51
|
Tibbs E, Cao X. Emerging Canonical and Non-Canonical Roles of Granzyme B in Health and Disease. Cancers (Basel) 2022; 14:1436. [PMID: 35326588 PMCID: PMC8946077 DOI: 10.3390/cancers14061436] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
The Granzyme (Gzm) family has classically been recognized as a cytotoxic tool utilized by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to illicit cell death to infected and cancerous cells. Their importance is established based on evidence showing that deficiencies in these cell death executors result in defective immune responses. Recent findings have shown the importance of Granzyme B (GzmB) in regulatory immune cells, which may contribute to tumor growth and immune evasion during cancer development. Other studies have shown that members of the Gzm family are important for biological processes such as extracellular matrix remodeling, angiogenesis and organized vascular degradation. With this growing body of evidence, it is becoming more important to understand the broader function of Gzm's rather than a specific executor of cell death, and we should be aware of the many alternative roles that Gzm's play in physiological and pathological conditions. Therefore, we review the classical as well as novel non-canonical functions of GzmB and discuss approaches to utilize these new findings to address current gaps in our understanding of the immune system and tissue development.
Collapse
Affiliation(s)
- Ellis Tibbs
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
| | - Xuefang Cao
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
52
|
Hu Y, Pan Q, Zhou K, Ling Y, Wang H, Li Y. RUNX1 inhibits the antiviral immune response against influenza A virus through attenuating type I interferon signaling. Virol J 2022; 19:39. [PMID: 35248104 PMCID: PMC8897766 DOI: 10.1186/s12985-022-01764-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Influenza A viruses (IAVs) are zoonotic, segmented negative-stranded RNA viruses. The rapid mutation of IAVs results in host immune response escape and antiviral drug and vaccine resistance. RUNX1 is a transcription factor that not only plays essential roles in hematopoiesis, but also functions as a regulator in inflammation. However, its role in the innate immunity to IAV infection has not been well studied. Methods To investigate the effects of RUNX1 on IAV infection and explore the mechanisms that RUNX1 uses during IAV infection. We infected the human alveolar epithelial cell line (A549) with influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) and examined RUNX1 expression by Western blot and qRT-PCR. We also knocked down or overexpressed RUNX1 in A549 cells, then evaluated viral replication by Western blot, qRT-PCR, and viral titration. Results We found RUNX1 expression is induced by IAV H1N1 PR8 infection, but not by poly(I:C) treatment, in the human alveolar epithelial cell line A549. Knockdown of RUNX1 significantly inhibited IAV infection. Conversely, overexpression of RUNX1 efficiently promoted production of progeny viruses. Additionally, RUNX1 knockdown increased IFN-β and ISGs production while RUNX1 overexpression compromised IFN-β and ISGs production upon PR8 infection in A549 cells. We further showed that RUNX1 may attenuate the interferon signaling transduction by hampering the expression of IRF3 and STAT1 during IAV infection. Conclusions Taken together, we found RUNX1 attenuates type I interferon signaling to facilitate IAV infection in A549 cells.
Collapse
|
53
|
Heazlewood SY, Ahmad T, Mohenska M, Guo BB, Gangatirkar P, Josefsson EC, Ellis SL, Ratnadiwakara M, Cao H, Cao B, Heazlewood CK, Williams B, Fulton M, White JF, Ramialison M, Nilsson SK, Änkö ML. The RNA-binding protein SRSF3 has an essential role in megakaryocyte maturation and platelet production. Blood 2022; 139:1359-1373. [PMID: 34852174 PMCID: PMC8900270 DOI: 10.1182/blood.2021013826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
RNA processing is increasingly recognized as a critical control point in the regulation of different hematopoietic lineages including megakaryocytes responsible for the production of platelets. Platelets are anucleate cytoplasts that contain a rich repertoire of RNAs encoding proteins with essential platelet functions derived from the parent megakaryocyte. It is largely unknown how RNA binding proteins contribute to the development and functions of megakaryocytes and platelets. We show that serine-arginine-rich splicing factor 3 (SRSF3) is essential for megakaryocyte maturation and generation of functional platelets. Megakaryocyte-specific deletion of Srsf3 in mice led to macrothrombocytopenia characterized by megakaryocyte maturation arrest, dramatically reduced platelet counts, and abnormally large functionally compromised platelets. SRSF3 deficient megakaryocytes failed to reprogram their transcriptome during maturation and to load platelets with RNAs required for normal platelet function. SRSF3 depletion led to nuclear accumulation of megakaryocyte mRNAs, demonstrating that SRSF3 deploys similar RNA regulatory mechanisms in megakaryocytes as in other cell types. Our study further suggests that SRSF3 plays a role in sorting cytoplasmic megakaryocyte RNAs into platelets and demonstrates how SRSF3-mediated RNA processing forms a central part of megakaryocyte gene regulation. Understanding SRSF3 functions in megakaryocytes and platelets provides key insights into normal thrombopoiesis and platelet pathologies as SRSF3 RNA targets in megakaryocytes are associated with platelet diseases.
Collapse
Affiliation(s)
- Shen Y Heazlewood
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Tanveer Ahmad
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Monika Mohenska
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Belinda B Guo
- School of Biomedical Sciences, Pathology and Laboratory Science, University of Western Australia, WA, Australia
| | | | - Emma C Josefsson
- Walter and Eliza Hall Institute of Medical Research, VIC, Australia
- Department of Medical Biology, The University of Melbourne, VIC, Australia
| | - Sarah L Ellis
- Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Microscopy Facility and School of Cancer Medicine, La Trobe University, VIC, Australia
| | - Madara Ratnadiwakara
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
- Hudson Institute of Medical Research, VIC, Australia; and
- Department of Molecular and Translational Sciences, Monash University, VIC, Australia
| | - Huimin Cao
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Benjamin Cao
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Madeline Fulton
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | | | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Susan K Nilsson
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Minna-Liisa Änkö
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
- Hudson Institute of Medical Research, VIC, Australia; and
- Department of Molecular and Translational Sciences, Monash University, VIC, Australia
| |
Collapse
|
54
|
Umemoto T, Johansson A, Ahmad SAI, Hashimoto M, Kubota S, Kikuchi K, Odaka H, Era T, Kurotaki D, Sashida G, Suda T. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J 2022; 41:e109463. [PMID: 35229328 PMCID: PMC9016348 DOI: 10.15252/embj.2021109463] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.
Collapse
Affiliation(s)
- Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Alban Johansson
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Shah Adil Ishtiyaq Ahmad
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michihiro Hashimoto
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Odaka
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Takumi Era
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshio Suda
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan,Cancer Science Institute of SingaporeNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
55
|
Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood 2022; 139:907-921. [PMID: 34601571 PMCID: PMC8832475 DOI: 10.1182/blood.2021013156] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 11/20/2022] Open
Abstract
The majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1, and c-Myc. Compared with AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. Homoharringtonine treatment repressed enhancers and their BRD4 occupancy and was associated with reduced levels of c-Myc, c-Myb, MCL1, and Bcl-xL. Consistent with this, cotreatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared with each agent alone, cotreatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune-depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.
Collapse
|
56
|
Miyajima Y, Noguchi S, Tanaka Y, Li JR, Nishimura H, Kishima M, Lim J, Furuhata E, Suzuki T, Kasukawa T, Suzuki H. Prediction of transcription factors associated with DNA demethylation during human cellular development. Chromosome Res 2022; 30:109-121. [PMID: 35142952 PMCID: PMC8942926 DOI: 10.1007/s10577-022-09685-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
Abstract
DNA methylation of CpG dinucleotides is an important epigenetic modification involved in the regulation of mammalian gene expression, with each type of cell developing a specific methylation profile during its differentiation. Recently, it has been shown that a small subgroup of transcription factors (TFs) might promote DNA demethylation at their binding sites. We developed a bioinformatics pipeline to predict from genome-wide DNA methylation data TFs that promote DNA demethylation at their binding site. We applied the pipeline to International Human Epigenome Consortium methylome data and selected 393 candidate transcription factor binding motifs and associated 383 TFs that are likely associated with DNA demethylation. Validation of a subset of the candidate TFs using an in vitro assay suggested that 28 of 49 TFs from various TF families had DNA-demethylation-promoting activity; TF families, such as bHLH and ETS, contained both TFs with and without the activity. The identified TFs showed large demethylated/methylated CpG ratios and their demethylated CpGs showed significant bias toward hypermethylation in original cells. Furthermore, the identified TFs promoted demethylation of distinct sets of CpGs, with slight overlap of the targeted CpGs among TF family members, which was consistent with the results of a gene ontology (GO) term analysis of the identified TFs. Gene expression analysis of the identified TFs revealed that multiple TFs from various families are specifically expressed in human cells and tissues. Together, our results suggest that a large number of TFs from various TF families are associated with cell-type-specific DNA demethylation during human cellular development.
