51
|
Bouam A, Ghigo E, Drancourt M. Intra-amoebal killing of Mycobacterium ulcerans by Acanthamoeba griffini: A co-culture model. Microb Pathog 2017; 114:1-7. [PMID: 29155010 DOI: 10.1016/j.micpath.2017.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
Mycobacterium ulcerans, a decaying Mycobacterium marinum derivative is responsible for Buruli ulcer, a notifiable non-contagious disabling infection highly prevalent in some West African countries. Aquatic environments are suspected to host M. ulcerans, however, the exact reservoirs remain unknown. While M. marinum was found to resist amoebal microbicidal activities, this remains unknown for M. ulcerans. In this study M. ulcerans was co-cultured with the moderately halophile Acanthamoeba griffini at 30 °C to probe this tropical amoeba as a potential reservoir for M. ulcerans. In triplicate experiments, we observed engulfment of M. ulcerans by A. griffini trophozoites, followed by an unexpected significant difference of 98.4% (day 1), 99.5% (day 2), 99.5% (day 3) and 99.9% (day 7) between the number of intra-amoebal mycobacteria detected by PCR and the number of viable intra-amoebal mycobacteria measured by 10-week culture. Further encystment revealed only one Mycobacterium organism for 150 A. griffini cysts observed by electron microscopy and the culture of excysted amoebae remained sterile. In conclusion, these data install M. ulcerans as susceptible to A. griffini microbicidal activities rendering this amoeba species an unlikely host of M. ulcerans in natural environments.
Collapse
Affiliation(s)
- Amar Bouam
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Marseille 13005, France
| | - Eric Ghigo
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Marseille 13005, France.
| |
Collapse
|
52
|
Decoding the similarities and differences among mycobacterial species. PLoS Negl Trop Dis 2017; 11:e0005883. [PMID: 28854187 PMCID: PMC5595346 DOI: 10.1371/journal.pntd.0005883] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/12/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
Mycobacteriaceae comprises pathogenic species such as Mycobacterium tuberculosis, M. leprae and M. abscessus, as well as non-pathogenic species, for example, M. smegmatis and M. thermoresistibile. Genome comparison and annotation studies provide insights into genome evolutionary relatedness, identify unique and pathogenicity-related genes in each species, and explore new targets that could be used for developing new diagnostics and therapeutics. Here, we present a comparative analysis of ten-mycobacterial genomes with the objective of identifying similarities and differences between pathogenic and non-pathogenic species. We identified 1080 core orthologous clusters that were enriched in proteins involved in amino acid and purine/pyrimidine biosynthetic pathways, DNA-related processes (replication, transcription, recombination and repair), RNA-methylation and modification, and cell-wall polysaccharide biosynthetic pathways. For their pathogenicity and survival in the host cell, pathogenic species have gained specific sets of genes involved in repair and protection of their genomic DNA. M. leprae is of special interest owing to its smallest genome (1600 genes and ~1300 psuedogenes), yet poor genome annotation. More than 75% of the pseudogenes were found to have a functional ortholog in the other mycobacterial genomes and belong to protein families such as transferases, oxidoreductases and hydrolases. Members of the Mycobacteriaceae family, which are known to adapt to different environmental niches, comprise bacterial species with varied genome sizes. They are unique in their cell-wall composition, which is remarkably thick and lipid-rich as compared to other bacteria. We performed a comparative analysis at the proteome level for ten mycobacterial species that differ in their pathogenicity, genome size and environmental niches. A total of 1080 orthologous clusters with representation from all ten species were obtained, and these were further examined for their domain annotations, domain architecture similarities and enriched GO terms. These core orthologous clusters are enriched in various biosynthetic pathways. The proteins that are specific to each of the ten species were also investigated for their GO functions. The M. leprae genome has a large number of pseudogenes and we searched for their functional orthologs in other mycobacterial species in order to understand the functions that are lost from the M. leprae genome. The proteins present exclusively in M. leprae genome were studied in more detail, in order to predict putative drug targets and diagnostic markers. These findings, which have implications in understanding evolution of mycobacterial genomes, identify species-specific proteins that have potential for use in developing new diagnostic tools and therapeutics.
Collapse
|
53
|
Aboagye SY, Ampah KA, Ross A, Asare P, Otchere ID, Fyfe J, Yeboah-Manu D. Seasonal Pattern of Mycobacterium ulcerans, the Causative Agent of Buruli Ulcer, in the Environment in Ghana. MICROBIAL ECOLOGY 2017; 74:350-361. [PMID: 28238016 PMCID: PMC5496970 DOI: 10.1007/s00248-017-0946-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to contribute to the understanding of Mycobacterium ulcerans (MU) ecology by analysing both clinical and environmental samples collected from ten communities along two major river basins (Offin and Densu) associated with Buruli ulcer (BU) at different seasons. We collected clinical samples from presumptive BU cases and environmental samples from ten communities. Following DNA extraction, clinical samples were confirmed by IS2404 PCR and environmental samples were confirmed by targeting MU-specific genes, IS2404, IS2606 and the ketoreductase (KR) using real-time PCR. Environmental samples were first analysed for IS2404; after which, IS2404-positive samples were multiplexed for the IS2606 and KR gene. Our findings indicate an overall decline in BU incidence along both river basins, although incidence at Densu outweighs that of Offin. Overall, 1600 environmental samples were screened along Densu (434, 27 %) and Offin (1166, 73 %) and MU was detected in 139 (9 %) of the combined samples. The positivity of MU along the Densu River basin was 89/434 (20.5 %), whilst that of the Offin River basin was 50/1166 (4.3 %). The DNA was detected mainly in snails (5/6, 83 %), moss (8/40, 20 %), soil (55/586, 9 %) and vegetation (55/675, 8 %). The proportion of MU positive samples recorded was higher during the months with higher rainfall levels (126/1175, 11 %) than during the dry season months (13/425, 3 %). This study indicates for the first time that there is a seasonal pattern in the presence of MU in the environment, which may be related to recent rainfall or water in the soil.
Collapse
Affiliation(s)
- Samuel Yaw Aboagye
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
- Institute of Environmental and Sanitation Studies, University of Ghana, Accra, Ghana
| | - Kobina Assan Ampah
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Prince Asare
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Isaac Darko Otchere
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC, Australia
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana.
| |
Collapse
|
54
|
Douine M, Gozlan R, Nacher M, Dufour J, Reynaud Y, Elguero E, Combe M, Velvin CJ, Chevillon C, Berlioz-Arthaud A, Labbé S, Sainte-Marie D, Guégan JF, Pradinaud R, Couppié P. Mycobacterium ulcerans infection (Buruli ulcer) in French Guiana, South America, 1969-2013: an epidemiological study. Lancet Planet Health 2017; 1:e65-e73. [PMID: 29851583 DOI: 10.1016/s2542-5196(17)30009-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mycobacterium ulcerans infection is the third most common mycobacterial disease in the world after tuberculosis and leprosy. To date, transmission pathways from its environmental reservoir to humans are still unknown. In South America, French Guiana has the highest reported number of M ulcerans infections across the continent. This empirical study aimed to characterise the epidemiology of M ulcerans infection in French Guiana between 1969 and 2013. METHODS Data were collected prospectively mainly by two dermatologists at Cayenne Hospital's dermatology department between Jan 1, 1969, and Dec 31, 2013, for age, date of diagnosis, sex, residence, location of the lesion, type of lesion, associated symptoms, and diagnostic method (smear, culture, PCR, or histology) for all confirmed and suspected cases of M ulcerans. We obtained population data from censuses. We calculated mean M ulcerans infection incidences, presented as the number of cases per 100 000 person-years. FINDINGS 245 patients with M ulcerans infections were reported at Cayenne Hospital's dermatology department during the study period. M ulcerans infection incidence decreased over time, from 6·07 infections per 100 000 person-years (95% CI 4·46-7·67) in 1969-83 to 4·77 infections per 100 000 person-years (3·75-5·79) in 1984-98 and to 3·49 infections per 100 000 person-years (2·83-4·16) in 1999-2013. The proportion of children with infections also declined with time, from 42 (76%) of 55 patients in 1969-83 to 26 (31%) of 84 in 1984-98 and to 22 (21%) of 106 in 1999-2013. Most cases occurred in coastal areas surrounded by marshy savannah (incidence of 21·08 per 100 000 person-years in Sinnamary and 21·18 per 100 000 person-years in Mana). Lesions mainly affected limbs (lower limbs 161 [66%] patients; upper limbs 60 [24%] patients). We diagnosed no bone infections. INTERPRETATION The decrease of M ulcerans infection incidence and the proportion of children with infections over a 45 year period in this ultra-peripheral French territory might have been mostly driven by improving living conditions, prophylactic recommendations, and access to health care. FUNDING Agence Nationale de la Recherche.
Collapse
Affiliation(s)
- Maylis Douine
- Centre d'Investigation Clinique, Institut National de la Santé et de la Recherche Médicale 1424, Cayenne Hospital, Cayenne, French Guiana; Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, Cayenne, French Guiana
| | - Rodolphe Gozlan
- Institut de Recherche pour le Développement Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, Paris, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique, Institut National de la Santé et de la Recherche Médicale 1424, Cayenne Hospital, Cayenne, French Guiana; Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, Cayenne, French Guiana
| | - Julie Dufour
- Service de Dermatologie, Cayenne Hospital, Cayenne, French Guiana
| | - Yann Reynaud
- Institut Pasteur de la Guadeloupe, Tuberculosis and Mycobacteria Unit, Morne Jolivière, Les Abymes, Guadeloupe, France
| | - Eric Elguero
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France
| | - Marine Combe
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France
| | - Camilla J Velvin
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France
| | - Christine Chevillon
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France
| | - Alain Berlioz-Arthaud
- Institut Pasteur de la Guyane, Laboratoire de Biologie Médicale, Cayenne, French Guiana
| | - Sylvain Labbé
- Service D'Anatomie-Pathologique, Cayenne Hospital, Cayenne, French Guiana
| | | | - Jean-François Guégan
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement-Centre National de la Recherche Scientifique-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, Montpellier, France; Future Earth United Nations International Programme, OneHealth Research Initiative, Montréal, QC, Canada
| | - Roger Pradinaud
- Service de Dermatologie, Cayenne Hospital, Cayenne, French Guiana
| | - Pierre Couppié
- Service de Dermatologie, Cayenne Hospital, Cayenne, French Guiana; Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, Cayenne, French Guiana.
| |
Collapse
|
55
|
Combe M, Velvin CJ, Morris A, Garchitorena A, Carolan K, Sanhueza D, Roche B, Couppié P, Guégan JF, Gozlan RE. Global and local environmental changes as drivers of Buruli ulcer emergence. Emerg Microbes Infect 2017; 6:e21. [PMID: 28442755 PMCID: PMC5457673 DOI: 10.1038/emi.2017.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/21/2022]
Abstract
Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.
