whether these spontaneously recover from abstinence. A literature search in Medline, PsycINFO, Embase, CINAHL, Web of Science, and Scopus resulted in 4088 articles, of which 57 were included for evaluation. It covered the substance of alcohol (18), tobacco (14), cannabis (8), cocaine (6), opioids (4), methamphetamine (4), and ecstasy (4). EEG analysis methods included spectral power, functional connectivity, and network analyses. It was found that long-term substance use with or without substance use disorder diagnosis was associated with broad intrinsic neural activity alterations, which were usually expressed as neural hyperactivation and decreased neural communication between brain regions. Some studies found the use of alcohol, tobacco, cocaine, cannabis, and methamphetamine was positively correlated with these changes. These alterations can partly recover from abstinence, which differed between drugs and may reflect their neurotoxic degree. Moderating factors that may explain results inconsistency are discussed. In sum, resting-state EEG may act as a potential biomarker of neurotoxic effects of chronic substance use. Recovery effects awaits replication in larger samples with prolonged abstinence. Balanced sex ratio, enlarged sample size, advanced EEG analysis methods, and transparent reporting are recommended for future studies.
Collapse
Affiliation(s)
- Yang Liu
- 12544Department of Psychology, School of Education, Shanghai Normal University, Shanghai, China
| | - Yujie Chen
- 12544Department of Psychology, School of Education, Shanghai Normal University, Shanghai, China
| | - Gorka Fraga-González
- 27217Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Veronica Szpak
- 1234Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Judith Laverman
- 1234Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Reinout W Wiers
- 1234Addiction Development and Psychopathology (ADAPT)-Lab, Department of Psychology and Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
77
|
Griffiths BJ, Zaehle T, Repplinger S, Schmitt FC, Voges J, Hanslmayr S, Staudigl T. Rhythmic interactions between the mediodorsal thalamus and prefrontal cortex precede human visual perception. Nat Commun 2022; 13:3736. [PMID: 35768419 PMCID: PMC9243108 DOI: 10.1038/s41467-022-31407-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The thalamus is much more than a simple sensory relay. High-order thalamic nuclei, such as the mediodorsal thalamus, exert a profound influence over animal cognition. However, given the difficulty of directly recording from the thalamus in humans, next-to-nothing is known about thalamic and thalamocortical contributions to human cognition. To address this, we analysed simultaneously-recorded thalamic iEEG and whole-head MEG in six patients (plus MEG recordings from twelve healthy controls) as they completed a visual detection task. We observed that the phase of both ongoing mediodorsal thalamic and prefrontal low-frequency activity was predictive of perceptual performance. Critically however, mediodorsal thalamic activity mediated prefrontal contributions to perceptual performance. These results suggest that it is thalamocortical interactions, rather than cortical activity alone, that is predictive of upcoming perceptual performance and, more generally, highlights the importance of accounting for the thalamus when theorising about cortical contributions to human cognition.
Collapse
Affiliation(s)
- Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Simon Hanslmayr
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
78
|
Jung KH, Kang DJ, Lee WJ, Son HS, Kim S, Kang SW. Pathophysiological insight into transient global amnesia from quantitative electroencephalography. Neurobiol Dis 2022; 170:105778. [PMID: 35636647 DOI: 10.1016/j.nbd.2022.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transient global amnesia (TGA) is recognized as a benign memory disorder, with characteristic clinical and imaging features. However, the pathophysiology of TGA remains elusive. This study aims to elucidate the pathophysiological changes underlying TGA by exploring the brain activities. In total, 215 patients with TGA (age: 61.8 ± 7.8 years; women: 146) with MRI (within 7 days) and EEG studies (within 90 days) were recruited. Quantitative EEG (QEEG) power spectra and network analysis were performed by the artificial intelligence EEG analysis platform (iSyncBrain®). Subgroup analyses were conducted for different clinical groups, based on symptom duration, EEG timing after onset, and cytotoxic lesions on the MRI. Compared with 252 age- and sex-matched subjects (age: 64.5 ± 8.3 years, women: 182), TGA patients showed a global decrease in absolute power in all band waves, a relative decrease in alpha waves, a relative increase in theta waves, and atypical compensation activity. These QEEG changes were observed regardless of having cytotoxic lesions in MRI and they were significant up to 1 week after symptom onset. Network analysis showed that TGA was more activated than normal controls in alpha1 band-waves, exhibiting a compensatory process. TGA results in prolonged and widespread alterations of brain activity and connectivity. QEEG provide insight into pathophysiology of TGA.
Collapse
Affiliation(s)
- Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | | | - Woo-Jin Lee
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo-Shin Son
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sohyun Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Wan Kang
- iMediSync Inc., Seoul, Republic of Korea; National Standard Reference Data Center for Korean EEG, Seoul National University College of Nursing, Republic of Korea.
| |
Collapse
|
79
|
Li Z, Huang J, Wei W, Jiang S, Liu H, Luo H, Ruan J. EEG Oscillatory Networks in Peri-Ictal Period of Absence Epilepsy. Front Neurol 2022; 13:825225. [PMID: 35547382 PMCID: PMC9081722 DOI: 10.3389/fneur.2022.825225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the dynamical brain network changes before and after an absence seizure episode in absence epilepsy (AE). Methods 21 AE patients with a current high frequency of seizures and 21 sex- and age-matched health control (HC) who reported no history of neurological or psychiatric disorders and visited the hospital for routine physical examinations were included. Each included subject underwent a 2-h and 19-channel video EEG examination. For AE patients, five epochs of 10-s EEG data in inter-ictal, pre-ictal, and post-ictal states were collected. For the HC group, five 10-s resting-state EEG epochs were extracted. Functional independent components analysis (ICA) was carried out using the LORETA KEY tool. Results Compared with the resting-state EEG data of the HC group, the EEG data from AE patients during inter-ictal periods showed decreased alpha oscillations in regions involving the superior frontal gyrus (SFG) (BA11). From inter-ictal to pre-ictal, SFG (BA10) showed maximum decreased delta oscillations. Additionally, from pre-ictal to post-ictal, superior temporal gyrus (STG) (BA 22) presented maximum increased neural activity in the alpha band. Moreover, compared with inter-ictal EEG, post-ictal EEG showed significantly decreased theta activity in SFG (BA8). Conclusion The changes in SFG alpha oscillations are the key brain network differences between inter-ictal EEG of AE patients and resting-state EEG of HCs. The brain networks of EEG oscillatory during peri-ictal episodes are mainly involving SFG and STG. Our study suggests that altered EEG brain networks dynamics exist between inter-ictal EEG of AE patients and resting-state EEG of HCs and between pre- and post-ictal EEG in AE patients.