Collapse
Affiliation(s)
- Yurina Miyajima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Tanaka
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Jing-Ru Li
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Nishimura
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Mami Kishima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Joanne Lim
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
57
|
Owens DDG, Anselmi G, Oudelaar AM, Downes DJ, Cavallo A, Harman JR, Schwessinger R, Bucakci A, Greder L, de Ornellas S, Jeziorska D, Telenius J, Hughes JR, de Bruijn MFTR. Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development. Nat Commun 2022; 13:773. [PMID: 35140205 PMCID: PMC8828719 DOI: 10.1038/s41467-022-28376-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Damien J Downes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cavallo
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara de Ornellas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Physical and Theoretical Chemistry Building, Department of Chemistry, University of Oxford, Oxford, UK
| | - Danuta Jeziorska
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
58
|
Yoshida T, Yamasaki K, Tadagaki K, Kuwahara Y, Matsumoto A, Sofovic AE, Kondo N, Sakai T, Okuda T. Tumor necrosis factor‑related apoptosis‑inducing ligand is a novel transcriptional target of runt‑related transcription factor 1. Int J Oncol 2021; 60:6. [PMID: 34958111 PMCID: PMC8727134 DOI: 10.3892/ijo.2021.5296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1), which is also known as acute myeloid leukemia 1 (AML1), has been frequently found with genomic aberrations in human leukemia. RUNX1 encodes a transcription factor that can regulate the expression of hematopoietic genes. In addition, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) performs an important function for malignant tumors in immune surveillance. However, the regulatory mechanism of TRAIL expression remain to be fully elucidated. In the present study, tetradecanoylphorbol 13-acetate-treated megakaryocytic differentiated K562 cells was used to examine the effect of RUNX1 on TRAIL expression. Luciferase assay series of TRAIL promoters for the cells co-transfected with RUNX1 and core-binding factor β (CBFβ) expression vectors were performed to evaluate the nature of TRAIL transcriptional regulation. Electrophoresis mobility shift assay of the RUNX1 consensus sequence of the TRAIL promoter with recombinant RUNX1 and CBFβ proteins was also performed. BloodSpot database analysis for TRAIL expression in patients with acute myeloid leukemia were performed. The expression of TRAIL, its receptor Death receptor 4 and 5 and RUNX1 in K562 cells transfected with the RUNX1 expression vector and RUNX1 siRNA were evaluated by reverse transcription-quantitative PCR (RT-qPCR). TRAIL and RUNX1-ETO expression was also measured in Kasumi-1 cells transfected with RUNX1-ETO siRNA and in KG-1 cells transfected with RUNX1-ETO expression plasmid, both by RT-qPCR. Cell counting, lactate dehydrogenase assay and cell cycle analysis by flow cytometry were performed on Kasumi-1, KG-1, SKNO-1 and K562 cells treated with TRAIL and HDAC inhibitors sodium butyrate or valproic acid. The present study demonstrated that RUNX1 is a transcriptional regulator of TRAIL. It was initially found that the induction of TRAIL expression following the megakaryocytic differentiation of human leukemia cells was RUNX1-dependent. Subsequently, overexpression of RUNX1 was found to increase TRAIL mRNA expression by activating its promoter activity. Additional analyses revealed that RUNX1 regulated the expression of TRAIL in an indirect manner, because RUNX1 retained its ability to activate this promoter following the mutation of all possible RUNX1 consensus sites. Furthermore, TRAIL expression was reduced in leukemia cells carrying the t(8;21) translocation, where the RUNX1-ETO chimeric protein interfere with normal RUNX1 function. Exogenous treatment of recombinant TRAIL proteins was found to induce leukemia cell death. To conclude, the present study provided a novel mechanism, whereby TRAIL is a target gene of RUNX1 and TRAIL expression was inhibited by RUNX1-ETO. These results suggest that TRAIL is a promising agent for the clinical treatment of t(8;21) AML.
Collapse
Affiliation(s)
- Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Akifumi Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Adèm Ejub Sofovic
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Noriko Kondo
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| |
Collapse
|
59
|
Azzoni E, Frontera V, Anselmi G, Rode C, James C, Deltcheva EM, Demian AS, Brown J, Barone C, Patelli A, Harman JR, Nicholls M, Conway SJ, Morrissey E, Jacobsen SEW, Sparrow DB, Harris AL, Enver T, de Bruijn MFTR. The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Rep 2021; 37:110103. [PMID: 34910918 PMCID: PMC8692754 DOI: 10.1016/j.celrep.2021.110103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.
Collapse
Affiliation(s)
- Emanuele Azzoni
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christina Rode
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Atanasiu S Demian
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew Nicholls
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, IN 46033, USA
| | - Edward Morrissey
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine and Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, OX1 3PT, UK
| | - Adrian L Harris
- Department of Oncology, Molecular Oncology Laboratories, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK; Division of Molecular Medicine and Gene Therapy, Lund University, Lund, 22184, Sweden
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
60
|
Gao M, Zhu X, Yang G, Bao J, Bu H. CRISPR/Cas9-Mediated Gene Editing in Porcine Models for Medical Research. DNA Cell Biol 2021; 40:1462-1475. [PMID: 34847741 DOI: 10.1089/dna.2020.6474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pigs have been extensively used as the research models for human disease pathogenesis and gene therapy. They are also the optimal source of cells, tissues, and organs for xenotransplantation due to anatomical and physiological similarities to humans. Several breakthroughs in gene-editing technologies, including the advent of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9), have greatly improved the efficiency of genetic manipulation and significantly broadened the application of gene-edited large animal models. In this review, we have not only outlined the important applications of the CRISPR/Cas9 system in pigs as a means to study human diseases but also discussed the potential challenges of the use of CRISPR/Cas9 in large animals.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
61
|
Pan X, Cen X, Zhang B, Pei F, Huang W, Huang X, Zhao Z. Circular RNAs as potential regulators in bone remodeling: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1505. [PMID: 34805367 PMCID: PMC8573438 DOI: 10.21037/atm-21-2114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023]
Abstract
Objective In this review, we focus on the recent progress of circular ribonucleic acids (circRNAs)-related molecular mechanisms in the processes of osteogenesis and osteoclastogenesis, and explore their roles in the development of bone-remodeling disorders. Background The well-coupled bone-formation and bone-resorption processes are vital in bone remodeling. Once the balance is disrupted, bone-remodeling disorders (e.g., osteoporosis and osteopetrosis) occur, severely affecting patients’ quality of life. CircRNAs, the newly discovered members of the non-coding RNA family, have been reported to act as key checkpoints of various signaling pathways that influence osteoblasts and osteoclasts functions, thus regulating the physiological and pathological processes of bone homeostasis. Methods Three English and three Chinese databases [i.e., PubMed, Embase, MEDLINE (via Ovid), Chinese Biomedical Literature, China National Knowledge Infrastructure, and VIP databases] were searched to June 2021 without language restrictions. Studies exploring the roles of circRNAs in key bone remodeling mediators, such as Smad-dependent bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β), Wnts, runt-related transcription factor (RUNX), forkhead boxes (FOXs), colony-stimulating factor 1 (CSF-1), receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG), and circRNA-related bone-remodeling disorders, were included. Conclusions Many circRNAs have been shown to promote osteogenesis and facilitate osteoclast differentiation via diverse mechanisms, and thus modulate the process of bone homeostasis. The imbalance or impairment of these two parts causes diseases, such as osteoporosis, and osteonecrosis of the femoral head, which are also closely correlated to the aberrant presence of circRNAs. Current evidence provides us with promising diagnosis and treatment methods for some bone homeostasis disorders.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
62
|
Yvan-Charvet L, Westerterp M. LDL-cholesterol drives reversible myelomonocytic skewing in human bone marrow. Eur Heart J 2021; 42:4321-4323. [PMID: 34508568 DOI: 10.1093/eurheartj/ehab630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
63
|
Li Z, Kuppe C, Ziegler S, Cheng M, Kabgani N, Menzel S, Zenke M, Kramann R, Costa IG. Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen. Nat Commun 2021; 12:6386. [PMID: 34737275 PMCID: PMC8568974 DOI: 10.1038/s41467-021-26530-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
A major drawback of single-cell ATAC-seq (scATAC-seq) is its sparsity, i.e., open chromatin regions with no reads due to loss of DNA material during the scATAC-seq protocol. Here, we propose scOpen, a computational method based on regularized non-negative matrix factorization for imputing and quantifying the open chromatin status of regulatory regions from sparse scATAC-seq experiments. We show that scOpen improves crucial downstream analysis steps of scATAC-seq data as clustering, visualization, cis-regulatory DNA interactions, and delineation of regulatory features. We demonstrate the power of scOpen to dissect regulatory changes in the development of fibrosis in the kidney. This identifies a role of Runx1 and target genes by promoting fibroblast to myofibroblast differentiation driving kidney fibrosis.
Collapse
Affiliation(s)
- Zhijian Li
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Nazanin Kabgani
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3015GD, Rotterdam, The Netherlands.
