51
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
52
|
Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol 2021; 158:21-32. [PMID: 33581220 DOI: 10.1016/j.radonc.2021.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
Radiation-induced endothelial/vascular injury is a major complicating factor in radiotherapy and a leading cause of morbidity and mortality in nuclear or radiological catastrophes. Exposure of tissue to ionizing radiation (IR) leads to the release of oxygen radicals and proteases that result in loss of endothelial barrier function and leukocyte dysfunction leading to tissue injury and organ damage. Microvascular endothelial cells are particularly sensitive to IR and radiation-induced alterations in endothelial cell function are thought to be a critical factor in organ damage through endothelial cell activation, enhanced leukocyte-endothelial cell interactions, increased barrier permeability and initiation of apoptotic pathways. These radiation-induced inflammatory responses are important in early and late radiation pathologies in various organs. A better understanding of mechanisms of radiation-induced endothelium dysfunction is therefore vital, as radiobiological response of endothelium is of major importance for medical management and therapeutic development for radiation injuries. In this review, we summarize the current knowledge of cellular and molecular mechanisms of radiation-induced endothelium damage and their impact on early and late radiation injury. Furthermore, we review established and emerging in vivo and in vitro models that have been developed to study the mechanisms of radiation-induced endothelium damage and to design, develop and rapidly screen therapeutics for treatment of radiation-induced vascular damage. Currently there are no specific therapeutics available to protect against radiation-induced loss of endothelial barrier function, leukocyte dysfunction and resulting organ damage. Developing therapeutics to prevent endothelium dysfunction and normal tissue damage during radiotherapy can serve as the urgently needed medical countermeasures.
Collapse
|
53
|
Popova LM, Ivanchenko OB, Anisimova AO, Vershilov SV, Tsyrulnikova AS. Biological Activity and Potential Applications of 12-Bromo- and 12-Sulfodehydroabietic Acids and Their Potassium Salts. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363220130289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
54
|
Abstract
Cancer mortality predominantly results from distant metastases that are undetectable at diagnosis and escape initial therapies to lie as dormant micrometastases for years. To study the behavior of micrometastases-how they resist initial treatments and then awaken from a dormant state-we utilize the Legacy LiverChip®, an all-human ex vivo hepatic microphysiological system. The functional liver bioreactor, comprising hepatocytes and non-parenchymal cells in a 3D microperfused culture format, mimics the dormant-emergent metastatic progression observed in human patients: (a) a subpopulation of cancer cells spontaneously enter dormancy, (b) cycling cells are eliminated by standard chemotherapies, while quiescent dormant cells remain, and (c) chemoresistant dormant cells can be stimulated to emerge. The system effluent and tissue can be queried for proteomic and genomic data, immunofluorescent imaging as well as drug efficacy and metabolism. This microphysiological system continues to provide critical insights into the biology of dormant and re-emergent micrometastases and serves as an accessible tool to identify new therapeutic strategies targeting the various stages of metastasis, while concurrently evaluating antineoplastic agent efficacy for metastasis, metabolism, and dose-limiting toxicity.
Collapse
|
55
|
Rikhi R, Samra G, Arustamyan M, Patel J, Zhou L, Bungo B, Moudgil R. Radiation induced cardiovascular disease: An odyssey of bedside-bench-bedside approach. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:49-55. [PMID: 34756229 DOI: 10.1016/j.lssr.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/13/2023]
Abstract
The journey to Mars will be an ambitious, yet arduous task as it will entail culmination of all the information we have gathered over many decades. While the mission is of utmost importance, preservation of astronaut's well-being is paramount also. To that end, mitigation of radiation risk especially afflicting cardiovascular disease (CVD) is of great interest and challenge. Current data from astronauts on low earth orbit and Apollo missions provides insight on the risk of CVD from radiation exposure. However, data is limited given the small cohort size of astronauts who embarked on just nine prolonged missions. Therefore, a cerebral approach to understanding and mitigating risks are essential. This paper discusses the need for a predictive preclinical model to help understand and mitigate the effects of radiation on astronauts. We will discuss strengths and limitations of preclinical models and the methods of validating and constructing a model to predict human clinical outcomes. Our bedside-bench-bedside approach focuses on adapting the preclinical model through common investigative tools used between humans and animals. The result will be an optimization of preclinical model to a point of being a surrogate clinical model capable of predicting CVD outcomes in astronauts exposed to radiation.
Collapse
Affiliation(s)
- Rishi Rikhi
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Gursharan Samra
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Michael Arustamyan
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Jay Patel
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Leon Zhou
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Brandon Bungo
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Rohit Moudgil
- Section of Clinical Cardiology, Department of Cardiovascular Medicine Heart and Vascular Institute Cleveland Clinic Foundation 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
56
|
Dees S, Ganesan R, Singh S, Grewal IS. Emerging CAR-T Cell Therapy for the Treatment of Triple-Negative Breast Cancer. Mol Cancer Ther 2020; 19:2409-2421. [DOI: 10.1158/1535-7163.mct-20-0385] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
|
57
|
|
58
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
59
|
Maschmeyer I, Kakava S. Organ-on-a-Chip. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:311-342. [PMID: 32948885 DOI: 10.1007/10_2020_135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Limitations of the current tools used in the drug development process, cell cultures, and animal models have highlighted the need for a new powerful tool that can emulate the human physiology in vitro. Advances in the field of microfluidics have made the realization of this tool closer than ever. Organ-on-a-chip platforms have been the first step forward, leading to the combination and integration of multiple organ models in the same platform with human-on-a-chip being the ultimate goal. Despite the current progress and technological developments, there are still several unmet engineering and biological challenges curtailing their development and widespread application in the biomedical field. The potentials, challenges, and current work on this unprecedented tool are being discussed in this chapter.
Collapse
|
60
|
Sikakana P, Roberts RA. A decade of toxicological trends: what the papers say. Toxicol Res (Camb) 2020; 9:676-682. [PMID: 33178428 PMCID: PMC7640932 DOI: 10.1093/toxres/tfaa063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Here we look at popular trends and concepts in toxicology over the decade 2009-2019. The top 10 concepts included methodological approaches such as zebrafish and genomics as well as broader concepts such as personalized medicine and adverse outcome pathways. The total number and rank order for each of the top 10 were tracked year by year via PubMed with >9500 papers contributing to the analysis. The data revealed a slow upward trend in the number of papers across all the concepts from 260 in 2009 to >1700 in 2019. Zebrafish, genomics and personalized medicine remained in the top four slots since 2009 with zebrafish dominating the rankings over the entire decade. Genomics was a strong second until 2013 when it was displaced first by the microbiome in 2014 and secondly by personalized medicine in 2015. Other notable trends were the ascendancy of the microbiome and adverse outcome pathways and the descendancy of hormesis and the 3Rs (replacement, reduction and refinement of animals in testing). The observation that the top four slots have been static over the past 4 years suggests that new ideas are introduced and increase in popularity until they find their place in scientific culture. This may suggest that relatively new concepts such as artificial intelligence and microphysiological systems have yet to find their steady state in the rankings. Similarly, as a relatively new player in toxicology, the full impact of the human microbiome on drug efficacy and safety remains to be seen.
