51
|
Elalouf A, Maoz H, Rosenfeld AY. Bioinformatics-Driven mRNA-Based Vaccine Design for Controlling Tinea Cruris Induced by Trichophyton rubrum. Pharmaceutics 2024; 16:983. [PMID: 39204328 PMCID: PMC11357599 DOI: 10.3390/pharmaceutics16080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Tinea cruris, a dermatophyte fungal infection predominantly caused by Trichophyton rubrum and Epidermophyton floccosum, primarily affects the groin, pubic region, and adjacent thigh. Its recurrence is frequent, attributable to repeated fungal infections in susceptible individuals, especially those with onychomycosis or tinea pedis, which act as reservoirs for dermatophytes. Given the persistent nature of tinea cruris, vaccination emerges as a promising strategy for fungal infection management, offering targeted, durable protection against various fungal species. Vaccines stimulate both humoral and cell-mediated immunity and are administered prophylactically to prevent infections while minimizing the risk of antifungal resistance development. Developing fungal vaccines is challenging due to the thick fungal cell wall, similarities between fungal and human cells, antigenic variation, and evolutionary resemblance to animals, complicating non-toxic target identification and T-cell response variability. No prior research has shown an mRNA vaccine for T. rubrum. Hence, this study proposes a novel mRNA-based vaccine for tinea cruris, potentially offering long-term immunity and reducing reliance on antifungal medications. This study explores the complete proteome of T. rubrum, identifying potential protein candidates for vaccine development through reverse vaccinology. Immunogenic epitopes from these candidates were mapped and integrated into multitope vaccines and reverse translated to construct mRNA vaccines. Then, the mRNA was translated and computationally assessed for physicochemical, chemical, and immunological attributes. Notably, 1,3-beta-glucanosyltransferase, CFEM domain-containing protein, cell wall galactomannoprotein, and LysM domain-containing protein emerged as promising vaccine targets. Antigenic, immunogenic, non-toxic, and non-allergenic cytotoxic T lymphocyte, helper T lymphocyte, and B lymphocyte epitopes were selected and linked with appropriate linkers and Toll-like receptor (TLR) agonist adjuvants to formulate vaccine candidates targeting T. rubrum. The protein-based vaccines underwent reverse translation to construct the mRNA vaccines, which, after inoculation, were translated again by host ribosomes to work as potential components for triggering the immune response. After that, molecular docking, normal mode analysis, and molecular dynamic simulation confirmed strong binding affinities and stable complexes between vaccines and TLR receptors. Furthermore, immune simulations of vaccines with and without adjuvant demonstrated activation of immune responses, evidenced by elevated levels of IgG1, IgG2, IgM antibodies, cytokines, and interleukins. There was no significant change in antibody production between vaccines with and without adjuvants, but adjuvants are crucial for activating the innate immune response via TLRs. Although mRNA vaccines hold promise against fungal infections, further research is essential to assess their safety and efficacy. Experimental validation is crucial for evaluating their immunogenicity, effectiveness, and safety.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan 5290002, Israel; (H.M.); (A.Y.R.)
| | | | | |
Collapse
|
52
|
Oladipo EK, Ojo TO, Elegbeleye OE, Bolaji OQ, Oyewole MP, Ogunlana AT, Olalekan EO, Abiodun B, Adediran DA, Obideyi OA, Olufemi SE, Salamatullah AM, Bourhia M, Younous YA, Adelusi TI. Exploring the nuclear proteins, viral capsid protein, and early antigen protein using immunoinformatic and molecular modeling approaches to design a vaccine candidate against Epstein Barr virus. Sci Rep 2024; 14:16798. [PMID: 39039173 PMCID: PMC11263613 DOI: 10.1038/s41598-024-66828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024] Open
Abstract
The available Epstein Barr virus vaccine has tirelessly harnessed the gp350 glycoprotein as its target epitope, but the result has not been preventive. Right here, we designed a global multi-epitope vaccine for EBV; with special attention to making sure all strains and preventive antigens are covered. Using a robust computational vaccine design approach, our proposed vaccine is armed with 6-16 mers linear B-cell epitopes, 4-9 mer CTL epitopes, and 8-15 mer HTL epitopes which are verified to induce interleukin 4, 10 & IFN-gamma. We employed deep computational mining coupled with expert intelligence in designing the vaccine, using human Beta defensin-3-which has been reported to induce the same TLRs as EBV-as the adjuvant. The tendency of the vaccine to cause autoimmune disorder is quenched by the assurance that the construct contains no EBNA-1 homolog. The protein vaccine construct exhibited excellent physicochemical attributes such as Aliphatic index 59.55 and GRAVY - 0.710; and a ProsaWeb Z score of - 3.04. Further computational analysis revealed the vaccine docked favorably with EBV indicted TLR 1, 2, 4 & 9 with satisfactory interaction patterns. With global coverage of 85.75% and the stable molecular dynamics result obtained for the best two interactions, we are optimistic that our nontoxic, non-allergenic multi-epitope vaccine will help to ameliorate the EBV-associated diseases-which include various malignancies, tumors, and cancers-preventively.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, 232104, Nigeria
| | - Taiwo Ooreoluwa Ojo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Oluwabamise Emmanuel Elegbeleye
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Olawale Quadri Bolaji
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Moyosoluwa Precious Oyewole
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | - Abdeen Tunde Ogunlana
- Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Emmanuel Obanijesu Olalekan
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Bamidele Abiodun
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Daniel Adewole Adediran
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | | | - Seun Elijah Olufemi
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | | | - Temitope Isaac Adelusi
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria.
