51
|
Saavedra LM, Hernández-Velázquez MG, Madrigal S, Ochoa-Zarzosa A, Torner L. Long-term activation of hippocampal glial cells and altered emotional behavior in male and female adult rats after different neonatal stressors. Psychoneuroendocrinology 2021; 126:105164. [PMID: 33611133 DOI: 10.1016/j.psyneuen.2021.105164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Early life stress increases the risk of developing psychiatric diseases in adulthood. Severe neonatal infections can also contribute to the development of affective illnesses. Stress and infections both trigger the immediate activation of the neuroimmune system. We compared the long-term effects of neonatal single or combined stress-immune challenges on emotional behavior and glial cell responses in the hippocampus. Male and female Sprague Dawley rats were randomly allocated across four conditions: (1) control + vehicle; (2) maternal separation (MS, 3 h/day on postnatal days [PN] 1-14) + vehicle; (3) control + lipopolysaccharide (LPS, 0.5. mg/kg, PN14); (4) MS + LPS. The rats' behaviors were analyzed from PN120 in males and from PN150 in diestrous females. LPS, but not MS, increased anxiety-like behavior in male rats; however, in females, it increased with both challenges. Depressive-like behavior increased after MS-but not LPS-in males and females. Combined stressors increased depressive-like behavior in both sexes. All stressors promoted microglial activation in CA3 and hilus in males and females. MS and LPS increased the astrocytic density within the male hilus, but LPS only increased it in CA3. MS prevented the rise in astrocytic density with LPS. In females, MS reduced the astrocytic population of the hilus and CA3 areas. Taken together, the behavioral and glial cell responses to early life challenges are sex-dependent and cell-type specific. This suggests a sexual dimorphism in the nature of the adverse event faced. These results have implications for understanding the emergence of psychiatric illnesses.
Collapse
Affiliation(s)
- Luis Miguel Saavedra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, México; Centro Multidisciplinario de Estudios en Biotecnología - FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, México
| | | | - Scarlette Madrigal
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, México
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología - FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, México
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, México.
| |
Collapse
|
52
|
Tachi K, Fukuda T, Tanaka M. Olanzapine attenuates postoperative cognitive dysfunction in adult rats. Heliyon 2021; 7:e06218. [PMID: 33659744 PMCID: PMC7890212 DOI: 10.1016/j.heliyon.2021.e06218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/01/2021] [Accepted: 02/04/2021] [Indexed: 11/27/2022] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is associated with poor quality of life and difficulty working. Its impact may be greater in middle-aged patients than in elderly patients. Neuroinflammation is reported to be a main cause of POCD. Olanzapine has been reported to improve learning and memory functions. We therefore investigated olanzapine's effectiveness and mechanisms in an adult rat POCD model. Methods Six-month-old rats underwent laparotomy and lipopolysaccharide (LPS group) or LPS + olanzapine (OLA group) intraperitoneal injection or anesthesia alone (CON group) 1 week after a Barnes maze training session. A Barnes maze test trial was then conducted the day after surgery or anesthesia. The microglial activity in the hippocampus and cytokine levels were measured by Iba1 staining and enzyme-linked immunosorbent assay, respectively. Results The OLA group had significantly higher success rates of Barnes maze trial than the LPS group. The success rate in time of the OLA group was inferior to that of the CON group. On the other hand, the success rate in distance of the OLA group was similar to that of the CON group. Iba1 staining areas in the LPS and OLA groups were larger than that in the CON group; however, the staining area in the OLA group was smaller than that of the LPS group. Plasma interleukin-1β concentration in the LPS and OLA groups was significantly higher than that in the CON group; however, there was no significant difference between the LPS and OLA groups. Conclusion Olanzapine attenuated both spatial cognitive dysfunction and microglial activity of the hippocampus, which were induced by surgery and LPS injection. These effects were unrelated to inflammatory cytokine concentrations in plasma and hippocampus.
Collapse
Affiliation(s)
- Keitaro Tachi
- Department of Anesthesiology, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Taeko Fukuda
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Anesthesiology, Kasumigaura Medical Center, Tsuchiura Center for Medical Education and Training, University of Tsukuba Hospital, Tsuchiura, Ibaraki, Japan
| | - Makoto Tanaka
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
53
|
Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021; 15:635304. [PMID: 33643013 PMCID: PMC7907173 DOI: 10.3389/fnhum.2021.635304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-natal exposure to acute maternal trauma or chronic maternal distress can confer increased risk for psychiatric disorders in later life. Acute maternal trauma is the result of unforeseen environmental or personal catastrophes, while chronic maternal distress is associated with anxiety or depression. Animal studies investigating the effects of pre-natal stress have largely used brief stress exposures during pregnancy to identify critical periods of fetal vulnerability, a paradigm which holds face validity to acute maternal trauma in humans. While understanding these effects is undoubtably important, the literature suggests maternal stress in humans is typically chronic and persistent from pre-conception through gestation. In this review, we provide evidence to this effect and suggest a realignment of current animal models to recapitulate this chronicity. We also consider candidate mediators, moderators and mechanisms of maternal distress, and suggest a wider breadth of research is needed, along with the incorporation of advanced -omics technologies, in order to understand the neurodevelopmental etiology of psychiatric risk.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Michelle Z. L. Kee
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
54
|
Lopizzo N, Mazzelli M, Zonca V, Begni V, D'Aprile I, Cattane N, Pariante CM, Riva MA, Cattaneo A. Alterations in 'inflammatory' pathways in the rat prefrontal cortex as early biological predictors of the long-term negative consequences of exposure to stress early in life. Psychoneuroendocrinology 2021; 124:104794. [PMID: 33429258 DOI: 10.1016/j.psyneuen.2020.104794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Abstract
Early life stress, especially when experienced during the first period of life, affects the brain developmental trajectories leading to an enhanced vulnerability for stress-related psychiatric disorders later in life. Although both clinical and preclinical studies clearly support this association, the biological pathways deregulated by such exposure, and the effects in shaping the neurodevelopmental trajectories, have so far been poorly investigated. By using the prenatal stress (PNS) model, a well-established rat model of early life stress, we performed transcriptomic analyses in the prefrontal cortex of rats exposed or not to PNS and sacrificed at different postnatal days (PNDs 21, 40, 62). We first investigated the long-lasting mechanisms and pathways affected in the PFC. We have decided to focus on the prefrontal cortex because we have previously shown that this brain region is highly sensitive to PNS exposure. We found that adult animals exposed to PNS show alterations in 389 genes, mainly involved in stress and inflammatory signalling. We then wanted to establish whether PNS exposure could also affect the neurodevelopmental trajectories in order to identify the most critical temporal window. We found that PNS rats show the most significant changes during adolescence (between PND 40 versus PND 21), with alterations of several pathways related to stress, inflammation and metabolism, which were maintained until adulthood.
Collapse
Affiliation(s)
- Nicola Lopizzo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Monica Mazzelli
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Valentina Zonca
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
55
|
Iovino M, Messana T, Tortora A, Giusti C, Lisco G, Giagulli VA, Guastamacchia E, De Pergola G, Triggiani V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr Metab Immune Disord Drug Targets 2021; 21:91-110. [PMID: 32433011 DOI: 10.2174/1871530320666200520093730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In addition to the well-known role played in lactation and parturition, Oxytocin (OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory, anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects. OBJECTIVE The aim of this narrative review is to summarize the main data coming from the literature dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most relevant aspects. METHODS Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS We report the most significant and updated data on the role played by OT and OTR in physiology and different clinical contexts. CONCLUSION Emerging evidence indicates the involvement of OT system in several pathophysiological mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric conditions. Furthermore, it modulates pancreatic β-cell responsiveness and lipid metabolism leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even reversing atherosclerotic lesions.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Anna Tortora
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Consuelo Giusti
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Lisco
- Hospital Unit of Endocrinology, Perrino Hospital, Brindisi, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
56
|
Garrido A, De La Serna M, De La Fuente M, Marco EM, López-Gallardo M. Neuronal and glial region dependent changes in female mice from a model of premature aging. Exp Gerontol 2020; 146:111224. [PMID: 33388380 DOI: 10.1016/j.exger.2020.111224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
Adult Premature Aging Mice (PAM) show premature immunosenescence, oxidative and inflammatory stress and consequently a shorter lifespan than Exceptional Non-Prematurely Aging Mice (E-NPAM) at the same age. Indeed, adult female PAM exhibit behavioral age-related declines and abnormalities in its brain neurochemistry. Nevertheless, it is not clear whether these impairments might be accompanied by previous changes related to the neuroinflammation process in their central nervous system (CNS). Therefore, the aim of the present work was to determine if adult female PAM may show brain neuroinflammation processes comparable to those observed in chronologically old female mice. Accordingly, ICR-CD1 female mice were classified in PAM, Regular Non-Prematurely Aging Mice (R-NPAM) and E-NPAM and compared to a group of chronologically old female mice (OLD) (24±1 months). Through the application of immunohistochemical techniques we evaluated changes in the expression of NeuN (a neuronal marker), Iba-1 (a microglia marker) and GFAP (an astrocyte marker) in brain areas related to the behavioral alterations previously detected in both PAM and chronologically old mice. In general, PAM showed a lower NeuN expression and a higher GFAP and Iba1 expression mainly in the Anterior Frontal Cortex and in the Medial Hippocampal Formation, when compared to E-NPAM; similar changes were observed in OLD. Other brain areas, such as the Hypothalamic Nuclei and Motor Cortex were less affected. In conclusion, adult PAM and OLD female mice share some region-dependent neuronal and glial changes that may underlie, at least in part, some of the behavioral abnormalities previously reported in these animals.