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany.
| |
Collapse
|
64
|
Li Q, Lai Q, He C, Zhang H, Pan X, Li H, Yan Q, Fang Y, Liu S, Li A. RUNX1 regulates the proliferation and chemoresistance of colorectal cancer through the Hedgehog signaling pathway. J Cancer 2021; 12:6363-6371. [PMID: 34659526 PMCID: PMC8489138 DOI: 10.7150/jca.51338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Chemoresistance is one of the main causes of recurrence in colorectal cancer (CRC) patients and leads to a poor prognosis. To characterize RUNX1 expression in colorectal cancer (CRC) and elucidate its mechanistic involvement in the tumor biology of this disease. Methods: The expression of RUNX1 in CRC and normal tissues was detected by bioinformatics analysis. Cell proliferation was measured by CCK-8 and clonogenic assays. In vivo tumor progression was assessed with a xenograft mouse model. Cell drug sensitivity tests and flow cytometry were performed to analyze CRC cell chemoresistance. RUNX1, key molecules of the Hedgehog signaling pathway, and ABCG2 were detected by qRT-PCR and Western blotting. Results: RUNX1 expression is upregulated in CRC tissues. RUNX1 enhanced CRC cell resistance to 5-fluorouracil (5-FU), promoted proliferation, and inhibited 5-FU-induced apoptosis. Mechanistically, RUNX1 can activate the Hedgehog signaling pathway and promote the expression of ABCG2 in CRC cells. Conclusions: Our study demonstrated that RUNX1 promotes CRC proliferation and chemoresistance by activating the Hedgehog signaling pathway and ABCG2 expression.
Collapse
Affiliation(s)
- Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingzhu Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Haolin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qun Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
65
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
66
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
67
|
Zhao Y, Dukler N, Barshad G, Toneyan S, Danko CG, Siepel A. Deconvolution of Expression for Nascent RNA sequencing data (DENR) highlights pre-RNA isoform diversity in human cells. Bioinformatics 2021; 37:4727-4736. [PMID: 34382072 PMCID: PMC8665767 DOI: 10.1093/bioinformatics/btab582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Motivation Quantification of isoform abundance has been extensively studied at the mature RNA level using RNA-seq but not at the level of precursor RNAs using nascent RNA sequencing. Results We address this problem with a new computational method called Deconvolution of Expression for Nascent RNA-sequencing data (DENR), which models nascent RNA-sequencing read-counts as a mixture of user-provided isoforms. The baseline algorithm is enhanced by machine-learning predictions of active transcription start sites and an adjustment for the typical ‘shape profile’ of read-counts along a transcription unit. We show that DENR outperforms simple read-count-based methods for estimating gene and isoform abundances, and that transcription of multiple pre-RNA isoforms per gene is widespread, with frequent differences between cell types. In addition, we provide evidence that a majority of human isoform diversity derives from primary transcription rather than from post-transcriptional processes. Availability and implementation DENR and nascentRNASim are freely available at https://github.com/CshlSiepelLab/DENR (version v1.0.0) and https://github.com/CshlSiepelLab/nascentRNASim (version v0.3.0). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yixin Zhao
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Noah Dukler
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Shushan Toneyan
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
68
|
Tripathi DM, Rohilla S, Kaur I, Siddiqui H, Rawal P, Juneja P, Kumar V, Kumari A, Naidu VGM, Ramakrishna S, Banerjee S, Puria R, Sarin SK, Kaur S. Immunonano-Lipocarrier-Mediated Liver Sinusoidal Endothelial Cell-Specific RUNX1 Inhibition Impedes Immune Cell Infiltration and Hepatic Inflammation in Murine Model of NASH. Int J Mol Sci 2021; 22:ijms22168489. [PMID: 34445195 PMCID: PMC8395158 DOI: 10.3390/ijms22168489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Runt-related transcription factor (RUNX1) regulates inflammation in non-alcoholic steatohepatitis (NASH). Methods: We performed in vivo targeted silencing of the RUNX1 gene in liver sinusoidal endothelial cells (LSECs) by using vegfr3 antibody tagged immunonano-lipocarriers encapsulated RUNX1 siRNA (RUNX1 siRNA) in murine models of methionine choline deficient (MCD) diet-induced NASH. MCD mice given nanolipocarriers-encapsulated negative siRNA were vehicle, and mice with standard diet were controls. Results: Liver RUNX1 expression was increased in the LSECs of MCD mice in comparison to controls. RUNX1 protein expression was decreased by 40% in CD31-positive LSECs of RUNX1 siRNA mice in comparison to vehicle, resulting in the downregulation of adhesion molecules, ICAM1 expression, and VCAM1 expression in LSECs. There was a marked decrease in infiltrated T cells and myeloid cells along with reduced inflammatory cytokines in the liver of RUNX1 siRNA mice as compared to that observed in the vehicle. Conclusions: In vivo LSEC-specific silencing of RUNX1 using immunonano-lipocarriers encapsulated siRNA effectively reduces its expression of adhesion molecules, infiltrate on of immune cells in liver, and inflammation in NASH.
Collapse
Affiliation(s)
- Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Sumati Rohilla
- School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India; (S.R.); (P.R.); (R.P.)
| | - Impreet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Hamda Siddiqui
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India; (S.R.); (P.R.); (R.P.)
| | - Pinky Juneja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Vikash Kumar
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Anupama Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Vegi Ganga Modi Naidu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781122, India; (V.G.M.N.); (S.B.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781122, India; (V.G.M.N.); (S.B.)
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India; (S.R.); (P.R.); (R.P.)
| | - Shiv K. Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
- Correspondence:
| |
Collapse
|
69
|
Thomas AL, Marsman J, Antony J, Schierding W, O’Sullivan JM, Horsfield JA. Transcriptional Regulation of RUNX1: An Informatics Analysis. Genes (Basel) 2021; 12:1175. [PMID: 34440349 PMCID: PMC8395016 DOI: 10.3390/genes12081175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
The RUNX1/AML1 gene encodes a developmental transcription factor that is an important regulator of haematopoiesis in vertebrates. Genetic disruptions to the RUNX1 gene are frequently associated with acute myeloid leukaemia. Gene regulatory elements (REs), such as enhancers located in non-coding DNA, are likely to be important for Runx1 transcription. Non-coding elements that modulate Runx1 expression have been investigated over several decades, but how and when these REs function remains poorly understood. Here we used bioinformatic methods and functional data to characterise the regulatory landscape of vertebrate Runx1. We identified REs that are conserved between human and mouse, many of which produce enhancer RNAs in diverse tissues. Genome-wide association studies detected single nucleotide polymorphisms in REs, some of which correlate with gene expression quantitative trait loci in tissues in which the RE is active. Our analyses also suggest that REs can be variant in haematological malignancies. In summary, our analysis identifies features of the RUNX1 regulatory landscape that are likely to be important for the regulation of this gene in normal and malignant haematopoiesis.
Collapse
Affiliation(s)
- Amarni L. Thomas
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (A.L.T.); (J.A.)
| | - Judith Marsman
- Department of Cardiology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (A.L.T.); (J.A.)
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - William Schierding
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Justin M. O’Sullivan
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO17 1BJ, UK
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (A.L.T.); (J.A.)
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Genetics Otago Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
70
|
Zhao Y, Zhang T, Zhao Y, Zhou J. Distinct association of RUNX family expression with genetic alterations and clinical outcome in acute myeloid leukemia. Cancer Biomark 2021; 29:387-397. [PMID: 32741803 DOI: 10.3233/cbm-200016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The runt-related transcription factor family (RUNXs) including RUNX1, RUNX2, and RUNX3 are key transcriptional regulators in normal hematopoiesis. RUNXs dysregulations caused by aberrant expression or mutation are frequently seen in various human cancers especially in acute myeloid leukemia (AML). OBJECTIVE We systemically analyzed the expression of RUNXs and their relationship with clinic-pathological features and prognosis in AML patients. METHODS Expression of RUNXs was analyzed between AML patients and normal controls from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Correlations between RUNXs expression and clinical features together with survival were further analyzed. RESULTS All RUNXs expression in AML patients was significantly increased as compared with controls. RUNXs expression was found to be significantly associated with genetic abnormalities such as RUNX1 mutation, t(8;21) and inv(16)/t(16;16). By Kaplan-Meier analysis, only RUNX3 overexpression was associated with shorter overall survival (OS) and disease-free survival (DFS) among non-M3 AML patients. Notably, in high RUNX3 expression groups, patients received hematopoietic stem cell transplantation (HSCT) had markedly better OS and DFS than patients without HSCT among both all AML and non-M3 AML. In low RUNX3 expression groups, there were no significant differences in OS and DFS between HSCT and non-HSCT groups among both all AML and non-M3 AML. In addition, a total of 835 differentially expressed genes and 69 differentially expressed microRNAs were identified to be correlated with RUNX3 expression in AML. CONCLUSION RUNXs overexpression was a frequent event in AML, and was closely associated with diverse genetic alterations. Moreover, RUNX3 expression may be associated with clinical outcome, and helpful for guiding treatment choice between HSCT and chemotherapy in AML.