Collapse
Affiliation(s)
- Zhiye Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jialing Huang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Wei Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Sili Jiang
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Hong Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
80
|
Ho LT, Serafico BMF, Hsu CE, Chen ZW, Lin TY, Lin C, Lin LY, Lo MT, Chien KL. Preserved Electroencephalogram Power and Global Synchronization Predict Better Neurological Outcome in Sudden Cardiac Arrest Survivors. Front Physiol 2022; 13:866844. [PMID: 35514330 PMCID: PMC9065675 DOI: 10.3389/fphys.2022.866844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Quantitative EEG (qEEG) delineates complex brain activities. Global field synchronization (GFS) is one multichannel EEG analysis that measures global functional connectivity through quantification of synchronization between signals. We hypothesized that preservation of global functional connectivity of brain activity might be a surrogate marker for good outcome in sudden cardiac arrest (SCA) survivors. In addition, we examined the relation of phase coherence and GFS in a mathematical approach. We retrospectively collected EEG data of SCA survivors in one academic medical center. We included 75 comatose patients who were resuscitated following in-hospital or out-of-hospital nontraumatic cardiac arrest between 2013 and 2017 in the intensive care unit (ICU) of National Taiwan University Hospital (NTUH). Twelve patients (16%) were defined as good outcome (GO) (CPC 1-2). The mean age in the GO group was low (51.6 ± 15.7 vs. 68.1 ± 12.9, p < 0.001). We analyzed standard EEG power, computed EEG GFS, and assessed the cerebral performance category (CPC) score 3 months after discharge. The alpha band showed the highest discrimination ability (area under curve [AUC] = 0.78) to predict GO using power. The alpha band of GFS showed the highest AUC value (0.8) to predict GO in GFS. Furthermore, by combining EEG power + GFS, the alpha band showed the best prediction value (AUC 0.86) in predicting GO. The sensitivity of EEG power + GFS was 73%, specificity was 93%, PPV was 0.67%, and NPV was 0.94%. In conclusion, by combining GFS and EEG power analysis, the neurological outcome of the nontraumatic cardiac arrest survivor can be well-predicted. Furthermore, we proved from a mathematical point of view that although both amplitude and phase contribute to obtaining GFS, the interference in phase variation drastically changes the possibility of generating a good GFS score.
Collapse
Affiliation(s)
- Li-Ting Ho
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | - Ching-En Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Zhao-Wei Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Tse-Yu Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Kuo-Liong Chien
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
81
|
Fong CY, Law WHC, Fahrenfort JJ, Braithwaite JJ, Mazaheri A. Attenuated alpha oscillation and hyperresponsiveness reveals impaired perceptual learning in migraineurs. J Headache Pain 2022; 23:44. [PMID: 35382735 PMCID: PMC8981672 DOI: 10.1186/s10194-022-01410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background Anomalous phantom visual perceptions coupled to an aversion and discomfort to some visual patterns (especially grating in mid-range spatial frequency) have been associated with the hyperresponsiveness in migraine patients. Previous literature has found fluctuations of alpha oscillation (8-14 Hz) over the visual cortex to be associated with the gating of the visual stream. In the current study, we examined whether alpha activity was differentially modulated in migraineurs in anticipation of an upcoming stimulus as well as post-stimulus periods. Methods We used EEG to examine the brain activity in a group of 28 migraineurs (17 with aura /11 without) and 29 non-migraineurs and compared their alpha power in the pre/post-stimulus period relative to the onset of stripped gratings. Results Overall, we found that migraineurs had significantly less alpha power prior to the onset of the stimulus relative to controls. Moreover, migraineurs had significantly greater post-stimulus alpha suppression (i.e event-related desynchronization) induced by the grating in 3 cycles per degree at the 2nd half of the experiment. Conclusions These findings, taken together, provide strong support for the presence of the hyperresponsiveness of the visual cortex of migraine sufferers. We speculate that it could be the consequence of impaired perceptual learning driven by the dysfunction of GABAergic inhibitory mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01410-2.
Collapse
|
82
|
Sasi S, Sen Bhattacharya B. In silico Effects of Synaptic Connections in the Visual Thalamocortical Pathway. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:856412. [PMID: 35450154 PMCID: PMC9016146 DOI: 10.3389/fmedt.2022.856412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
We have studied brain connectivity using a biologically inspired in silico model of the visual pathway consisting of the lateral geniculate nucleus (LGN) of the thalamus, and layers 4 and 6 of the primary visual cortex. The connectivity parameters in the model are informed by the existing anatomical parameters from mammals and rodents. In the base state, the LGN and layer 6 populations in the model oscillate with dominant alpha frequency, while the layer 4 oscillates in the theta band. By changing intra-cortical hyperparameters, specifically inhibition from layer 6 to layer 4, we demonstrate a transition to alpha mode for all the populations. Furthermore, by increasing the feedforward connectivities in the thalamo-cortico-thalamic loop, we could transition into the beta band for all the populations. On looking closely, we observed that the origin of this beta band is in the layer 6 (infragranular layers); lesioning the thalamic feedback from layer 6 removed the beta from the LGN and the layer 4. This agrees with existing physiological studies where it is shown that beta rhythm is generated in the infragranular layers. Lastly, we present a case study to demonstrate a neurological condition in the model. By changing connectivities in the network, we could simulate the condition of significant (P < 0.001) decrease in beta band power and a simultaneous increase in the theta band power, similar to that observed in Schizophrenia patients. Overall, we have shown that the connectivity changes in a simple visual thalamocortical in silico model can simulate state changes in the brain corresponding to both health and disease conditions.