Collapse
Affiliation(s)
- Marine Combe
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Camilla Jensen Velvin
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Aaron Morris
- The Royal Veterinary College, Department of Production and Population Health, The Royal Veterinary College, Hawkshead Lane North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Andres Garchitorena
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
- PIVOT, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Carolan
- Computational & Systems Biology, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Daniel Sanhueza
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Benjamin Roche
- UMMISCO, Département Sociétés et Mondialisation, UMI IRD-UPMC 209, 93143 Bondy, France
| | - Pierre Couppié
- Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, 97306 Cayenne, French Guiana, France
- Service de Dermatologie, Cayenne Hospital, rue des Flamboyant, BP 6006, 97306 Cayenne, French Guiana, France
| | - Jean-François Guégan
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
- Future Earth International Programme, OneHealth Global Research Project, Future Earth Montréal Hub, Montréal, QC H3H 2L3, Canada
| | - Rodolphe Elie Gozlan
- Institut de Recherche pour le Développement, Département Ecologie, Biodiversité et Fonctionnement des Ecosystemes Continentaux, UMR BOREA IRD 207, CNRS 7208, MNHN, UPMC, Muséum National d'Histoire Naturelle, 75231 Paris, France
| |
Collapse
|
56
|
Abstract
ABSTRACT
Mycobacterium marinum
is a well-known pathogenic mycobacterium for skin and soft tissue infections and is associated with fishes and water. Among nontuberculous mycobacteria (NTM), it is the leading cause of extrarespiratory human infections worldwide. In addition, there is a specific scientific interest in
M. marinum
because of its genetic relatedness to
Mycobacterium tuberculosis
and because experimental infection of
M. marinum
in fishes mimics tuberculosis pathogenesis. Microbiological characteristics include the fact that it grows in 7 to 14 days with photochromogenic colonies and is difficult to differentiate from
Mycobacterium ulcerans
and other mycolactone-producing NTM on a molecular basis. The diagnosis is highly suspected by the mode of infection, which is related to the hobby of fishkeeping, professional handling of marine shells, or swimming in nonchlorinated pools. Clinics distinguished skin and soft tissue lesions (typically sporotrichoid or subacute hand nodules) and lesions disseminated to joint and bone, often related with the local use of corticosteroids. In clinical microbiology, microscopy and culture are often negative because growth requires low temperature (30°C) and several weeks to succeed in primary cultivation. The treatment is not standardized, and no randomized control trials have been done. Therapy is a combination of surgery and antimicrobial agents such as cyclines and rifampin, with successful outcome in most of the skin diseases but less frequently in deep tissue infections. Prevention can be useful with hand protection recommendations for professionals and all persons manipulating fishes or fish tank water and use of alcohol disinfection after contact.
Collapse
|
57
|
Vandelannoote K, Meehan CJ, Eddyani M, Affolabi D, Phanzu DM, Eyangoh S, Jordaens K, Portaels F, Mangas K, Seemann T, Marsollier L, Marion E, Chauty A, Landier J, Fontanet A, Leirs H, Stinear TP, de Jong BC. Multiple Introductions and Recent Spread of the Emerging Human Pathogen Mycobacterium ulcerans across Africa. Genome Biol Evol 2017; 9:414-426. [PMID: 28137745 PMCID: PMC5381664 DOI: 10.1093/gbe/evx003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Buruli ulcer (BU) is an insidious neglected tropical disease. Cases are reported around the world but the rural regions of West and Central Africa are most affected. How BU is transmitted and spreads has remained a mystery, even though the causative agent, Mycobacterium ulcerans, has been known for more than 70 years. Here, using the tools of population genomics, we reconstruct the evolutionary history of M. ulcerans by comparing 165 isolates spanning 48 years and representing 11 endemic countries across Africa. The genetic diversity of African M. ulcerans was found to be restricted due to the bacterium's slow substitution rate coupled with its relatively recent origin. We identified two specific M. ulcerans lineages within the African continent, and inferred that M. ulcerans lineage Mu_A1 existed in Africa for several hundreds of years, unlike lineage Mu_A2, which was introduced much more recently, approximately during the 19th century. Additionally, we observed that specific M. ulcerans epidemic Mu_A1 clones were introduced during the same time period in the three hydrological basins that were well covered in our panel. The estimated time span of the introduction events coincides with the Neo-imperialism period, during which time the European colonial powers divided the African continent among themselves. Using this temporal association, and in the absence of a known BU reservoir or-vector on the continent, we postulate that the so-called "Scramble for Africa" played a significant role in the spread of the disease across the continent.
Collapse
Affiliation(s)
- Koen Vandelannoote
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Evolutionary Ecology Group University of Antwerp, Antwerp, Belgium
| | - Conor J. Meehan
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Miriam Eddyani
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Sara Eyangoh
- Service de Mycobactériologie, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Kurt Jordaens
- Evolutionary Ecology Group University of Antwerp, Antwerp, Belgium
- Invertebrates Section, Royal Museum for Central Africa, Tervuren, Belgium
| | - Françoise Portaels
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kirstie Mangas
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Torsten Seemann
- Victorian Life Sciences Computation Initiative University of Melbourne, Victoria, Australia
| | | | - Estelle Marion
- CRCNA Inserm U892 CNRS 6299, CHU & Université d’Angers, Angers, France
| | | | - Jordi Landier
- Service de Mycobactériologie, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
| | - Arnaud Fontanet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
| | - Herwig Leirs
- Evolutionary Ecology Group University of Antwerp, Antwerp, Belgium
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Bouke C. de Jong
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
58
|
Zingue D, Bouam A, Militello M, Drancourt M. High-Throughput Carbon Substrate Profiling of Mycobacterium ulcerans Suggests Potential Environmental Reservoirs. PLoS Negl Trop Dis 2017; 11:e0005303. [PMID: 28095422 PMCID: PMC5271411 DOI: 10.1371/journal.pntd.0005303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/27/2017] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans is a close derivative of Mycobacterium marinum and the agent of Buruli ulcer in some tropical countries. Epidemiological and environmental studies pointed towards stagnant water ecosystems as potential sources of M. ulcerans, yet the ultimate reservoirs remain elusive. We hypothesized that carbon substrate determination may help elucidating the spectrum of potential reservoirs. METHODOLOGY/PRINCIPAL FINDINGS In a first step, high-throughput phenotype microarray Biolog was used to profile carbon substrates in one M. marinum and five M. ulcerans strains. A total of 131/190 (69%) carbon substrates were metabolized by at least one M. ulcerans strain, including 28/190 (15%) carbon substrates metabolized by all five M. ulcerans strains of which 21 substrates were also metabolized by M. marinum. In a second step, 131 carbon substrates were investigated, through a bibliographical search, for their known environmental sources including plants, fruits and vegetables, bacteria, algae, fungi, nematodes, mollusks, mammals, insects and the inanimate environment. This analysis yielded significant association of M. ulcerans with bacteria (p = 0.000), fungi (p = 0.001), algae (p = 0.003) and mollusks (p = 0.007). In a third step, the Medline database was cross-searched for bacteria, fungi, mollusks and algae as potential sources of carbon substrates metabolized by all tested M. ulcerans; it indicated that 57% of M. ulcerans substrates were associated with bacteria, 18% with alga, 11% with mollusks and 7% with fungi. CONCLUSIONS This first report of high-throughput carbon substrate utilization by M. ulcerans would help designing media to isolate and grow this pathogen. Furthermore, the presented data suggest that potential M. ulcerans environmental reservoirs might be related to micro-habitats where bacteria, fungi, algae and mollusks are abundant. This should be followed by targeted investigations in Buruli ulcer endemic regions.
Collapse
Affiliation(s)
- Dezemon Zingue
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Amar Bouam
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Muriel Militello
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Michel Drancourt
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| |
Collapse
|
59
|
Bénard A, Sala C, Pluschke G. Mycobacterium ulcerans Mouse Model Refinement for Pre-Clinical Profiling of Vaccine Candidates. PLoS One 2016; 11:e0167059. [PMID: 27893778 PMCID: PMC5125663 DOI: 10.1371/journal.pone.0167059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022] Open
Abstract
Buruli Ulcer is a neglected tropical disease leading to extensive disabilities and morbidity in West Africa. In this paper we sought to characterize various strains of Mycobacterium ulcerans (M.ulcerans) with different origins and laboratory passage records while refining a mouse model for Buruli ulcer. We described, compared and followed the kinetics of the histo-pathological outcome of infection of a collection of strains at various anatomical sites of infection in order to find a suitable model for further immunization studies. Moreover we compared the outcome of infection in C57Bl/6 and Balbc/J mice. Specifically we described thoroughly one M. ulcerans strain characterized by slow growth rate and limited tissue necrosis, which presents close ressemblance with the infection kinetics in humans. This strain caused macrophages as well as T and B cells infiltration, correlating with mycobacterial proliferation at the site of infection as well as in the draining lymph nodes, making it a suitable strain to screen vaccine candidates efficacy.
Collapse
Affiliation(s)
- Angèle Bénard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- * E-mail:
| | - Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|
60
|
16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria. PLoS One 2016; 11:e0164138. [PMID: 27749897 PMCID: PMC5066948 DOI: 10.1371/journal.pone.0164138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022] Open
Abstract
Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I–V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC.
Collapse
|
61
|
Complete Genome Sequence of Mycobacterium ulcerans subsp. shinshuense. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01050-16. [PMID: 27688344 PMCID: PMC5043562 DOI: 10.1128/genomea.01050-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium ulcerans subsp. shinshuense produces mycolactone and causes Buruli ulcer. Here, we report the complete sequence of its genome, which comprises a 5.9-Mb chromosome and a 166-kb plasmid (pShT-P). The sequence will represent the essential data for future phylogenetic and comparative genome studies of mycolactone-producing mycobacteria.
Collapse
|
62
|
Lamelas A, Ampah KA, Aboagye S, Kerber S, Danso E, Asante-Poku A, Asare P, Parkhill J, Harris SR, Pluschke G, Yeboah-Manu D, Röltgen K. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana. PLoS Negl Trop Dis 2016; 10:e0004856. [PMID: 27434064 PMCID: PMC4951013 DOI: 10.1371/journal.pntd.0004856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/27/2016] [Indexed: 11/28/2022] Open
Abstract
In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU) lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions. Infection with Mycobacterium ulcerans causes the debilitating skin disease Buruli ulcer. Until today, transmission pathways and reservoirs of this emerging pathogen are not well understood. Generally, it is assumed that infection occurs after contact with potential environmental sources of M. ulcerans through puncture wounds or lacerations or via invertebrate vectors, such as aquatic insects contaminated with the bacteria. Comparative genome analyses of M. ulcerans strains isolated from patients living in the same BU endemic areas have revealed a close relationship between the genotype detected and the geographical origin, indicating that the reservoir of the pathogen is relatively fixed in space. In the present study, we report the co-circulation of two distinct M. ulcerans clonal complexes in the same BU endemic area over space and time. Since members of these two clonal complexes were closely related to strains from either the Densu river valley or the Asante Akim North district of Ghana, we conclude that a mobile reservoir of M. ulcerans may be involved in the occasional spread of the bacteria across different regions.
Collapse
Affiliation(s)
- Araceli Lamelas
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Red de Estudios Moleculares Avanzados, Instituto de Ecologia, A.C., Veracruz, México
| | - Kobina Assan Ampah
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Noguchi Memorial Institute for Medical Research, Legon, Ghana
| | - Samuel Aboagye
- Noguchi Memorial Institute for Medical Research, Legon, Ghana
| | - Sarah Kerber
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emelia Danso
- Noguchi Memorial Institute for Medical Research, Legon, Ghana
| | | | - Prince Asare
- Noguchi Memorial Institute for Medical Research, Legon, Ghana
| | | | | | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | | | - Katharina Röltgen
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
63
|
Dangy JP, Scherr N, Gersbach P, Hug MN, Bieri R, Bomio C, Li J, Huber S, Altmann KH, Pluschke G. Antibody-Mediated Neutralization of the Exotoxin Mycolactone, the Main Virulence Factor Produced by Mycobacterium ulcerans. PLoS Negl Trop Dis 2016; 10:e0004808. [PMID: 27351976 PMCID: PMC4924874 DOI: 10.1371/journal.pntd.0004808] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone. METHODOLOGY/PRINCIPAL FINDINGS Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone. CONCLUSIONS/SIGNIFICANCE The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target.