Collapse
Affiliation(s)
- Yangli Zhao
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China.,Zhenjiang Medical School, Nanjing Medical University, Zhenjiang, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingjuan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Medical School, Nanjing Medical University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangjing Zhao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingdong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Medical School, Nanjing Medical University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, China
| |
Collapse
|
71
|
Hass MR, Brissette D, Parameswaran S, Pujato M, Donmez O, Kottyan LC, Weirauch MT, Kopan R. Runx1 shapes the chromatin landscape via a cascade of direct and indirect targets. PLoS Genet 2021; 17:e1009574. [PMID: 34111109 PMCID: PMC8219162 DOI: 10.1371/journal.pgen.1009574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/22/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression. Runt-related transcription factor (Runx) 1 & 2 impact development and disease by activating or repressing transcription. In this manuscript we used genome editing tools to remove Runx1, and as expected, observed widespread changes in chromatin accessibility. Newly closed areas contained Runx1 binding sites and were enriched near genes whose expression depended on Runx1. Interestingly, this occurred despite continued binding of Runx2 to the same regions of DNA, which suggests that Runx2 is insufficient to maintain open chromatin and expression of Runx1 target genes in this cellular context. By contrast, newly opened chromatin regions, many near genes that were upregulated in Runx1 knockout cells, did not enrich for Runx1 binding sites. Instead, these regions were enriched for sites for the repressor Zeb proteins. We found that the loss of Zeb 1 & 2 expression, direct transcriptional targets of Runx1, resulted in the opening of chromatin and upregulation of genes residing near the newly open sites in Runx1 knockout cells. The same sites were also open and nearby genes expressed in edited Zeb1 and Zeb2 knockout cells. Among them were transcription factors, such as the Grhl2 gene, which in turn bind to and upregulate their target genes. Thus, the loss of a single transcription factor initiates a cascade of direct and indirect ramifications with likely negative effects on development and health.
Collapse
Affiliation(s)
- Matthew R. Hass
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Daniel Brissette
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sreeja Parameswaran
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mario Pujato
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Omer Donmez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Leah C. Kottyan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| |
Collapse
|
72
|
Runx1 and Runx3 drive progenitor to T-lineage transcriptome conversion in mouse T cell commitment via dynamic genomic site switching. Proc Natl Acad Sci U S A 2021; 118:2019655118. [PMID: 33479171 DOI: 10.1073/pnas.2019655118] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Runt domain-related (Runx) transcription factors are essential for early T cell development in mice from uncommitted to committed stages. Single and double Runx knockouts via Cas9 show that target genes responding to Runx activity are not solely controlled by the dominant factor, Runx1. Instead, Runx1 and Runx3 are coexpressed in single cells; bind to highly overlapping genomic sites; and have redundant, collaborative functions regulating genes pivotal for T cell development. Despite stable combined expression levels across pro-T cell development, Runx1 and Runx3 preferentially activate and repress genes that change expression dynamically during lineage commitment, mostly activating T-lineage genes and repressing multipotent progenitor genes. Furthermore, most Runx target genes are sensitive to Runx perturbation only at one stage and often respond to Runx more for expression transitions than for maintenance. Contributing to this highly stage-dependent gene regulation function, Runx1 and Runx3 extensively shift their binding sites during commitment. Functionally distinct Runx occupancy sites associated with stage-specific activation or repression are also distinguished by different patterns of partner factor cobinding. Finally, Runx occupancies change coordinately at numerous clustered sites around positively or negatively regulated targets during commitment. This multisite binding behavior may contribute to a developmental "ratchet" mechanism making commitment irreversible.
Collapse
|
73
|
Wang S, Li Z, Gao S. Key regulators of sensitivity to immunomodulatory drugs in cancer treatment. Biomark Res 2021; 9:43. [PMID: 34090534 PMCID: PMC8180172 DOI: 10.1186/s40364-021-00297-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) include thalidomide, lenalidomide, and pomalidomide, which have shown significant efficacy in the treatment of multiple myeloma (MM), myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) and other hematological malignancies. IMiDs hijack the CRL4CRBN ubiquitin ligase to target cellular proteins for ubiquitination and degradation, which is responsible for their clinical activity in MM and MDS with del(5q). However, intrinsic and acquired resistance frequently limit the efficacy of IMiDs. Recently, many efforts have been made to explore key regulators of IMiD sensitivity, resulting in great advances in the understanding of the regulatory networks related to this class of drugs. In this review, we describe the mechanism of IMiDs in cancer treatment and summarize the key regulators of IMiD sensitivity. Furthermore, we introduce genome-wide CRISPR-Cas9 screenings, through which the regulatory networks of IMiD sensitivity could be identified.
Collapse
Affiliation(s)
- Shichao Wang
- The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfu Front Street, 450052, Zhengzhou, China.
| | - Zhiyue Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China
| | - Shaobing Gao
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China.
| |
Collapse
|
74
|
Chen Y, Chen S, Lu J, Yuan D, He L, Qin P, Tan H, Xu L. MicroRNA-363-3p promote the development of acute myeloid leukemia with RUNX1 mutation by targeting SPRYD4 and FNDC3B. Medicine (Baltimore) 2021; 100:e25807. [PMID: 33950983 PMCID: PMC8104143 DOI: 10.1097/md.0000000000025807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Runt-related transcription factor 1 (RUNX1) is one of the most frequently mutated genes in most of hematological malignancies, especially in acute myeloid leukemia. In the present study, we aimed to identify the key genes and microRNAs based on acute myeloid leukemia with RUNX1 mutation. The newly finding targeted genes and microRNA associated with RUNX1 may benefit to the clinical treatment in acute myeloid leukemia. MATERIAL/METHODS The gene and miRNA expression data sets relating to RUNX1 mutation and wild-type adult acute myeloid leukemia (AML) patients were downloaded from The Cancer Genome Atlas database. Differentially expressed miRNAs and differentially expressed genes (DEGs) were identified by edgeR of R platform. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed by Metascape and Gene set enrichment analysis. The protein-protein interaction network and miRNA-mRNA regulatory network were performed by Search Tool for the Retrieval of Interacting Genes database and Cytoscape software. RESULTS A total of 27 differentially expressed miRNAs (25 upregulated and 2 downregulated) and 561 DEGs (429 upregulated and 132 downregulated) were identified. Five miRNAs (miR-151b, miR-151a-5p, let-7a-2-3p, miR-363-3p, miR-20b-5p) had prognostic significance in AML. The gene ontology analysis showed that upregulated DEGs suggested significant enrichment in MHC class II protein complex, extracellular structure organization, blood vessel development, cell morphogenesis involved in differentiation, embryonic morphogenesis, regulation of cell adhesion, and so on. Similarly, the downregulated DEGs were mainly enriched in secretory granule lumen, extracellular structure organization. In the gene set enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathways, the RUNX1 mutation was associated with adherent junction, WNT signaling pathway, JAK-STAT signaling pathway, pathways in cancer, cell adhesion molecules CAMs, MAPK signaling pathway. Eleven genes (PPBP, APP, CCR5, HLA-DRB1, GNAI1, APLNR, P2RY14, C3AR1, HTR1F, CXCL12, GNG11) were simultaneously identified by hub gene analysis and module analysis. MicroRNA-363-3p may promote the development of RUNX1 mutation AML, targeting SPRYD4 and FNDC3B. In addition, the RUNX1 mutation rates in patient were obviously correlated with age, white blood cell, FAB type, risk(cyto), and risk(molecular) (P < .05). CONCLUSION Our findings have indicated that multiple genes and microRNAs may play a crucial role in RUNX1 mutation AML. MicroRNA-363-3p may promote the development of RUNX1 mutation AML by targeting SPRYD4 and FNDC3B.
Collapse
Affiliation(s)
- Yimin Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| | - Shuyi Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| | - Jielun Lu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Danyun Yuan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| | - Lang He
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| | - Pengfei Qin
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
| | - Huo Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| |
Collapse
|
75
|
Gonzales F, Barthélémy A, Peyrouze P, Fenwarth L, Preudhomme C, Duployez N, Cheok MH. Targeting RUNX1 in acute myeloid leukemia: preclinical innovations and therapeutic implications. Expert Opin Ther Targets 2021; 25:299-309. [PMID: 33906574 DOI: 10.1080/14728222.2021.1915991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: RUNX1 is an essential transcription factor for normal and malignant hematopoiesis. RUNX1 forms a heterodimeric complex with CBFB. Germline mutations and somatic alterations (i.e. translocations, mutations and abnormal expression) are frequently associated with acute myeloid leukemia (AML) with RUNX1 mutations conferring unfavorable prognosis. Therefore, RUNX1 constitutes a potential innovative and interesting therapeutic target. In this review, we discuss recent therapeutic advances of RUNX1 targeting in AML.Areas covered: Firstly, we cover the clinical basis for RUNX1 targeting. We have subdivided recent therapeutic approaches either by common biochemical pathways or by similar pharmacological targets. Genome editing of RUNX1 induces anti-leukemic effects; however, off-target events prohibit clinical use. Several molecules inhibit the interaction between RUNX1/CBFB and control AML development and progression. BET protein antagonists target RUNX1 (i.e. specific BET inhibitors, BRD4 shRNRA, proteolysis targeting chimeras (PROTAC) or expression-mimickers). All these molecules improve survival in mutant RUNX1 AML preclinical models.Expert opinion: Some of these novel molecules have shown encouraging anti-leukemic potency at the preclinical stage. A better understanding of RUNX1 function in AML development and progression and its key downstream pathways, may result in more precise and more efficient RUNX1 targeting therapies.