Collapse
Affiliation(s)
- Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Mariano De La Serna
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mónica De La Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Eva María Marco
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | | |
Collapse
|
57
|
Sugama S, Kakinuma Y. Noradrenaline as a key neurotransmitter in modulating microglial activation in stress response. Neurochem Int 2020; 143:104943. [PMID: 33340593 DOI: 10.1016/j.neuint.2020.104943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
State of mind can influence susceptibility and progression of diseases and disorders not only in peripheral organs, but also in the central nervous system (CNS). However, the underlying mechanism how state of mind can affect susceptibility to various illnesses in the CNS is not fully understood. Among a number of candidates responsible for stress-induced neuroimmunomodulation, noradrenaline has recently been shown to play crucial roles in the major immune cells of the brain, microglia. In particular, recent studies have demonstrated that noradrenaline may be a key neurotransmitter in modulating microglial cells, thereby determining different cell conditions and responses ranging from resting to activation state depending on host stress level or whether the host is awake or asleep. For instance, microglia under resting conditions may have constructive roles in surveillance, such as debris clearance, synaptic monitoring, pruning, and remodeling. In contrast, once activated, microglia may become less efficient in surveillance activities, and instead implicated in detrimental roles such as cytokine or superoxide release. It is also likely that glial activation, both astrocytes and microglia, are negatively associated with the clearance of brain waste via the glymphatic system. In this review, we discuss the possible underlying mechanism as well as the roles of stress-induced microglial activation.
Collapse
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
58
|
Reddaway J, Brydges NM. Enduring neuroimmunological consequences of developmental experiences: From vulnerability to resilience. Mol Cell Neurosci 2020; 109:103567. [PMID: 33068720 PMCID: PMC7556274 DOI: 10.1016/j.mcn.2020.103567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is crucial for normal neuronal development and function (neuroimmune system). Both immune and neuronal systems undergo significant postnatal development and are sensitive to developmental programming by environmental experiences. Negative experiences from infection to psychological stress at a range of different time points (in utero to adolescence) can permanently alter the function of the neuroimmune system: given its prominent role in normal brain development and function this dysregulation may increase vulnerability to psychiatric illness. In contrast, positive experiences such as exercise and environmental enrichment are protective and can promote resilience, even restoring the detrimental effects of negative experiences on the neuroimmune system. This suggests the neuroimmune system is a viable therapeutic target for treatment and prevention of psychiatric illnesses, especially those related to stress. In this review we will summarise the main cells, molecules and functions of the immune system in general and with specific reference to central nervous system development and function. We will then discuss the effects of negative and positive environmental experiences, especially during development, in programming the long-term functioning of the neuroimmune system. Finally, we will review the sparse but growing literature on sex differences in neuroimmune development and response to environmental experiences. The immune system is essential for development and function of the central nervous system (neuroimmune system) Environmental experiences can permanently alter neuroimmune function and associated brain development Altered neuroimmune function following negative developmental experiences may play a role in psychiatric illnesses Positive experiences can promote resilience and rescue the effects of negative experiences on the neuroimmune system The neuroimmune system is therefore a viable therapeutic target for preventing and treating psychiatric illnesses
Collapse
Affiliation(s)
- Jack Reddaway
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
59
|
Desplats P, Gutierrez AM, Antonelli MC, Frasch MG. Microglial memory of early life stress and inflammation: Susceptibility to neurodegeneration in adulthood. Neurosci Biobehav Rev 2020; 117:232-242. [PMID: 31703966 PMCID: PMC7198341 DOI: 10.1016/j.neubiorev.2019.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 09/15/2019] [Accepted: 10/20/2019] [Indexed: 02/08/2023]
Abstract
We review evidence supporting the role of early life programming in the susceptibility for adult neurodegenerative diseases while highlighting questions and proposing avenues for future research to advance our understanding of this fundamental process. The key elements of this phenomenon are chronic stress, neuroinflammation triggering microglial polarization, microglial memory and their connection to neurodegeneration. We review the mediating mechanisms which may function as early biomarkers of increased susceptibility for neurodegeneration. Can we devise novel early life modifying interventions to steer developmental trajectories to their optimum?
Collapse
Affiliation(s)
- Paula Desplats
- Department of Neurosciences, University of California San Diego, CA, USA; Department of Pathology, University of California San Diego, CA, USA
| | - Ashley M Gutierrez
- Department of Neurosciences, University of California San Diego, CA, USA
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina; Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA.
| |
Collapse
|
60
|
Prenatal exposure to lipopolysaccharide induces changes in the circadian clock in the SCN and AA-NAT activity in the pineal gland. Brain Res 2020; 1743:146952. [DOI: 10.1016/j.brainres.2020.146952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 11/20/2022]
|
61
|
Shen G, Hu S, Zhao Z, Zhang L, Ma Q. Antenatal Hypoxia Accelerates the Onset of Alzheimer's Disease Pathology in 5xFAD Mouse Model. Front Aging Neurosci 2020; 12:251. [PMID: 32973487 PMCID: PMC7472639 DOI: 10.3389/fnagi.2020.00251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder associated with cognitive impairment and later dementia among the elderly. Mounting evidence shows that adverse maternal environments during the fetal development increase the risk of diseases later in life including neurological disorders, and suggests an early origin in the development of AD-related dementia (ADRD) in utero. In the present study, we investigated the impact of antenatal hypoxia and fetal stress on the initiation of AD-related pathology in offspring of 5xFAD mice. We showed that fetal hypoxia significantly reduced brain and body weight in the fetal and the early postnatal period, which recovered in young adult mice. Using spontaneous Y-maze, novel object recognition (NOR), and open field (OF) tasks, we found that antenatal hypoxia exacerbated cognitive decline in offspring of 5xFAD compared with normoxia control. Of interest, fetal hypoxia did not alter intraneuronal soluble amyloid-β (Aβ) oligomer accumulation in the cortex and hippocampus in 5xFAD mouse offspring, indicating that antenatal hypoxia increased the vulnerability of the brain to synaptotoxic Aβ in the disease onset later in life. Consistent with the early occurrence of cognitive decline, we found synapse loss but not neuronal death in the cerebral cortex in 5xFAD but not wild-type (WT) offspring exposed to antenatal hypoxia. Furthermore, we also demonstrated that antenatal hypoxia significantly increased microglial number and activation, and reactive astrogliosis in the cerebral cortex in WT offspring. Moreover, antenatal hypoxia resulted in an exacerbated increase of microgliosis and astrogliosis in the early stage of AD in 5xFAD offspring. Together, our study reveals a causative link between fetal stress and the accelerated onset of AD-related pathology, and provides mechanistic insights into the developmental origin of aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Shirley Hu
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lubo Zhang
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Qingyi Ma
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
62
|
Niu Y, Wang T, Liang S, Li W, Hu X, Wu X, Jin F. Sex-dependent aberrant PFC development in the adolescent offspring rats exposed to variable prenatal stress. Int J Dev Neurosci 2020; 80:464-476. [PMID: 32358823 DOI: 10.1002/jdn.10034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/26/2023] Open
Abstract
Adolescence is a remarkable period of brain development. Prenatal stress can increase the risk of various neuropsychiatric disorders. This research investigated neurochemical and behavioural changes in the offspring rats (especially adolescences) who were treated with repeated variable prenatal stress (PNS) during the third week of gestation. The study tested the concentration of brain-derived neurotrophic factor (BDNF), cluster of differentiation 68 (CD68), synaptotagmin-1(Syt-1), 5-hydroxytryptamine (5-HT), dopamine (DA), glucocorticoid receptors (GRs) and oestrogen receptors (ERs) in the PFC (prefrontal cortex). We also tested prepulse inhibition (PPI) of the acoustic startle reflex (ASR) (a measure of sensorimotor gating). The main results were as follows: PNS increased the BDNF and CD68 concentrations in adolescent females, and increased the Syt-1 concentration in adolescent males. The increases in BDNF/CD68 concentration (in females) and Syt-1/DA concentration (in males) with age were disturbed by PNS, and PNS changed the sex differences in CD68 concentration in adolescence and disturbed the sex differences in the Syt-1 concentration (in adolescence) and DA concentration (in adults). In conclusion, we found that PNS lead to Sex-dependent aberrant PFC development, and might accelerate the development of the adolescent PFC, and so that lessened the age difference (between adolescence and adulthood) and the sex difference.
Collapse
Affiliation(s)
- Yunxia Niu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,School of Vocational Education, Tianjin University of Technology and Education, Tianjin, China
| | - Tao Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Shan Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Xu Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Xiaoli Wu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Feng Jin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| |
Collapse
|
63
|
Effects of immunization with heat-killed Mycobacterium vaccae on autism spectrum disorder-like behavior and epileptogenesis in a rat model of comorbid autism and epilepsy. Brain Behav Immun 2020; 88:763-780. [PMID: 32442471 DOI: 10.1016/j.bbi.2020.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
Autism spectrum disorders (ASDs) and epilepsy are often comorbid. The basis for this co-occurrence remains unknown; however, inflammatory stressors during development are a shared risk factor. To explore this association, we tested the effect of repeated immunizations using a heat-killed preparation of the stress-protective immunoregulatory microbe Mycobacterium vaccae NCTC 11,659 (M. vaccae) on the behavioral and epileptogenic consequences of the combined stress-terbutaline (ST) rat model of ASD-like behavior/epilepsy. Repeated immunization of the dam with M. vaccae during pregnancy, followed by immunization of the pups after terbutaline injections, prevented the expression of ASD-like behavior but did not appear to protect against, and may have even enhanced, the spontaneous epileptogenic effects of ST. Maternal M. vaccae injections transferred an anti-inflammatory immunophenotype to offspring, and repeated injections across development prevented ST-induced increases in microglial density at early developmental time points in a region-specific manner. Despite epidemiological comorbidity between ASD/epileptic conditions and shared environmental risk factors, our results suggest that the expression of ASD-like behaviors, but perhaps not epileptogenesis, is sensitive to early anti-inflammatory intervention. These data provide support for the exploration of immunoregulatory strategies to prevent the negative neurodevelopmental behavioral effects of stressors during early critical periods.
Collapse
|
64
|
Cellular mechanisms and molecular signaling pathways in stress-induced anxiety, depression, and blood-brain barrier inflammation and leakage. Inflammopharmacology 2020; 28:643-665. [PMID: 32333258 DOI: 10.1007/s10787-020-00712-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Depression and anxiety are comorbid conditions in many neurological or psychopathological disorders. Stress is an underlying event that triggers development of anxiety and depressive-like behaviors. Recent experimental data indicate that anxiety and depressive-like behaviors occurring as a result of stressful situations can cause blood-brain barrier (BBB) dysfunction, which is characterized by inflammation and leakage. However, the underlying mechanisms are not completely understood. This paper sought to review recent experimental preclinical and clinical data that suggest possible molecular mechanisms involved in development of stress-induced anxiety and depression with associated BBB inflammation and leakage. Critical therapeutic targets and potential pharmacological candidates for treatment of stress-induced anxiety and depression with associated BBB dysfunctions are also discussed.