Collapse
Affiliation(s)
- Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Scherr
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Philipp Gersbach
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Melanie N. Hug
- Roche Innovation Center, Chemical Biology, Basel, Switzerland
| | - Raphael Bieri
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Claudio Bomio
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Jun Li
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Sylwia Huber
- Roche Innovation Center, Chemical Biology, Basel, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
64
|
Franco-Paredes C, Rodriguez-Morales AJ. Unsolved matters in leprosy: a descriptive review and call for further research. Ann Clin Microbiol Antimicrob 2016; 15:33. [PMID: 27209077 PMCID: PMC4875741 DOI: 10.1186/s12941-016-0149-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/11/2016] [Indexed: 10/25/2022] Open
Abstract
Leprosy, a chronic mycobacterial infection caused by Mycobacterium leprae, is an infectious disease that has ravaged human societies throughout millennia. This ancestral pathogen causes disfiguring cutaneous lesions, peripheral nerve injury, ostearticular deformity, limb loss and dysfunction, blindness and stigma. Despite ongoing efforts in interrupting leprosy transmission, large numbers of new cases are persistently identified in many endemic areas. Moreover, at the time of diagnosis, most newly identified cases have considerable neurologic disability. Many challenges remain in our understanding of the epidemiology of leprosy including: (a) the precise mode and route of transmission; (b) the socioeconomic, environmental, and behavioral factors that promote its transmission; and
Collapse
Affiliation(s)
- Carlos Franco-Paredes
- Infectious Diseases Clinic, Phoebe Putney Memorial Hospital, 507 3rd Avenue, Albany, GA, 31721, USA. .,Hospital Infantil de México, Federico Gómez, Mexico D.F., Mexico.
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
| |
Collapse
|
65
|
Comparative Study of Activities of a Diverse Set of Antimycobacterial Agents against Mycobacterium tuberculosis and Mycobacterium ulcerans. Antimicrob Agents Chemother 2016; 60:3132-7. [PMID: 26883701 DOI: 10.1128/aac.02658-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
A library of compounds covering a broad chemical space was selected from a tuberculosis drug development program and was screened in a whole-cell assay against Mycobacterium ulcerans, the causative agent of the necrotizing skin disease Buruli ulcer. While a number of potent antitubercular agents were only weakly active or inactive against M. ulcerans, five compounds showed high activity (90% inhibitory concentration [IC90], ≤1 μM), making screening of focused antitubercular libraries a good starting point for lead generation against M. ulcerans.
Collapse
|
66
|
Antimicrobial Resistance in Mycobacterium tuberculosis: The Odd One Out. Trends Microbiol 2016; 24:637-648. [PMID: 27068531 DOI: 10.1016/j.tim.2016.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/13/2016] [Accepted: 03/15/2016] [Indexed: 01/29/2023]
Abstract
Antimicrobial resistance (AMR) threats are typically represented by bacteria capable of extensive horizontal gene transfer (HGT). One clear exception is Mycobacterium tuberculosis (Mtb). It is an obligate human pathogen with limited genetic diversity and a low mutation rate which lacks any evidence for HGT. Such features should, in principle, reduce its ability to rapidly evolve AMR. We identify key features in its biology and epidemiology that allow it to overcome its low adaptive potential. We focus in particular on its innate resistance to drugs, its unusual life cycle, including an often extensive latent phase, and its ability to shelter from exposure to antimicrobial drugs within cavities it induces in the lungs.
Collapse
|
67
|
Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet 2015; 31:539-555. [DOI: 10.1016/j.tig.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023]
|
68
|
Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H, Hall RM, Holt KE. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics 2015; 16:667. [PMID: 26336060 PMCID: PMC4558774 DOI: 10.1186/s12864-015-1860-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022] Open
Abstract
Background Insertion sequences (IS) are small transposable elements, commonly found in bacterial genomes. Identifying the location of IS in bacterial genomes can be useful for a variety of purposes including epidemiological tracking and predicting antibiotic resistance. However IS are commonly present in multiple copies in a single genome, which complicates genome assembly and the identification of IS insertion sites. Here we present ISMapper, a mapping-based tool for identification of the site and orientation of IS insertions in bacterial genomes, directly from paired-end short read data. Results ISMapper was validated using three types of short read data: (i) simulated reads from a variety of species, (ii) Illumina reads from 5 isolates for which finished genome sequences were available for comparison, and (iii) Illumina reads from 7 Acinetobacter baumannii isolates for which predicted IS locations were tested using PCR. A total of 20 genomes, including 13 species and 32 distinct IS, were used for validation. ISMapper correctly identified 97 % of known IS insertions in the analysis of simulated reads, and 98 % in real Illumina reads. Subsampling of real Illumina reads to lower depths indicated ISMapper was able to correctly detect insertions for average genome-wide read depths >20x, although read depths >50x were required to obtain confident calls that were highly-supported by evidence from reads. All ISAba1 insertions identified by ISMapper in the A. baumannii genomes were confirmed by PCR. In each A. baumannii genome, ISMapper successfully identified an IS insertion upstream of the ampC beta-lactamase that could explain phenotypic resistance to third-generation cephalosporins. The utility of ISMapper was further demonstrated by profiling genome-wide IS6110 insertions in 138 publicly available Mycobacterium tuberculosis genomes, revealing lineage-specific insertions and multiple insertion hotspots. Conclusions ISMapper provides a rapid and robust method for identifying IS insertion sites directly from short read data, with a high degree of accuracy demonstrated across a wide range of bacteria.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Mohammad Hamidian
- School of Molecular Bioscience, The University of Sydney, Sydney, 2006, Australia.
| | - Ryan R Wick
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - David J Edwards
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Helen Billman-Jacobe
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, 2006, Australia.
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
69
|
Yotsu RR, Murase C, Sugawara M, Suzuki K, Nakanaga K, Ishii N, Asiedu K. Revisiting Buruli ulcer. J Dermatol 2015; 42:1033-41. [PMID: 26332541 DOI: 10.1111/1346-8138.13049] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022]
Abstract
Buruli ulcer (BU), or Mycobacterium ulcerans infection, is a new emerging infectious disease which has been reported in over 33 countries worldwide. It has been noted not only in tropical areas, such as West Africa where it is most endemic, but also in moderate non-tropical climate areas, including Australia and Japan. Clinical presentation starts with a papule, nodule, plaque or edematous form which eventually leads to extensive skin ulceration. It can affect all age groups, but especially children aged between 5 and 15 years in West Africa. Multiple-antibiotic treatment has proven effective, and with surgical intervention at times of severity, it is curable. However, if diagnosis and treatment is delayed, those affected may be left with life-long disabilities. The disease is not yet fully understood, including its route of transmission and pathogenesis. However, due to recent research, several important features of the disease are now being elucidated. Notably, there may be undiagnosed cases in other parts of the world where BU has not yet been reported. Japan exemplifies the finding that awareness among dermatologists plays a key role in BU case detection. So, what about in other countries where a case of BU has never been diagnosed and there is no awareness of the disease among the population or, more importantly, among health professionals? This article will revisit BU, reviewing clinical features as well as the most recent epidemiological and scientific findings of the disease, to raise awareness of BU among dermatologists worldwide.
Collapse
Affiliation(s)
- Rie R Yotsu
- Department of Dermatology, National Suruga Sanatorium, Shizuoka, Japan.,Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chiaki Murase
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazue Nakanaga
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kingsley Asiedu
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
70
|
Garchitorena A, Guégan JF, Léger L, Eyangoh S, Marsollier L, Roche B. Mycobacterium ulcerans dynamics in aquatic ecosystems are driven by a complex interplay of abiotic and biotic factors. eLife 2015; 4:e07616. [PMID: 26216042 PMCID: PMC4515587 DOI: 10.7554/elife.07616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/25/2015] [Indexed: 11/13/2022] Open
Abstract
Host-parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors.
Collapse
Affiliation(s)
- Andrés Garchitorena
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (UMR CNRS/IRD/UM 5290), Montpellier, France
- Ecole des Hautes Etudes en Santé Publique, Rennes, France
| | - Jean-François Guégan
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (UMR CNRS/IRD/UM 5290), Montpellier, France
- Ecole des Hautes Etudes en Santé Publique, Rennes, France
- International programme Future Earth, ecoHEALTH Initiative, Ottawa, Canada
| | - Lucas Léger
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (UMR CNRS/IRD/UM 5290), Montpellier, France
| | - Sara Eyangoh
- Laboratoire de Mycobactériologie, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroon
| | - Laurent Marsollier
- Institut National de la Recherche Médicale U892 (INSERM) et CNRS U6299, équipe 7, Université et CHU d'Angers, Angers, France
| | - Benjamin Roche
- International Center for Mathematical and Computational Modelling of Complex Systems (UMI IRD/UPMC UMMISCO), Bondy Cedex, France
| |
Collapse
|
71
|
Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 2015; 27:727-52. [PMID: 25278573 DOI: 10.1128/cmr.00035-14] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are present in the environment, mainly in water, and are occasionally responsible for opportunistic infections in humans. Despite the fact that NTM are characterized by a moderate pathogenicity, the diseases caused by NTM at various body sites are increasing on a worldwide level. Among over 150 officially recognized NTM species, only two or three dozen are familiar to clinicians, and even to most microbiologists. In this paper, approximately 50 new species described in the last 8 years are reviewed, and their role in human infections is assessed on the basis of reported clinical cases. The small number of reports concerning most of the "new" mycobacterial species is responsible for the widespread conviction that they are very rare. Their role is actually largely underestimated, mainly because they often remain unrecognized and misidentified. Aiming to minimize such bias, emphasis has been placed on more common identification pitfalls. Together with new NTM, new members of the Mycobacterium tuberculosis complex described in the last few years are also an object of the present review.
Collapse
|
72
|
Bolz M, Bratschi MW, Kerber S, Minyem JC, Um Boock A, Vogel M, Bayi PF, Junghanss T, Brites D, Harris SR, Parkhill J, Pluschke G, Lamelas Cabello A. Locally Confined Clonal Complexes of Mycobacterium ulcerans in Two Buruli Ulcer Endemic Regions of Cameroon. PLoS Negl Trop Dis 2015; 9:e0003802. [PMID: 26046531 PMCID: PMC4457821 DOI: 10.1371/journal.pntd.0003802] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/29/2015] [Indexed: 12/02/2022] Open
Abstract
Background Mycobacterium ulcerans is the causative agent of the necrotizing skin disease Buruli ulcer (BU), which has been reported from over 30 countries worldwide. The majority of notified patients come from West African countries, such as Côte d’Ivoire, Ghana, Benin and Cameroon. All clinical isolates of M. ulcerans from these countries are closely related and their genomes differ only in a limited number of single nucleotide polymorphisms (SNPs). Methodology/Principal Findings We performed a molecular epidemiological study with clinical isolates from patients from two distinct BU endemic regions of Cameroon, the Nyong and the Mapé river basins. Whole genome sequencing of the M. ulcerans strains from these two BU endemic areas revealed the presence of two phylogenetically distinct clonal complexes. The strains from the Nyong river basin were genetically more diverse and less closely related to the M. ulcerans strain circulating in Ghana and Benin than the strains causing BU in the Mapé river basin. Conclusions Our comparative genomic analysis revealed that M. ulcerans clones diversify locally by the accumulation of SNPs. Case isolates coming from more recently emerging BU endemic areas, such as the Mapé river basin, may be less diverse than populations from longer standing disease foci, such as the Nyong river basin. Exchange of strains between distinct endemic areas seems to be rare and local clonal complexes can be easily distinguished by whole genome sequencing. Buruli ulcer (BU) is a progressively necrotizing disease of the skin, caused by infection with Mycobacterium ulcerans. BU occurs very focally with highest incidence in West Africa. The mode of transmission and the nature and role of potential environmental reservoirs are currently not entirely understood. In this study we sequenced whole genomes of sets of M. ulcerans case isolates from two BU endemic regions in Cameroon. We identified two distinct phylogenetic lineages, which directly correlated with the two endemic regions. Furthermore, we showed that the genetic diversity of M. ulcerans is higher in the older endemic region of Cameroon (Nyong river basin) compared to the more recently emerged infection focus in the same country (Mapé river basin). Together, our results demonstrate that M. ulcerans is developing local clonal complexes by the accumulation of single nucleotide polymorphisms (SNPs) and that these complexes often remain confined to individual endemic foci. The gene encoding for rpoB, which is known to harbour drug resistance mutations against rifampicin in M. tuberculosis, was not affected by SNPs in any of the analysed M. ulcerans strains.