Collapse
Affiliation(s)
- Fanny Gonzales
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Pediatric Hematology Department, University Hospital of Lille, Lille, France
| | - Adeline Barthélémy
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| | - Pauline Peyrouze
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| | - Laurène Fenwarth
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Claude Preudhomme
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Nicolas Duployez
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Meyling H Cheok
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| |
Collapse
|
76
|
Ochi Y, Ogawa S. Chromatin-Spliceosome Mutations in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061232. [PMID: 33799787 PMCID: PMC7999050 DOI: 10.3390/cancers13061232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Recent genomic studies have identified chromatin-spliceosome (CS)-acute myeloid leukemia (AML) as a new subgroup of AML. CS-AML is defined by several mutations that perturb epigenetic regulation, such as those affecting splicing factors, cohesin components, transcription factors, and chromatin modifiers, which are also frequently mutated in other myeloid malignancies, such as myelodysplastic syndrome and secondary AML. Thus, these mutations identify myeloid neoplasms that lie on the boundaries of conventional differential diagnosis. CS-AML shares several clinical characteristics with secondary AML. Therefore, the presence of CS-mutations may help to better classify and manage patients with AML and related disorders. The aim of this review is to discuss the genetic and clinical characteristics of CS-AML and roles of driver mutations defining this unique genomic subgroup of AML. Abstract Recent genetic studies on large patient cohorts with acute myeloid leukemia (AML) have cataloged a comprehensive list of driver mutations, resulting in the classification of AML into distinct genomic subgroups. Among these subgroups, chromatin-spliceosome (CS)-AML is characterized by mutations in the spliceosome, cohesin complex, transcription factors, and chromatin modifiers. Class-defining mutations of CS-AML are also frequently identified in myelodysplastic syndrome (MDS) and secondary AML, indicating the molecular similarity among these diseases. CS-AML is associated with myelodysplasia-related changes in hematopoietic cells and poor prognosis, and, thus, can be treated using novel therapeutic strategies and allogeneic stem cell transplantation. Functional studies of CS-mutations in mice have revealed that CS-mutations typically cause MDS-like phenotypes by altering the epigenetic regulation of target genes. Moreover, multiple CS-mutations often synergistically induce more severe phenotypes, such as the development of lethal MDS/AML, suggesting that the accumulation of many CS-mutations plays a crucial role in the progression of MDS/AML. Indeed, the presence of multiple CS-mutations is a stronger indicator of CS-AML than a single mutation. This review summarizes the current understanding of the genetic and clinical features of CS-AML and the functional roles of driver mutations characterizing this unique category of AML.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
- Correspondence: ; Tel.: +81-75-753-9285
| |
Collapse
|
77
|
Hosokawa H, Masuhara K, Koizumi M. Transcription factors regulate early T cell development via redeployment of other factors: Functional dynamics of constitutively required factors in cell fate decisions. Bioessays 2021; 43:e2000345. [PMID: 33624856 DOI: 10.1002/bies.202000345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
Establishment of cell lineage identity from multipotent progenitors is controlled by cooperative actions of lineage-specific and stably expressed transcription factors, combined with input from environmental signals. Lineage-specific master transcription factors activate and repress gene expression by recruiting consistently expressed transcription factors and chromatin modifiers to their target loci. Recent technical advances in genome-wide and multi-omics analysis have shed light on unexpected mechanisms that underlie more complicated actions of transcription factors in cell fate decisions. In this review, we discuss functional dynamics of stably expressed and continuously required factors, Notch and Runx family members, throughout developmental stages of early T cell development in the thymus. Pre- and post-commitment stage-specific transcription factors induce dynamic redeployment of Notch and Runx binding genomic regions. Thus, together with stage-specific transcription factors, shared transcription factors across distinct developmental stages regulate acquisition of T lineage identity.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
78
|
Jeon H, Asano K, Wakimoto A, Kulathunga K, Tran MTN, Nakamura M, Yokomizo T, Hamada M, Takahashi S. Generation of reconstituted hemato-lymphoid murine embryos by placental transplantation into embryos lacking HSCs. Sci Rep 2021; 11:4374. [PMID: 33623082 PMCID: PMC7902833 DOI: 10.1038/s41598-021-83652-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
In order to increase the contribution of donor HSC cells, irradiation and DNA alkylating agents have been commonly used as experimental methods to eliminate HSCs for adult mice. But a technique of HSC deletion for mouse embryo for increase contribution of donor cells has not been published. Here, we established for the first time a procedure for placental HSC transplantation into E11.5 Runx1-deficient mice mated with G1-HRD-Runx1 transgenic mice (Runx1-/-::Tg mice) that have no HSCs in the fetal liver. Following the transplantation of fetal liver cells from mice (allogeneic) or rats (xenogeneic), high donor cell chimerism was observed in Runx1-/-::Tg embryos. Furthermore, chimerism analysis and colony assay data showed that donor fetal liver hematopoietic cells contributed to both white blood cells and red blood cells. Moreover, secondary transplantation into adult recipient mice indicated that the HSCs in rescued Runx1-/-::Tg embryos had normal abilities. These results suggest that mice lacking fetal liver HSCs are a powerful tool for hematopoiesis reconstruction during the embryonic stage and can potentially be used in basic research on HSCs or xenograft models.
Collapse
Affiliation(s)
- Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Keigo Asano
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Physiology, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, P.O. Box 01, Hidellana, Ratnapura, Sri Lanka
| | - Mai Thi Nhu Tran
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Megumi Nakamura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
79
|
Harland LTG, Simon CS, Senft AD, Costello I, Greder L, Imaz-Rosshandler I, Göttgens B, Marioni JC, Bikoff EK, Porcher C, de Bruijn MFTR, Robertson EJ. The T-box transcription factor Eomesodermin governs haemogenic competence of yolk sac mesodermal progenitors. Nat Cell Biol 2021; 23:61-74. [PMID: 33420489 PMCID: PMC7610381 DOI: 10.1038/s41556-020-00611-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.
Collapse
Affiliation(s)
- Luke T G Harland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire S Simon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna D Senft
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucas Greder
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ivan Imaz-Rosshandler
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
80
|
Newton AH, Pask AJ. Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. Commun Biol 2020; 3:771. [PMID: 33319865 PMCID: PMC7738678 DOI: 10.1038/s42003-020-01501-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is critical for the development of the vertebrate bony skeleton. Unlike other RUNX family members, RUNX2 possesses a variable poly-glutamine, poly-alanine (QA) repeat domain. Natural variation within this repeat is able to alter the transactivation potential of RUNX2, acting as an evolutionary 'tuning knob' suggested to influence mammalian skull shape. However, the broader role of the RUNX2 QA repeat throughout vertebrate evolution is unknown. In this perspective, we examine the role of the RUNX2 QA repeat during skeletal development and discuss how its emergence and expansion may have facilitated the evolution of morphological novelty in vertebrates.
Collapse
Affiliation(s)
- Axel H Newton
- Biosciences 4, The School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia.
- Anatomy and Developmental Biology, The School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Andrew J Pask
- Biosciences 4, The School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
81
|
Bruveris FF, Ng ES, Leitoguinho AR, Motazedian A, Vlahos K, Sourris K, Mayberry R, McDonald P, Azzola L, Davidson NM, Oshlack A, Stanley EG, Elefanty AG. Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI 1B-dependent blood and SOX17-positive endothelium. Development 2020; 147:dev.193037. [PMID: 33028609 PMCID: PMC7648599 DOI: 10.1242/dev.193037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
Abstract
The genetic regulatory network controlling early fate choices during human blood cell development are not well understood. We used human pluripotent stem cell reporter lines to track the development of endothelial and haematopoietic populations in an in vitro model of human yolk-sac development. We identified SOX17−CD34+CD43− endothelial cells at day 2 of blast colony development, as a haemangioblast-like branch point from which SOX17−CD34+CD43+ blood cells and SOX17+CD34+CD43− endothelium subsequently arose. Most human blood cell development was dependent on RUNX1. Deletion of RUNX1 only permitted a single wave of yolk sac-like primitive erythropoiesis, but no yolk sac myelopoiesis or aorta-gonad-mesonephros (AGM)-like haematopoiesis. Blocking GFI1 and/or GFI1B activity with a small molecule inhibitor abrogated all blood cell development, even in cell lines with an intact RUNX1 gene. Together, our data define the hierarchical requirements for RUNX1, GFI1 and/or GFI1B during early human haematopoiesis arising from a yolk sac-like SOX17-negative haemogenic endothelial intermediate. Highlighted Article: The hierarchical requirements for RUNX1, GFI1 and/or GFI1B during early human haematopoiesis arising from a yolk sac-like haemogenic endothelial intermediate.