Collapse
|
83
|
REACTIVITY OF POSTERIOR CORTICAL ELECTROENCEPHALOGRAPHIC ALPHA RHYTHMS DURING EYES OPENING IN COGNITIVELY INTACT OLDER ADULTS AND PATIENTS WITH DEMENTIA DUE TO ALZHEIMER'S AND LEWY BODY DISEASES. Neurobiol Aging 2022; 115:88-108. [DOI: 10.1016/j.neurobiolaging.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/17/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022]
|
84
|
Zaccaro A, Piarulli A, Melosini L, Menicucci D, Gemignani A. Neural Correlates of Non-ordinary States of Consciousness in Pranayama Practitioners: The Role of Slow Nasal Breathing. Front Syst Neurosci 2022; 16:803904. [PMID: 35387390 PMCID: PMC8977447 DOI: 10.3389/fnsys.2022.803904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
The modulatory effect of nasal respiration on integrative brain functions and hence consciousness has recently been unambiguously demonstrated. This effect is sustained by the olfactory epithelium mechanical sensitivity complemented by the existence of massive projections between the olfactory bulb and the prefrontal cortex. However, studies on slow nasal breathing (SNB) in the context of contemplative practices have sustained the fundamental role of respiratory vagal stimulation, with little attention to the contribution of the olfactory epithelium mechanical stimulation. This study aims at disentangling the effects of olfactory epithelium stimulation (proper of nasal breathing) from those related to respiratory vagal stimulation (common to slow nasal and mouth breathing). We investigated the psychophysiological (cardio-respiratory and electroencephalographic parameters) and phenomenological (perceived state of consciousness) aftereffects of SNB (epithelium mechanical – 2.5 breaths/min) in 12 experienced meditators. We compared the nasal breathing aftereffects with those observed after a session of mouth breathing at the same respiratory rate and with those related to a resting state condition. SNB induced (1) slowing of electroencephalography (EEG) activities (delta-theta bands) in prefrontal regions, (2) a widespread increase of theta and high-beta connectivity complemented by an increase of phase-amplitude coupling between the two bands in prefrontal and posterior regions belonging to the Default Mode Network, (3) an increase of high-beta networks small-worldness. (4) a higher perception of being in a non-ordinary state of consciousness. The emerging scenario strongly suggests that the effects of SNB, beyond the relative contribution of vagal stimulation, are mainly ascribable to olfactory epithelium stimulation. In conclusion, slow Pranayama breathing modulates brain activity and hence subjective experience up to the point of inducing a non-ordinary state of consciousness.
Collapse
Affiliation(s)
- Andrea Zaccaro
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Giga Consciousness, Coma Science Group, University of Liège, Liège, Belgium
- *Correspondence: Andrea Piarulli,
| | - Lorenza Melosini
- Pneumology Branch, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Clinical Psychology Branch, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| |
Collapse
|
85
|
Pre-Stimulus Alpha-Band Phase Gates Early Visual Cortex Responses. Neuroimage 2022; 253:119060. [PMID: 35283286 DOI: 10.1016/j.neuroimage.2022.119060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Alpha-band (8-13 Hz) oscillations have been shown to phasically inhibit perceptual reports in human observers, yet the underlying physiological mechanism of this effect is debated. According to contrasting models, based primarily on animal experiments, alpha activity is thought to either originate from specialized cells in the visual thalamus and periodically inhibit the relay of visual information to the primary visual cortex (V1) in a feedforward manner, or to propagate from higher visual areas back to V1 in a feedback manner. Human neurophysiological evidence in favor of either hypothesis, both, or neither, has been limited. To help address this issue, we explored the link between pre-stimulus alpha phase and visual electroencephalography (EEG) responses thought to arise from afferent input onto human V1. Specially-designed visual stimuli were used to elicit large amplitude C1 event-related potentials (ERP), with polarity, topography, and timing indicative of striate genesis. Single-trial circular-linear associations between pre-stimulus phase and post-stimulus global field power (GFP) during the C1 time window revealed significant effects peaking in the alpha frequency band. Control analyses ruling out the potential confound of post-stimulus data bleeding into the pre-stimulus window demonstrated that GFP amplitude decreases as pre-stimulus alpha phase deviates from an individual's preferred phase. These findings demonstrate an early locus - suggesting that the phase of pre-stimulus alpha oscillations could modulate visual processing by gating the feedforward flow of sensory input between the thalamus and V1, although other models are potentially compatible.