Collapse
|
65
|
Obuchowicz E, Bielecka-Wajdman A, Zieliński M, Machnik G, Gołyszny M, Ludyga T. Imipramine and Venlafaxine Differentially Affect Primary Glial Cultures of Prenatally Stressed Rats. Front Pharmacol 2020; 10:1687. [PMID: 32076407 PMCID: PMC7006619 DOI: 10.3389/fphar.2019.01687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
Here, we examine the effects of prenatal administration of two antidepressants—imipramine (IMI) and venlafaxine (VEN)—on morphology and activity of a primary glial culture. Microglia are targeted by antidepressants used for antenatal depression and are important regulators of central nervous system development. In this study, female Wistar rats were assigned to one of four groups: a control group that received water ad libitum (1), and groups that received additionally once daily either water (2), IMI (10 mg/kg) (3), or VEN (20 mg/kg) (4) by oral gavage from gestation day 7 to 22. Oral gavage administration induced prenatal stress. Cell cultures were obtained from the brains of 1-day-old pups. Prenatal stress caused a disturbance of sensorimotor function in pups. Prenatal stress also produced alterations in the glial cultures, specifically, an increased percentage of microglia in the mixed glial cultures and an increased percentage of dead cells. Moreover, increased levels of IL1-β, TNF-α, NO, and an increased expression of CX3CR1 mRNA were found in microglia. However, the ratio of Bax/Bcl2 mRNA was reduced. Prenatal stress increased the vulnerability of microglia to lipopolysaccharide (LPS). The mixed glial culture derived from pups exposed to IMI showed greater morphological changes and the highest percentage of microglia. Microglia were characterized by the largest increase in the production of pro-inflammatory cytokines and NO, and the greatest reduction in the expression of CX3CR1 mRNA. Exposure to IMI reduced the effects of LPS on IL-1β production and Bax/Bcl2 mRNA, and exacerbated the effects of LPS on CX3CR1 mRNA expression. Prenatal administration of VEN induced protective effects on microglia, as measured by all studied parameters. Taken together, our data suggest that, by disturbing microglia function, exposure to even mild forms of chronic prenatal stress may predispose individuals to psychiatric or neurodevelopmental disorders. These data also indicate that chronic mild stress sensitizes microglia to immune challenges, which may lead to enhanced neuronal damage in the embryonic brain. The observed detrimental effects of IMI on microglial activity under conditions of prenatal stress may help to explain the teratogenic effects of IMI reported in the literature.
Collapse
Affiliation(s)
- Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Anna Bielecka-Wajdman
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Tomasz Ludyga
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
66
|
Nettis MA, Pariante CM, Mondelli V. Early-Life Adversity, Systemic Inflammation and Comorbid Physical and Psychiatric Illnesses of Adult Life. Curr Top Behav Neurosci 2020; 44:207-225. [PMID: 30895531 DOI: 10.1007/7854_2019_89] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, the evidence of increased immune activation in patients with schizophrenia has suggested a role for the immune system in the development of psychosis. However, what is causing this increased immune activation and how this leads to the development of psychopathology remain still unclear. In this chapter we discuss the evidence about the role of childhood trauma as possible underlying cause of the increased immune activation in patients with schizophrenia. According to preclinical and clinical models, early adverse events can disrupt the homeostatic control of immune responses and lead to enduring inflammatory dysregulation at a peripheral and central level. In fact, persisting systemic inflammation may facilitate peripheral tissues damage and breach the blood-brain barrier, leading to microglia activation and to neuroinflammation.Such chronic immune dysregulation also appear to partially explain the frequent comorbidity between psychosis and metabolic abnormalities, which have previously mainly considered as side effect of antipsychotic treatment.Overall, this evidence suggests that early stress may contribute to development of schizophrenia spectrum disorders through a modulation of the peripheral and central immune system and support the immune pathways as possible future therapeutic approach for psychosis.
Collapse
Affiliation(s)
- Maria Antonietta Nettis
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Valeria Mondelli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, UK.
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
- Maurice Wohl Clinical Neuroscience Institute , London, UK.
| |
Collapse
|
67
|
Baharikhoob P, Kolla NJ. Microglial Dysregulation and Suicidality: A Stress-Diathesis Perspective. Front Psychiatry 2020; 11:781. [PMID: 32848946 PMCID: PMC7432264 DOI: 10.3389/fpsyt.2020.00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
According to the stress-diathesis model of suicidal behavior, completed suicide depends on the interaction between psychosocial stressors and a trait-like susceptibility. While there are likely multiple biological processes at play in suicidal behavior, recent findings point to over-activation of microglia, the resident macrophages of the central nervous system, as implicated in stress-induced suicidal behavior. However, it remains unclear how microglial dysregulation can be integrated into a clinical model of suicidal behavior. Therefore, this narrative review aims to (1) examine the findings from human post-mortem and neuroimaging studies that report a relationship between microglial activation and suicidal behavior, and (2) update the clinical model of suicidal behavior to integrate the role of microglia. A systematic search of SCOPUS, PubMed, PsycINFO, and Embase databases revealed evidence of morphological alterations in microglia and increased translocator protein density in the brains of individuals with suicidality, pointing to a positive relationship between microglial dysregulation and suicidal behavior. The studies also suggested several pathological mechanisms leading to suicidal behavior that may involve microglial dysregulation, namely (1) enhanced metabolism of tryptophan to quinolinic acid through the kynurenine pathway and associated serotonin depletion; (2) increased quinolinic acid leading to excessive N-methyl-D-aspartate-signaling, resulting in potential disruption of the blood brain barrier; (3) increased quinolinic acid resulting in higher neurotoxicity, and; (4) elevated interleukin 6 contributing to loss of inhibition of glutamatergic neurons, causing heightened glutamate release and excitotoxicity. Based on these pathways, we reconceptualized the stress-diathesis theory of suicidal behavior to incorporate the role of microglial activity.
Collapse
Affiliation(s)
- Paria Baharikhoob
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH) Research Imaging Centre and Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada
| | - Nathan J Kolla
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH) Research Imaging Centre and Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Waypoint Centre for Mental Health Care, Waypoint Research Institute, Penetanguishene, ON, Canada
| |
Collapse
|
68
|
Brydges NM, Reddaway J. Neuroimmunological effects of early life experiences. Brain Neurosci Adv 2020; 4:2398212820953706. [PMID: 33015371 PMCID: PMC7513403 DOI: 10.1177/2398212820953706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure to adverse experiences during development increases the risk of psychiatric illness later in life. Growing evidence suggests a role for the neuroimmune system in this relationship. There is now substantial evidence that the immune system is critical for normal brain development and behaviour, and responds to environmental perturbations experienced early in life. Severe or chronic stress results in dysregulated neuroimmune function, concomitant with abnormal brain morphology and function. Positive experiences including environmental enrichment and exercise exert the opposite effect, promoting normal brain and immune function even in the face of early life stress. The neuroimmune system may therefore provide a viable target for prevention and treatment of psychiatric illness. This review will briefly summarise the neuroimmune system in brain development and function, and review the effects of stress and positive environmental experiences during development on neuroimmune function. There are also significant sex differences in how the neuroimmune system responds to environmental experiences early in life, which we will briefly review.
Collapse
Affiliation(s)
- Nichola M. Brydges
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| | - Jack Reddaway
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
69
|
Rostami F, Javan M, Moghimi A, Haddad-Mashadrizeh A, Fereidoni M. Prenatal stress promotes icv-STZ-induced sporadic Alzheimer's pathology through central insulin signaling change. Life Sci 2019; 241:117154. [PMID: 31857087 DOI: 10.1016/j.lfs.2019.117154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022]
Abstract
AIM Insulin resistance and neuroinflammation play roles in Alzheimer's (AD) etiology. Insulin receptors (IR) are developmentally expressed in neurons as well as astrocytes. Moreover, prolonged stress can induce brain insulin resistance and astrogliosis. Also, prenatal stress could advance AD-related abnormalities in a transgenic model of AD. Besides, postnatal maternal care (PMC) has antagonistic effects on prenatal stress (PS)-induced neuronal and immunological malfunctions. Using an icv-STZ subclinical model of sAD, we assessed PS and/or abnormal PMC impacts on advancing sAD-like pathology in adult male rats. We also sought astrocyte- and/or neuron-oriented change in central insulin programming. MAIN METHODS Pregnant rats were exposed to PS. Thereafter, a group of pups was fostered onto unstressed mothers and the others remained intact. Real-time RT-PCR- for hippocampal IR, Tau, and ChAT transcripts- and immunohistochemistry analysis- for GFAP+ astrocytes- were performed at the first- and forth-postnatal-week, respectively. The other animals received icv-STZ0.5 mg/kg in adulthood and subjected to cognitive tests, molecular, and histological experiments at appropriate time-point post-injection. KEY FINDINGS PS could advance sAD-related symptoms in icv-STZ-treated animals. PS changed expression levels of hippocampal IR in one-week-old and 5.5-month-old offspring. PS could worsen cognitive, molecular and histological impairments of icv-STZ. Adequate PMC prevented some destructive effects of PS. SIGNIFICANCE PS can potentially change central insulin programming and induce long-lasting astrogliosis in rat hippocampus. PS-related cognitive and histological pathologies can rescue by PMC probably via IR-dependent pathways. Astrocyte involvement in AD-like neuropathology observed in stressed-animals needs more detailed investigations.