Collapse
Affiliation(s)
- Freya F Bruveris
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Ana Rita Leitoguinho
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ali Motazedian
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Katerina Vlahos
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Koula Sourris
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Robyn Mayberry
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Penelope McDonald
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Lisa Azzola
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,School of BioSciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,School of BioSciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia .,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
82
|
Sánchez Á, Orizaola MC, Rodríguez-Muñoz D, Aranda A, Castrillo A, Alemany S. Stress erythropoiesis in atherogenic mice. Sci Rep 2020; 10:18469. [PMID: 33116141 PMCID: PMC7595174 DOI: 10.1038/s41598-020-74665-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Bone marrow erythropoiesis is mainly homeostatic and a demand of oxygen in tissues activates stress erythropoiesis in the spleen. Here, we show an increase in the number of circulating erythrocytes in apolipoprotein E-/- mice fed a Western high-fat diet, with similar number of circulating leukocytes and CD41+ events (platelets). Atherogenic conditions increase spleen erythropoiesis with no variations of this cell lineage in the bone marrow. Spleens from atherogenic mice show augmented number of late-stage erythroblasts and biased differentiation of progenitor cells towards the erythroid cell lineage, with an increase of CD71+CD41CD34-CD117+Sca1-Lin- cells (erythroid-primed megakaryocyte-erythroid progenitors), which is consistent with the way in which atherogenesis modifies the expression of pro-erythroid and pro-megakaryocytic genes in megakaryocyte-erythroid progenitors. These data explain the transiently improved response to an acute severe hemolytic anemia insult found in atherogenic mice in comparison to control mice, as well as the higher burst-forming unit-erythroid and colony forming unit-erythroid capacity of splenocytes from atherogenic mice. In conclusion, our work demonstrates that, along with the well stablished enhancement of monocytosis during atherogenesis, stress erythropoiesis in apolipoprotein E-/- mice fed a Western high fat diet results in increased numbers of circulating red blood cells.
Collapse
Affiliation(s)
- Ángela Sánchez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Marta C Orizaola
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Diego Rodríguez-Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
83
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
84
|
Meng G, Wei J, Wang Y, Qu D, Zhang J. miR-21 regulates immunosuppression mediated by myeloid-derived suppressor cells by impairing RUNX1-YAP interaction in lung cancer. Cancer Cell Int 2020; 20:495. [PMID: 33061847 PMCID: PMC7549228 DOI: 10.1186/s12935-020-01555-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) are known suppressors of antitumor immunity and contribute to immunosuppressive microenvironment during tumor development including lung cancer. Accumulating evidence shows microRNAs (miRNAs) affect tumor-expanded MDSC accumulation and function in tumor microenvironment and favor solid tumor growth. Herein, we aim to characterize the role of miR-21 in regulating the accumulation and activity of MDSCs in lung cancer. Methods The proportions of MDSCs, T helper cells (Th), and cytotoxic T lymphocytes (CTL) were evaluated by flow cytometric analyses of peripheral blood and tumor tissues collected from Lewis lung-cancer-bearing mice. T cell proliferation assay was performed in CD4+ or CD8+ T cells cocultured with MDSCs. MDSC apoptosis was examined by flow cytometric analysis. The levels of IL-10, TGF-β, and GM-CSF in mouse serum were determined by ELISA. miR-21 targeting RUNX1 and RUNX1 interaction with YAP were evaluated by RIP, dual-luciferase reporter gene, and ChIP assays. Results MiR-21 inhibition by its antagomir reduced the proportion of MDSCs, increased the proportion of Th and CTL in peripheral blood and tumor tissues of Lewis lung-cancer-bearing mice, protected Th and CTL from the suppression of MDSCs, increased apoptosis of MDSCs, but reduced IL-10, TGF-β and GM-CSF levels in mouse serum. RUNX1 could transcriptionally inhibit the YAP expression, whereas miR-21 targeting RUNX1 led to elevated YAP expression levels. Mechanistic investigation showed that miR-21 maintained MDSC accumulation in tumor microenvironment and promoted immunosuppressive ability of MDSCs in Lewis lung-cancer-bearing mice by down-regulating RUNX1and up-regulating YAP. Conclusions Taken together, the study provides evidence that targeting miR-21 in MDSCs may be developed as an immunotherapeutic approach to combat lung cancer development.
Collapse
Affiliation(s)
- Guangping Meng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130000 Jilin People's Republic of China
| | - Jinying Wei
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130000 Jilin People's Republic of China.,Department of General Practice, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Yanjun Wang
- Department of Nursing, The Second Hospital of Jilin University, Changchun, 130000 People's Republic of China
| | - Danhua Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130000 Jilin People's Republic of China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130000 Jilin People's Republic of China
| |
Collapse
|
85
|
Daw S, Law S. The functional interplay of transcription factors and cell adhesion molecules in experimental myelodysplasia including hematopoietic stem progenitor compartment. Mol Cell Biochem 2020; 476:535-551. [PMID: 33011884 DOI: 10.1007/s11010-020-03920-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022]
Abstract
Myelodysplastic syndrome is a heterogenous group of disorder with clonal dysregulated hematopoiesis characterized by bone marrow failure, cytogenetic and molecular abnormalities and variable risk of progression to acute myeloid leukemia (AML). The bone marrow niche plays a major role in maintaining the homeostasis and is often injured by the chemotherapeutic drugs leading to catastrophic consequences like myelodysplastic syndrome. In the present study, we made an attempt to find out the osteoblastic niche related alterations in the myelodysplastic bone marrow through mainly flowcytometric and fluorescent microscopic studies. We have also checked the condition of the myelodysplastic bone through micro computed tomography. The results revealed that the affected osteoblasts of the myelodysplastic bone marrow compelled the hematopoietic stem cell to come out of quiescence and become actively proliferating, and in this scenario the decline in expression of cell adhesion molecules like N-Cadherin, Intercellular adhesion molecule 1 (ICAM) and upregulated focal adhesion kinase (FAK) played a major role. The hike in number of osteoclasts in myelodysplastic cases than control also shattered the balance between bone formation and resorption ratio. We have recorded a dysregulated expression of transcription factors GATA2 and CEBPα (CCAAT-enhancer-binding-protein) in the hematopoietic stem progenitor compartment of the myelodysplastic bone marrow, the main reason behind the presence of abnormal myeloblasts in myelodysplastic cases. Collectively, we can say the coordinated perturbations in the osteoblastic niche, cell adhesion molecules together with the transcription factors has resulted in the uncontrolled proliferation of hematopoietic stem cell, dysregulated myelopoiesis, early trafficking of hematopoietic progenitors to blood compartment and at the same time pancytopenic peripheral blood conditions during the progression of N-Ethyl N Nitroso Urea (ENU) induced myelodysplasia.
Collapse
Affiliation(s)
- Suchismita Daw
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical, Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical, Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
86
|
Replication timing alterations in leukemia affect clinically relevant chromosome domains. Blood Adv 2020; 3:3201-3213. [PMID: 31698451 DOI: 10.1182/bloodadvances.2019000641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/18/2019] [Indexed: 12/29/2022] Open
Abstract
Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of genetically and clinically distinct disease entities with features of differentiation arrest at known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, programs describing the variable order of replication and subnuclear 3D architecture of megabase-scale chromosomal units of DNA in different cell types). To determine the extent to which BCP-ALL RT programs mirror or deviate from specific stages of normal human B-cell differentiation, we transplanted immunodeficient mice with quiescent normal human CD34+ cord blood cells and obtained RT signatures of the regenerating B-lineage populations. We then compared these with RT signatures for leukemic cells from a large cohort of BCP-ALL patients with varied genetic subtypes and outcomes. The results identify BCP-ALL subtype-specific features that resemble specific stages of B-cell differentiation and features that seem to be associated with relapse. These results suggest that the genesis of BCP-ALL involves alterations in RT that reflect biologically significant and potentially clinically relevant leukemia-specific epigenetic changes.
Collapse
|
87
|
Seitz V, Kleo K, Dröge A, Schaper S, Elezkurtaj S, Bedjaoui N, Dimitrova L, Sommerfeld A, Berg E, von der Wall E, Müller U, Joosten M, Lenze D, Heimesaat MM, Baldus C, Zinser C, Cieslak A, Macintyre E, Stocking C, Hennig S, Hummel M. Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL. Sci Rep 2020; 10:10024. [PMID: 32572036 PMCID: PMC7308335 DOI: 10.1038/s41598-020-65744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1+/- mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.