Collapse
|
86
|
Choi SI, Kim JB. Altered Brain Networks in Chronic Obstructive Pulmonary Disease: An Electroencephalography Analysis. Clin EEG Neurosci 2022; 53:160-164. [PMID: 34319193 DOI: 10.1177/15500594211035942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Limited data are available regarding brain networks in patients with chronic obstructive pulmonary disease (COPD). Here, we investigated brain networks in COPD using graph theoretical analysis of electroencephalography data. Methods. Thirty-eight patients with COPD and 38 healthy controls underwent scalp electroencephalography. We calculated graph measures including average degree, characteristic path length, global efficiency, local efficiency, clustering coefficient, and modularity and compared them between patients and controls. Results. Average degree, global efficiency, local efficiency, and clustering coefficients were lower, while characteristic path length and modularity were higher in patients with COPD than in controls in the alpha band (P < .05). Significant differences in node degree and global node efficiency between controls and patients were mainly prominent in the medial parieto-central regions in the alpha band. Local efficiency and node clustering coefficients mainly differed in the occipito-parietal regions in the alpha band. We observed no differences in nodal measures in the delta, theta, beta, and gamma bands and no relationships between pulmonary function test parameters and global measures in any frequency bands. Conclusions. The thalamus generates alpha activity and is responsible for controlling respiratory activities to maintain oxygen delivery to tissues in response to chronic hypoxia. We thus speculate that our findings might be related to exposure to chronic hypoxia, implicated in the pathophysiological mechanisms underlying cognitive deficits in patients with COPD. Graph theoretical analysis of resting-state electroencephalography could be considered as a quantitative framework to understand functional networks in COPD.
Collapse
Affiliation(s)
- Sue In Choi
- 1Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
87
|
McLain NJ, Yani MS, Kutch JJ. Analytic consistency and neural correlates of peak alpha frequency in the study of pain. J Neurosci Methods 2022; 368:109460. [PMID: 34958820 PMCID: PMC9236562 DOI: 10.1016/j.jneumeth.2021.109460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several studies have found evidence of reduced resting-state peak alpha frequency (PAF) in populations with pain. However, the stability of PAF from different analytic pipelines used to study pain has not been determined and underlying neural correlates of PAF have not been validated in humans. NEW METHOD For the first time we compare analytic pipelines and the relationship of PAF to activity in the whole brain and thalamus, a hypothesized generator of PAF. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and subsequently 64 channel resting-state electroencephalographic (EEG) from 47 healthy men, controls from an ongoing study of chronic prostatitis (a pain condition affecting men). We identified important variations in EEG processing for PAF from a review of 17 papers investigating the relationship between pain and PAF. We tested three progressively complex pre-processing pipelines and varied four postprocessing variables (epoch length, alpha band, calculation method, and region-of-interest [ROI]) that were inconsistent across the literature. RESULTS We found a single principal component, well-represented by the average PAF across all electrodes (grand-average PAF), explained > 95% of the variance across participants. We also found the grand-average PAF was highly correlated among the pre-processing pipelines and primarily impacted by calculation method and ROI. Across methods, interindividual differences in PAF were correlated with rs-fMRI-estimated activity in the thalamus, insula, cingulate, and sensory cortices. CONCLUSIONS These results suggest PAF is a relatively stable marker with respect to common pre and post-processing methods used in pain research and reflects interindividual differences in thalamic and salience network function.
Collapse
Affiliation(s)
| | | | - Jason J. Kutch
- Correspondence to: University of Southern California, 1540 E. Alcazar Street, CHP 155, Los Angeles, CA 90033, USA. (J.J. Kutch)
| |
Collapse
|
88
|
Frohlich J, Crone JS, Johnson MA, Lutkenhoff ES, Spivak NM, Dell'Italia J, Hipp JF, Shrestha V, Ruiz Tejeda JE, Real C, Vespa PM, Monti MM. Neural oscillations track recovery of consciousness in acute traumatic brain injury patients. Hum Brain Mapp 2022; 43:1804-1820. [PMID: 35076993 PMCID: PMC8933330 DOI: 10.1002/hbm.25725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 11/25/2022] Open
Abstract
Electroencephalography (EEG), easily deployed at the bedside, is an attractive modality for deriving quantitative biomarkers of prognosis and differential diagnosis in severe brain injury and disorders of consciousness (DOC). Prior work by Schiff has identified four dynamic regimes of progressive recovery of consciousness defined by the presence or absence of thalamically‐driven EEG oscillations. These four predefined categories (ABCD model) relate, on a theoretical level, to thalamocortical integrity and, on an empirical level, to behavioral outcome in patients with cardiac arrest coma etiologies. However, whether this theory‐based stratification of patients might be useful as a diagnostic biomarker in DOC and measurably linked to thalamocortical dysfunction remains unknown. In this work, we relate the reemergence of thalamically‐driven EEG oscillations to behavioral recovery from traumatic brain injury (TBI) in a cohort of N = 38 acute patients with moderate‐to‐severe TBI and an average of 1 week of EEG recorded per patient. We analyzed an average of 3.4 hr of EEG per patient, sampled to coincide with 30‐min periods of maximal behavioral arousal. Our work tests and supports the ABCD model, showing that it outperforms a data‐driven clustering approach and may perform equally well compared to a more parsimonious categorization. Additionally, in a subset of patients (N = 11), we correlated EEG findings with functional magnetic resonance imaging (fMRI) connectivity between nodes in the mesocircuit—which has been theoretically implicated by Schiff in DOC—and report a trend‐level relationship that warrants further investigation in larger studies.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology University of California Los Angeles Los Angeles California USA
| | - Julia S. Crone
- Department of Psychology University of California Los Angeles Los Angeles California USA
- Vienna Cognitive Science Hub University of Vienna Vienna Austria
| | - Micah A. Johnson
- Department of Psychology University of California Los Angeles Los Angeles California USA
| | - Evan S. Lutkenhoff