Collapse
Affiliation(s)
- Farzaneh Rostami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Moghimi
- Rayan Center for Neuroscience and Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Cell and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Fereidoni
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Rayan Center for Neuroscience and Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
70
|
VanRyzin JW, Marquardt AE, Pickett LA, McCarthy MM. Microglia and sexual differentiation of the developing brain: A focus on extrinsic factors. Glia 2019; 68:1100-1113. [PMID: 31691400 DOI: 10.1002/glia.23740] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
Microglia, the innate immune cells of the brain, have recently been removed from the position of mere sentinels and promoted to the role of active sculptors of developing circuits and cells. Alongside their functions in normal brain development, microglia coordinate sexual differentiation of the brain, a set of processes which vary by region and endpoint like that of microglia function itself. In this review, we highlight the ways microglia are both targets and drivers of brain sexual differentiation. We examine the factors that may drive sex differences in microglia, with a special focus on how changing microenvironments in the developing brain dictate microglia phenotypes and discuss how their diverse functions sculpt lasting sex-specific changes in the brain. Finally, we consider how sex-specific early life environments contribute to epigenetic programming and lasting sex differences in microglia identity.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lindsay A Pickett
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
71
|
Fernández-Arjona MDM, Grondona JM, Fernández-Llebrez P, López-Ávalos MD. Microglial Morphometric Parameters Correlate With the Expression Level of IL-1β, and Allow Identifying Different Activated Morphotypes. Front Cell Neurosci 2019; 13:472. [PMID: 31708746 PMCID: PMC6824358 DOI: 10.3389/fncel.2019.00472] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Microglia are the resident macrophages in the brain. Traditionally, two forms of microglia have been described: one considered as a resting/surveillant state in which cells have a highly branched morphology, and another considered as an activated state in which they acquire a de-ramified or amoeboid form. However, many studies describe intermediate microglial morphologies which emerge during pathological processes. Since microglial form and function are closely related, it is of interest to correlate microglial morphology with the extent of its activation. To address this issue, we used a rat model of neuroinflammation consisting in a single injection of the enzyme neuraminidase (NA) within the lateral ventricle. Sections from NA-injected animals were co-immunolabeled with the microglial marker IBA1 and the cytokine IL-1β, which highlight features of the cell’s shape and inflammatory activation, respectively. Activated (IL-1β positive) microglial cells were sampled from the dorsal hypothalamus nearby the third ventricle. Images of single microglial cells were processed in two different ways to obtain (1) an accurate measure of the level of expression of IL-1β (indicating the degree of activation), and (2) a set of 15 morphological parameters to quantitatively and objectively describe the cell’s shape. A simple regression analysis revealed a dependence of most of the morphometric parameters on IL-1β expression, demonstrating that the morphology of microglial cells changes progressively with the degree of activation. Moreover, a hierarchical cluster analysis pointed out four different morphotypes of activated microglia, which are characterized not only by morphological parameters values, but also by specific IL-1β expression levels. Thus, these results demonstrate in an objective manner that the activation of microglial cells is a gradual process, and correlates with their morphological change. Even so, it is still possible to categorize activated cells according to their morphometric parameters, each category presenting a different activation degree. The physiological relevance of those activated morphotypes is an issue worth to be assessed in the future.
Collapse
Affiliation(s)
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| |
Collapse
|
72
|
Zhang ZX, Li E, Yan JP, Fu W, Shen P, Tian SW, You Y. Apelin attenuates depressive-like behavior and neuroinflammation in rats co-treated with chronic stress and lipopolysaccharide. Neuropeptides 2019; 77:101959. [PMID: 31445676 DOI: 10.1016/j.npep.2019.101959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/07/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
Several experimental studies have proved that activation of neuroinflammation pathways may contribute to the development of depression, a neuropsychiatric disorder disease. Our previous studies have shown the antidepressant properties of apelin, but the mechanism was unkown. This study was performed to verify whether the antidepressant effect of apelin was related to its anti-inflammation effect in the central nervous system. To achieve our aim, we selected the co-treatment of chronic stress and LPS to induced an inflammatory process in rats. The effect of this co-treatment was evaluated through the expression of inflammatory markers and glial cell activation. LPS injection co-treated with unpredictable chronic mild stress resulted in the activation of microglial cell and astrocyte, expression of inflammatory markers and depressive behaviors. Treatment with apelin significantly attenuates the deleterious effects in these rats. Our results showed that apelin improved depressive phenotype and decreased the activation of glial cells in stress co-treatment group. The down-regulations of p-NF-κB and p-IKKβ suggested that the effects are possibly mediated by inhibition of the NF-κB-mediated inflammatory response. These findings speculated that intracerebroventricular injection of apelin could be a therapeutic approach for the treatment of depression, and the antidepressant function of apelin may closely associated with its alleviation in neuroinflammation.
Collapse
Affiliation(s)
- Zi-Xuan Zhang
- Department of Neurology, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, PR China; Department of Neurology, XiangTan Central Hospital, Xiangtan, Hunan 411100, PR China
| | - E Li
- Institute of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, PR China
| | - Jian-Ping Yan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Wan Fu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Pei Shen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Shao-Wen Tian
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.
| | - Yong You
- Department of Neurology, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, PR China.
| |
Collapse
|
73
|
Air pollution, neighborhood deprivation, and autism spectrum disorder in the Study to Explore Early Development. Environ Epidemiol 2019; 3. [PMID: 32478281 PMCID: PMC7260884 DOI: 10.1097/ee9.0000000000000067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background To examine whether neighborhood deprivation modifies the association between early life air pollution exposure and autism spectrum disorder (ASD), we used resources from a multisite case-control study, the Study to Explore Early Development. Methods Cases were 674 children with confirmed ASD born in 2003-2006; controls were 855 randomly sampled children born during the same time period and residents of the same geographic areas as cases. Air pollution was assessed by roadway proximity and particulate matter <2.5 μm (PM2.5) exposure during pregnancy and first year of life. To characterize neighborhood deprivation, an index was created based on eight census tract-level socioeconomic status-related parameters. The continuous index was categorized into tertiles, representing low, moderate, and high deprivation. Logistic regression was used to estimate odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Results Neighborhood deprivation modified (P for interaction = 0.08) the association between PM2.5 exposure during the first year of life and ASD, with a stronger association for those living in high (OR = 2.42, 95% CI = 1.20, 4.86) rather than moderate (OR=1.21, 95% CI = 0.67, 2.17) or low (OR=1.46, 95% CI = 0.80, 2.65) deprivation neighborhoods. Departure from additivity or multiplicativity was not observed for roadway proximity or exposures during pregnancy. Conclusion These results provide suggestive evidence of interaction between neighborhood deprivation and PM2.5 exposure during the first year of life in association with ASD.
Collapse
|
74
|
Sawyer KM, Zunszain PA, Dazzan P, Pariante CM. Intergenerational transmission of depression: clinical observations and molecular mechanisms. Mol Psychiatry 2019; 24:1157-1177. [PMID: 30283036 DOI: 10.1038/s41380-018-0265-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Maternal mental illness can have a devastating effect during the perinatal period, and has a profound impact on the care that the baby receives and on the relationships that the baby forms. This review summarises clinical evidence showing the effects of perinatal depression on offspring physical and behavioural development, and on the transmission of psychopathology between generations. We then evaluate a number of factors which influence this relationship, such as genetic factors, the use of psychotropic medications during pregnancy, the timing within the perinatal period, the sex of the foetus, and exposure to maltreatment in childhood. Finally, we examine recent findings regarding the molecular mechanisms underpinning these clinical observations, and identify relevant epigenetic and biomarker changes in the glucocorticoid, oxytocin, oestrogen and immune systems, as key biological mediators of these clinical findings. By understanding these molecular mechanisms in more detail, we will be able to improve outcomes for both mothers and their offspring for generations.
Collapse
Affiliation(s)
- Kristi M Sawyer
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
75
|
Trojan E, Chamera K, Bryniarska N, Kotarska K, Leśkiewicz M, Regulska M, Basta-Kaim A. Role of Chronic Administration of Antidepressant Drugs in the Prenatal Stress-Evoked Inflammatory Response in the Brain of Adult Offspring Rats: Involvement of the NLRP3 Inflammasome-Related Pathway. Mol Neurobiol 2019; 56:5365-5380. [PMID: 30610610 PMCID: PMC6614144 DOI: 10.1007/s12035-018-1458-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
Evidence indicates that adverse experiences in early life may be a factor for immune disturbances leading to the depression in adulthood. Recently, a pivotal role in the pathogenesis of depression has been assigned to the activation of the brain Nod-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the impact of chronic treatment with antidepressant drugs on the behavioral disturbances and the levels of proinflammatory factors in the hippocampus and frontal cortex of adult male rats after prenatal stress exposure. Next, we explored the involvement of the NLRP3 inflammasome-related pathways in the mechanism of antidepressant action. Our study confirmed that chronic antidepressant treatment attenuated depression-like disturbances and exerted an anxiolytic action. All antidepressants diminished the prenatal stress-induced increase in IL-1β in both brain areas, while IL-18 only in the hippocampus. Moreover, tianeptine administration diminished the increase in CCR2 levels in both brain areas, while in the hippocampus, tianeptine, along with venlafaxine CCL2 and iNOS levels. Next, we observed that in the hippocampus, tianeptine and fluoxetine suppressed upregulation of TLR4. Furthermore, venlafaxine suppressed NFкB p65-subunit phosphorylation, while fluoxetine enhanced the IкB level. Importantly, in the hippocampus, all antidepressants normalized evoked by stress changes in caspase-1 level, while tianeptine and venlafaxine also affect the levels of ASC and NLRP3 subunits. Our results provide new evidence that chronic administration of antidepressants exerts anti-inflammatory effects more pronounced in the hippocampus, through suppression of the NLRP3 inflammasome activation. These effects are accompanied by an improvement in the behavioral dysfunctions evoked by prenatal stress.
Collapse
Affiliation(s)
- Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Natalia Bryniarska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Katarzyna Kotarska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Magdalena Regulska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland.
| |
Collapse
|
76
|
Dowell J, Elser BA, Schroeder RE, Stevens HE. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett 2019; 709:134368. [PMID: 31299286 DOI: 10.1016/j.neulet.2019.134368] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
Abstract
Development of the brain prenatally is affected by maternal experience and exposure. Prenatal maternal psychological stress changes brain development and results in increased risk for neuropsychiatric disorders. In this review, multiple levels of prenatal stress mechanisms (offspring brain, placenta, and maternal physiology) are discussed and their intersection with cellular stress mechanisms explicated. Heat shock factors and oxidative stress are closely related to each other and converge with the inflammation, hormones, and cellular development that have been more deeply explored as the basis of prenatal stress risk. Increasing evidence implicates cellular stress mechanisms in neuropsychiatric disorders associated with prenatal stress including affective disorders, schizophrenia, and child-onset psychiatric disorders. Heat shock factors and oxidative stress also have links with the mechanisms involved in other kinds of prenatal stress including external exposures such as environmental toxicants and internal disruptions such as preeclampsia. Integrative understanding of developmental neurobiology with these cellular and physiological mechanisms is necessary to reduce risks and promote healthy brain development.