Collapse
Affiliation(s)
- Miriam Bolz
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin W. Bratschi
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah Kerber
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques C. Minyem
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- FAIRMED, Yaoundé, Cameroon
| | | | - Moritz Vogel
- Section Clinical Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Thomas Junghanss
- Section Clinical Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Simon R. Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Araceli Lamelas Cabello
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
73
|
Baez-Ortega A, Lorenzo-Diaz F, Hernandez M, Gonzalez-Vila CI, Roda-Garcia JL, Colebrook M, Flores C. IonGAP: integrative bacterial genome analysis for Ion Torrent sequence data. Bioinformatics 2015; 31:2870-3. [PMID: 25953799 DOI: 10.1093/bioinformatics/btv283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/29/2015] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED We introduce IonGAP, a publicly available Web platform designed for the analysis of whole bacterial genomes using Ion Torrent sequence data. Besides assembly, it integrates a variety of comparative genomics, annotation and bacterial classification routines, based on the widely used FASTQ, BAM and SRA file formats. Benchmarking with different datasets evidenced that IonGAP is a fast, powerful and simple-to-use bioinformatics tool. By releasing this platform, we aim to translate low-cost bacterial genome analysis for microbiological prevention and control in healthcare, agroalimentary and pharmaceutical industry applications. AVAILABILITY AND IMPLEMENTATION IonGAP is hosted by the ITER's Teide-HPC supercomputer and is freely available on the Web for non-commercial use at http://iongap.hpc.iter.es. CONTACT mcolesan@ull.edu.es or cflores@ull.edu.es SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Adrian Baez-Ortega
- Information Technology Department, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Fabian Lorenzo-Diaz
- Applied Genomics Group (G2A), Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (CIBICAN), Universidad de La Laguna, Santa Cruz de Tenerife, Spain, Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Mariano Hernandez
- Applied Genomics Group (G2A), Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (CIBICAN), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Carlos Ignacio Gonzalez-Vila
- Information Technology Department, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Jose Luis Roda-Garcia
- Departamento de Ingeniería Informática y de Sistemas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain and
| | - Marcos Colebrook
- Departamento de Ingeniería Informática y de Sistemas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain and
| | - Carlos Flores
- Applied Genomics Group (G2A), Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (CIBICAN), Universidad de La Laguna, Santa Cruz de Tenerife, Spain, Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain, CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
74
|
Ablordey AS, Vandelannoote K, Frimpong IA, Ahortor EK, Amissah NA, Eddyani M, Durnez L, Portaels F, de Jong BC, Leirs H, Porter JL, Mangas KM, Lam MMC, Buultjens A, Seemann T, Tobias NJ, Stinear TP. Whole genome comparisons suggest random distribution of Mycobacterium ulcerans genotypes in a Buruli ulcer endemic region of Ghana. PLoS Negl Trop Dis 2015; 9:e0003681. [PMID: 25826332 PMCID: PMC4380315 DOI: 10.1371/journal.pntd.0003681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/06/2015] [Indexed: 12/01/2022] Open
Abstract
Efforts to control the spread of Buruli ulcer – an emerging ulcerative skin infection caused by Mycobacterium ulcerans - have been hampered by our poor understanding of reservoirs and transmission. To help address this issue, we compared whole genomes from 18 clinical M. ulcerans isolates from a 30km2 region within the Asante Akim North District, Ashanti region, Ghana, with 15 other M. ulcerans isolates from elsewhere in Ghana and the surrounding countries of Ivory Coast, Togo, Benin and Nigeria. Contrary to our expectations of finding minor DNA sequence variations among isolates representing a single M. ulcerans circulating genotype, we found instead two distinct genotypes. One genotype was closely related to isolates from neighbouring regions of Amansie West and Densu, consistent with the predicted local endemic clone, but the second genotype (separated by 138 single nucleotide polymorphisms [SNPs] from other Ghanaian strains) most closely matched M. ulcerans from Nigeria, suggesting another introduction of M. ulcerans to Ghana, perhaps from that country. Both the exotic genotype and the local Ghanaian genotype displayed highly restricted intra-strain genetic variation, with less than 50 SNP differences across a 5.2Mbp core genome within each genotype. Interestingly, there was no discernible spatial clustering of genotypes at the local village scale. Interviews revealed no obvious epidemiological links among BU patients who had been infected with identical M. ulcerans genotypes but lived in geographically separate villages. We conclude that M. ulcerans is spread widely across the region, with multiple genotypes present in any one area. These data give us new perspectives on the behaviour of possible reservoirs and subsequent transmission mechanisms of M. ulcerans. These observations also show for the first time that M. ulcerans can be mobilized, introduced to a new area and then spread within a population. Potential reservoirs of M. ulcerans thus might include humans, or perhaps M. ulcerans-infected animals such as livestock that move regularly between countries. In this study we use the power of whole genome sequence comparisons to track the spread of Mycobacterium ulcerans, the causative agent of Buruli ulcer, through several villages in the Ashanti region of Ghana, providing new insights on the behaviour of this enigmatic and emerging pathogen.
Collapse
Affiliation(s)
- Anthony S. Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- * E-mail: (ASA); (TPS)
| | - Koen Vandelannoote
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isaac A. Frimpong
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Evans K. Ahortor
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nana Ama Amissah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Miriam Eddyani
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lies Durnez
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Françoise Portaels
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C. de Jong
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Herwig Leirs
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jessica L. Porter
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Kirstie M. Mangas
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Margaret M. C. Lam
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Andrew Buultjens
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Torsten Seemann
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- * E-mail: (ASA); (TPS)
| |
Collapse
|
75
|
Young DB, Comas I, de Carvalho LPS. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis. Front Mol Biosci 2015; 2:6. [PMID: 25988174 PMCID: PMC4428469 DOI: 10.3389/fmolb.2015.00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/09/2015] [Indexed: 11/13/2022] Open
Abstract
Comparison of genome sequences from clinical isolates of Mycobacterium tuberculosis with phylogenetically-related pathogens Mycobacterium marinum, Mycobacterium kansasii, and Mycobacterium leprae reveals diversity amongst genes associated with vitamin B12-related metabolism. Diversity is generated by gene deletion events, differential acquisition of genes by horizontal transfer, and single nucleotide polymorphisms (SNPs) with predicted impact on protein function and transcriptional regulation. Differences in the B12 synthesis pathway, methionine biosynthesis, fatty acid catabolism, and DNA repair and replication are consistent with adaptations to different environmental niches and pathogenic lifestyles. While there is no evidence of further gene acquisition during expansion of the M. tuberculosis complex, the emergence of other forms of genetic diversity provides insights into continuing host-pathogen co-evolution and has the potential to identify novel targets for disease intervention.
Collapse
Affiliation(s)
- Douglas B Young
- Division of Mycobacterial Research, MRC National Institute for Medical Research London, UK
| | | | - Luiz P S de Carvalho
- Division of Mycobacterial Research, MRC National Institute for Medical Research London, UK
| |
Collapse
|
76
|
Heterogeneity among Mycobacterium ulcerans from French Guiana revealed by multilocus variable number tandem repeat analysis (MLVA). PLoS One 2015; 10:e0118597. [PMID: 25706942 PMCID: PMC4338021 DOI: 10.1371/journal.pone.0118597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Buruli ulcer is an emerging and neglected tropical disease caused by Mycobacterium ulcerans. Few cases have been reported so far in the Americas. With 250 cases reported since 1969, French Guiana is the only Buruli ulcer endemic area in the continent. Thus far, no genetic diversity studies of strains of M. ulcerans from French Guiana have been reported. Our goal in the present study was to examine the genetic diversity of M. ulcerans strains in this region by using the Multilocus Variable Number Tandem Repeat Analysis (MLVA) approach. A total of 23 DNA samples were purified from ulcer biopsies or derived from pure cultures. MVLA was used in the study of six previously-described Variable Number of Tandem Repeat (VNTR) markers. A total of three allelic combinations were characterized in our study: genotype I which has been described previously, genotype III which is very similar to genotype I, and genotype II which has distinctly different characteristics in comparison with the other two genotypes. This high degree of genetic diversity appears to be uncommon for M. ulcerans. Further research based on complete genome sequencing of strains belonging to genotypes I and II is in progress and should lead soon to a better understanding of genetic specificities of M. ulcerans strains from French Guiana.
Collapse
|
77
|
Mycobacterium ulcerans Disease (Buruli Ulcer): Potential Reservoirs and Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0013-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
78
|
Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA. PLoS Negl Trop Dis 2014; 8:e3315. [PMID: 25412098 PMCID: PMC4238996 DOI: 10.1371/journal.pntd.0003315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 10/04/2014] [Indexed: 11/24/2022] Open
Abstract
Background Mycobacterium ulcerans, the causative agent of Buruli ulcer in humans, is unique among the members of Mycobacterium genus due to the presence of the virulence determinant megaplasmid pMUM001. This plasmid encodes multiple virulence-associated genes, including mup011, which is an uncharacterized Ser/Thr protein kinase (STPK) PknQ. Methodology/Principal Findings In this study, we have characterized PknQ and explored its interaction with MupFHA (Mup018c), a FHA domain containing protein also encoded by pMUM001. MupFHA was found to interact with PknQ and suppress its autophosphorylation. Subsequent protein-protein docking and molecular dynamic simulation analyses showed that this interaction involves the FHA domain of MupFHA and PknQ activation loop residues Ser170 and Thr174. FHA domains are known to recognize phosphothreonine residues, and therefore, MupFHA may be acting as one of the few unusual FHA-domain having overlapping specificity. Additionally, we elucidated the PknQ-dependent regulation of MupDivIVA (Mup012c), which is a DivIVA domain containing protein encoded by pMUM001. MupDivIVA interacts with MupFHA and this interaction may also involve phospho-threonine/serine residues of MupDivIVA. Conclusions/Significance Together, these results describe novel signaling mechanisms in M. ulcerans and show a three-way regulation of PknQ, MupFHA, and MupDivIVA. FHA domains have been considered to be only pThr specific and our results indicate a novel mechanism of pSer as well as pThr interaction exhibited by MupFHA. These results signify the need of further re-evaluating the FHA domain –pThr/pSer interaction model. MupFHA may serve as the ideal candidate for structural studies on this unique class of modular enzymes. Mycobacterium ulcerans is a slow growing pathogen, which is prevalent in many tropical and sub-tropical countries. M. ulcerans possesses unique signaling pathways with only 13 STPK containing genes. This is strikingly different from its closest homolog Mycobacterium marinum and surprisingly closer to the human pathogen, Mycobacterium tuberculosis. PknQ, MupFHA and MupDivIVA are regulatory proteins encoded by the virulence determining plasmid pMUM001 of M. ulcerans. In addition to characterizing the STPK, we focused on deciphering the basis of interaction between the three partner proteins leading to the identification of critical residues. Present study describes the newly identified phosphoserine-based interactions, which is unique amongst the FHA-domain containing proteins. We confirmed our results using structural analysis via specific mutants and their interaction profiles. Importantly, these data highlight the significance of FHA domains and their role in understanding cellular signaling. This work will encourage further studies to elucidate role of M. ulcerans signaling systems. It will also raise questions like how less studied tropical bacterial pathogens acquire eukaryotic-like Ser/Thr protein kinase and exhibit unusual mechanisms to interact with its partner domains.