- Department of Psychology University of California Los Angeles Los Angeles California USA
| | - Norman M. Spivak
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - John Dell'Italia
- Department of Psychology University of California Los Angeles Los Angeles California USA
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Vikesh Shrestha
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - Jesús E. Ruiz Tejeda
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - Courtney Real
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - Paul M. Vespa
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - Martin M. Monti
- Department of Psychology University of California Los Angeles Los Angeles California USA
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| |
Collapse
|
89
|
Barco A, Orlando S, Stroffolini G, Pirriatore V, Lazzaro A, Vai D, Guastamacchia G, Noce G, Atzori C, Trunfio M, Bonora S, Di Perri G, Calcagno A. Correlations between cerebrospinal fluid biomarkers, neurocognitive tests, and resting-state electroencephalography (rsEEG) in patients with HIV-associated neurocognitive disorders. J Neurovirol 2022; 28:226-235. [PMID: 35044644 DOI: 10.1007/s13365-021-01047-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/05/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) are highly prevalent in people living with HIV (PLWH) despite successful treatment with combination antiretroviral therapy (cART). HAND pathogenesis is complex and definitive surrogate biomarkers are not clearly defined. Brain function has been assessed through the evaluation of cortical source rhythms with delta waves associated with neurological impairment. The aim of this study was to assess the correlation between EEG cortical sources, cerebrospinal fluid (CSF) biomarkers, and neurocognitive tests in PLWH with HAND. PLWH with HAND without significant comorbidities were enrolled. Baseline rsEEG-LORETA waves, CSF biomarkers (t-tau, p-tau, β-amiloid42, neopterin, S100β), and neurocognitive tests were correlated and compared through non-parametric tests (Spearman's rho and Mann-Whitney); data are presented as medians (interquartile ranges). Fifty-four patients were enrolled. Median time of suppressed HIV-RNA and CD4+ T-lymphocyte were 10 years (5.5-15) and 691/uL (477-929). Thirty-nine participants (72%) underwent CSF collection: abnormal biomarkers were found in a small percentage. Only neopterin showed a statistically significant correlation with delta activity [parietal (rho 0.579; p < 0.001), occipital (rho 0.493; p = 0.007), and global sources (rho 0.464 p = 0.011)]. Seven patients (12.9%) showed an abnormal neopterin level (> 1.5 ng/mL) with significantly higher delta source activity compared to the ones with in-range concentrations. We observed a statistically significant correlation between working memory test Trail Making B with both CSF neopterin levels and delta waves (p values < 0.05). In a small sample of PLWH with HAND, we observed that higher CSF neopterin levels were associated with higher EEG delta waves and worse working memory tests.
Collapse
Affiliation(s)
- A Barco
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - S Orlando
- Unit of Neurology, Maria Vittoria Hospital, ASL "Città Di Torino", Turin, Italy
| | - G Stroffolini
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - V Pirriatore
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - A Lazzaro
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - D Vai
- Unit of Neurology, Maria Vittoria Hospital, ASL "Città Di Torino", Turin, Italy
| | - G Guastamacchia
- Unit of Neurology, Maria Vittoria Hospital, ASL "Città Di Torino", Turin, Italy
| | | | - C Atzori
- Unit of Neurology, Maria Vittoria Hospital, ASL "Città Di Torino", Turin, Italy
| | - M Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - S Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - G Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
90
|
Nestvogel DB, McCormick DA. Visual thalamocortical mechanisms of waking state-dependent activity and alpha oscillations. Neuron 2022; 110:120-138.e4. [PMID: 34687663 PMCID: PMC8815448 DOI: 10.1016/j.neuron.2021.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
The brain exhibits distinct patterns of recurrent activity closely related to behavioral state. The neural mechanisms that underlie state-dependent activity in the awake animal are incompletely understood. Here, we demonstrate that two types of state-dependent activity, rapid arousal/movement-related signals and a 3-5 Hz alpha-like rhythm, in the primary visual cortex (V1) of mice strongly correlate with activity in the visual thalamus. Inactivation of V1 does not interrupt arousal/movement signals in most visual thalamic neurons, but it abolishes the 3-5 Hz oscillation. Silencing of the visual thalamus similarly eradicates the alpha-like rhythm and perturbs arousal/movement-related activation in V1. Intracellular recordings in thalamic neurons reveal the 3-5 Hz oscillation to be associated with rhythmic low-threshold Ca2+ spikes. Our results indicate that thalamocortical interactions through ionotropic signaling, together with cell-intrinsic properties of thalamocortical cells, play a crucial role in shaping state-dependent activity in V1 of the awake animal.
Collapse
Affiliation(s)
| | - David A McCormick
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
91
|
Hutt A, Lefebvre J. Arousal Fluctuations Govern Oscillatory Transitions Between Dominant
γ
and
α
Occipital Activity During Eyes Open/Closed Conditions. Brain Topogr 2022; 35:108-120. [PMID: 34160731 DOI: 10.1007/s10548-021-00855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Arousal results in widespread activation of brain areas to increase their response in task and behavior relevant ways. Mediated by the Ascending Reticular Arousal System (ARAS), arousal-dependent inputs interact with neural circuitry to shape their dynamics. In the occipital cortex, such inputs may trigger shifts between dominant oscillations, whereα activity is replaced byγ activity, or vice versa. A salient example of this are spectral power alternations observed while eyes are opened and/or closed. These transitions closely follow fluctuations in arousal, suggesting a common origin. To better understand the mechanisms at play, we developed and analyzed a computational model composed of two modules: a thalamocortical feedback circuit coupled with a superficial cortical network. Upon activation by noise-like inputs originating from the ARAS, our model is able to demonstrate that noise-driven non-linear interactions mediate transitions in dominant peak frequency, resulting in the simultaneous suppression ofα limit cycle activity and the emergence ofγ oscillations through coherence resonance. Reduction in input provoked the reverse effect - leading to anticorrelated transitions betweenα andγ power. Taken together, these results shed a new light on how arousal shapes oscillatory brain activity.