Collapse
Affiliation(s)
- Jonathan Dowell
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Benjamin A Elser
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.
| | - Rachel E Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, Iowa City, IA, USA.
| |
Collapse
|
77
|
Rosin JM, Kurrasch DM. Emerging roles for hypothalamic microglia as regulators of physiological homeostasis. Front Neuroendocrinol 2019; 54:100748. [PMID: 31059719 DOI: 10.1016/j.yfrne.2019.100748] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
Abstract
The hypothalamus is a crucial brain region that responds to external stressors and functions to maintain physiological homeostatic processes, such as core body temperature and energy balance. The hypothalamus regulates homeostasis by producing hormones that thereby influence the production of other hormones that then control the internal milieu of the body. Microglia are resident macrophages and phagocytic immune cells of the central nervous system (CNS), classically known for surveying the brain's environment, responding to neural insults, and disposing of cellular debris. Recent evidence has shown that microglia are also responsive to external stressors and can influence both the development and function of the hypothalamus in a sex-dependent manner. This emerging microglia-hypothalamic interaction raises the intriguing notion that microglia might play an unappreciated role in hypothalamic control of physiological homeostasis. In this review, we briefly outline how the hypothalamus regulates physiological homeostasis and then describe how this literature overlaps with our understanding of microglia's role in the CNS. We also outline the current literature demonstrating how microglia loss or activation affects the hypothalamus, and ultimately homeostasis. We conclude by proposing how microglia could be key regulators of homeostatic processes by sensing cues external to the CNS and transmitting them through the hypothalamus.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
78
|
Hisaoka-Nakashima K, Tomimura Y, Yoshii T, Ohata K, Takada N, Zhang FF, Nakamura Y, Liu K, Wake H, Nishibori M, Nakata Y, Morioka N. High-mobility group box 1-mediated microglial activation induces anxiodepressive-like behaviors in mice with neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:347-362. [PMID: 30763674 DOI: 10.1016/j.pnpbp.2019.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Clinical evidence indicates that major depression is a common comorbidity of chronic pain, including neuropathic pain. However, the cellular basis for chronic pain-mediated major depression remains unclear. High-mobility group box 1 protein (HMGB1) has a key role in innate immune responses and appears to be have a role in mediating diverse disorders, including neuropathic pain and depression. The current study aimed to characterize neuropathic pain-induced changes in affect over time and to determine whether HMGB1 has a role in neuropathic pain-induced changes in affect. Neuropathic pain was induced by partial sciatic nerve ligation (PSNL) in mice. Anxiodepressive-like behaviors in mice were evaluated over 10 weeks, in the social interaction, forced swim, and novelty suppressed feeding tests. Mice developed anxiodepressive-like behavior 6 to 8 weeks after induction of neuropathy. Accompanying anxiodepressive-like behavior, increased HMGB1 protein and microglia activation were observed in frontal cortex at 8 weeks after PSNL. Intracerebroventricular administration of rHMGB1 in naïve mice induced anxiodepressive-like behavior and microglia activation. Blockage of HMGB1 in PSNL mice with glycyrrhizic acid (GZA) or anti-HMGB1 antibody reduced microglia activation and anxiodepressive-like behavior. These results indicate that PSNL-induced anxiodepressive-like behavior is likely mediated by HMGB1. Furthermore, the data indicate that inhibition of HMGB1-dependent microglia activation could be a strategy for the treatment of depression associated with neuropathic pain.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoshiaki Tomimura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Toshiki Yoshii
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazuto Ohata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Naoki Takada
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Fang Fang Zhang
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan; Institute of Pharmacology, Tawishan Medical University, 619 Changcheng Road, Taian, Shandong 271016, China
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
79
|
Nelson LH, Saulsbery AI, Lenz KM. Small cells with big implications: Microglia and sex differences in brain development, plasticity and behavioral health. Prog Neurobiol 2019; 176:103-119. [PMID: 30193820 PMCID: PMC8008579 DOI: 10.1016/j.pneurobio.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/17/2018] [Accepted: 09/01/2018] [Indexed: 12/20/2022]
Abstract
Brain sex differences are programmed largely by sex hormone secretions and direct sex chromosome effects in early life, and are subsequently modulated by early life experiences. The brain's resident immune cells, called microglia, actively contribute to brain development. Recent research has shown that microglia are sexually dimorphic, especially during early life, and may participate in sex-specific organization of the brain and behavior. Likewise, sex differences in immune cells and their signaling in the adult brain have been found, although in most cases their function remains unclear. Additionally, immune cells and their signaling have been implicated in many disorders in which brain development or plasticity is altered, including autism, schizophrenia, pain disorders, major depression, and postpartum depression. This review summarizes what is currently known about sex differences in neuroimmune function in development and during other major phases of brain plasticity, as well as the current state of knowledge regarding sex-specific neuroimmune function in psychiatric disorders.
Collapse
Affiliation(s)
- Lars H Nelson
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Angela I Saulsbery
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
80
|
Abbink MR, van Deijk ALF, Heine VM, Verheijen MH, Korosi A. The involvement of astrocytes in early-life adversity induced programming of the brain. Glia 2019; 67:1637-1653. [PMID: 31038797 PMCID: PMC6767561 DOI: 10.1002/glia.23625] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Early‐life adversity (ELA) in the form of stress, inflammation, or malnutrition, can increase the risk of developing psychopathology or cognitive problems in adulthood. The neurobiological substrates underlying this process remain unclear. While neuronal dysfunction and microglial contribution have been studied in this context, only recently the role of astrocytes in early‐life programming of the brain has been appreciated. Astrocytes serve many basic roles for brain functioning (e.g., synaptogenesis, glutamate recycling), and are unique in their capacity of sensing and integrating environmental signals, as they are the first cells to encounter signals from the blood, including hormonal changes (e.g., glucocorticoids), immune signals, and nutritional information. Integration of these signals is especially important during early development, and therefore we propose that astrocytes contribute to ELA induced changes in the brain by sensing and integrating environmental signals and by modulating neuronal development and function. Studies in rodents have already shown that ELA can impact astrocytes on the short and long term, however, a critical review of these results is currently lacking. Here, we will discuss the developmental trajectory of astrocytes, their ability to integrate stress, immune, and nutritional signals from the early environment, and we will review how different types of early adversity impact astrocytes.
Collapse
Affiliation(s)
- Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Lieke F van Deijk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mark H Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
81
|
Centella asiatica Prevents Increase of Hippocampal Tumor Necrosis Factor-α Independently of Its Effect on Brain-Derived Neurotrophic Factor in Rat Model of Chronic Stress. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2649281. [PMID: 30956976 PMCID: PMC6431365 DOI: 10.1155/2019/2649281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Centella asiatica ameliorates memory impairment and induces expression of hippocampal brain-derived neurotropic factor (BDNF) in chronically stressed rats. The relationship between the anti-inflammatory effect of Centella asiatica on hippocampal BDNF and the involvement of sirtuin-1, a BDNF expression regulator, in neuroprotective mechanisms of Centella asiatica warrants an investigation. We investigated the effect of Centella asiatica ethanolic extracts (CA) on TNF-α, IL-10, and SIRT1 levels and whether these predicted BDNF expression in rat hippocampus after chronic stress. For the experiments, thirty male rats (Sprague Dawley) were divided into six groups: nonstressed-control, stressed-control, nonstressed +CA 300mg/kg/d, stressed +CA 150 mg/kg/d, stressed +CA 300 mg/kg/d, and stressed +CA 600 mg/kg/d. On day 28, rats were sacrificed and hippocampus was dissected out. Hippocampal TNF-α, IL-10, SIRT1, and BDNF were measured by enzyme-linked immunosorbent assay. Hippocampal TNF-α level was significantly higher in the stressed-control compared to nonstressed-control groups. Across all stress conditions, rats receiving the highest dose of CA had the lowest mean TNF-α and highest mean BDNF. There were no significant differences in IL-10 and SIRT1 levels between groups. Hippocampal TNF-α did not predict hippocampal BDNF in a regression analysis. In conclusion, lower TNF-α and higher BDNF in the hippocampus support the hypothesis that these factors independently contribute to Centella asiatica's neuroprotective effect in chronically stressed rats.
Collapse
|
82
|
Occupational-like organophosphate exposure disrupts microglia and accelerates deficits in a rat model of Alzheimer's disease. NPJ Aging Mech Dis 2019; 5:3. [PMID: 30701080 PMCID: PMC6342990 DOI: 10.1038/s41514-018-0033-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to organophosphate pesticides, such as chlorpyrifos (CPF), increases the risk of Alzheimer's disease (AD), though the mechanism is unclear. To investigate this, we subjected 4-month-old male and female wild-type (WT) and TgF344-AD rats, a transgenic AD model, to an occupational CPF exposure paradigm that recapitulates biomarkers and behavioral impairments experienced by agricultural workers. Subsequent cognition and neuropathology were analyzed over the next 20 months. CPF exposure caused chronic microglial dysregulation and accelerated neurodegeneration in both males and females. The effect on neurodegeneration was more severe in males, and was also associated with accelerated cognitive impairment. Females did not exhibit accelerated cognitive impairment after CPF exposure, and amyloid deposition and tauopathy were unchanged in both males and females. Microglial dysregulation may mediate the increased risk of AD associated with occupational organophosphate exposure, and future therapies to preserve or restore normal microglia might help prevent AD in genetically vulnerable individuals exposed to CPF or other disease-accelerating environmental agents.
Collapse
|
83
|
Immune Challenge Alters Reactivity of Hippocampal Noradrenergic System in Prenatally Stressed Aged Mice. Neural Plast 2019; 2019:3152129. [PMID: 30804990 PMCID: PMC6360630 DOI: 10.1155/2019/3152129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Prenatal stress (PS) has long-term sequelae for the morphological and functional status of the central nervous system of the progeny. A PS-induced proinflammatory status of the organism may result in an impairment of both hippocampal synaptic plasticity and hippocampus-dependent memory formation in adults. We addressed here the question of how PS-induced alterations in the immune response in young and old mice may contribute to changes in hippocampal function in aging. Immune stimulation (via LPS injection) significantly affected the ability of the hippocampal CA3-CA1 synapse of PS mice to undergo long-term potentiation (LTP). Elevated corticosterone level in the blood of aged PS mice that is known to influence LTP magnitude indicates a chronic activation of the HPA axis due to the in utero stress exposure. We investigated the contribution of adrenergic receptors to the modulation of hippocampal synaptic plasticity of aged mice and found that impaired LTP in the PS-LPS group was indeed rescued by application of isoproterenol (a nonspecific noradrenergic agonist). Further exploration of the mechanisms of the observed phenomena will add to our understanding of the interaction between PS and proinflammatory immune activation and its contribution to the functional and structural integrity of the aging brain.