Collapse
Affiliation(s)
- V Seitz
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
- HS Diagnomics GmbH, Berlin, Germany
| | - K Kleo
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - N Bedjaoui
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - L Dimitrova
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - A Sommerfeld
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - E Berg
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - E von der Wall
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - U Müller
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - M Joosten
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - D Lenze
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - M M Heimesaat
- Charité University Medicine Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - C Baldus
- University Medical Center Schleswig-Holstein, Department of Internal Medicine II, Kiel, Germany
| | - C Zinser
- Precigen Bioinformatics Germany GmbH, Munich, Germany
| | - A Cieslak
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - E Macintyre
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - C Stocking
- University Medical Center Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany.
| |
Collapse
|
88
|
Ochi Y, Kon A, Sakata T, Nakagawa MM, Nakazawa N, Kakuta M, Kataoka K, Koseki H, Nakayama M, Morishita D, Tsuruyama T, Saiki R, Yoda A, Okuda R, Yoshizato T, Yoshida K, Shiozawa Y, Nannya Y, Kotani S, Kogure Y, Kakiuchi N, Nishimura T, Makishima H, Malcovati L, Yokoyama A, Takeuchi K, Sugihara E, Sato TA, Sanada M, Takaori-Kondo A, Cazzola M, Kengaku M, Miyano S, Shirahige K, Suzuki HI, Ogawa S. Combined Cohesin-RUNX1 Deficiency Synergistically Perturbs Chromatin Looping and Causes Myelodysplastic Syndromes. Cancer Discov 2020; 10:836-853. [PMID: 32249213 PMCID: PMC7269820 DOI: 10.1158/2159-8290.cd-19-0982] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
Abstract
STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Masanori Kakuta
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | - Tatsuaki Tsuruyama
- Department of Drug and Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Yoda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rurika Okuda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunori Kogure
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomomi Nishimura
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
89
|
Balogh P, Adelman ER, Pluvinage JV, Capaldo BJ, Freeman KC, Singh S, Elagib KE, Nakamura Y, Kurita R, Sashida G, Zunder ER, Li H, Gru AA, Price EA, Schrier SL, Weissman IL, Figueroa ME, Pang WW, Goldfarb AN. RUNX3 levels in human hematopoietic progenitors are regulated by aging and dictate erythroid-myeloid balance. Haematologica 2020; 105:905-913. [PMID: 31171641 PMCID: PMC7109730 DOI: 10.3324/haematol.2018.208918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Healthy bone marrow progenitors yield a co-ordinated balance of hematopoietic lineages. This balance shifts with aging toward enhanced granulopoiesis with diminished erythropoiesis and lymphopoiesis, changes which likely contribute to the development of bone marrow disorders in the elderly. In this study, RUNX3 was identified as a hematopoietic stem and progenitor cell factor whose levels decline with aging in humans and mice. This decline is exaggerated in hematopoietic stem and progenitor cells from subjects diagnosed with unexplained anemia of the elderly. Hematopoietic stem cells from elderly unexplained anemia patients had diminished erythroid but unaffected granulocytic colony forming potential. Knockdown studies revealed human hematopoietic stem and progenitor cells to be strongly influenced by RUNX3 levels, with modest deficiencies abrogating erythroid differentiation at multiple steps while retaining capacity for granulopoiesis. Transcriptome profiling indicated control by RUNX3 of key erythroid transcription factors, including KLF1 and GATA1 These findings thus implicate RUNX3 as a participant in hematopoietic stem and progenitor cell aging, and a key determinant of erythroid-myeloid lineage balance.
Collapse
Affiliation(s)
- Peter Balogh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - John V Pluvinage
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Brian J Capaldo
- Flow Cytometry Core Facility, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Katie C Freeman
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Sandeep Singh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Kamaleldin E Elagib
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi, Koto-ku, Tokyo, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis IRCMS, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Eli R Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Hui Li
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Alejandro A Gru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Elizabeth A Price
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, USA
| | - Stanley L Schrier
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Wendy W Pang
- Department of Medicine, Division of Blood and Bone Marrow Transplantation, Stanford University, Stanford, California, USA
| | - Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| |
Collapse
|
90
|
Chuang LSH, Osato M, Ito Y. The RUNX1 Enhancer Element eR1: A Versatile Marker for Adult Stem Cells. Mol Cells 2020; 43:121-125. [PMID: 31926544 PMCID: PMC7057835 DOI: 10.14348/molcells.2019.0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/03/2019] [Indexed: 11/27/2022] Open
Abstract
The identification of adult stem cells is challenging because of the heterogeneity and plasticity of stem cells in different organs. Within the same tissue, stem cells may be highly proliferative, or maintained in a quiescent state and only to be activated after tissue damage. Although various stem cell markers have been successfully identified, there is no universal stem cell marker, which is exclusively expressed in all stem cells. Here, we discuss the roles of master developmental regulator RUNX1 in stem cells and the development of a 270 base pair fragment of the Runx1 enhancer (eR1) for use as stem cell marker. Using eR1 to identify stem cells offers a distinct advantage over gene promoters, which might not be expressed exclusively in stem cells. Moreover, RUNX1 has been strongly implicated in various cancer types, such as leukemia, breast, esophageal, prostate, oral, skin, and ovarian cancers?it has been suggested that RUNX1 dysfunction promotes stem cell dysfunction and proliferation. As tissue stem cells are potential candidates for cancer cells-of-origin and cancer stem cells, we will also discuss the use of eR1 to target oncogenic gene manipulations in stem cells and to track subsequent neoplastic changes.
Collapse
Affiliation(s)
- Linda Shyue Huey Chuang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
91
|
RUNX3 Inhibits the Invasion and Metastasis of Human Colon Cancer HT-29 Cells by Upregulating MMP-2/9. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5978131. [PMID: 32184893 PMCID: PMC7063181 DOI: 10.1155/2020/5978131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/24/2022]
Abstract
Objective To investigate the effect of Runt-associated transcription factor 3 (RUNX3) on the invasion and metastasis of human colon cancer HT-29 cells and to preliminarily explore the mechanism of its anticancer effect. Methods The RUNX3 plasmid vector was transfected into human colon cancer HT-29 cells by liposome-mediated transfection, while the empty vector and the blank group were used as the control group. After Geneticin (G418) screening, HT-29 cells with stable expression of RUNX3 gene were obtained. The expressions of mRNA and proteins of RUNX3 and metalloproteinases (MMP)-2/9 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Cell proliferation was determined by MTT assay. The effect of RUNX3 on invasion and metastasis of HT-29 cells was evaluated by scratch injury assay, Transwell chamber, and Matrigel invasion model. Results RUNX3 was expressed stably in HT-29 cells after transfection. The expressions of RUNX3 mRNA and proteins in the experimental group were significantly higher than those in the blank/empty vector groups. Meanwhile, the expressions of MMP-2/9 mRNA and proteins in the observation group were significantly lower than those in the blank group and the empty vector group. The proliferation and migration ability in the experimental group was significantly lower than blank/empty vector groups from the third day. Transwell chamber experiment and Matrigel invasion assay showed that the number of Transwell cells was decreased significantly than blank/empty vector groups, but no difference was found between the blank group and the empty vector group. Conclusion RUNX3 can inhibit the invasion and metastasis of human colon cancer HT-29 cells, and the mechanism may be related to decreased expression of MMP-2 and MMP-9.
Collapse
|
92
|
Zaffaroni G, Okawa S, Morales-Ruiz M, del Sol A. An integrative method to predict signalling perturbations for cellular transitions. Nucleic Acids Res 2020; 47:e72. [PMID: 30949696 PMCID: PMC6614844 DOI: 10.1093/nar/gkz232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
Induction of specific cellular transitions is of clinical importance, as it allows to revert disease cellular phenotype, or induce cellular reprogramming and differentiation for regenerative medicine. Signalling is a convenient way to accomplish such transitions without transfer of genetic material. Here we present the first general computational method that systematically predicts signalling molecules, whose perturbations induce desired cellular transitions. This probabilistic method integrates gene regulatory networks (GRNs) with manually-curated signalling pathways obtained from MetaCore from Clarivate Analytics, to model how signalling cues are received and processed in the GRN. The method was applied to 219 cellular transition examples, including cell type transitions, and overall correctly predicted experimentally validated signalling molecules, consistently outperforming other well-established approaches, such as differential gene expression and pathway enrichment analyses. Further, we validated our method predictions in the case of rat cirrhotic liver, and identified the activation of angiopoietins receptor Tie2 as a potential target for reverting the disease phenotype. Experimental results indicated that this perturbation induced desired changes in the gene expression of key TFs involved in fibrosis and angiogenesis. Importantly, this method only requires gene expression data of the initial and desired cell states, and therefore is suited for the discovery of signalling interventions for disease treatments and cellular therapies.