Collapse
Affiliation(s)
- Axel Hutt
- Team MIMESIS, INRIA Nancy - Grand Est, Strasbourg, France.
| | - Jérémie Lefebvre
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4, Canada
| |
Collapse
|
92
|
Arnett AB, Rutter TM, Stein MA. Neural Markers of Methylphenidate Response in Children With Attention Deficit Hyperactivity Disorder. Front Behav Neurosci 2022; 16:887622. [PMID: 35600991 PMCID: PMC9121006 DOI: 10.3389/fnbeh.2022.887622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/05/2022] [Indexed: 01/09/2023] Open
Abstract
Background Despite widespread use of stimulants to treat ADHD, individual responses vary considerably and few predictors of response have been identified. The identification of reliable and clinically feasible biomarkers would facilitate a precision medicine approach to pharmacological treatment of ADHD. We test the hypothesis that two electroencephalography (EEG) based neural signatures of ADHD, resting aperiodic slope exponent and novelty P3 amplitude, are markers of methylphenidate response in children. We hypothesize that positive response to methylphenidate treatment will be associated with greater abnormality of both neural markers. Methods Twenty-nine 7-11 year-old children with ADHD and a history of methylphenidate treatment, and 30 controls completed resting EEG and visual oddball event related potential (ERP) paradigms. ADHD participants were characterized as methylphenidate responders (n = 16) or non-responders (n = 13) using the clinical global improvement (CGI-I) scale during blinded retrospective interview. All participants abstained from prescribed medications for at least 48 hours prior to the EEG. Results As expected, methylphenidate responders (CGI-I rating < 3) demonstrated attenuated P3 amplitude relative to controls. Unexpectedly, methylphenidate non-responders showed atypically flat aperiodic spectral slope relative to controls, while responders did not differ on this measure. Conclusion ADHD symptoms associated with atypical patterns of intrinsic neural activity may be less responsive to methylphenidate. In contrast, ADHD symptoms associated with abnormal frontal-striatal neural network excitation may be correctable with methylphenidate. Altogether, EEG is a feasible and promising candidate methodology for identifying biomarkers of stimulant response.
Collapse
Affiliation(s)
- Anne B Arnett
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Cambridge, MA, United States
| | - Tara M Rutter
- Department of Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Mark A Stein
- Department of Psychiatry & Behavioral Medicine, Seattle Children's Hospital, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
93
|
Dahl MJ, Mather M, Werkle-Bergner M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn Sci 2022; 26:38-52. [PMID: 34799252 PMCID: PMC8678372 DOI: 10.1016/j.tics.2021.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
During moments involving selective attention, the thalamus orchestrates the preferential processing of prioritized information by coordinating rhythmic neural activity within a distributed frontoparietal network. The timed release of neuromodulators from subcortical structures dynamically sculpts neural synchronization in thalamocortical networks to meet current attentional demands. In particular, noradrenaline modulates the balance of cortical excitation and inhibition, as reflected by thalamocortical alpha synchronization (~8-12 Hz). These neuromodulatory adjustments facilitate the selective processing of prioritized information. Thus, by disrupting effective rhythmic coordination in attention networks, age-related locus coeruleus (LC) degeneration can impair higher levels of neural processing. In sum, findings across different levels of analysis and modalities shed light on how the noradrenergic modulation of neural synchronization helps to shape selective attention.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| |
Collapse
|
94
|
Tsai YC, Li CT, Liang WK, Muggleton NG, Tsai CC, Huang NE, Juan CH. Critical role of rhythms in prefrontal transcranial magnetic stimulation for depression: A randomized sham-controlled study. Hum Brain Mapp 2021; 43:1535-1547. [PMID: 34873781 PMCID: PMC8886663 DOI: 10.1002/hbm.25740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an alternative treatment for depression, but the neural correlates of the treatment are currently inconclusive, which might be a limit of conventional analytical methods. The present study aimed to investigate the neurophysiological evidence and potential biomarkers for rTMS and intermittent theta burst stimulation (iTBS) treatment. A total of 61 treatment‐resistant depression patients were randomly assigned to receive prolonged iTBS (piTBS; N = 19), 10 Hz rTMS (N = 20), or sham stimulation (N = 22). Each participant went through a treatment phase with resting state electroencephalography (EEG) recordings before and after the treatment phase. The aftereffects of stimulation showed that theta‐alpha amplitude modulation frequency (fam) was associated with piTBS_Responder, which involves repetitive bursts delivered in the theta frequency range, whereas alpha carrier frequency (fc) was related to 10 Hz rTMS, which uses alpha rhythmic stimulation. In addition, theta‐alpha amplitude modulation frequency was positively correlated with piTBS antidepressant efficacy, whereas the alpha frequency was not associated with the 10 Hz rTMS clinical outcome. The present study showed that TMS stimulation effects might be lasting, with changes of brain oscillations associated with the delivered frequency. Additionally, theta‐alpha amplitude modulation frequency may be as a function of the degree of recovery in TRD with piTBS treatment and also a potential EEG‐based predictor of antidepressant efficacy of piTBS in the early treatment stage, that is, first 2 weeks.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
| | - Cheng-Ta Li
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.,Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.,Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Chong-Chih Tsai
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.,Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan.,Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Norden E Huang
- Key Laboratory of Data Analysis and Applications, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.,Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan.,Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
95
|
Yang X, Zhang R, Sun Z, Kurths J. Controlling Alzheimer's Disease Through the Deep Brain Stimulation to Thalamic Relay Cells. Front Comput Neurosci 2021; 15:636770. [PMID: 34819845 PMCID: PMC8606419 DOI: 10.3389/fncom.2021.636770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Experimental and clinical studies have shown that the technique of deep brain stimulation (DBS) plays a potential role in the regulation of Alzheimer’s disease (AD), yet it still desires for ongoing studies including clinical trials, theoretical approach and action mechanism. In this work, we develop a modified thalamo-cortico-thalamic (TCT) model associated with AD to explore the therapeutic effects of DBS on AD from the perspective of neurocomputation. First, the neuropathological state of AD resulting from synapse loss is mimicked by decreasing the synaptic connectivity strength from the Inter-Neurons (IN) neuron population to the Thalamic Relay Cells (TRC) neuron population. Under such AD condition, a specific deep brain stimulation voltage is then implanted into the neural nucleus of TRC in this TCT model. The symptom of AD is found significantly relieved by means of power spectrum analysis and nonlinear dynamical analysis. Furthermore, the therapeutic effects of DBS on AD are systematically examined in different parameter space of DBS. The results demonstrate that the controlling effect of DBS on AD can be efficient by appropriately tuning the key parameters of DBS including amplitude A, period P and duration D. This work highlights the critical role of thalamus stimulation for brain disease, and provides a theoretical basis for future experimental and clinical studies in treating AD.