Collapse
|
84
|
Gumusoglu SB, Stevens HE. Maternal Inflammation and Neurodevelopmental Programming: A Review of Preclinical Outcomes and Implications for Translational Psychiatry. Biol Psychiatry 2019; 85:107-121. [PMID: 30318336 DOI: 10.1016/j.biopsych.2018.08.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Early disruptions to neurodevelopment are highly relevant to understanding both psychiatric risk and underlying pathophysiology that can be targeted by new treatments. Much convergent evidence from the human literature associates inflammation during pregnancy with later neuropsychiatric disorders in offspring. Preclinical models of prenatal inflammation have been developed to examine the causal maternal physiological and offspring neural mechanisms underlying these findings. Here we review the strengths and limitations of preclinical models used for these purposes and describe selected studies that have shown maternal immune impacts on the brain and behavior of offspring. Maternal immune activation in mice, rats, nonhuman primates, and other mammalian model species have demonstrated convergent outcomes across methodologies. These outcomes include shifts and/or disruptions in the normal developmental trajectory of molecular and cellular processes in the offspring brain. Prenatal developmental origins are critical to a mechanistic understanding of maternal immune activation-induced alterations to microglia and immune molecules, brain growth and development, synaptic morphology and physiology, and anxiety- and depression-like, sensorimotor, and social behaviors. These phenotypes are relevant to brain functioning across domains and to anxiety and mood disorders, schizophrenia, and autism spectrum disorder, in which they have been identified. By turning a neurodevelopmental lens on this body of work, we emphasize the importance of acute changes to the prenatal offspring brain in fostering a better understanding of potential mechanisms for intervention. Collectively, overlapping results across maternal immune activation studies also highlight the need to examine preclinical offspring neurodevelopment alterations in terms of a multifactorial immune milieu, or immunome, to determine potential mechanisms of psychiatric risk.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
85
|
Brás JP, Pinto S, Almeida MI, Prata J, von Doellinger O, Coelho R, Barbosa MA, Santos SG. Peripheral Biomarkers of Inflammation in Depression: Evidence from Animal Models and Clinical Studies. Methods Mol Biol 2019; 2011:467-492. [PMID: 31273717 DOI: 10.1007/978-1-4939-9554-7_28] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Depression is a highly prevalent psychiatric condition, with over 300 million sufferers, and is an important comorbidity for other conditions, like cardiovascular disorders or diabetes. Therapy is largely based on psychotherapy and/or pharmacological intervention, particularly aimed at altering neurotransmitter levels in the central nervous system, but inadequate response to treatment remains a significant clinical problem. Herein, evidence supporting a molecular link between inflammation and depression will be discussed, particularly the increased prevalence of depression in chronic inflammatory diseases and the evidence on the use of anti-inflammatory drugs to treat depression. Moreover, the potential for the levels of peripheral inflammatory molecules to act as depression biomarkers, in the diagnosis and monitoring of depression will be examined, considering clinical- and animal model-based evidence.
Collapse
Affiliation(s)
- J P Brás
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - S Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Clinical Neurosciences and Mental Health, Centro Hospitalar Universitário São João, Porto, Portugal
| | - M I Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - J Prata
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - O von Doellinger
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar do Tâmega e Sousa, Penafiel, Portugal
| | - R Coelho
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Clinical Neurosciences and Mental Health, Centro Hospitalar Universitário São João, Porto, Portugal
| | - M A Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - S G Santos
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.
| |
Collapse
|
86
|
Diz-Chaves Y, Toba L, Fandiño J, González-Matías LC, Garcia-Segura LM, Mallo F. The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 2018; 15:337. [PMID: 30518432 PMCID: PMC6282252 DOI: 10.1186/s12974-018-1370-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background Perinatal maternal malnutrition is related to altered growth of tissues and organs. The nervous system development is very sensitive to environmental insults, being the hippocampus a vulnerable structure, in which altered number of neurons and granular cells has been observed. Moreover, glial cells are also affected, and increased expression of proinflammatory mediators has been observed. We studied the effect of Glucagon-like peptide-1 receptor (GLP-1R) agonists, liraglutide, which have very potent metabolic and neuroprotective effects, in order to ameliorate/prevent the glial alterations present in the hippocampus of the pups from mothers with food restriction during pregnancy and lactation (maternal perinatal food restriction—MPFR). Methods Pregnant Sprague-Dawley rats were randomly assigned to 50% food restriction (FR; n = 12) or ad libitum controls (CT, n = 12) groups at day of pregnancy 12 (GD12). From GD14 to parturition, pregnant FR and CT rats were treated with liraglutide (100 μg/kg) or vehicle. At postnatal day 21 and before weaning, 48 males and 45 females (CT and MPFR) were sacrificed. mRNA expression levels of interleukin-1β (IL1β), interleukin-6 (IL-6), nuclear factor-κβ, major histocompatibility complex-II (MHCII), interleukin 10 (IL10), arginase 1 (Arg1), and transforming growth factor (TGFβ) were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 and GFAP-immunoreactivity were assessed by immunocytochemistry. Results The mRNA expression IL1β, IL6, NF-κB, and MHCII increased in the hippocampus of male but not in female pups from MPFR. In addition, there was an increase in the percentage of GFAP and Iba1-immupositive cells in the dentate gyrus compared to controls, indicating an inflammatory response in the brain. On the other hand, liraglutide treatment prevented the neuroinflammatory process, promoting the production of anti-inflammatory molecules such as IL10, TGFβ, and arginase 1, and decreasing the number and reactivity of microglial cells and astrocytes in the hippocampus of male pups. Conclusion Therefore, the GLP-1 analog, liraglutide, emerges as neuroprotective drug that minimizes the harmful effects of maternal food restriction, decreasing neuroinflammation in the hippocampus in a very early stage.
Collapse
Affiliation(s)
- Y Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain.
| | - L Toba
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - J Fandiño
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - L C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, E-28002, Madrid, Spain.,Centro de Investigación en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - F Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| |
Collapse
|
87
|
Zanuzzi CN, Nishida F, Sisti MS, Barbeito CG, Portiansky EL. Reactivity of microglia and astrocytes after an excitotoxic injury induced by kainic acid in the rat spinal cord. Tissue Cell 2018; 56:31-40. [PMID: 30736902 DOI: 10.1016/j.tice.2018.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023]
Abstract
After injury of the nervous system glial cells react according to the stimuli by modifying their morphology and function. Glia activation was reported in different kainic acid (KA)-induced neurodegeneration models. Here, we describe glial morphometric changes occurring in an excitotoxic KA-induced cervical spinal cord injury model. Concomitant degenerative and apoptotic processes are also reported. Male rats injected at the spinal cord C5 segment either with KA or saline were euthanized at post-injection (PI) days 1, 2, 3 or 7. Anti-IBA-1 and anti-GFAP antibodies were used to identify microglia and activated astrocytes, respectively, and to morphometrically characterized them. Fluoro-Jade B staining and TUNEL reaction were used to determine neuronal and glial degeneration and apoptosis. KA-injected group showed a significant increase in microglia number at the ipsilateral side by PI day 3. Different microglia reactive phenotypes were observed. Reactive microglia was still present by PI day 7. Astrocytes in KA-injected group showed a biphasic increase in number at PI days 1 and 3. Degenerative and apoptotic events were only observed in KA-injected animals, increasing mainly by PI day 1. Understanding the compromise of glia in different neurodegenerative processes may help to define possible common or specific therapeutic approaches directed towards neurorestorative strategies.
Collapse
Affiliation(s)
- Carolina Natalia Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - María Susana Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - Claudio Gustavo Barbeito
- Laboratory of Descriptive, Experimental and Comparative, Histology and Embriology, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - Enrique Leo Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| |
Collapse
|
88
|
Minakova E, Warner BB. Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Res 2018; 110:1539-1550. [PMID: 30430765 DOI: 10.1002/bdr2.1416] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Maternal immune activation (MIA) refers to a maternal immune system triggered by infectious or infectious-like stimuli. A cascade of cytokines and immunologic alterations are transmitted to the fetus, resulting in adverse phenotypes most notably in the central nervous system. Epidemiologic studies implicate maternal infections in a variety of neuropsychiatric disorders, most commonly autism spectrum disorders and schizophrenia. In animal models, MIA causes neurochemical and anatomic changes in the brain that correspond to those found in humans with the disorders. As our understanding of the interactions between environment, genetics, and immune system grows, the role of alternative, noninfectious risk factors, such as prenatal stress, obesity, and the gut microbiome also becomes clearer. This review considers how infectious and noninfectious etiologies activate the maternal immune system. Their impact on fetal programming and neuropsychiatric disorders in offspring is examined in the context of human and animal studies.