Collapse
|
61
|
Hewes SA, Wilson RL, Estes MK, Shroyer NF, Blutt SE, Grande-Allen KJ. In Vitro Models of the Small Intestine: Engineering Challenges and Engineering Solutions. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:313-326. [PMID: 32046599 PMCID: PMC7462033 DOI: 10.1089/ten.teb.2019.0334] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Pathologies affecting the small intestine contribute significantly to the disease burden of both the developing and the developed world, which has motivated investigation into the disease mechanisms through in vitro models. Although existing in vitro models recapitulate selected features of the intestine, various important aspects have often been isolated or omitted due to the anatomical and physiological complexity. The small intestine's intricate microanatomy, heterogeneous cell populations, steep oxygen gradients, microbiota, and intestinal wall contractions are often not included in in vitro experimental models of the small intestine, despite their importance in both intestinal biology and pathology. Known and unknown interdependencies between various physiological aspects necessitate more complex in vitro models. Microfluidic technology has made it possible to mimic the dynamic mechanical environment, signaling gradients, and other important aspects of small intestinal biology. This review presents an overview of the complexity of small intestinal anatomy and bioengineered models that recapitulate some of these physiological aspects.
Collapse
Affiliation(s)
- Sarah A. Hewes
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
62
|
Roy N, Kashyap J, Verma D, Tyagi RK, Prabhakar A. Prototype of a Smart Microfluidic Platform for the Evaluation of SARS-Cov-2 Pathogenesis, Along with Estimation of the Effectiveness of Potential Drug Candidates and Antigen-Antibody Interactions in Convalescent Plasma Therapy. TRANSACTIONS OF THE INDIAN NATIONAL ACADEMY OF ENGINEERING : AN INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY 2020; 5:241-250. [PMID: 38624434 PMCID: PMC7340772 DOI: 10.1007/s41403-020-00148-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022]
Abstract
Originating in China during December 2019, the novel corona-virus, SARS-CoV-2, has created mayhem worldwide in a very short time. The outbreak has been so rapid and widespread that the only option to treat the patients was administering drugs already available in the market like chloroquine/hydroxychloroquine (an antimalarial drug) and remedesivir. A large number of patients have been cured but the attribution to survival by these drugs has been controversial. Till date, we do not have any specific drug or vaccine available for COVID-19 and the pandemic seems to be far from over. To handle the current challenges posed by the outbreak effectively, we need to employ innovative interdisciplinary approaches. Organ-on-chip (OOC), particularly lung-on-chip, is one such approach which combines the potential of microfluidics, cell culture and molecular biology into a single miniaturised platform. The device is realized to be capable of simulating in-vivo physiological responses of an organ. In the current study, an OOC, which is a multichannel 3D cell culture microfluidic device, is made via soft lithography technique, using polydimethylsiloxane-polymer and diverse polymeric porous/semipermeable membranes. Several polymer membranes i.e. PDMS, polyvinylidene fluoride (PVDF), nitrocellulose, polyester etc., integrated into the microdevices, were efficiently explored to realize their better cell-adhesion and viability property. We also propose for the application of a simple, smart and cost-effective lung-on-chip platform to study the SARS-CoV-2 pathogenesis in humans, drug toxicity testing and provide insights into antigen-antibody interactions. This platform will enable us to study multiple phenomena at a micro-level generating more reliable data and a better understanding of the underlying mechanisms of SARS-CoV-2 infection and pathogenesis.
Collapse
Affiliation(s)
- Nimisha Roy
- Department of Applied Science, Indian Institute of Information Technology Allahabad, Deoghat, Jhalwa, Allahabad, 211012 India
| | - Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Deepti Verma
- Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Rakesh K. Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Amit Prabhakar
- Department of Applied Science, Indian Institute of Information Technology Allahabad, Deoghat, Jhalwa, Allahabad, 211012 India
| |
Collapse
|
63
|
Abstract
Understanding the etiology of congenital disorders requires interdisciplinary research and close collaborations between clinicians, geneticists and developmental biologists. The pace of gene discovery has quickened due to advances in sequencing technology, resulting in a wealth of publicly available sequence data but also a gap between gene discovery and crucial mechanistic insights provided by studies in model systems. In this Spotlight, I highlight the opportunities for developmental biologists to engage with human geneticists and genetic resources to advance the study of congenital disorders.
Collapse
|
64
|
O’Connor BB, Pope BD, Peters MM, Ris-Stalpers C, Parker KK. The role of extracellular matrix in normal and pathological pregnancy: Future applications of microphysiological systems in reproductive medicine. Exp Biol Med (Maywood) 2020; 245:1163-1174. [PMID: 32640894 PMCID: PMC7400725 DOI: 10.1177/1535370220938741] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT Extracellular matrix in the womb regulates the initiation, progression, and completion of a healthy pregnancy. The composition and physical properties of extracellular matrix in the uterus and at the maternal-fetal interface are remodeled at each gestational stage, while maladaptive matrix remodeling results in obstetric disease. As in vitro models of uterine and placental tissues, including micro-and milli-scale versions of these organs on chips, are developed to overcome the inherent limitations of studying human development in vivo, we can isolate the influence of cellular and extracellular components in healthy and pathological pregnancies. By understanding and recreating key aspects of the extracellular microenvironment at the maternal-fetal interface, we can engineer microphysiological systems to improve assisted reproduction, obstetric disease treatment, and prenatal drug safety.
Collapse
Affiliation(s)
- Blakely B O’Connor
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Michael M Peters
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Carrie Ris-Stalpers
- Department of Gynecology and Obstetrics, Academic Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam 1105, The Netherlands
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
65
|
Klak M, Bryniarski T, Kowalska P, Gomolka M, Tymicki G, Kosowska K, Cywoniuk P, Dobrzanski T, Turowski P, Wszola M. Novel Strategies in Artificial Organ Development: What Is the Future of Medicine? MICROMACHINES 2020; 11:E646. [PMID: 32629779 PMCID: PMC7408042 DOI: 10.3390/mi11070646] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
The technology of tissue engineering is a rapidly evolving interdisciplinary field of science that elevates cell-based research from 2D cultures through organoids to whole bionic organs. 3D bioprinting and organ-on-a-chip approaches through generation of three-dimensional cultures at different scales, applied separately or combined, are widely used in basic studies, drug screening and regenerative medicine. They enable analyses of tissue-like conditions that yield much more reliable results than monolayer cell cultures. Annually, millions of animals worldwide are used for preclinical research. Therefore, the rapid assessment of drug efficacy and toxicity in the early stages of preclinical testing can significantly reduce the number of animals, bringing great ethical and financial benefits. In this review, we describe 3D bioprinting techniques and first examples of printed bionic organs. We also present the possibilities of microfluidic systems, based on the latest reports. We demonstrate the pros and cons of both technologies and indicate their use in the future of medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michal Wszola
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (T.B.); (P.K.); (M.G.); (G.T.); (K.K.); (P.C.); (T.D.); (P.T.)