Collapse
Affiliation(s)
- XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - RuiXi Zhang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - ZhongKui Sun
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University of Berlin, Berlin, Germany.,Centre for Analysis of Complex Systems, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
96
|
Bennett CR, Bauer CM, Bex PJ, Bottari D, Merabet LB. Visual search performance in cerebral visual impairment is associated with altered alpha band oscillations. Neuropsychologia 2021; 161:108011. [PMID: 34474066 PMCID: PMC8488018 DOI: 10.1016/j.neuropsychologia.2021.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
Individuals with cerebral visual impairment (CVI) often present with deficits related to visuospatial processing. However, the neurophysiological basis underlying these higher order perceptual dysfunctions have not been clearly identified. We assessed visual search performance using a novel virtual reality based task paired with eye tracking to simulate the exploration of a naturalistic scene (a virtual toy box). This was combined with electroencephalography (EEG) recordings and an analysis pipeline focusing on time frequency decomposition of alpha oscillatory activity. We found that individuals with CVI showed an overall impairment in visual search performance (as indexed by decreased success rate, as well as increased reaction time, visual search area, and gaze error) compared to controls with neurotypical development. Analysis of captured EEG activity following stimulus onset revealed that in the CVI group, there was a distinct lack of strong and well defined posterior alpha desynchronization; an important signal involved in the coordination of neural activity related to visual processing. Finally, an exploratory analysis revealed that in CVI, the magnitude of alpha desynchronization was associated with impaired visual search performance as well as decreased volume of specific thalamic nuclei implicated in visual processing. These results suggest that impairments in visuospatial processing related to visual search in CVI are associated with alterations in alpha band oscillations as well as early neurological injury at the level of visual thalamic nuclei.
Collapse
Affiliation(s)
- Christopher R Bennett
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Corinna M Bauer
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Peter J Bex
- Translational Vision Lab, Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Lotfi B Merabet
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
97
|
Komiyama T, Goya R, Aoyama C, Yokota Y, Naruse Y, Shimegi S. The combination of acute exercise and eye closure has a synergistic effect on alpha activity. Sci Rep 2021; 11:20186. [PMID: 34642438 PMCID: PMC8511023 DOI: 10.1038/s41598-021-99783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
Acute aerobic exercise increases the brain cortical activity in alpha frequency. Eye closure also increases alpha activity. However, whether the two have an additive or a synergistic effect on alpha activity has never been explored. This study observed electroencephalography (EEG) from fifteen participants seated on the cycle ergometer before, during, and after a cycling exercise with the eyes open and with them closed. Exercise intensity was set to a target heart rate (120-130 bpm), corresponding to light-to-moderate intensity exercise. Each epoch was 6 min and the last 4 min (eyes closed in the first 2 min and eyes open in the second 2 min) were analyzed. The EEG power spectrum densities were calculated for alpha frequency band activity (8-13 Hz). At rest, alpha activity was significantly greater with the eyes closed than open. Exercise significantly increased alpha activity in both eye conditions. More importantly, in the occipital site, the alpha-increasing effect of their combination was significantly greater than the sum of the effect of each, showing a synergistic effect. We concluded that acute light-to-moderate intensity exercise with the eyes closed has a synergistic effect on alpha activity.
Collapse
Affiliation(s)
- Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryoma Goya
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Osaka, Japan
| | - Chisa Aoyama
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
| | - Yusuke Yokota
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Kobe, Japan
| | - Yasushi Naruse
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Kobe, Japan
| | - Satoshi Shimegi
- Center for Education in Liberal Arts and Sciences, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Osaka, Japan.
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan.
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Kobe, Japan.
| |
Collapse
|
98
|
Stephen JM, Hill DE, Candelaria-Cook FT. Examining the effects of prenatal alcohol exposure on corticothalamic connectivity: A multimodal neuroimaging study in children. Dev Cogn Neurosci 2021; 52:101019. [PMID: 34666262 PMCID: PMC8524752 DOI: 10.1016/j.dcn.2021.101019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
Children with a fetal alcohol spectrum disorder (FASD) experience a range of cognitive and behavioral effects. Prior studies have demonstrated white matter changes in children with FASD relative to typically developing controls (TDC) and these changes relate to behavior. Our prior MEG study (Candelaria-Cook et al. 2020) demonstrated reduced alpha oscillations during rest in FASD relative to TDC and alpha power is correlated with behavior. However, little is known about how brain structure influences brain function. We hypothesized that alpha power was related to corticothalamic connectivity. Children 8–13 years of age (TDC: N = 25, FASD: N = 24) underwent rest MEG with eyes open or closed and MRI to collect structural and diffusion tensor imaging data. MEG spectral analysis was performed for sensor and source data. We estimated mean fractional anisotropy in regions of interest (ROIs) that included the corticothalamic tracts. The FASD group had reduced mean FA in three of the corticothalamic ROIs. FA in these tracts was significantly correlated with alpha power at the sensor and source level. The results support the hypothesis that integrity of the corticothalamic tracts influences cortical alpha power. Further research is needed to understand how brain structure and function influence behavior.