Collapse
Affiliation(s)
- Gaia Zaffaroni
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Integrated BioBank of Luxembourg, Dudelange L-3555, Luxembourg
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department-Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona 08036, Spain
- Working group for the biochemical assessment of hepatic disease-SEQC, Barcelona 08036, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine-University of Barcelona, Barcelona 08036, Spain
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- CIC bioGUNE, Bizkaia Technology Park, Derio 48160, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
- To whom correspondence should be addressed. Tel: +352 46 66 44 6982; Fax: +352 46 66 44 6949;
| |
Collapse
|
93
|
The role of phosphorylation of MLF2 at serine 24 in BCR-ABL leukemogenesis. Cancer Gene Ther 2019; 27:98-107. [PMID: 31831854 DOI: 10.1038/s41417-019-0152-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/29/2023]
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder defined by the presence of the fusion gene BCR-ABL1 in primitive hematopoietic progenitors. The myeloid leukemia factors (MLFs) were identified in the fly and human, and are involved in acute leukemia and enhancing the myeloid factor; however, the function of MLF2 in CML is poorly understood. In this study, we demonstrated that MLF2 may play an oncogenic role in CML. The expression level of MLF2 was related to the proliferation, colony-formation ability, and sensitivity to imatinib in K562 cells. Moreover, phosphorylation at serine 24, detected through Phos-tag sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was required to maintain the activity of MLF2 in CML. The effects of MLF2 overexpression on the colony-formation ability in vitro and mouse survival in vivo could be alleviated by point mutation of MLF2 at serine 24. These findings uncover the oncogenic role of MLF2 through phosphorylation at serine 24 and provide a novel therapeutic target in CML.
Collapse
|
94
|
Beghini A. Core Binding Factor Leukemia: Chromatin Remodeling Moves Towards Oncogenic Transcription. Cancers (Basel) 2019; 11:E1973. [PMID: 31817911 PMCID: PMC6966602 DOI: 10.3390/cancers11121973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common acute leukemia in adults, is a heterogeneous malignant clonal disorder arising from multipotent hematopoietic progenitor cells characterized by genetic and concerted epigenetic aberrations. Core binding factor-Leukemia (CBFL) is characterized by the recurrent reciprocal translocations t(8;21)(q22;q22) or inv(16)(p13;q22) that, expressing the distinctive RUNX1-RUNX1T1 (also known as Acute myeloid leukemia1-eight twenty-one, AML1-ETO or RUNX1/ETO) or CBFB-MYH11 (also known as CBFβ-ΣMMHX) translocation product respectively, disrupt the essential hematopoietic function of the CBF. In the past decade, remarkable progress has been achieved in understanding the structure, three-dimensional (3D) chromosomal topology, and disease-inducing genetic and epigenetic abnormalities of the fusion proteins that arise from disruption of the CBF subunit alpha and beta genes. Although CBFLs have a relatively good prognosis compared to other leukemia subtypes, 40-50% of patients still relapse, requiring intensive chemotherapy and allogenic hematopoietic cell transplantation (alloHCT). To provide a rationale for the CBFL-associated altered hematopoietic development, in this review, we summarize the current understanding on the various molecular mechanisms, including dysregulation of Wnt/β-catenin signaling as an early event that triggers the translocations, playing a pivotal role in the pathophysiology of CBFL. Translation of these findings into the clinical setting is just beginning by improvement in risk stratification, MRD assessment, and development of targeted therapies.
Collapse
|
95
|
Transcriptional Modulation of the Host Immunity Mediated by Cytokines and Transcriptional Factors in Plasmodium falciparum-Infected Patients of North-East India. Biomolecules 2019; 9:biom9100600. [PMID: 31614626 PMCID: PMC6843480 DOI: 10.3390/biom9100600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 11/17/2022] Open
Abstract
Complications due to malaria are caused mostly by host immunological responses. Plasmodium falciparum subverts host immunity by various strategies, including modulation in the host immune responses by regulating cytokines. The transcriptional alterations of major cytokines and immunoregulators were analyzed in this study through gene expression profiling in clinically defined subgroups of P. falciparum patients. Malaria patients were included from Dhalai district hospital of Tripura with uncomplicated malaria (UC) and severe malaria (SM) and healthy controls from endemic and non-endemic areas of India. qPCR gene expression analysis was performed for all factors and they were grouped into three clusters based on their altered expressions. The first cluster was downregulated with an increased parasitic burden which included T-BET, GATA3, EOMES, TGF-β, STAT4, STAT6 and cytokines IFN-γ, IL-12, IL-4, IL-5, and IL-13. RANTES, IL-8, CCR8, and CXCR3 were decreased in the SM group. The second cluster was upregulated with severity and included TNF-α, IL-10, IL-1β and IL-7. PD-1 and BCL6 were increased in the SM group. The third cluster comprised of NF-κB and was not altered. The level of perforin was suppressed while GrB expression was elevated in SM. P. falciparum malaria burden is characterized by the modulation of host immunity via compromization of T cell-mediated responses and suppression of innate immune-regulators.
Collapse
|
96
|
Long noncoding RNA PCED1B-AS1 promotes erythroid differentiation coordinating with GATA1 and chromatin remodeling. BLOOD SCIENCE 2019; 1:161-167. [PMID: 35402806 PMCID: PMC8975080 DOI: 10.1097/bs9.0000000000000031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022] Open
Abstract
Erythropoiesis is a complex and sophisticated multi-stage process regulated by a variety of factors, including the transcription factor GATA1 and non-coding RNA. GATA1 is regarded as an essential transcriptional regulator promoting transcription of erythroid-specific genes—such as long non-coding RNAs (lncRNA). Here, we comprehensively screened lncRNAs that were potentially regulated by GATA1 in erythroid cells. We identified a novel lncRNA—PCED1B-AS1—and verified its role in promoting erythroid differentiation of K562 erythroid cells. We also predicted a model in which PCED1B-AS1 participates in erythroid differentiation via dynamic chromatin remodeling involving GATA1. The relationship between lncRNA and chromatin in the process of erythroid differentiation remains to be revealed, and in our study we have carried out preliminary explorations.
Collapse
|
97
|
Elsaid R, Yang J, Cumano A. The influence of space and time on the establishment of B cell identity. Biomed J 2019; 42:209-217. [PMID: 31627863 PMCID: PMC6818146 DOI: 10.1016/j.bj.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
During embryonic development multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Consistent with this view, some specialized lymphocytes emerge during a limited time-window in embryogenesis and migrate to the tissues where they contribute to organogenesis and to tissue homeostasis. These cells are not constantly produced by bone marrow derived hematopoietic stem cells but are maintained in tissues and self-renew throughout life. These particular cell subsets are produced from lymphoid restricted progenitors only found in the first days of fetal liver hematopoietic activity. Growing evidence of the heterogeneity and layered organization of the hematopoietic system is leading to a common view that some lymphocyte subsets are functionally different because they follow distinct developmental programs and emerge from distinct waves of lymphoid progenitors. However, understanding the influence of developmental origin and the relative contribution of local microenvironment on the development of these specialized lymphocyte subsets needs further analysis. In this review, we discuss how different pathways followed by developing B cells during ontogeny may contribute to the diverse functions.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Junjie Yang
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; CNBG Company, China
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
98
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
99
|
Owens DDG, Caulder A, Frontera V, Harman JR, Allan AJ, Bucakci A, Greder L, Codner GF, Hublitz P, McHugh PJ, Teboul L, de Bruijn MFTR. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res 2019; 47:7402-7417. [PMID: 31127293 PMCID: PMC6698657 DOI: 10.1093/nar/gkz459] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
The CRISPR system is widely used in genome editing for biomedical research. Here, using either dual paired Cas9D10A nickases or paired Cas9 nuclease we characterize unintended larger deletions at on-target sites that frequently evade common genotyping practices. We found that unintended larger deletions are prevalent at multiple distinct loci on different chromosomes, in cultured cells and mouse embryos alike. We observed a high frequency of microhomologies at larger deletion breakpoint junctions, suggesting the involvement of microhomology-mediated end joining in their generation. In populations of edited cells, the distribution of larger deletion sizes is dependent on proximity to sgRNAs and cannot be predicted by microhomology sequences alone.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alasdair J Allan
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Philip Hublitz
- WIMM Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
100
|
Molecular mechanisms for stemness maintenance of acute myeloid leukemia stem cells. BLOOD SCIENCE 2019; 1:77-83. [PMID: 35402786 PMCID: PMC8975089 DOI: 10.1097/bs9.0000000000000020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/17/2019] [Indexed: 11/26/2022] Open
Abstract
Human acute myeloid leukemia (AML) is a fatal hematologic malignancy characterized with accumulation of myeloid blasts and differentiation arrest. The development of AML is associated with a serial of genetic and epigenetic alterations mainly occurred in hematopoietic stem and progenitor cells (HSPCs), which change HSPC state at the molecular and cellular levels and transform them into leukemia stem cells (LSCs). LSCs play critical roles in leukemia initiation, progression, and relapse, and need to be eradicated to achieve a cure in clinic. Key to successfully targeting LSCs is to fully understand the unique cellular and molecular mechanisms for maintaining their stemness. Here, we discuss LSCs in AML with a focus on identification of unique biological features of these stem cells to decipher the molecular mechanisms of LSC maintenance.
Collapse
|