| |
Collapse
|
66
|
Cassotta M, Forbes-Hernández TY, Calderón Iglesias R, Ruiz R, Elexpuru Zabaleta M, Giampieri F, Battino M. Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients 2020; 12:E1827. [PMID: 32575399 PMCID: PMC7353391 DOI: 10.3390/nu12061827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The interaction between nutrition and human infectious diseases has always been recognized. With the emergence of molecular tools and post-genomics, high-resolution sequencing technologies, the gut microbiota has been emerging as a key moderator in the complex interplay between nutrients, human body, and infections. Much of the host-microbial and nutrition research is currently based on animals or simplistic in vitro models. Although traditional in vivo and in vitro models have helped to develop mechanistic hypotheses and assess the causality of the host-microbiota interactions, they often fail to faithfully recapitulate the complexity of the human nutrient-microbiome axis in gastrointestinal homeostasis and infections. Over the last decade, remarkable progress in tissue engineering, stem cell biology, microfluidics, sequencing technologies, and computing power has taken place, which has produced a new generation of human-focused, relevant, and predictive tools. These tools, which include patient-derived organoids, organs-on-a-chip, computational analyses, and models, together with multi-omics readouts, represent novel and exciting equipment to advance the research into microbiota, infectious diseases, and nutrition from a human-biology-based perspective. After considering some limitations of the conventional in vivo and in vitro approaches, in this review, we present the main novel available and emerging tools that are suitable for designing human-oriented research.
Collapse
Affiliation(s)
- Manuela Cassotta
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Tamara Yuliett Forbes-Hernández
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Ruben Calderón Iglesias
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Roberto Ruiz
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Maria Elexpuru Zabaleta
- Dipartimento di Scienze Cliniche e Molecolari, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Francesca Giampieri
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Maurizio Battino
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
67
|
Nevirapine Biotransformation Insights: An Integrated In Vitro Approach Unveils the Biocompetence and Glutathiolomic Profile of a Human Hepatocyte-Like Cell 3D Model. Int J Mol Sci 2020; 21:ijms21113998. [PMID: 32503263 PMCID: PMC7312429 DOI: 10.3390/ijms21113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The need for competent in vitro liver models for toxicological assessment persists. The differentiation of stem cells into hepatocyte-like cells (HLC) has been adopted due to its human origin and availability. Our aim was to study the usefulness of an in vitro 3D model of mesenchymal stem cell-derived HLCs. 3D spheroids (3D-HLC) or monolayer (2D-HLC) cultures of HLCs were treated with the hepatotoxic drug nevirapine (NVP) for 3 and 10 days followed by analyses of Phase I and II metabolites, biotransformation enzymes and drug transporters involved in NVP disposition. To ascertain the toxic effects of NVP and its major metabolites, the changes in the glutathione net flux were also investigated. Phase I enzymes were induced in both systems yielding all known correspondent NVP metabolites. However, 3D-HLCs showed higher biocompetence in producing Phase II NVP metabolites and upregulating Phase II enzymes and MRP7. Accordingly, NVP-exposure led to decreased glutathione availability and alterations in the intracellular dynamics disfavoring free reduced glutathione and glutathionylated protein pools. Overall, these results demonstrate the adequacy of the 3D-HLC model for studying the bioactivation/metabolism of NVP representing a further step to unveil toxicity mechanisms associated with glutathione net flux changes.
Collapse
|
68
|
Harms MJ, Li Q, Lee S, Zhang C, Kull B, Hallen S, Thorell A, Alexandersson I, Hagberg CE, Peng XR, Mardinoglu A, Spalding KL, Boucher J. Mature Human White Adipocytes Cultured under Membranes Maintain Identity, Function, and Can Transdifferentiate into Brown-like Adipocytes. Cell Rep 2020; 27:213-225.e5. [PMID: 30943403 DOI: 10.1016/j.celrep.2019.03.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
Abstract
White adipose tissue (WAT) is a central factor in the development of type 2 diabetes, but there is a paucity of translational models to study mature adipocytes. We describe a method for the culture of mature white adipocytes under a permeable membrane. Compared to existing culture methods, MAAC (membrane mature adipocyte aggregate cultures) better maintain adipogenic gene expression, do not dedifferentiate, display reduced hypoxia, and remain functional after long-term culture. Subcutaneous and visceral adipocytes cultured as MAAC retain depot-specific gene expression, and adipocytes from both lean and obese patients can be cultured. Importantly, we show that rosiglitazone treatment or PGC1α overexpression in mature white adipocytes induces a brown fat transcriptional program, providing direct evidence that human adipocytes can transdifferentiate into brown-like adipocytes. Together, these data show that MAAC are a versatile tool for studying phenotypic changes of mature adipocytes and provide an improved translational model for drug development.
Collapse
Affiliation(s)
- Matthew J Harms
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Qian Li
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm 17177, Sweden
| | - Sunjae Lee
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden
| | - Bengt Kull
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan Hallen
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyds Hospital, Karolinska Institutet and Department of Surgery, Ersta Hospital, Stockholm 11691, Sweden
| | - Ida Alexandersson
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Carolina E Hagberg
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Xiao-Rong Peng
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, United Kingdom
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm 17177, Sweden; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Jeremie Boucher
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| |
Collapse
|
69
|
Hawkins KG, Casolaro C, Brown JA, Edwards DA, Wikswo JP. The Microbiome and the Gut-Liver-Brain Axis for Central Nervous System Clinical Pharmacology: Challenges in Specifying and Integrating In Vitro and In Silico Models. Clin Pharmacol Ther 2020; 108:929-948. [PMID: 32347548 PMCID: PMC7572575 DOI: 10.1002/cpt.1870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
The complexity of integrating microbiota into clinical pharmacology, environmental toxicology, and opioid studies arises from bidirectional and multiscale interactions between humans and their many microbiota, notably those of the gut. Hosts and each microbiota are governed by distinct central dogmas, with genetics influencing transcriptomics, proteomics, and metabolomics. Each microbiota's metabolome differentially modulates its own and the host's multi‐omics. Exogenous compounds (e.g., drugs and toxins), often affect host multi‐omics differently than microbiota multi‐omics, shifting the balance between drug efficacy and toxicity. The complexity of the host‐microbiota connection has been informed by current methods of in vitro bacterial cultures and in vivo mouse models, but they fail to elucidate mechanistic details. Together, in vitro organ‐on‐chip microphysiological models, multi‐omics, and in silico computational models have the potential to supplement the established methods to help clinical pharmacologists and environmental toxicologists unravel the myriad of connections between the gut microbiota and host health and disease.
Collapse
Affiliation(s)
- Kyle G Hawkins
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Caleb Casolaro
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - David A Edwards
- Department of Anesthesiology and Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
70
|
New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062124. [PMID: 32210027 PMCID: PMC7143849 DOI: 10.3390/ijerph17062124] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Air pollution consists of highly variable and complex mixtures recognized as major contributors to morbidity and mortality worldwide. The vast number of chemicals, coupled with limitations surrounding epidemiological and animal studies, has necessitated the development of new approach methods (NAMs) to evaluate air pollution toxicity. These alternative approaches include in vitro (cell-based) models, wherein toxicity of test atmospheres can be evaluated with increased efficiency compared to in vivo studies. In vitro exposure systems have recently been developed with the goal of evaluating air pollutant-induced toxicity; though the specific design parameters implemented in these NAMs-based studies remain in flux. This review aims to outline important design parameters to consider when using in vitro methods to evaluate air pollutant toxicity, with the goal of providing increased accuracy, reproducibility, and effectiveness when incorporating in vitro data into human health evaluations. This review is unique in that experimental considerations and lessons learned are provided, as gathered from first-hand experience developing and testing in vitro models coupled to exposure systems. Reviewed design aspects include cell models, cell exposure conditions, exposure chambers, and toxicity endpoints. Strategies are also discussed to incorporate in vitro findings into the context of in vivo toxicity and overall risk assessment.