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW Skin and soft tissues infections (SSTIs) caused by nontuberculous mycobacteria (NTM) are underrecognized and difficult to treat. Controversies exist for optimal medical management and the role of surgery. Defining the epidemiology in the environment, in animals and in healthcare aids disease prevention. This review focuses on recent advances in epidemiology, risk factors, diagnostics and therapy. RECENT FINDINGS The increasing consumer appetite for cosmetic and body-modifying procedures (e.g. tattooing, mesotherapy, liposuction) has been associated with rises in sporadic cases and outbreaks of NTM SSTIs. In mainstream healthcare, recent epidemiological studies have helped to quantify the increased risk of NTM infection related to anti-tumour necrosis factor-α monoclonal antibody therapy. Cervicofacial lymphadenitis in children poses management dilemmas, but recent studies and resultant algorithms have simplified decision-making. Molecular studies have led to a better understanding of the epidemiology, therapy and course of Mycobacterium ulcerans infection (Buruli ulcer) that remains prevalent in many areas including sub-Saharan Africa and southeastern Australia. Apart from molecular methods, the widespread adoption of matrix-assisted laser desorption ionization-time of flight mass spectrometry by routine laboratories has potential to simplify and expedite the laboratory identification of NTMs. SUMMARY An improved understanding of the epidemiology of NTM SSTIs indicates a need to apply effective infection control and ensure regulation of cosmetic and related procedures associated with nonsterile fluids. Broader access to newer diagnostic methods will continue to improve recognition of NTM disease. Along with a paucity of therapeutic agents, there is need for more reliable methods to assess susceptibility and selection of effective combination therapy.
Collapse
|
80
|
Landier J, Gaudart J, Carolan K, Lo Seen D, Guégan JF, Eyangoh S, Fontanet A, Texier G. Spatio-temporal patterns and landscape-associated risk of Buruli ulcer in Akonolinga, Cameroon. PLoS Negl Trop Dis 2014; 8:e3123. [PMID: 25188464 PMCID: PMC4154661 DOI: 10.1371/journal.pntd.0003123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background Buruli ulcer (BU) is an extensively damaging skin infection caused by Mycobacterium ulcerans, whose transmission mode is still unknown. The focal distribution of BU and the absence of interpersonal transmission suggest a major role of environmental factors, which remain unidentified. This study provides the first description of the spatio-temporal variations of BU in an endemic African region, in Akonolinga, Cameroon. We quantify landscape-associated risk of BU, and reveal local patterns of endemicity. Methodology/Principal Findings From January 2002 to May 2012, 787 new BU cases were recorded in 154 villages of the district of Akonolinga. Incidence per village ranged from 0 (n = 59 villages) to 10.4 cases/1000 person.years (py); median incidence was 0.4 cases/1,000py. Villages neighbouring the Nyong River flood plain near Akonolinga town were identified as the highest risk zone using the SPODT algorithm. We found a decreasing risk with increasing distance to the Nyong and identified 4 time phases with changes in spatial distribution. We classified the villages into 8 groups according to landscape characteristics using principal component analysis and hierarchical clustering. We estimated the incidence ratio (IR) associated with each landscape using a generalised linear model. BU risk was highest in landscapes with abundant wetlands, especially cultivated ones (IR = 15.7, 95% confidence interval [95%CI] = 15.7[4.2–59.2]), and lowest in reference landscape where primary and secondary forest cover was abundant. In intermediate-risk landscapes, risk decreased with agriculture pressure (from IR[95%CI] = 7.9[2.2–28.8] to 2.0[0.6–6.6]). We identified landscapes where endemicity was stable and landscapes where incidence increased with time. Conclusion/Significance Our study on the largest series of BU cases recorded in a single endemic region illustrates the local evolution of BU and identifies the Nyong River as the major driver of BU incidence. Local differences along the river are explained by wetland abundance and human modification of the environment. Buruli ulcer (BU) remains a mysterious disease without efficient prevention since the mode of transmission of its agent, Mycobacterium ulcerans, is still unknown. The disease is highly localised within countries and even at the village scale within endemic regions, but environmental factors explaining this focal distribution have not been described yet. In this article, we rely on a large series of cases originating from Akonolinga region, Centre region, Cameroon, and recorded at the BU treatment center of the hospital of Akonolinga. The series of 787 patients over 10 years allows us to describe the distribution of BU incidence in the region and its changes over time and space. We identify the Nyong River as a major risk factor, and identify environmental factors along the river that further increase the risk of BU, such as the high proportion of swamps, the degradation of forests and cultivation of lands by human populations. These results will help to locate where the transmission is most likely to happen, and provide useful elements for targeting case search, prevention actions and future research on M. ulcerans transmission.
Collapse
Affiliation(s)
- Jordi Landier
- Institut Pasteur, Unité de Recherche et d'expertise en Epidémiologie des Maladies Emergentes, Paris, France
- Service d'Epidémiologie et de Santé Publique, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroon
- * E-mail:
| | - Jean Gaudart
- Aix-Marseille Université, UMR912 SESSTIM (INSERM - IRD - AMU), Marseille, France
| | - Kevin Carolan
- UMR MIVEGEC 5290 CNRS - IRD - Université de Montpellier I - Université de Montpellier II, Montpellier, France
| | | | - Jean-François Guégan
- UMR MIVEGEC 5290 CNRS - IRD - Université de Montpellier I - Université de Montpellier II, Montpellier, France
| | - Sara Eyangoh
- Service de Mycobactériologie, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroon
| | - Arnaud Fontanet
- Institut Pasteur, Unité de Recherche et d'expertise en Epidémiologie des Maladies Emergentes, Paris, France
- Chaire Santé et Développement, Conservatoire National des Arts et Métiers, Paris, France
| | - Gaëtan Texier
- Service d'Epidémiologie et de Santé Publique, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroon
- Aix-Marseille Université, UMR912 SESSTIM (INSERM - IRD - AMU), Marseille, France
| |
Collapse
|
81
|
Haridy M, Tachikawa Y, Yoshida S, Tsuyuguchi K, Tomita M, Maeda S, Wada T, Ibi K, Sakai H, Yanai T. Mycobacterium marinum infection in Japanese forest green tree frogs (Rhacophorus arboreus). J Comp Pathol 2014; 151:277-89. [PMID: 25047922 DOI: 10.1016/j.jcpa.2014.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/07/2014] [Accepted: 04/24/2014] [Indexed: 11/25/2022]
Abstract
Four Japanese forest green tree frogs (Rhacophorus arboreus) were presented with emaciation, abdominal distention and ulcerative and nodular cutaneous lesions affecting the brisket, limbs, digits and ventral abdomen. Another three frogs had been found dead in the same tank 1 year previously. Necropsy examination of these seven frogs revealed splenomegaly and hepatomegaly, with multiple tan-yellow nodular foci present in the liver, spleen, heart, lungs, ovaries and kidneys. Microscopically, five frogs had necrosis and surrounding granulomatous inflammation in the liver, spleen, kidneys, lungs, intestine and ovaries, with numerous acid-fast bacilli in the areas of necrosis. Two frogs had granulomatous lesions in the lungs, liver, spleen, heart, coelomic membrane, stomach and intestinal wall. These lesions had no or minimal necrosis and few acid-fast bacilli. Mycobacterium spp. was cultured from three frogs and identified as Mycobacterium marinum by colony growth rate and photochromogenicity and DNA sequencing. This is the first report of M. marinum infection in Japanese forest green tree frogs.
Collapse
Affiliation(s)
- M Haridy
- Department of Pathogenetic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Y Tachikawa
- Gifu World Fresh Water Aquarium, Gifu, Japan
| | - S Yoshida
- National Hospital Organization, Kinki-Chuo Chest Medical Centre, Sakai, Osaka 591-8555, Japan; Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - K Tsuyuguchi
- National Hospital Organization, Kinki-Chuo Chest Medical Centre, Sakai, Osaka 591-8555, Japan
| | - M Tomita
- National Hospital Organization, Kinki-Chuo Chest Medical Centre, Sakai, Osaka 591-8555, Japan
| | - S Maeda
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo 204-8533, Japan
| | - T Wada
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - K Ibi
- Department of Pathogenetic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - H Sakai
- Department of Pathogenetic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - T Yanai
- Department of Pathogenetic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
82
|
Sambourg E, Dufour J, Édouard S, Morris A, Mosnier E, Reynaud Y, Sainte-Marie D, Nacher M, Guégan JF, Couppié P. Réponses et réactions paradoxales au cours du traitement médicamenteux de l’infection à Mycobacterium ulcerans (ulcère de Buruli). Quatre observations en Guyane française. Ann Dermatol Venereol 2014; 141:413-8. [DOI: 10.1016/j.annder.2014.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/02/2013] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
|
83
|
Röltgen K, Bratschi MW, Ross A, Aboagye SY, Ampah KA, Bolz M, Andreoli A, Pritchard J, Minyem JC, Noumen D, Koka E, Um Boock A, Yeboah-Manu D, Pluschke G. Late onset of the serological response against the 18 kDa small heat shock protein of Mycobacterium ulcerans in children. PLoS Negl Trop Dis 2014; 8:e2904. [PMID: 24853088 PMCID: PMC4031220 DOI: 10.1371/journal.pntd.0002904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
A previous survey for clinical cases of Buruli ulcer (BU) in the Mapé Basin of Cameroon suggested that, compared to older age groups, very young children may be less exposed to Mycobacterium ulcerans. Here we determined serum IgG titres against the 18 kDa small heat shock protein (shsp) of M. ulcerans in 875 individuals living in the BU endemic river basins of the Mapé in Cameroon and the Densu in Ghana. While none of the sera collected from children below the age of four contained significant amounts of 18 kDa shsp specific antibodies, the majority of sera had high IgG titres against the Plasmodium falciparum merozoite surface protein 1 (MSP-1). These data suggest that exposure to M. ulcerans increases at an age which coincides with the children moving further away from their homes and having more intense environmental contact, including exposure to water bodies at the periphery of their villages. Although M. ulcerans, the causative agent of Buruli ulcer (BU), was identified in 1948, its transmission pathways and environmental reservoirs remain poorly understood. The occurrence of M. ulcerans infections in endemic countries in West and Central Africa is highly focal and associated with stagnant and slow flowing water bodies. BU is often described as a disease mainly affecting children <15 years of age. However, taking the population age distribution into account, our recent longitudinal survey for BU in the Mapé Dam Region of Cameroon revealed that clinical cases of BU among children <5 years are relatively rare. In accordance with these findings, data of the present sero-epidemiological study indicate that children <4 years old are less exposed to M. ulcerans than older children. Sero-conversion is associated with age, which may be due to age-related changes in behavioural factors, such as a wider movement radius of older children, including more frequent contact with water bodies at the periphery of their villages.