Collapse
Affiliation(s)
- J M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| | - D E Hill
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - F T Candelaria-Cook
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
99
|
Babiloni C, Noce G, Ferri R, Lizio R, Lopez S, Lorenzo I, Tucci F, Soricelli A, Zurrón M, Díaz F, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Cipollini V, Marizzoni M, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Gündüz DH, Onorati P, Stocchi F, Vacca L, Maestú F, Frisoni GB, Del Percio C. Resting State Alpha Electroencephalographic Rhythms Are Affected by Sex in Cognitively Unimpaired Seniors and Patients with Alzheimer's Disease and Amnesic Mild Cognitive Impairment: A Retrospective and Exploratory Study. Cereb Cortex 2021; 32:2197-2215. [PMID: 34613369 DOI: 10.1093/cercor/bhab348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/07/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Abstract
In the present retrospective and exploratory study, we tested the hypothesis that sex may affect cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms recorded in normal elderly (Nold) seniors and patients with Alzheimer's disease and mild cognitive impairment (ADMCI). Datasets in 69 ADMCI and 57 Nold individuals were taken from an international archive. The rsEEG rhythms were investigated at individual delta, theta, and alpha frequency bands and fixed beta (14-30 Hz) and gamma (30-40 Hz) bands. Each group was stratified into matched females and males. The sex factor affected the magnitude of rsEEG source activities in the Nold seniors. Compared with the males, the females were characterized by greater alpha source activities in all cortical regions. Similarly, the parietal, temporal, and occipital alpha source activities were greater in the ADMCI-females than the males. Notably, the present sex effects did not depend on core genetic (APOE4), neuropathological (Aβ42/phospho-tau ratio in the cerebrospinal fluid), structural neurodegenerative and cerebrovascular (MRI) variables characterizing sporadic AD-related processes in ADMCI seniors. These results suggest the sex factor may significantly affect neurophysiological brain neural oscillatory synchronization mechanisms underpinning the generation of dominant rsEEG alpha rhythms to regulate cortical arousal during quiet vigilance.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- San Raffaele of Cassino, Cassino (FR), Italy
| | | | | | | | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Montserrat Zurrón
- Departamento de Psicología Experimental, Facultad de Psicología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Díaz
- Departamento de Psicología Experimental, Facultad de Psicología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Virginia Cipollini
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir School of Economics, Faculty of Medicine, Izmir, Turkey
| | - Duygu Hünerli Gündüz
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Paolo Onorati
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | - Fernando Maestú
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
100
|
Nakayama Y, Suzuki N, Nakaoka H, Tsumura K, Takaguchi K, Takaya K, Hanazato M, Todaka E, Mori C. Assessment of Personal Relaxation in Indoor-Air Environments: Study in Real Full-Scale Laboratory Houses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910246. [PMID: 34639547 PMCID: PMC8549697 DOI: 10.3390/ijerph181910246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
The relationship between chemical concentrations in indoor air and the human sense of comfort and relaxation have been reported. We investigated the effect of the sum of volatile organic compounds (ΣVOCs; sum of 79 VOCs) on the level of relaxation in two laboratory houses with almost identical interior and exterior appearances. The electroencephalogram (EEG) was monitored to evaluate the degree of personal relaxation objectively. The experiments were conducted in laboratory houses (LH) A and B with lower and higher levels of ΣVOCs, respectively. A total of 168 healthy volunteers participated, who each performed the task for 20 min, followed by a 10-min break, and EEG was measured during the break. Simultaneously as subjective evaluations, the participants were asked to fill a questionnaire regarding the intensity of odor and preference for the air quality in each LH. The subjective evaluation showed a significant association between ΣVOCs and participants’ relaxation (OR: 2.86, 95%CI: 1.24–6.61), and the objective evaluation indicated that the participants were more relaxed in the LH with lower levels of ΣVOCs than that with higher levels (OR: 3.03, 95%CI: 1.23–7.50). Therefore, the reduction of ΣVOCs and odors in indoor air would have an effect, which is the promotion of relaxation.
Collapse
Affiliation(s)
- Yoshitake Nakayama
- Center for Preventive Medical Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (N.S.); (H.N.); (K.T.); (K.T.); (M.H.); (E.T.); (C.M.)
- Correspondence: ; Tel.: +81-4-7137-8200
| | - Norimichi Suzuki
- Center for Preventive Medical Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (N.S.); (H.N.); (K.T.); (K.T.); (M.H.); (E.T.); (C.M.)
| | - Hiroko Nakaoka
- Center for Preventive Medical Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (N.S.); (H.N.); (K.T.); (K.T.); (M.H.); (E.T.); (C.M.)
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kayo Tsumura
- Center for Preventive Medical Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (N.S.); (H.N.); (K.T.); (K.T.); (M.H.); (E.T.); (C.M.)
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kohki Takaguchi
- Center for Preventive Medical Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (N.S.); (H.N.); (K.T.); (K.T.); (M.H.); (E.T.); (C.M.)
| | - Kazunari Takaya
- National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-ku, Kawasaki 214-8585, Japan;
| | - Masamichi Hanazato
- Center for Preventive Medical Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (N.S.); (H.N.); (K.T.); (K.T.); (M.H.); (E.T.); (C.M.)
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (N.S.); (H.N.); (K.T.); (K.T.); (M.H.); (E.T.); (C.M.)
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (N.S.); (H.N.); (K.T.); (K.T.); (M.H.); (E.T.); (C.M.)
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|