Collapse
|
71
|
Abstract
High-throughput in vitro models lack human-relevant complexity, which undermines their ability to accurately mimic in vivo biologic and pathologic responses. The emergence of microphysiological systems (MPS) presents an opportunity to revolutionize in vitro modeling for both basic biomedical research and applied drug discovery. The MPS platform has been an area of interdisciplinary collaboration to develop new, predictive, and reliable in vitro methods for regulatory acceptance. The current MPS models have been developed to recapitulate an organ or tissue on a smaller scale. However, the complexity of these models (ie, including all cell types present in the in vivo tissue) with appropriate structural, functional, and biochemical attributes are often not fully characterized. Here, we provide an overview of the capabilities and limitations of the microfluidic MPS model (aka organs-on-chips) within the scope of drug development. We recommend the engagement of pathologists early in the MPS design, characterization, and validation phases, because this will enable development of more robust and comprehensive MPS models that can accurately replicate normal biology and pathophysiology and hence be more predictive of human responses.
Collapse
Affiliation(s)
| | - Terry Van Vleet
- Global Preclinical Safety, AbbVie Inc, North Chicago, IL, USA
| | - Brian R Berridge
- National Toxicology Program, The National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
72
|
Sakamiya M, Fang Y, Mo X, Shen J, Zhang T. A heart-on-a-chip platform for online monitoring of contractile behavior via digital image processing and piezoelectric sensing technique. Med Eng Phys 2020; 75:36-44. [DOI: 10.1016/j.medengphy.2019.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/07/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022]
|
73
|
Anselmo AC, Xu X, Buerkli S, Zeng Y, Tang W, McHugh KJ, Behrens AM, Rosenberg E, Duan AR, Sugarman JL, Zhuang J, Collins J, Lu X, Graf T, Tzeng SY, Rose S, Acolatse S, Nguyen TD, Le X, Guerra AS, Freed LE, Weinstock SB, Sears CB, Nikolic B, Wood L, Welkhoff PA, Oxley JD, Moretti D, Zimmermann MB, Langer R, Jaklenec A. A heat-stable microparticle platform for oral micronutrient delivery. Sci Transl Med 2019; 11:11/518/eaaw3680. [DOI: 10.1126/scitranslmed.aaw3680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Micronutrient deficiencies affect up to 2 billion people and are the leading cause of cognitive and physical disorders in the developing world. Food fortification is effective in treating micronutrient deficiencies; however, its global implementation has been limited by technical challenges in maintaining micronutrient stability during cooking and storage. We hypothesized that polymer-based encapsulation could address this and facilitate micronutrient absorption. We identified poly(butylmethacrylate-co-(2-dimethylaminoethyl)methacrylate-co-methylmethacrylate) (1:2:1) (BMC) as a material with proven safety, offering stability in boiling water, rapid dissolution in gastric acid, and the ability to encapsulate distinct micronutrients. We encapsulated 11 micronutrients (iron; iodine; zinc; and vitamins A, B2, niacin, biotin, folic acid, B12, C, and D) and co-encapsulated up to 4 micronutrients. Encapsulation improved micronutrient stability against heat, light, moisture, and oxidation. Rodent studies confirmed rapid micronutrient release in the stomach and intestinal absorption. Bioavailability of iron from microparticles, compared to free iron, was lower in an initial human study. An organotypic human intestinal model revealed that increased iron loading and decreased polymer content would improve absorption. Using process development approaches capable of kilogram-scale synthesis, we increased iron loading more than 30-fold. Scaled batches tested in a follow-up human study exhibited up to 89% relative iron bioavailability compared to free iron. Collectively, these studies describe a broad approach for clinical translation of a heat-stable ingestible micronutrient delivery platform with the potential to improve micronutrient deficiency in the developing world. These approaches could potentially be applied toward clinical translation of other materials, such as natural polymers, for encapsulation and oral delivery of micronutrients.
Collapse
Affiliation(s)
- Aaron C. Anselmo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xian Xu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Simone Buerkli
- Institute of Food Nutrition and Health, ETH Zürich, Zürich 8092, Switzerland
| | - Yingying Zeng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wen Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin J. McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam M. Behrens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evan Rosenberg
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aranda R. Duan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Sugarman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jia Zhuang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joe Collins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xueguang Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tyler Graf
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephany Y. Tzeng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sviatlana Rose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Acolatse
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thanh D. Nguyen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiao Le
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ana Sofia Guerra
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lisa E. Freed
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shelley B. Weinstock
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Boris Nikolic
- Biomatics Capital, 1107 1st Avenue, Apartment 1305, Seattle, WA 98101, USA
| | - Lowell Wood
- Institute for Disease Modeling, Bellevue, WA 98005, USA
| | | | - James D. Oxley
- Southwest Research Institute, San Antonio, TX 78238, USA
| | - Diego Moretti
- Institute of Food Nutrition and Health, ETH Zürich, Zürich 8092, Switzerland
| | | | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
74
|
Shen JX, Youhanna S, Zandi Shafagh R, Kele J, Lauschke VM. Organotypic and Microphysiological Models of Liver, Gut, and Kidney for Studies of Drug Metabolism, Pharmacokinetics, and Toxicity. Chem Res Toxicol 2019; 33:38-60. [DOI: 10.1021/acs.chemrestox.9b00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joanne X. Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Julianna Kele
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
75
|
Achberger K, Probst C, Haderspeck J, Bolz S, Rogal J, Chuchuy J, Nikolova M, Cora V, Antkowiak L, Haq W, Shen N, Schenke-Layland K, Ueffing M, Liebau S, Loskill P. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. eLife 2019; 8:46188. [PMID: 31451149 PMCID: PMC6777939 DOI: 10.7554/elife.46188] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
The devastating effects and incurable nature of hereditary and sporadic retinal diseases such as Stargardt disease, age-related macular degeneration or retinitis pigmentosa urgently require the development of new therapeutic strategies. Additionally, a high prevalence of retinal toxicities is becoming more and more an issue of novel targeted therapeutic agents. Ophthalmologic drug development, to date, largely relies on animal models, which often do not provide results that are translatable to human patients. Hence, the establishment of sophisticated human tissue-based in vitro models is of upmost importance. The discovery of self-forming retinal organoids (ROs) derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) is a promising approach to model the complex stratified retinal tissue. Yet, ROs lack vascularization and cannot recapitulate the important physiological interactions of matured photoreceptors and the retinal pigment epithelium (RPE). In this study, we present the retina-on-a-chip (RoC), a novel microphysiological model of the human retina integrating more than seven different essential retinal cell types derived from hiPSCs. It provides vasculature-like perfusion and enables, for the first time, the recapitulation of the interaction of mature photoreceptor segments with RPE in vitro. We show that this interaction enhances the formation of outer segment-like structures and the establishment of in vivo-like physiological processes such as outer segment phagocytosis and calcium dynamics. In addition, we demonstrate the applicability of the RoC for drug testing, by reproducing the retinopathic side-effects of the anti-malaria drug chloroquine and the antibiotic gentamicin. The developed hiPSC-based RoC has the potential to promote drug development and provide new insights into the underlying pathology of retinal diseases.