Collapse
Affiliation(s)
- Katharina Röltgen
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin W. Bratschi
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Samuel Y. Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kobina A. Ampah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Miriam Bolz
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Arianna Andreoli
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - James Pritchard
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques C. Minyem
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- FAIRMED, Yaoundé, Cameron
| | | | - Eric Koka
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
84
|
Garchitorena A, Roche B, Kamgang R, Ossomba J, Babonneau J, Landier J, Fontanet A, Flahault A, Eyangoh S, Guégan JF, Marsollier L. Mycobacterium ulcerans ecological dynamics and its association with freshwater ecosystems and aquatic communities: results from a 12-month environmental survey in Cameroon. PLoS Negl Trop Dis 2014; 8:e2879. [PMID: 24831924 PMCID: PMC4022459 DOI: 10.1371/journal.pntd.0002879] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans (MU) is the agent responsible for Buruli Ulcer (BU), an emerging skin disease with dramatic socioeconomic and health outcomes, especially in rural settings. BU emergence and distribution is linked to aquatic ecosystems in tropical and subtropical countries, especially to swampy and flooded areas. Aquatic animal organisms are likely to play a role either as host reservoirs or vectors of the bacilli. However, information on MU ecological dynamics, both in space and time, is dramatically lacking. As a result, the ecology of the disease agent, and consequently its mode of transmission, remains largely unknown, which jeopardizes public health attempts for its control. The objective of this study was to gain insight on MU environmental distribution and colonization of aquatic organisms through time. METHODOLOGY/PRINCIPAL FINDINGS Longitudinal sampling of 32 communities of aquatic macro-invertebrates and vertebrates was conducted from different environments in two BU endemic regions in Cameroon during 12 months. As a result, 238,496 individuals were classified and MU presence was assessed by qPCR in 3,084 sample-pools containing these aquatic organisms. Our study showed a broad distribution of MU in all ecosystems and taxonomic groups, with important regional differences in its occurrence. Colonization dynamics fluctuated along the year, with the highest peaks in August and October. The large variations observed in the colonization dynamics of different taxonomic groups and aquatic ecosystems suggest that the trends shown here are the result of complex ecological processes that need further investigation. CONCLUSION/PERSPECTIVES This is the largest field study on MU ecology to date, providing the first detailed description of its spatio-temporal dynamics in different aquatic ecosystems within BU endemic regions. We argue that coupling this data with fine-scale epidemiological data through statistical and mathematical models will provide a major step forward in the understanding of MU ecology and mode of transmission.
Collapse
Affiliation(s)
- Andrés Garchitorena
- UMR MIVEGEC 5290 CNRS - IRD - Université de Montpellier I - Université de Montpellier II, Montpellier, France
- Ecole des Hautes Etudes en Santé Publique, Rennes, France
- Service de Mycobactériologie, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroun
| | - Benjamin Roche
- Ecole des Hautes Etudes en Santé Publique, Rennes, France
- UMMISCO, UMI IRD-UPMC 209, Bondy, France
| | - Roger Kamgang
- Service de Mycobactériologie, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroun
| | - Joachim Ossomba
- Service de Mycobactériologie, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroun
| | - Jérémie Babonneau
- ATOMycA, Inserm Avenir Team, CRCNA, Inserm U892, 6299 CNRS and LUNAM, CHU and Université d'Angers, Angers, France
| | - Jordi Landier
- Service de Mycobactériologie, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroun
- Institut Pasteur, Unité d'Epidemiologie de Maladies Emergentes, Paris, France
| | - Arnaud Fontanet
- Institut Pasteur, Unité d'Epidemiologie de Maladies Emergentes, Paris, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Antoine Flahault
- Centre Virchow-Villermé, Descartes School of Medicine, Université Sorbonne Paris-Cité, Paris, France
- Global Health Institute, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Sara Eyangoh
- Service de Mycobactériologie, Centre Pasteur du Cameroun, Réseau International des Instituts Pasteur, Yaoundé, Cameroun
| | - Jean-François Guégan
- UMR MIVEGEC 5290 CNRS - IRD - Université de Montpellier I - Université de Montpellier II, Montpellier, France
- Ecole des Hautes Etudes en Santé Publique, Rennes, France
| | - Laurent Marsollier
- ATOMycA, Inserm Avenir Team, CRCNA, Inserm U892, 6299 CNRS and LUNAM, CHU and Université d'Angers, Angers, France
| |
Collapse
|
85
|
Bratschi MW, Ruf MT, Andreoli A, Minyem JC, Kerber S, Wantong FG, Pritchard J, Chakwera V, Beuret C, Wittwer M, Noumen D, Schürch N, Um Book A, Pluschke G. Mycobacterium ulcerans persistence at a village water source of Buruli ulcer patients. PLoS Negl Trop Dis 2014; 8:e2756. [PMID: 24675964 PMCID: PMC3967953 DOI: 10.1371/journal.pntd.0002756] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/11/2014] [Indexed: 11/18/2022] Open
Abstract
Buruli ulcer (BU), a neglected tropical disease of the skin and subcutaneous tissue, is caused by Mycobacterium ulcerans and is the third most common mycobacterial disease after tuberculosis and leprosy. While there is a strong association of the occurrence of the disease with stagnant or slow flowing water bodies, the exact mode of transmission of BU is not clear. M. ulcerans has emerged from the environmental fish pathogen M. marinum by acquisition of a virulence plasmid encoding the enzymes required for the production of the cytotoxic macrolide toxin mycolactone, which is a key factor in the pathogenesis of BU. Comparative genomic studies have further shown extensive pseudogene formation and downsizing of the M. ulcerans genome, indicative for an adaptation to a more stable ecological niche. This has raised the question whether this pathogen is still present in water-associated environmental reservoirs. Here we show persistence of M. ulcerans specific DNA sequences over a period of more than two years at a water contact location of BU patients in an endemic village of Cameroon. At defined positions in a shallow water hole used by the villagers for washing and bathing, detritus remained consistently positive for M. ulcerans DNA. The observed mean real-time PCR Ct difference of 1.45 between the insertion sequences IS2606 and IS2404 indicated that lineage 3 M. ulcerans, which cause human disease, persisted in this environment after successful treatment of all local patients. Underwater decaying organic matter may therefore represent a reservoir of M. ulcerans for direct infection of skin lesions or vector-associated transmission. Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans which affects mainly children in West Africa. Although it is commonly believed that the infection originates from an environmental source, both the reservoir of M. ulcerans and the mode of transmission to human patients remain to be elucidated. Previous investigations indicated that transmission likely takes place away from the homes of patients. We therefore screened the farms as well as village and farm water locations of 46 laboratory confirmed BU patients of the Mapé Basin of Cameroon for the presence of M. ulcerans DNA by real-time PCR. In this analysis three positive village water locations were identified. By studying one of these locations in great detail we found that M. ulcerans DNA persists in underwater detritus in one section of the village water location even after all local cases had been treated. The detritus may represent a reservoir of M. ulcerans from where infection could take place through either direct contamination of skin lesions or through contamination or colonization of insect vectors.
Collapse
Affiliation(s)
- Martin W. Bratschi
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Arianna Andreoli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques C. Minyem
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- FAIRMED Africa Regional Office, Yaoundé, Cameroon
| | - Sarah Kerber
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - James Pritchard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Victoria Chakwera
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | | | | | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
86
|
Quadri LEN. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 2014; 49:179-211. [DOI: 10.3109/10409238.2014.896859] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
87
|
Genetic diversity of PCR-positive, culture-negative and culture-positive Mycobacterium ulcerans isolated from Buruli ulcer patients in Ghana. PLoS One 2014; 9:e88007. [PMID: 24520343 PMCID: PMC3919753 DOI: 10.1371/journal.pone.0088007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Culture of Mycobacterium ulcerans from Buruli ulcer patients has very low sensitivity. Thus confirmation of M. ulcerans infection is primarily based on PCR directed against IS2404. In this study we compare the genotypes obtained by variable number of tandem repeat analysis of DNA from IS2404-PCR positive cultures with that obtained from IS2404 positive, culture-negative tissue. A significantly greater genetic heterogeneity was found among culture-negative samples compared with that found in cultured strains but a single genotype is over-represented in both sample sets. This study provides evidence that both the focal location of bacteria in a lesion as well as differences in the ability to culture a particular genotype may underlie the low sensitivity of culture. Though preliminary, data from this work also suggests that mycobacteria previously associated with fish disease (M. pseudoshottsii) may be pathogenic for humans.
Collapse
|
88
|
O'Brien CR, Handasyde KA, Hibble J, Lavender CJ, Legione AR, McCowan C, Globan M, Mitchell AT, McCracken HE, Johnson PDR, Fyfe JAM. Clinical, microbiological and pathological findings of Mycobacterium ulcerans infection in three Australian Possum species. PLoS Negl Trop Dis 2014; 8:e2666. [PMID: 24498451 PMCID: PMC3907337 DOI: 10.1371/journal.pntd.0002666] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022] Open
Abstract
Background Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans, with endemicity predominantly in sub-Saharan Africa and south-eastern Australia. The mode of transmission and the environmental reservoir(s) of the bacterium and remain elusive. Real-time PCR investigations have detected M. ulcerans DNA in a variety of Australian environmental samples, including the faeces of native possums with and without clinical evidence of infection. This report seeks to expand on previously published findings by the authors' investigative group with regards to clinical and subclinical disease in selected wild possum species in BU-endemic areas of Victoria, Australia. Methodology/Principal Findings Twenty-seven clinical cases of M. ulcerans infection in free-ranging possums from southeastern Australia were identified retrospectively and prospectively between 1998–2011. Common ringtail possums (Pseudocheirus peregrinus), a common brushtail possum (Trichosurus vulpecula) and a mountain brushtail possum (Trichosurus cunninghami) were included in the clinically affected cohort. Most clinically apparent cases were adults with solitary or multiple ulcerative cutaneous lesions, generally confined to the face, limbs and/or tail. The disease was minor and self-limiting in the case of both Trichosurus spp. possums. In contrast, many of the common ringtail possums had cutaneous disease involving disparate anatomical sites, and in four cases there was evidence of systemic disease at post mortem examination. Where tested using real-time PCR targeted at IS2404, animals typically had significant levels of M. ulcerans DNA throughout the gut and/or faeces. A further 12 possums without cutaneous lesions were found to have PCR-positive gut contents and/or faeces (subclinical cases), and in one of these the organism was cultured from liver tissue. Comparisons were made between clinically and subclinically affected possums, and 61 PCR-negative, non-affected individuals, with regards to disease category and the categorical variables of species (common ringtail possums v others) and sex. Animals with clinical lesions were significantly more likely to be male common ringtail possums. Conclusions/Significance There is significant disease burden in common ringtail possums (especially males) in some areas of Victoria endemic for M. ulcerans disease. The natural history of the disease generally remains unknown, however it appears that some mildly affected common brushtail and mountain brushtail possums can spontaneously overcome the infection, whereas some severely affected animals, especially common ringtail possums, may become systemically, and potentially fatally affected. Subclinical gut carriage of M. ulcerans DNA in possums is quite common and in some common brushtail and mountain brushtail possums this is transient. Further work is required to determine whether M. ulcerans infection poses a potential threat to possum populations, and whether these animals are acting as environmental reservoirs in certain geographical areas. Mycobacterium ulcerans causes skin disease predominantly in sub-Saharan Africa and southeastern Australia. The mode of transmission and the environmental reservoir(s) of the bacterium are unknown. Investigations have detected M. ulcerans DNA in a variety of Australian environmental samples, including the faeces of native possums. This report expands on these studies by detailing the clinical, pathological and microbiological findings in affected wild possum species in endemic areas. Twenty-seven clinically and 12 subclinically affected individuals were identified. Most clinical cases were adults with skin ulcers of the face, limbs and/or tail. The disease was mild and self-limiting in both Trichosurus spp. possums. In contrast, many of the common ringtail possums had multiple skin ulcers and in some there was evidence of internal disease. There were also significant levels of M. ulcerans DNA throughout the gut. Comparisons were made with regards to disease category, species and sex; with clinical cases more likely to be male common ringtail possums. Asymptomatic gut carriage of M. ulcerans DNA is quite common and may be transient in some individuals. Further work is needed to determine whether M. ulcerans infection poses a potential threat to possum populations, and whether these animals are acting as reservoirs in some areas.