Collapse
Affiliation(s)
- Elena Minakova
- Department of Pediatrics, School of Medicine, Washington University in St Louis, Saint Louis, Missouri
| | - Barbara B Warner
- Department of Pediatrics, School of Medicine, Washington University in St Louis, Saint Louis, Missouri
| |
Collapse
|
89
|
Tang M, Dang R, Liu S, Zhang M, Zheng Y, Yang R, Yin T. Ω-3 fatty acids-supplementary in gestation alleviates neuroinflammation and modulates neurochemistry in rats. Lipids Health Dis 2018; 17:247. [PMID: 30390665 PMCID: PMC6215348 DOI: 10.1186/s12944-018-0894-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background The mechanisms underlying the association between immune activation and postpartum depression remained elusive. Although Ω-3 fatty acids possess anti-inflammatory properties, there is limited evidence directly linking the modulating effects of Ω-3 fatty acids on neuroimmune and neurochemistry to the antidepressant actions. Methods A between-groups design was used to assess the effects of reproductive status (virgin or parous) and Ω-3 fatty acids content (control and supplementary). Serum inflammatory cytokine levels (IL-1a, IL-1β, IL-2, IL-6, IL-12, TNF-a, IFN-γ) were evaluated using the Bio-Plex Luminex System. Moreover, we also measured the protein levels of Purinergic type 2X7 receptor (P2X7R), NOD-like receptor pyrin domain containing 3 (NLRP3) and Nuclear factor-kappaB (NF-κB). Lastly, we assessed the function of various neurotransmitter systems to link the inflammatory response and neurotransmitter metabolism. Results Pro-inflammatory cyrokines, including IL-1a, IL-6, TNF-a and IFN-γ were markedly induced in the serum of parous rats, although no significantly depressive-like behavior was found. Meanwhile, NLRP3 and NF-κB were decreased in certain brain areas. Moreover, gestational stress significantly induced neurochemical disturbance, which is partly restored by Ω-3 fatty acids supplementation. Conclusions These findings strengthen the link between inflammation, neurochemistry and postpartum depression, and further provide novel insights into the antidepressant effect of Ω-3 fatty acids.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi Zheng
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 XiangChun Road, Changsha, 410008, People's Republic of China
| | - Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tao Yin
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
90
|
Sonego AB, Prado DS, Vale GT, Sepulveda-Diaz JE, Cunha TM, Tirapelli CR, Del Bel EA, Raisman-Vozari R, Guimarães FS. Cannabidiol prevents haloperidol-induced vacuos chewing movements and inflammatory changes in mice via PPARγ receptors. Brain Behav Immun 2018; 74:241-251. [PMID: 30217539 DOI: 10.1016/j.bbi.2018.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/11/2018] [Accepted: 09/10/2018] [Indexed: 12/26/2022] Open
Abstract
The chronic use of drugs that reduce the dopaminergic neurotransmission can cause a hyperkinetic movement disorder called tardive dyskinesia (TD). The pathophysiology of this disorder is not entirely understood but could involve oxidative and neuroinflammatory mechanisms. Cannabidiol (CBD), the major non-psychotomimetic compound present in Cannabis sativa plant, could be a possible therapeutic alternative for TD. This phytocannabinoid shows antioxidant, anti-inflammatory and antipsychotic properties and decreases the acute motor effects of classical antipsychotics. The present study investigated if CBD would attenuate orofacial dyskinesia, oxidative stress and inflammatory changes induced by chronic administration of haloperidol in mice. Furthermore, we verified in vivo and in vitro (in primary microglial culture) whether these effects would be mediated by PPARγ receptors. The results showed that the male Swiss mice treated daily for 21 days with haloperidol develop orofacial dyskinesia. Daily CBD administration before each haloperidol injection prevented this effect. Mice treated with haloperidol showed an increase in microglial activation and inflammatory mediators in the striatum. These changes were also reduced by CBD. On the other hand, the levels of the anti-inflammatory cytokine IL-10 increased in the striatum of animals that received CBD and haloperidol. Regarding oxidative stress, haloperidol induced lipid peroxidation and reduced catalase activity. This latter effect was attenuated by CBD. The combination of CBD and haloperidol also increased PGC-1α mRNA expression, a co-activator of PPARγ receptors. Pretreatment with the PPARγ antagonist, GW9662, blocked the behavioural effect of CBD in our TD model. CBD also prevented LPS-stimulated microglial activation, an effect that was also antagonized by GW9662. In conclusion, our results suggest that CBD could prevent haloperidol-induced orofacial dyskinesia by activating PPARγ receptors and attenuating neuroinflammatory changes in the striatum.
Collapse
Affiliation(s)
- Andreza B Sonego
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil; Sorbonne Universités UPMC UMR S 1127, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France.
| | - Douglas S Prado
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil
| | - Gabriel T Vale
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Brazil
| | - Julia E Sepulveda-Diaz
- Sorbonne Universités UPMC UMR S 1127, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Thiago M Cunha
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil
| | - Carlos R Tirapelli
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Brazil
| | - Elaine A Del Bel
- Department of Morphology, Physiology and Basic Pathology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Universités UPMC UMR S 1127, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Francisco S Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
91
|
Schroeder M, Jakovcevski M, Polacheck T, Drori Y, Ben-Dor S, Röh S, Chen A. Sex dependent impact of gestational stress on predisposition to eating disorders and metabolic disease. Mol Metab 2018; 17:1-16. [PMID: 30174229 PMCID: PMC6197785 DOI: 10.1016/j.molmet.2018.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Vulnerability to eating disorders (EDs) is broadly assumed to be associated with early life stress. However, a careful examination of the literature shows that susceptibility to EDs may depend on the type, severity and timing of the stressor and the sex of the individual. We aimed at exploring the link between chronic prenatal stress and predisposition to EDs and metabolic disease. METHODS We used a chronic variable stress protocol during gestation to explore the metabolic response of male and female offspring to food restriction (FR), activity-based anorexia (ABA), binge eating (BE) and exposure to high fat (HF) diet. RESULTS Contrary to controls, prenatally stressed (PNS) female offspring showed resistance to ABA and BE and displayed a lower metabolic rate leading to hyperadiposity and obesity on HF diet. Male PNS offspring showed healthy responses to FR and ABA, increased propensity to binge and improved coping with HF compared to controls. We found that long-lasting abnormal responses to metabolic challenge are linked to fetal programming and adult hypothalamic dysregulation in PNS females, resulting from sexually dimorphic adaptations in placental methylation and gene expression. CONCLUSIONS Our results show that maternal stress may have variable and even opposing effects on ED risk, depending on the ED and the sex of the offspring.
Collapse
Affiliation(s)
- Mariana Schroeder
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany.
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Tamar Polacheck
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yonat Drori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Biological Services, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany.
| |
Collapse
|
92
|
Rodríguez-Arias M, Montagud-Romero S, Guardia Carrión AM, Ferrer-Pérez C, Pérez-Villalba A, Marco E, López Gallardo M, Viveros MP, Miñarro J. Social stress during adolescence activates long-term microglia inflammation insult in reward processing nuclei. PLoS One 2018; 13:e0206421. [PMID: 30365534 PMCID: PMC6203396 DOI: 10.1371/journal.pone.0206421] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
The experience of social stress during adolescence is associated with higher vulnerability to drug use. Increases in the acquisition of cocaine self-administration, in the escalation of cocaine-seeking behavior, and in the conditioned rewarding effects of cocaine have been observed in rodents exposed to repeated social defeat (RSD). In addition, prolonged or severe stress induces a proinflammatory state with microglial activation and increased cytokine production. The aim of the present work was to describe the long-term effects induced by RSD during adolescence on the neuroinflammatory response and synaptic structure by evaluating different glial and neuronal markers. In addition to an increase in the conditioned rewarding effects of cocaine, our results showed that RSD in adolescence produced inflammatory reactivity in microglia that is prolonged into adulthood, affecting astrocytes and neurons of two reward-processing areas of the brain (the prelimbic cortex, and the nucleus accumbens core). Considered as a whole these results suggest that social stress experience modulates vulnerability to suffer a loss of glia-supporting functions and neuronal functional synaptic density due to drug consumption in later life.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
- * E-mail:
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | | | - Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Ana Pérez-Villalba
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eva Marco
- Department of Animal Physiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | | | - María-Paz Viveros
- Department of physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
93
|
Abstract
While sex differences in the peripheral immune response have been studied extensively, sex differences in the neuroimmune response, including glial activation and associated cytokine production in the brain, is a recently emerging field. Advances in our understanding of sex differences in the neuroimmune response have important implications for understanding how neural circuits are shaped during early brain development, how activation of the immune system may impact cognitive function and behavior, and how inflammation may be associated with the risk of mental health disorders that have strong sex-biases. The goal of this mini review is to highlight recent work in the field of sex differences in neuroimmune function, with a particular focus on how microglia function is influenced by age and sex hormone exposure.
Collapse
Affiliation(s)
- Brittany F Osborne
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| | - Alexandra Turano
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| | - Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| |
Collapse
|
94
|
Schepanski S, Buss C, Hanganu-Opatz IL, Arck PC. Prenatal Immune and Endocrine Modulators of Offspring's Brain Development and Cognitive Functions Later in Life. Front Immunol 2018; 9:2186. [PMID: 30319639 PMCID: PMC6168638 DOI: 10.3389/fimmu.2018.02186] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
Milestones of brain development in mammals are completed before birth, which provide the prerequisite for cognitive and intellectual performances of the offspring. Prenatal challenges, such as maternal stress experience or infections, have been linked to impaired cognitive development, poor intellectual performances as well as neurodevelopmental and psychiatric disorders in the offspring later in life. Fetal microglial cells may be the target of such challenges and could be functionally modified by maternal markers. Maternal markers can cross the placenta and reach the fetus, a phenomenon commonly referred to as “vertical transfer.” These maternal markers include hormones, such as glucocorticoids, and also maternal immune cells and cytokines, all of which can be altered in response to prenatal challenges. Whilst it is difficult to discriminate between the maternal or fetal origin of glucocorticoids and cytokines in the offspring, immune cells of maternal origin—although low in frequency—can be clearly set apart from offspring's cells in the fetal and adult brain. To date, insights into the functional role of these cells are limited, but it is emergingly recognized that these maternal microchimeric cells may affect fetal brain development, as well as post-natal cognitive performances and behavior. Moreover, the inheritance of vertically transferred cells across generations has been proposed, yielding to the presence of a microchiome in individuals. Hence, it will be one of the scientific challenges in the field of neuroimmunology to identify the functional role of maternal microchimeric cells as well as the brain microchiome. Maternal microchimeric cells, along with hormones and cytokines, may induce epigenetic changes in the fetal brain. Recent data underpin that brain development in response to prenatal stress challenges can be altered across several generations, independent of a genetic predisposition, supporting an epigenetic inheritance. We here discuss how fetal brain development and offspring's cognitive functions later in life is modulated in the turnstile of prenatal challenges by introducing novel and recently emerging pathway, involving maternal hormones and immune markers.