Collapse
Affiliation(s)
- Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christopher Probst
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Jasmin Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sylvia Bolz
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Rogal
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Johanna Chuchuy
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marina Nikolova
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lena Antkowiak
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nian Shen
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Natural and Medical Sciences Institute (NMI), Reutlingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, Los Angeles, United States
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
76
|
Cavero I, Guillon JM, Holzgrefe HH. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates. Expert Opin Drug Saf 2019; 18:651-677. [DOI: 10.1080/14740338.2019.1634689] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Icilio Cavero
- Independent Consultant in Safety Pharmacology, Paris, France
| | | | | |
Collapse
|
77
|
Young AT, Rivera KR, Erb PD, Daniele MA. Monitoring of Microphysiological Systems: Integrating Sensors and Real-Time Data Analysis toward Autonomous Decision-Making. ACS Sens 2019; 4:1454-1464. [PMID: 30964652 DOI: 10.1021/acssensors.8b01549] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microphysiological systems replicate human organ function and are promising technologies for discovery of translatable biomarkers, pharmaceuticals, and regenerative therapies. Because microphysiological systems require complex microscale anatomical structures and heterogeneous cell populations, a major challenge remains to manufacture and operate these products with reproducible and standardized function. In this Perspective, three stages of microphysiological system monitoring, including process, development, and function, are assessed. The unique features and remaining technical challenges for the required sensors are discussed. Monitoring of microphysiological systems requires nondestructive, continuous biosensors and imaging techniques. With such tools, the extent of cellular and tissue development, as well as function, can be autonomously determined and optimized by correlating physical and chemical sensor outputs with markers of physiological performance. Ultimately, data fusion and analyses across process, development, and function monitors can be implemented to adopt microphysiological systems for broad research and commercial applications.
Collapse
Affiliation(s)
- Ashlyn T. Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Kristina R. Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Patrick D. Erb
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
78
|
Karolak A, Markov DA, McCawley LJ, Rejniak KA. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J R Soc Interface 2019; 15:rsif.2017.0703. [PMID: 29367239 DOI: 10.1098/rsif.2017.0703] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multi-component tissues. Our intent is to showcase how these in silico models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dmitry A Markov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Lisa J McCawley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA .,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
79
|
Deng J, Chen Z, Zhang X, Luo Y, Wu Z, Lu Y, Liu T, Zhao W, Lin B. A liver-chip-based alcoholic liver disease model featuring multi-non-parenchymal cells. Biomed Microdevices 2019; 21:57. [DOI: 10.1007/s10544-019-0414-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
80
|
Ribeiro AJS, Yang X, Patel V, Madabushi R, Strauss DG. Liver Microphysiological Systems for Predicting and Evaluating Drug Effects. Clin Pharmacol Ther 2019; 106:139-147. [PMID: 30993668 PMCID: PMC6771674 DOI: 10.1002/cpt.1458] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Liver plays a major role in drug metabolism and is one of the main sites of drug adverse effects. Microphysiological systems (MPS), also known as organs‐on‐a‐chip, are a class of microfluidic platforms that recreate properties of tissue microenvironments. Among different properties, the liver microenvironment is three‐dimensional, fluid flows around its cells, and different cell types regulate its function. Liver MPS aim to recreate these properties and enable drug testing and measurement of functional endpoints. Tests with these systems have demonstrated their potential for predicting clinical drug effects. Properties of liver MPS that improve the physiology of cell culture are reviewed, specifically focusing on the importance of recreating a physiological microenvironment to evaluate and model drug effects. Advances in modeling hepatic function by leveraging MPS are addressed, noting the need for standardization in the use, quality control, and interpretation of data from these systems.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Vikram Patel
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rajnikanth Madabushi
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.,Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
81
|
Pollard KJ, Sharma AD, Moore MJ. Neural microphysiological systems for in vitro modeling of peripheral nervous system disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/bem-2019-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PNS disease pathology is diverse and underappreciated. Peripheral neuropathy may result in sensory, motor or autonomic nerve dysfunction and can be induced by metabolic dysfunction, inflammatory dysfunction, cytotoxic pharmaceuticals, rare hereditary disorders or may be idiopathic. Current preclinical PNS disease research relies heavily on the use of rodent models. In vivo methods are effective but too time-consuming and expensive for high-throughput experimentation. Conventional in vitro methods can be performed with high throughput but lack the biological complexity necessary to directly model in vivo nerve structure and function. In this review, we survey in vitro PNS model systems and propose that 3D-bioengineered microphysiological nerve tissue can improve in vitro–in vivo extrapolation and expand the capabilities of in vitro PNS disease modeling.
Collapse
Affiliation(s)
- Kevin J Pollard
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | | | - Michael J Moore
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- AxoSim, Inc., New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
82
|
Ragelle H, Goncalves A, Kustermann S, Antonetti DA, Jayagopal A. Organ-On-A-Chip Technologies for Advanced Blood-Retinal Barrier Models. J Ocul Pharmacol Ther 2019; 36:30-41. [PMID: 31140899 PMCID: PMC6985766 DOI: 10.1089/jop.2019.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
The blood-retinal barrier (BRB) protects the retina by maintaining an adequate microenvironment for neuronal function. Alterations of the junctional complex of the BRB and consequent BRB breakdown in disease contribute to a loss of neuronal signaling and vision loss. As new therapeutics are being developed to prevent or restore barrier function, it is critical to implement physiologically relevant in vitro models that recapitulate the important features of barrier biology to improve disease modeling, target validation, and toxicity assessment. New directions in organ-on-a-chip technology are enabling more sophisticated 3-dimensional models with flow, multicellularity, and control over microenvironmental properties. By capturing additional biological complexity, organs-on-chip can help approach actual tissue organization and function and offer additional tools to model and study disease compared with traditional 2-dimensional cell culture. This review describes the current state of barrier biology and barrier function in ocular diseases, describes recent advances in organ-on-a-chip design for modeling the BRB, and discusses the potential of such models for ophthalmic drug discovery and development.
Collapse
Affiliation(s)
- Héloïse Ragelle
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreia Goncalves
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Harbor, Michigan
| | - Stefan Kustermann
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Harbor, Michigan
| | - Ashwath Jayagopal
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
83
|
Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. ADVANCED BIOSYSTEMS 2019; 3:e1900018. [PMID: 32627410 PMCID: PMC7610576 DOI: 10.1002/adbi.201900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying and understanding of tissue and disease mechanisms largely depend on the availability of suitable and representative biological model systems. These model systems should be carefully engineered and faithfully reproduce the biological system of interest to understand physiological effects, pharmacokinetics, and toxicity to better identify new drug compounds. By relying on microfluidics, microphysiological systems (MPSs) enable the precise control of culturing conditions and connections of advanced in vitro 3D organ models that better reproduce in vivo environments. This review focuses on transferable in vitro organ models and integrated MPSs that host these transferable biological units and enable interactions between different tissue types. Interchangeable and transferrable in vitro organ models allow for independent quality control of the biological model before system assembly and building MPS assays on demand. Due to the complexity and different maturation times of individual in vitro tissues, off-chip production and quality control entail improved stability and reproducibility of the systems and results, which is important for large-scale adoption of the technology. Lastly, the technical and biological challenges and open issues for realizing and implementing integrated MPSs with transferable in vitro organ models are discussed.