Collapse
Affiliation(s)
- Carolyn R. O'Brien
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: , co'
| | | | - Jennifer Hibble
- Newhaven Veterinary Clinic, Phillip Island, Victoria, Australia
| | - Caroline J. Lavender
- WHO Collaborating Centre for Mycobacterium ulcerans (Western Pacific Region), Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | - Alistair R. Legione
- Department of Zoology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christina McCowan
- Department of Environment and Primary Industries, Veterinary Diagnostic Services, Bundoora, Victoria, Australia
- The University of Melbourne Veterinary Hospital, Werribee, Victoria, Australia
| | - Maria Globan
- WHO Collaborating Centre for Mycobacterium ulcerans (Western Pacific Region), Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | - Anthony T. Mitchell
- Department of Environment and Primary Industries, Orbost, Victoria, Australia
| | | | - Paul D. R. Johnson
- WHO Collaborating Centre for Mycobacterium ulcerans (Western Pacific Region), Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Janet A. M. Fyfe
- WHO Collaborating Centre for Mycobacterium ulcerans (Western Pacific Region), Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| |
Collapse
|
89
|
Carson C, Lavender CJ, Handasyde KA, O'Brien CR, Hewitt N, Johnson PDR, Fyfe JAM. Potential wildlife sentinels for monitoring the endemic spread of human buruli ulcer in South-East australia. PLoS Negl Trop Dis 2014; 8:e2668. [PMID: 24498452 PMCID: PMC3907424 DOI: 10.1371/journal.pntd.0002668] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
The last 20 years has seen a significant series of outbreaks of Buruli/Bairnsdale Ulcer (BU), caused by Mycobacterium ulcerans, in temperate south-eastern Australia (state of Victoria). Here, the prevailing view of M. ulcerans as an aquatic pathogen has been questioned by recent research identifying native wildlife as potential terrestrial reservoirs of infection; specifically, tree-dwelling common ringtail and brushtail possums. In that previous work, sampling of environmental possum faeces detected a high prevalence of M. ulcerans DNA in established endemic areas for human BU on the Bellarine Peninsula, compared with non-endemic areas. Here, we report research from an emergent BU focus recently identified on the Mornington Peninsula, confirming associations between human BU and the presence of the aetiological agent in possum faeces, detected by real-time PCR targeting M. ulcerans IS2404, IS2606 and KR. Mycobacterium ulcerans DNA was detected in 20/216 (9.3%) ground collected ringtail possum faecal samples and 4/6 (66.6%) brushtail possum faecal samples. The distribution of the PCR positive possum faecal samples and human BU cases was highly focal: there was a significant non-random cluster of 16 M. ulcerans positive possum faecal sample points detected by spatial scan statistics (P<0.0001) within a circle of radius 0.42 km, within which were located the addresses of 6/12 human cases reported from the area to date; moreover, the highest sample PCR signal strength (equivalent to ≥10(6) organisms per gram of faeces) was found in a sample point located within this cluster radius. Corresponding faecal samples collected from closely adjacent BU-free areas were predominantly negative. Possums may be useful sentinels to predict endemic spread of human BU in Victoria, for public health planning. Further research is needed to establish whether spatial associations represent evidence of direct or indirect transmission between possums and humans, and the mechanism by which this may occur.
Collapse
Affiliation(s)
- Connor Carson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), North Melbourne, Victoria, Australia
| | - Caroline J. Lavender
- Victorian Infectious Diseases Reference Laboratory (VIDRL), North Melbourne, Victoria, Australia
| | | | - Carolyn R. O'Brien
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Nick Hewitt
- Communicable Disease Prevention and Control, Department of Health, Melbourne, Victoria, Australia
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria, Australia
| | - Paul D. R. Johnson
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria, Australia
| | - Janet A. M. Fyfe
- Victorian Infectious Diseases Reference Laboratory (VIDRL), North Melbourne, Victoria, Australia
| |
Collapse
|
90
|
Chany AC, Tresse C, Casarotto V, Blanchard N. History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 2014; 30:1527-67. [PMID: 24178858 DOI: 10.1039/c3np70068b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium ulcerans infections (Buruli ulcer disease) have a long history that can be traced back 150 years. The successive discoveries of the mycobacteria in 1948 and of mycolactone A/B in 1999, the toxin responsible for this dramatic necrotic skin disease, resulted in a paradigm shift concerning the disease itself and in a broader sense, delineated an entirely new role for bioactive polyketides as virulence factors. The fascinating history, biology and chemistry of M. ulcerans infections are discussed in this review.
Collapse
Affiliation(s)
- Anne-Caroline Chany
- Université de Haute Alsace, Laboratoire de Chimie Organique et Bioorganique, EA4566, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | |
Collapse
|
91
|
Insertion sequence element single nucleotide polymorphism typing provides insights into the population structure and evolution of Mycobacterium ulcerans across Africa. Appl Environ Microbiol 2013; 80:1197-209. [PMID: 24296504 DOI: 10.1128/aem.02774-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the "pan-African clade" were found to be widespread throughout Africa, while the ISE-SNP types of the "Gabonese/Cameroonian clade" were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types.
Collapse
|
92
|
Porter JL, Tobias NJ, Pidot SJ, Falgner S, Tuck KL, Vettiger A, Hong H, Leadlay PF, Stinear TP. The cell wall-associated mycolactone polyketide synthases are necessary but not sufficient for mycolactone biosynthesis. PLoS One 2013; 8:e70520. [PMID: 23894666 PMCID: PMC3720922 DOI: 10.1371/journal.pone.0070520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/26/2013] [Indexed: 11/23/2022] Open
Abstract
Mycolactones are polyketide-derived lipid virulence factors made by the slow-growing human pathogen, Mycobacterium ulcerans. Three unusually large and homologous plasmid-borne genes (mlsA1: 51 kb, mlsB: 42 kb and mlsA2: 7 kb) encode the mycolactone type I polyketide synthases (PKS). The extreme size and low sequence diversity of these genes has posed significant barriers for exploration of the genetic and biochemical basis of mycolactone synthesis. Here, we have developed a truncated, more tractable 3-module version of the 18-module mycolactone PKS and we show that this engineered PKS functions as expected in the natural host M. ulcerans to produce an additional polyketide; a triketide lactone (TKL). Cell fractionation experiments indicated that this 3-module PKS and the putative accessory enzymes encoded by mup045 and mup038 associated with the mycobacterial cell wall, a finding supported by confocal microscopy. We then assessed the capacity of the faster growing, Mycobacterium marinum to harbor and express the 3-module Mls PKS and accessory enzymes encoded by mup045 and mup038. RT-PCR, immunoblotting, and cell fractionation experiments confirmed that the truncated Mls PKS multienzymes were expressed and also partitioned with the cell wall material in M. marinum. However, this heterologous host failed to produce TKL. The systematic deconstruction of the mycolactone PKS presented here suggests that the Mls multienzymes are necessary but not sufficient for mycolactone synthesis and that synthesis is likely to occur (at least in part) within the mycobacterial cell wall. This research is also the first proof-of-principle demonstration of the potential of this enzyme complex to produce tailored small molecules through genetically engineered rearrangements of the Mls modules.
Collapse
Affiliation(s)
- Jessica L. Porter
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Steffen Falgner
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Andrea Vettiger
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
93
|
Friedman ND, Athan E, Hughes AJ, Khajehnoori M, McDonald A, Callan P, Rahdon R, O'Brien DP. Mycobacterium ulcerans disease: experience with primary oral medical therapy in an Australian cohort. PLoS Negl Trop Dis 2013; 7:e2315. [PMID: 23875050 PMCID: PMC3715400 DOI: 10.1371/journal.pntd.0002315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/05/2013] [Indexed: 11/26/2022] Open
Abstract
Background Mycobacterium ulcerans (MU) is responsible for disfiguring skin lesions and is endemic on the Bellarine peninsula of southeastern Australia. Antibiotics have been shown to be highly effective in sterilizing lesions and preventing disease recurrences when used alone or in combination with surgery. Our practice has evolved to using primarily oral medical therapy. Methods From a prospective cohort of MU patients managed at Barwon Health, we describe those treated with primary medical therapy defined as treatment of a M. ulcerans lesion with antimicrobials either alone or in conjunction with limited surgical debridement. Results From 1/10/2010 through 31/12/11, 43 patients were treated with exclusive medical therapy, of which 5 (12%) also underwent limited surgical debridement. The median patient age was 50.2 years, and 86% had WHO category 1 and 91% ulcerative lesions. Rifampicin was combined with ciprofloxacin in 30 (70%) and clarithromycin in 12 (28%) patients. The median duration of antibiotic therapy was 56 days, with 7 (16%) receiving less than 56 days. Medication side effects requiring cessation of one or more antibiotics occurred in 7 (16%) patients. Forty-two (98%) patients healed without recurrence within 12 months, and 1 patient (2%) experienced a relapse 4 months after completion of 8 weeks of antimicrobial therapy. Conclusion Our experience demonstrates the efficacy and safety of primary oral medical management of MU infection with oral rifampicin-based regimens. Further research is required to determine the optimal and minimum durations of antibiotic therapy, and the most effective antibiotic dosages and formulations for young children. Mycobacterium ulcerans (MU) is responsible for disfiguring skin infections which are challenging to treat. The recommended treatment for MU has continued to evolve from surgery to remove all involved tissue, to the use of effective combination oral antibiotics with surgery as required. Our study describes the oral medical treatment utilised for consecutive cases of MU infection over a 15 month period at our institution, in Victoria, Australia. Managing patients primarily with oral antibiotics results in high cure rates and excellent cosmetic outcomes. The success with medical treatment reported in this study will aid those treating cases of MU infection, and will add to the growing body of knowledge about the relative roles of antibiotics and surgery for treating this infection.