Collapse
Affiliation(s)
- Steven Schepanski
- Laboratory of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Buss
- Institute of Medical Psychology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Development, Health, and Disease Research Program, University of California, Irvine, Orange, CA, United States
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C Arck
- Laboratory of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
95
|
Rosin JM, Kurrasch DM. Bisphenol A and microglia: could microglia be responsive to this environmental contaminant during neural development? Am J Physiol Endocrinol Metab 2018; 315:E279-E285. [PMID: 29812986 DOI: 10.1152/ajpendo.00443.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a growing interest in the functional role of microglia in the developing brain. In our laboratory, we have become particularly intrigued as to whether fetal microglia in the embryonic brain are susceptible to maternal challenges in utero (e.g., maternal infection, stress) and, if so, whether their precocious activation could then adversely influence brain development. One such challenge that is newly arising in this field is whether microglia might be downstream targets to endocrine-disrupting chemicals, such as the plasticizer bisphenol A (BPA), which functions in part by mimicking estrogen structure and function. A growing body of evidence demonstrates that gestational exposure to BPA has adverse effects on brain development, although the exact mechanisms are still emerging. Given that microglia express estrogen receptors and steroid-producing enzymes, microglia might be an unappreciated target of BPA. Mechanistically, we propose that BPA binding to estrogen receptors within microglia initiates transcription of downstream target genes, which then leads to activation of microglia that can then perhaps adversely influence brain development. Here, we first briefly outline the current understanding of how microglia may influence brain development and then describe how this literature overlaps with our understanding of BPA's effects during similar time points. We also outline the current literature demonstrating that BPA exposure affects microglia. We conclude by discussing our thoughts on the mechanisms through which exposure to BPA could disrupt normal microglia functions, ultimately affecting brain development that could potentially lead to lasting behavioral effects and perhaps even neuroendocrine diseases such as obesity.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
96
|
Rosin JM, Kurrasch DM. In utero electroporation induces cell death and alters embryonic microglia morphology and expression signatures in the developing hypothalamus. J Neuroinflammation 2018; 15:181. [PMID: 29895301 PMCID: PMC5998590 DOI: 10.1186/s12974-018-1213-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
Background Since its inception in 2001, in utero electroporation (IUE) has been widely used by the neuroscience community. IUE is a technique developed to introduce plasmid DNA into embryonic mouse brains without permanently removing the embryos from the uterus. Given that IUE labels cells that line the ventricles, including radial fibers and migrating neuroblasts, this technique is an excellent tool for studying factors that govern neural cell fate determination and migration in the developing mouse brain. Whether IUE has an effect on microglia, the immune cells of the central nervous system (CNS), has yet to be investigated. Methods We used IUE and the pCIG2, pCIC-Ascl1, or pRFP-C-RS expression vectors to label radial glia lining the ventricles of the embryonic cortex and/or hypothalamus. Specifically, we conducted IUE at E14.5 and harvested the brains at E15.5 or E17.5. Immunohistochemistry, along with cytokine and chemokine analyses, were performed on embryonic brains with or without IUE exposure. Results IUE using the pCIG2, pCIC-Ascl1, or pRFP-C-RS vectors alone altered microglia morphology, where the majority of microglia near the ventricles were amoeboid and displayed altered expression signatures, including the upregulation of Cd45 and downregulation of P2ry12. Moreover, IUE led to increases in P2ry12− cells that were Iba1+/IgG+ double-positive in the brain parenchyma and resembled macrophages infiltrating the brain proper from the periphery. Furthermore, IUE resulted in a significant increase in cell death in the developing hypothalamus, with concomitant increases in cytokines and chemokines known to be released during pro-inflammatory states (IL-1β, IL-6, MIP-2, RANTES, MCP-1). Interestingly, the cortex was protected from elevated cell death following IUE, implying that microglia that reside in the hypothalamus might be particularly sensitive during embryonic development. Conclusions Our results suggest that IUE might have unintended consequences of activating microglia in the embryonic brain, which could have long-term effects, particularly within the hypothalamus. Electronic supplementary material The online version of this article (10.1186/s12974-018-1213-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Drive NW, Room HS2215, Calgary, Alberta, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Drive NW, Room HS2215, Calgary, Alberta, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
97
|
Early Maternal Deprivation Induces Microglial Activation, Alters Glial Fibrillary Acidic Protein Immunoreactivity and Indoleamine 2,3-Dioxygenase during the Development of Offspring Rats. Mol Neurobiol 2018; 56:1096-1108. [PMID: 29873040 DOI: 10.1007/s12035-018-1161-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
Maternal deprivation (MD) induces behavioral changes and impacts brain circuits that could be associated with the pathophysiology of depression. This study investigated the markers of microglia and astrocyte activation as well as indoleamine 2,3-dioxygenase (IDO) expression in developmental programming after early life MD (on postnatal days (PNDs) 20, 30, 40, and 60). On PND 60, the rats that were subjected to MD displayed depressive-like behavior. On PND 10, it was found that there was a decrease in the level of glial fibrillary acidic protein (GFAP) immunopositive cells, a decrease in the level of IDO expression, and an increase in the level of Iba-1 (microglial marker) in the hippocampus of rats that were subjected to MD. On PND 20, levels of GFAP were also found to have decreased in the hippocampus, and there was an increase in the level of Iba-1 in the hippocampus. AIF-1 (microglial marker) expression was observed in the PFC following MD. On PND 30, the levels of Iba-1 remained elevated. On PND 40, the levels of GFAP were found to have increased in the hippocampus of rats that were subjected to MD. On PND 60, the levels of GFAP and AIF-1 remained elevated following MD. These results suggest that early life stress induces negative developmental programming in rats, as demonstrated by depressive-like behavior in adult life. Moreover, MD increases microglial activation in both early and late developmental phases. The levels of GFAP and IDO decreased in the early stages but were found to be higher in later developmental periods. These findings suggest that MD could differentially affect the expression of the IDO enzyme, astrocytes, and microglial activation depending on the neurodevelopmental period. The onset of an inflammatory state from resident brain cells could be associated with the activation of the kynurenine pathway and the development of depressive behavior in adulthood.
Collapse
|
98
|
Differential behavioral and glial responses induced by dopaminergic mechanisms in the iNOS knockout mice. Behav Brain Res 2018; 350:44-53. [PMID: 29751018 DOI: 10.1016/j.bbr.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/05/2018] [Accepted: 05/03/2018] [Indexed: 11/23/2022]
Abstract
The interaction between distinctive nitric oxide synthase (NOS) isoforms and the dopamine system provides new avenues to the development of pharmacological tools for the pathophysiological conditions of the dopaminergic system. Our aim was to investigate the influences of dopamine-induced effects in inducible NOS knockout (iNOS KO) mice. In order to characterize iNOS KO mice phenotype, the animals were submitted to the basal analyses of motor, sensorimotor and sensorial abilities. Pharmacological challenging of the dopaminergic system included the investigation of amphetamine-induced prepulse inhibition (PPI) disruption, haloperidol-induced catalepsy, reserpine-induced oral involuntary movements and hyperlocomotion induced by amphetamine in reserpine treated mice. The iNOS KO mice showed significant reduction of spontaneous motor activity, but there was no significant difference in sensorimotor or sensorial responses of iNOS KO mice compared to wild type (WT). Regarding the dopaminergic system, iNOS KO mice showed a significant increase of haloperidol-induced catalepsy. This effect was confirmed through an iNOS pharmacological inhibitor (1400 W) in WT mice. In addition, iNOS KO reserpine treated mice showed reduced oral involuntary movements and amphetamine-induced hyperlocomotion. Knowing that iNOS is mainly expressed in glial cells we analyzed the immunoreactivity (ir) for GFAP (astrocyte marker) and IBA-1 (microglial marker) in the striatum, an area enrolled in motor planning among other functions. iNOS KO presented reduced GFAP-ir and IBA-1-ir compared with WT. Reserpine treatment increased GFAP-ir in both WT and iNOS KO. However, these effects were slighter in iNOS KO. Activated state of microglia was increased by reserpine only in WT mice. Our results further demonstrated that the absence of iNOS interfered with dopamine-mediated behavioral and molecular responses. These results increase the understanding of the dopamine and NO system interaction, which is useful for the management of the dopamine-related pathologies.
Collapse
|
99
|
Zinni M, Colella M, Batista Novais AR, Baud O, Mairesse J. Modulating the Oxytocin System During the Perinatal Period: A New Strategy for Neuroprotection of the Immature Brain? Front Neurol 2018; 9:229. [PMID: 29706926 PMCID: PMC5908892 DOI: 10.3389/fneur.2018.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Oxytocin is a neurohypophysal hormone known for its activity during labor and its role in lactation. However, the function of oxytocin (OTX) goes far beyond the peripheral regulation of reproduction, and the central effects of OTX have been extensively investigated, since it has been recognized to influence the learning and memory processes. OTX has also prominent effects on social behavior, anxiety, and autism. Interaction between glucocorticoids, OTX, and maternal behavior may have long-term effects on the developmental program of the developing brain subjected to adverse events during pre and perinatal periods. OTX treatment in humans improves many aspects of social cognition and behavior. Its effects on the hypothalamic–pituitary–adrenal axis and inflammation appear to be of interest in neonates because these properties may confer benefits when the perinatal brain has been subjected to injury. Indeed, early life inflammation and abnormal adrenal response to stress have been associated with an abnormal white matter development. Recent investigations demonstrated that OTX is involved in the modulation of microglial reactivity in the developing brain. This review recapitulates state-of-the art data supporting the hypothesis that the OTX system could be considered as an innovative candidate for neuroprotection, especially in the immature brain.
Collapse
Affiliation(s)
- Manuela Zinni
- INSERM U1141 Protect, Paris-Diderot University, Paris, France
| | - Marina Colella
- INSERM U1141 Protect, Paris-Diderot University, Paris, France
| | - Aline Rideau Batista Novais
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,Neonatal Intensive Care Unit, Robert Debré Children's Hospital, Paris, France
| | - Olivier Baud
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,University of Geneva, Geneva, Switzerland.,Division of Neonatology, Geneva Children's Hospital, Geneva, Switzerland
| | - Jérôme Mairesse
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,University of Geneva, Geneva, Switzerland
| |
Collapse
|
100
|
Lenz KM, Nelson LH. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function. Front Immunol 2018; 9:698. [PMID: 29706957 PMCID: PMC5908908 DOI: 10.3389/fimmu.2018.00698] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Lars H Nelson
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|