Collapse
Affiliation(s)
- Kasper Renggli
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
84
|
Auner AW, Tasneem KM, Markov DA, McCawley LJ, Hutson MS. Chemical-PDMS binding kinetics and implications for bioavailability in microfluidic devices. LAB ON A CHIP 2019; 19:864-874. [PMID: 30720811 PMCID: PMC6512955 DOI: 10.1039/c8lc00796a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidic organ-on-chip devices constructed from polydimethylsiloxane (PDMS) have proven useful in studying both beneficial and adverse effects of drugs, supplements, and potential toxicants. Despite multiple advantages, one clear drawback of PDMS-based devices is binding of hydrophobic chemicals to their exposed surfaces. Chemical binding to PDMS can change the timing and extent of chemical delivery to cells in such devices, potentially altering dose-response curves. Recent efforts have quantified PDMS binding for selected chemicals. Here, we test a wider set of nineteen chemicals using UV-vis or infrared spectroscopy to characterize loss of chemical from solution in two setups with different PDMS-surface-to-solution-volume ratios. We find discernible PDMS binding for eight chemicals and show that PDMS binding is strongest for chemicals with a high octanol-water partition coefficient (log P > 1.85) and low H-bond donor number. Further, by measuring depletion and return of chemical from solution over tens to hundreds of hours and fitting these results to a first order model of binding kinetics, we characterize partitioning into PDMS in terms of binding capacities per unit surface area and both forward and reverse rate constants. These fitted parameters were used to model the impact of PDMS binding on chemical transport and bioavailability under realistic flow conditions and device geometry. The models predict that PDMS binding could alter in-device cellular exposures for both continuous and bolus dosing schemes by up to an order of magnitude compared to nominal input doses.
Collapse
Affiliation(s)
- Alexander W Auner
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
85
|
Faley SL, Neal EH, Wang JX, Bosworth AM, Weber CM, Balotin KM, Lippmann ES, Bellan LM. iPSC-Derived Brain Endothelium Exhibits Stable, Long-Term Barrier Function in Perfused Hydrogel Scaffolds. Stem Cell Reports 2019; 12:474-487. [PMID: 30773484 PMCID: PMC6409430 DOI: 10.1016/j.stemcr.2019.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
There is a profound need for functional, biomimetic in vitro tissue constructs of the human blood-brain barrier and neurovascular unit (NVU) to model diseases and identify therapeutic interventions. Here, we show that induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (BMECs) exhibit robust barrier functionality when cultured in 3D channels within gelatin hydrogels. We determined that BMECs cultured in 3D under perfusion conditions were 10-100 times less permeable to sodium fluorescein, 3 kDa dextran, and albumin relative to human umbilical vein endothelial cell and human dermal microvascular endothelial cell controls, and the BMECs maintained barrier function for up to 21 days. Analysis of cell-cell junctions revealed expression patterns supporting barrier formation. Finally, efflux transporter activity was maintained over 3 weeks of perfused culture. Taken together, this work lays the foundation for development of a representative 3D in vitro model of the human NVU constructed from iPSCs.
Collapse
Affiliation(s)
- Shannon L Faley
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Jason X Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Allison M Bosworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Callie M Weber
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Kylie M Balotin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University Medical School, Nashville, TN 37232, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA.
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
86
|
Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems. Sci Rep 2018; 8:17626. [PMID: 30514966 PMCID: PMC6279833 DOI: 10.1038/s41598-018-35858-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great promise for drug screening, the electrophysiological properties of these cells can be variable and immature, producing results that are significantly different from their human adult counterparts. Here, we describe a computational framework to address this limitation, and show how in silico methods, applied to measurements on immature cardiomyocytes, can be used to both identify drug action and to predict its effect in mature cells. Our synthetic and experimental results indicate that optically obtained waveforms of voltage and calcium from microphysiological systems can be inverted into information on drug ion channel blockage, and then, through assuming functional invariance of proteins during maturation, this data can be used to predict drug induced changes in mature ventricular cells. Together, this pipeline of measurements and computational analysis could significantly improve the ability of hiPSC derived cardiomycocytes to predict dangerous drug side effects.
Collapse
|
87
|
Rayner SG, Phong KT, Xue J, Lih D, Shankland SJ, Kelly EJ, Himmelfarb J, Zheng Y. Reconstructing the Human Renal Vascular-Tubular Unit In Vitro. Adv Healthc Mater 2018; 7:e1801120. [PMID: 30379416 PMCID: PMC6478624 DOI: 10.1002/adhm.201801120] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 12/19/2022]
Abstract
Engineered human kidney-on-a-chip platforms show tremendous promise for disease modeling and drug screening. Outstanding challenges exist, however, in reconstructing the complex architecture, cellular make-up, and matrix composition necessary for the proper modeling of kidney function. Herein, the first fully tunable human kidney-on-a-chip platform is reported that allows the reconstruction of the native architecture of the renal endothelial-epithelial exchange interface using entirely cell-remodelable matrix and patient-derived kidney cells. This platform consists of a double-layer human renal vascular-tubular unit (hRVTU) enabled by a thin collagen membrane that replicates the kidney exchange interface. It is shown that endothelial and epithelial cells lining their respective lumens remodel the membrane in culture into a ≈1 µm thick exchange interface composed of native basement membrane proteins. This interface displays sufficient mechanical integrity for media flow and blood perfusion. As a proof of principle, it is demonstrated that the hRVTU performs kidney-specific functions including reabsorption of albumin and glucose from the epithelial channel. By incorporating multiple cell populations from single donors, it is demonstrated that the hRVTU may have utility for future precision medicine applications. The success of the system provides new opportunities for the next generation of organ-on-a-chip models.
Collapse
Affiliation(s)
- Samuel G. Rayner
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington 98109
| | - Kiet T Phong
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
| | - Jun Xue
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
| | - Daniel Lih
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
| | - Stuart J. Shankland
- Department of Medicine, University of Washington, Seattle, Washington 98109
- Kidney Research Institute, University of Washington, Seattle, Washington 98109
| | - Edward J. Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98109
- Kidney Research Institute, University of Washington, Seattle, Washington 98109
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109
| | - Jonathan Himmelfarb
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
- Department of Medicine, University of Washington, Seattle, Washington 98109
- Kidney Research Institute, University of Washington, Seattle, Washington 98109
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
- Kidney Research Institute, University of Washington, Seattle, Washington 98109
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109
| |
Collapse
|
88
|
Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect Immun 2018; 86:IAI.00282-18. [PMID: 30181350 DOI: 10.1128/iai.00282-18] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.