Collapse
|
94
|
Geographic distribution, age pattern and sites of lesions in a cohort of Buruli ulcer patients from the Mapé Basin of Cameroon. PLoS Negl Trop Dis 2013; 7:e2252. [PMID: 23785529 PMCID: PMC3681622 DOI: 10.1371/journal.pntd.0002252] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
Buruli ulcer (BU), a neglected tropical disease of the skin, caused by Mycobacterium ulcerans, occurs most frequently in children in West Africa. Risk factors for BU include proximity to slow flowing water, poor wound care and not wearing protective clothing. Man-made alterations of the environment have been suggested to lead to increased BU incidence. M. ulcerans DNA has been detected in the environment, water bugs and recently also in mosquitoes. Despite these findings, the mode of transmission of BU remains poorly understood and both transmission by insects or direct inoculation from contaminated environment have been suggested. Here, we investigated the BU epidemiology in the Mapé basin of Cameroon where the damming of the Mapé River since 1988 is believed to have increased the incidence of BU. Through a house-by-house survey in spring 2010, which also examined the local population for leprosy and yaws, and continued surveillance thereafter, we identified, till June 2012, altogether 88 RT-PCR positive cases of BU. We found that the age adjusted cumulative incidence of BU was highest in young teenagers and in individuals above the age of 50 and that very young children (<5) were underrepresented among cases. BU lesions clustered around the ankles and at the back of the elbows. This pattern neither matches any of the published mosquito biting site patterns, nor the published distribution of small skin injuries in children, where lesions on the knees are much more frequent. The option of multiple modes of transmission should thus be considered. Analyzing the geographic distribution of cases in the Mapé Dam area revealed a closer association with the Mbam River than with the artificial lake. Buruli ulcer (BU) is an infectious disease caused by Mycobacterium ulcerans that is affecting mostly children in endemic areas of West Africa. Proximity to slow flowing water is a risk factor, but the exact mode of transmission of BU remains unclear. Man-made environmental changes, such as sand mining, damming of rivers and irrigation have been implicated with increases in disease incidence. Here, we report findings from a survey for BU and continued case detection thereafter in the Bankim Health District of Cameroon. In this area, the local population believed that the damming of the Mapé River has led to the emergence of BU. In 28 months we identified 88 laboratory confirmed cases of BU. Studying these cases, we found that the age adjusted cumulative incidence of BU in the elderly is similar to that in children and that the distribution pattern of BU lesions neither matches mosquito biting patterns nor the distribution of small skin injuries. Multiple modes of transmission should therefore be considered. Our data further showed that the patients appear to have closer contact to the local Mbam River than to the artificial Mapé dam reservoir.
Collapse
|
95
|
Structure-activity relationship studies on the macrolide exotoxin mycolactone of Mycobacterium ulcerans. PLoS Negl Trop Dis 2013; 7:e2143. [PMID: 23556027 PMCID: PMC3610637 DOI: 10.1371/journal.pntd.0002143] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/14/2013] [Indexed: 01/28/2023] Open
Abstract
Background Mycolactones are a family of polyketide-derived macrolide exotoxins produced by Mycobacterium ulcerans, the causative agent of the chronic necrotizing skin disease Buruli ulcer. The toxin is synthesized by polyketide synthases encoded by the virulence plasmid pMUM. The apoptotic, necrotic and immunosuppressive properties of mycolactones play a central role in the pathogenesis of M. ulcerans. Methodology/Principal Findings We have synthesized and tested a series of mycolactone derivatives to conduct structure-activity relationship studies. Flow cytometry, fluorescence microscopy and Alamar Blue-based metabolic assays were used to assess activities of mycolactones on the murine L929 fibroblast cell line. Modifications of the C-linked upper side chain (comprising C12–C20) caused less pronounced changes in cytotoxicity than modifications in the lower C5-O-linked polyunsaturated acyl side chain. A derivative with a truncated lower side chain was unique in having strong inhibitory effects on fibroblast metabolism and cell proliferation at non-cytotoxic concentrations. We also tested whether mycolactones have antimicrobial activity and found no activity against representatives of Gram-positive (Streptococcus pneumoniae) or Gram-negative bacteria (Neisseria meningitis and Escherichia coli), the fungus Saccharomyces cerevisae or the amoeba Dictyostelium discoideum. Conclusion Highly defined synthetic compounds allowed to unambiguously compare biological activities of mycolactones expressed by different M. ulcerans lineages and may help identifying target structures and triggering pathways. Buruli ulcer is a chronic necrotizing skin disease caused by Mycobacterium ulcerans. The characteristic histopathological features of Buruli ulcer, severe destruction of subcutaneous tissue with minimal inflammation in the core of the lesion, are primarily attributed to the cytotoxic activity of mycolactone, the macrolide exotoxin of M. ulcerans. Different geographical lineages of M. ulcerans produce different structural variants of mycolactone. By using highly defined synthetic mycolactones, including both naturally occurring molecular species and additional non-natural variants, we have assessed the influence of the structure of the C-linked upper side chain and the lower C5-O-linked polyunsaturated acyl side chain on biological activity. Changes in the lower side chain affected the cytotoxic activity against mammalian cells more profoundly than changes in the upper side chain. Mycolactone A/B had no antimicrobial activity against Gram-positive and Gram-negative bacteria and was also inactive against Saccharomyces and Dictyostelium.
Collapse
|
96
|
Willson SJ, Kaufman MG, Merritt RW, Williamson HR, Malakauskas DM, Benbow ME. Fish and amphibians as potential reservoirs of Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Infect Ecol Epidemiol 2013; 3:19946. [PMID: 23440849 PMCID: PMC3580280 DOI: 10.3402/iee.v3i0.19946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/04/2012] [Accepted: 01/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background Buruli ulcer is a skin disease often associated with proximity to certain water bodies in Africa. Much remains unknown about the reservoir and transmission of this disease. Previous studies have suggested that fish may concentrate Mycobacterium ulcerans, the etiological agent of the disease, in their gills and intestines and serve as passive reservoirs of the bacterium. The objective of this study was to test the hypothesis that fish and amphibians serve as natural reservoirs of M. ulcerans or other closely related mycolactone-producing mycobacteria. Methods Polymerase chain reaction targeting the enoyl reductase (ER) domain present in mlsA, which is required for mycolactone production, was used to screen water, fish, and amphibians from water bodies in Ghana for the presence of mycolactone-producing mycobacteria, and positive specimens were subjected to variable number tandem repeat (VNTR) typing. Results The use of VNTR typing revealed the presence of Mycobacterium liflandii in a tadpole and a fish, and M. ulcerans in an adult frog. Similarity percentage analysis (SIMPER) showed that the predatory cichlid Hemichromis bimaculatus was associated with ER-positive water bodies. No amphibian species or fish-feeding guild served as a reliable indicator of the presence of mycolactone-producing mycobacteria in a water body, and there was no significant difference between fish and amphibian positivity rates (P-value=0.106). There was a significant difference between water bodies in the total number of ER-positive specimens (P-value=0.0164). Conclusions Although IS2404-positive tadpoles and fish have been reported, this is the first VNTR confirmation of M. ulcerans or M. liflandii in wild amphibian and fish populations in West Africa. Results from this study suggest that amphibians should be carefully examined as potential reservoirs for M. ulcerans in West Africa, and that H. bimaculatus may be useful as an indicator of habitats likely to support mycolactone-producing mycobacteria.
Collapse
Affiliation(s)
- Sarah J Willson
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| | | | | | | | | | | |
Collapse
|
97
|
Environmental distribution and seasonal prevalence of Mycobacterium ulcerans in Southern Louisiana. Appl Environ Microbiol 2013; 79:2648-56. [PMID: 23396345 DOI: 10.1128/aem.03543-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium ulcerans is an emerging environmental pathogen that causes debilitating, ulcerative disease in humans and other vertebrates. The majority of human cases occur in tropical and temperate regions of Africa and Australia, and outbreaks of piscine mycobacteriosis caused by M. ulcerans have been reported in disparate geographic locations spanning the globe. While exposure to a natural body of water is the most common risk factor for human infection, the environmental distribution of M. ulcerans in aquatic habitats has not been extensively studied. Although no human cases have been reported in the United States, a strain of M. ulcerans has been identified as the cause of a piscine mycobacteriosis in Striped bass (Morone saxatilis) within the Chesapeake Bay. Infected fish exhibit bright red ventral and lateral dermal lesions. We observed a possible outbreak causing similar lesions on red drum (Sciaenops ocellatus) in wetlands of southern Louisiana and detected M. ulcerans-specific genetic markers in lesion samples from these fish. Based on these findings, we studied the geographic and seasonal prevalence of these markers across southern Louisiana. M. ulcerans was detected in each of the nine areas sampled across the state. M. ulcerans prevalence was significantly lower in the fall samples, and the low prevalence coincided with decreased nutrient levels and an increase in water temperature. To our knowledge, this is the first study of M. ulcerans biomarkers in the southern United States.
Collapse
|
98
|
Szumowski JD, Adams KN, Edelstein PH, Ramakrishnan L. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Curr Top Microbiol Immunol 2013; 374:81-108. [PMID: 23242857 PMCID: PMC3859842 DOI: 10.1007/82_2012_300] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The need for lengthy treatment to cure tuberculosis stems from phenotypic drug resistance, also known as drug tolerance, which has been previously attributed to slowed bacterial growth in vivo. We discuss recent findings that challenge this model and instead implicate macrophage-induced mycobacterial efflux pumps in antimicrobial tolerance. Although mycobacterial efflux pumps may have originally served to protect against environmental toxins, in the pathogenic mycobacteria, they appear to have been repurposed for intracellular growth. In this light, we discuss the potential of efflux pump inhibitors such as verapamil to shorten tuberculosis treatment by their dual inhibition of tolerance and growth.
Collapse
Affiliation(s)
- John D Szumowski
- Department of Medicine (Division of Infectious Diseases), University of Washington, Seattle, WA, USA,
| | | | | | | |
Collapse
|
99
|
Abstract
In 2004, a previously undiscovered mycobacterium resembling Mycobacterium ulcerans (the agent of Buruli ulcer) was reported in an outbreak of a lethal mycobacteriosis in a laboratory colony of the African clawed frog Xenopus tropicalis. This mycobacterium makes mycolactone and is one of several strains of M. ulcerans-like mycolactone-producing mycobacteria recovered from ectotherms around the world. Here, we describe the complete 6,399,543-bp genome of this frog pathogen (previously unofficially named "Mycobacterium liflandii"), and we show that it has undergone an intermediate degree of reductive evolution between the M. ulcerans Agy99 strain and the fish pathogen Mycobacterium marinum M strain. Like M. ulcerans Agy99, it has the pMUM mycolactone plasmid, over 200 chromosomal copies of the insertion sequence IS2404, and a high proportion of pseudogenes. However, M. liflandii has a larger genome that is closer in length, sequence, and architecture to M. marinum M than to M. ulcerans Agy99, suggesting that the M. ulcerans Agy99 strain has undergone accelerated evolution. Scrutiny of the genes specifically lost suggests that M. liflandii is a tryptophan, tyrosine, and phenylalanine auxotroph. A once-extensive M. marinum-like secondary metabolome has also been diminished through reductive evolution. Our analysis shows that M. liflandii, like M. ulcerans Agy99, has the characteristics of a niche-adapted mycobacterium but also has several distinctive features in important metabolic pathways that suggest that it is responding to different environmental pressures, supporting earlier proposals that it could be considered an M. ulcerans ecotype, hence the name M. ulcerans ecovar Liflandii.
Collapse
|
100
|
Buruli ulcer disease in travelers and differentiation of Mycobacterium ulcerans strains from northern Australia. J Clin Microbiol 2012; 50:3717-21. [PMID: 22875890 DOI: 10.1128/jcm.01324-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Buruli ulcer (BU) is a necrotizing infection of skin and soft tissue caused by Mycobacterium ulcerans. In Australia, most cases of BU are linked to temperate, coastal Victoria and tropical, northern Queensland, and strains from these regions are distinguishable by variable-number tandem repeat (VNTR) typing. We present an epidemiological investigation of five patients found to have been infected during interstate travel and describe two nucleotide polymorphisms that differentiate M. ulcerans strains from northern Australia.
Collapse
|