Collapse
|
89
|
Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, Hernández-Antonio A, Ahmed I, Sharma A, Parra-Saldívar R, Iqbal HMN. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. MICROMACHINES 2018; 9:E536. [PMID: 30424469 PMCID: PMC6215144 DOI: 10.3390/mi9100536] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
In recent years, ever-increasing scientific knowledge and modern high-tech advancements in micro- and nano-scales fabrication technologies have impacted significantly on various scientific fields. A micro-level approach so-called "microfluidic technology" has rapidly evolved as a powerful tool for numerous applications with special reference to bioengineering and biomedical engineering research. Therefore, a transformative effect has been felt, for instance, in biological sample handling, analyte sensing cell-based assay, tissue engineering, molecular diagnostics, and drug screening, etc. Besides such huge multi-functional potentialities, microfluidic technology also offers the opportunity to mimic different organs to address the complexity of animal-based testing models effectively. The combination of fluid physics along with three-dimensional (3-D) cell compartmentalization has sustained popularity as organ-on-a-chip. In this context, simple humanoid model systems which are important for a wide range of research fields rely on the development of a microfluidic system. The basic idea is to provide an artificial testing subject that resembles the human body in every aspect. For instance, drug testing in the pharma industry is crucial to assure proper function. Development of microfluidic-based technology bridges the gap between in vitro and in vivo models offering new approaches to research in medicine, biology, and pharmacology, among others. This is also because microfluidic-based 3-D niche has enormous potential to accommodate cells/tissues to create a physiologically relevant environment, thus, bridge/fill in the gap between extensively studied animal models and human-based clinical trials. This review highlights principles, fabrication techniques, and recent progress of organs-on-chip research. Herein, we also point out some opportunities for microfluidic technology in the future research which is still infancy to accurately design, address and mimic the in vivo niche.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Angel M Villalba-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Kenya D Romero-Castillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Mauricio A Aguilar-Aguila-Isaías
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Isaac E García-Reyes
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Arturo Hernández-Antonio
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Ishtiaq Ahmed
- School of Medical Science, Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|
90
|
van Hasselt JGC, Iyengar R. Systems Pharmacology: Defining the Interactions of Drug Combinations. Annu Rev Pharmacol Toxicol 2018; 59:21-40. [PMID: 30260737 DOI: 10.1146/annurev-pharmtox-010818-021511] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of diseases are associated with alterations in multiple molecular pathways and complex interactions at the cellular and organ levels. Single-target monotherapies therefore have intrinsic limitations with respect to their maximum therapeutic benefits. The potential of combination drug therapies has received interest for the treatment of many diseases and is well established in some areas, such as oncology. Combination drug treatments may allow us to identify synergistic drug effects, reduce adverse drug reactions, and address variability in disease characteristics between patients. Identification of combination therapies remains challenging. We discuss current state-of-the-art systems pharmacology approaches to enable rational identification of combination therapies. These approaches, which include characterization of mechanisms of disease and drug action at a systems level, can enable understanding of drug interactions at the molecular, cellular, physiological, and organismal levels. Such multiscale understanding can enable precision medicine by promoting the rational development of combination therapy at the level of individual patients for many diseases.
Collapse
Affiliation(s)
- J G Coen van Hasselt
- Department of Pharmacological Sciences, Systems Biology Center, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, 2333 Leiden, Netherlands;
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Systems Biology Center, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
91
|
Bale SS, Borenstein JT. Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions. Drug Metab Dispos 2018; 46:1638-1646. [DOI: 10.1124/dmd.118.083055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023] Open
|
92
|
Scahill SD, Hunt M, Rogers CL, Lau FH. A Microphysiologic Platform for Human Fat: Sandwiched White Adipose Tissue. J Vis Exp 2018. [PMID: 30176000 DOI: 10.3791/57909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
White adipose tissue (WAT) plays a crucial role in regulating weight and everyday health. Still, there are significant limitations to available primary culture models, all of which have failed to faithfully recapitulate the adipose microenvironment or extend WAT viability beyond two weeks. The lack of a reliable primary culture model severely impedes research in WAT metabolism and drug development. To this end we have utilized NIH's standards of a microphysiologic system to develop a novel platform for WAT primary culture called 'SWAT' (sandwiched white adipose tissue). We overcome the natural buoyancy of adipocytes by sandwiching minced WAT clusters between sheets of adipose-derived stromal cells. In this construct, WAT samples are viable over eight weeks in culture. SWAT maintains the intact ECM, cell-to-cell contacts, and physical pressures of in vivo WAT conditions; additionally, SWAT maintains a robust transcriptional profile, sensitivity to exogenous chemical signaling, and whole tissue function. SWAT represents a simple, reproducible, and effective method of primary adipose culture. Potentially, it is a broadly applicable platform for research in WAT physiology, pathophysiology, metabolism, and pharmaceutical development.
Collapse
Affiliation(s)
- Steven D Scahill
- Department of Pharmacology, Louisiana State University Health Sciences Center;
| | - Maxwell Hunt
- Department of Surgery, Louisiana State University Health Sciences Center
| | - Camille L Rogers
- Department of Surgery, Louisiana State University Health Sciences Center
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Sciences Center
| |
Collapse
|
93
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
94
|
Eggert S, Alexander FA, Wiest J. Enabling 3D hepatocyte spheroids for microphysiometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1617-1620. [PMID: 29060192 DOI: 10.1109/embc.2017.8037148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in the areas of tissue engineering and microfabrication techniques have enabled promising in vitro platforms, known as Organs-on-Chips, with the aim of mimicking complex in vivo conditions for more accurate toxicology studies. To analyze the physiological change induced by chemicals or toxic substances continuously, sensors can be used in order to measure the intracellular and extracellular environment of single cells, cell constructs, or tissue, and therefore the integration of monitoring techniques into 3D tissue culture platforms provides an essential step for the next generation Organ-on-Chip platforms. However, current in vitro platforms are not capable of combining the culture of 3D models with monitoring techniques. To address this, a novel spheroid encapsulation is designed for fluidic contact between 3D models in microwells and Intelligent Mobile Lab for In Vitro Diagnostics (IMOLA-IVD) BioChip sensors while preventing spheroid fusion. In this work, spheroid culturing protocols were developed for optimized spheroid growth and an evaluation of spheroid integrity on different porous layers was performed in order to provide a defined spheroid encapsulation on BioChip sensors.
Collapse
|
95
|
Heller AA, Lockwood SY, Janes TM, Spence DM. Technologies for Measuring Pharmacokinetic Profiles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:79-100. [PMID: 29324183 DOI: 10.1146/annurev-anchem-061417-125611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The creation of a pharmacokinetic (PK) curve, which follows the plasma concentration of an administered drug as a function of time, is a critical aspect of the drug development process and includes such information as the drug's bioavailability, clearance, and elimination half-life. Prior to a drug of interest gaining clearance for use in human clinical trials, research is performed during the preclinical stages to establish drug safety and dosing metrics from data obtained from the PK studies. Both in vivo animal models and in vitro platforms have limitations in predicting human reaction to a drug due to differences in species and associated simplifications, respectively. As a result, in silico experiments using computer simulation have been implemented to accurately predict PK parameters in human studies. This review assesses these three approaches (in vitro, in vivo, and in silico) when establishing PK parameters and evaluates the potential for in silico studies to be the future gold standard of PK preclinical studies.
Collapse
Affiliation(s)
- A A Heller
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - S Y Lockwood
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - T M Janes
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - D M Spence
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
96
|
Tillmaand EG, Sweedler JV. Integrating Mass Spectrometry with Microphysiological Systems for Improved Neurochemical Studies. ACTA ACUST UNITED AC 2018; 2. [PMID: 30148282 DOI: 10.21037/mps.2018.05.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microphysiological systems, often referred to as "organs-on-chips", are in vitro platforms designed to model the spatial, chemical, structural, and physiological elements of in vivo cellular environments. They enhance the evaluation of complex engineered biological systems and are a step between traditional cell culture and in vivo experimentation. As neurochemists and measurement scientists studying the molecules involved in intercellular communication in the nervous system, we focus here on recent advances in neuroscience using microneurological systems and their potential to interface with mass spectrometry. We discuss a number of examples - microfluidic devices, spheroid cultures, hydrogels, scaffolds, and fibers - highlighting those that would benefit from mass spectrometric technologies to obtain improved chemical information.
Collapse
Affiliation(s)
- Emily G Tillmaand
- Department of Chemistry, the Neuroscience Program and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry, the Neuroscience Program and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
97
|
Wilentz JB, Cowley AW. How can precision medicine be applied to temporomandibular disorders and its comorbidities? Mol Pain 2018; 13:1744806917710094. [PMID: 28741410 PMCID: PMC5533261 DOI: 10.1177/1744806917710094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Eighth Scientific Meeting of The TMJ Association, Ltd. was held in Bethesda, Maryland, September 11-13, 2016. As in the past, the meeting was cosponsored by components of the National Institutes of Health with speakers invited to review the state of temporomandibular disorder science and propose recommendations to further progress. The theme of precision medicine, which aims to tailor disease treatment and prevention to match the characteristics of an individual patient (genetic, epigenetic, environmental, lifestyle) underscored the current consensus that temporomandibular disorders are no longer viewed as local conditions of jaw pain and dysfunction. Rather, they represent a complex family of biopsychosocial disorders that can progress to chronic pain, most often accompanied by one or more other chronic pain conditions. Temporomandibular disorders and these comorbidities, called chronic overlapping pain conditions, predominantly or exclusively affect women in their childbearing years and reflect central nervous system sensitization. Presenters at the meeting included leaders in temporomandibular disorder and pain research, temporomandibular disorder patients and advocates, and experts in other fields or in the use of technologies that could facilitate the development of precision medicine approaches in temporomandibular disorders.
Collapse
Affiliation(s)
| | - Allen W Cowley
- 2 Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
98
|
Clark AM, Kumar MP, Wheeler SE, Young CL, Venkataramanan R, Stolz DB, Griffith LG, Lauffenburger DA, Wells A. A Model of Dormant-Emergent Metastatic Breast Cancer Progression Enabling Exploration of Biomarker Signatures. Mol Cell Proteomics 2018; 17:619-630. [PMID: 29353230 PMCID: PMC5880110 DOI: 10.1074/mcp.ra117.000370] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/27/2017] [Indexed: 12/15/2022] Open
Abstract
Breast cancer mortality predominantly results from dormant micrometastases that emerge as fatal outgrowths years after initial diagnosis. In order to gain insights concerning factors associated with emergence of liver metastases, we recreated spontaneous dormancy in an all-human ex vivo hepatic microphysiological system (MPS). Seeding this MPS with small numbers (<0.05% by cell count) of the aggressive MDA-MB-231 breast cancer cell line, two populations formed: actively proliferating ("growing"; EdU+), and spontaneously quiescent ("dormant"; EdU-). Following treatment with a clinically standard chemotherapeutic, the proliferating cells were eliminated and only quiescent cells remained; this residual dormant population could then be induced to a proliferative state ("emergent"; EdU+) by physiologically-relevant inflammatory stimuli, lipopolysaccharide (LPS) and epidermal growth factor (EGF). Multiplexed proteomic analysis of the MPS effluent enabled elucidation of key factors and processes that correlated with the various tumor cell states, and candidate biomarkers for actively proliferating (either primary or secondary emergence) versus dormant metastatic cells in liver tissue. Dormancy was found to be associated with signaling reflective of cellular quiescence even more strongly than the original tumor-free liver tissue, whereas proliferative nodules presented inflammatory signatures. Given the minimal tumor burden, these markers likely represent changes in the tumor microenvironment rather than in the tumor cells. A computational decision tree algorithm applied to these signatures indicated the potential of this MPS for clinical discernment of each metastatic stage from blood protein analysis.
Collapse
Affiliation(s)
- Amanda M Clark
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manu P Kumar
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sarah E Wheeler
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carissa L Young
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Raman Venkataramanan
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- ¶Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- ‖Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- **University of Pittsburgh Cancer Center, Pittsburgh, Pennsylvania
| | - Linda G Griffith
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alan Wells
- From the ‡Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania;
- ‡‡McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- §§Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
99
|
Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, Valdez J, Cook CD, Parent T, Snyder S, Yu J, Suter E, Shockley M, Velazquez J, Velazquez JJ, Stockdale L, Papps JP, Lee I, Vann N, Gamboa M, LaBarge ME, Zhong Z, Wang X, Boyer LA, Lauffenburger DA, Carrier RL, Communal C, Tannenbaum SR, Stokes CL, Hughes DJ, Rohatgi G, Trumper DL, Cirit M, Griffith LG. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep 2018. [PMID: 29540740 PMCID: PMC5852083 DOI: 10.1038/s41598-018-22749-0] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs – “4-way”, “7-way”, and “10-way” – each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS “physiome-on-a-chip” approaches in drug discovery.
Collapse
Affiliation(s)
- Collin D Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Geishecker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy Kassis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis R Soenksen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brij M Bhushan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Christian Maass
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikolaos Tsamandouras
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jorge Valdez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christi D Cook
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Jiajie Yu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Suter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Shockley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jason Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeremy J Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linda Stockdale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia P Papps
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Iris Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas Vann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mario Gamboa
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew E LaBarge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhe Zhong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Catherine Communal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - David L Trumper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
100
|
Nichols DA, Sondh IS, Little SR, Zunino P, Gottardi R. Design and validation of an osteochondral bioreactor for the screening of treatments for osteoarthritis. Biomed Microdevices 2018; 20:18. [PMID: 29445972 PMCID: PMC5813085 DOI: 10.1007/s10544-018-0264-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioreactors are systems that can be used to monitor the response of tissues and cells to candidate drugs. Building on the experience developed in the creation of an osteochondral bioreactor, we have designed a new 3D printed system, which allows optical access to the cells throughout testing for in line monitoring. Because of the use of 3D printing, the fluidics could be developed in the third dimension, thus maintaining the footprint of a single well of a typical 96 well plate. This new design was optimized to achieve the maximum fluid transport through the central chamber, which corresponds to optimal nutrient or drug exposure. This optimization was achieved by altering each dimension of the bioreactor fluid path. A physical model for optimized drug exposure was then created and tested.
Collapse
Affiliation(s)
- Derek A Nichols
- Department of Mechanical Engineering and Materials Science, Pittsburgh, PA, USA
| | - Inderbir S Sondh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paolo Zunino
- Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Riccardo Gottardi
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA. .,the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Ri.MED Foundation, Palermo, Italy.
| |
Collapse
|