- Department of Surgery, School of Medicine, University of Connecticut Health, Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
53
|
Naskar S, Harsukhbhai Chandpa H, Agarwal S, Meena J. Super epitope dengue vaccine instigated serotype independent immune protection in-silico. Vaccine 2024; 42:3857-3873. [PMID: 38616437 DOI: 10.1016/j.vaccine.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024]
Abstract
Dengue becomes the most common life-threatening infectious arbovirus disease globally, with prevalence in the tropical and subtropical areas. The major clinical features include dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), a condition of hypovolemic shock. Four different serotypes of the dengue virus, known as dengue virus serotype (DENV)- 1, 2, 3 and 4 can infect humans. Only one vaccine is available in the market, named Dengvaxia by Sanofi Pasteur, but there is no desired outcome of this treatment due the antibody dependent enhancement (ADE) of the multiple dengue serotypes. As of now, there is no cure against dengue disease. Our goal in this work was to create a subunit vaccine based on several epitopes that would be effective against every serotype of the dengue virus. Here, computational methods like- immunoinformatics and bioinformatics were implemented to find out possible dominant epitopes. A total of 21 epitopes were chosen using various in-silico techniques from the expected 133 major histocompatibility complex (MHC)- I and major histocompatibility complex (MHC)- II epitopes, along with 95 B-cell epitopes which were greatly conserved. Immune stimulant, non-allergenic and non-toxic immunodominant epitopes (super epitopes) with a suitable adjuvant (Heparin-Binding Hemagglutinin Adhesin, HBHA) were used to construct the vaccine. Following the physicochemical analysis, vaccine construct was docked with Toll-like receptors (TLRs) to predict the immune stimulation. Consequently, the optimal docked complex that demonstrated the least amount of ligand-receptor complex deformability was used to conduct the molecular dynamics analysis. By following the codon optimization, the final vaccine molecule was administered into an expressing vector to perform in-silico cloning. The robust immune responses were generated in the in-silico immune simulation analysis. Hence, this study provides a hope to control the dengue infections. For validation of the immune outcomes, in-vitro as well as in-vivo investigations are essential.
Collapse
Affiliation(s)
- Shovan Naskar
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shalini Agarwal
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
54
|
Agarwal S, Harsukhbhai Chandpa H, Naskar S, Lal Meena C, Kumar Panda A, Meena J. Dominant B cell-T cell epitopes instigated robust immune response in-silico against Scrub Typhus. Vaccine 2024; 42:3899-3915. [PMID: 38719691 DOI: 10.1016/j.vaccine.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Scrub typhus, a potentially life-threatening infectious disease, is attributed to bacteria Orientia tsutsugamushi (O. tsutsugamushi). The transmission of this illness to humans occurs through the bite of infected chiggers, which are the larval forms of mites belonging to the genus Leptotrombidium. In this research, we developed a subunit vaccine specifically designed to target outer membrane proteins. Immunodominant cytotoxic T-lymphocytes (CTLs), B- lymphocytes (BCLs), and major histocompatibility complex (MHC)- II epitopes were identified using machine learning and bioinformatics approaches. These epitopes were arranged in different combinations with the help of suitable linkers like AAY, KK, GPGPG and adjuvant (cholera toxin B) that resulted in a vaccine construct. Physiochemical properties were assessed, where the predicted solubility (0.571) was higher than threshold value. Tertiary structure was predicted using I-TASSER web server and evaluated using Ramachandran plot (94 % residues in most favourable region) and z-score (-6.04), which had shown the structure to have good stability and residue arrangement. Molecular docking with immune receptors, Toll-like receptor (TLR)-2 and -4 showed good residue interaction with 13 and 5 hydrogen bonds respectively. Molecular dynamics simulations of receptor-ligand complex provided the idea about the strong interaction having 1.524751 × 10-5 eigenvalue. Amino acid sequence of vaccine was converted to nucleotide sequence and underwent codon optimization. The optimized codon sequence was used for in-silico cloning, which provided idea about the possibility of synthesis of vaccine using E. coli as host. Overall, this study provided a promising blueprint for a scrub typhus vaccine, although experimental validation is needed for confirmation. Furthermore, it is crucial to acknowledge that while bioinformatics provides valuable insights, in-vitro and in-vivo studies are imperative for a comprehensive evaluation of vaccine candidate. Thus, the integration of computational predictions with empirical research is essential to validate the efficacy, safety, and real-world applicability of the designed vaccine against Scrub Typhus. Nevertheless, the findings are good to carry forward for in-vitro and in-vivo investigations.
Collapse
Affiliation(s)
- Shalini Agarwal
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shovan Naskar
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Chhuttan Lal Meena
- Drug Design Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amulya Kumar Panda
- Panacea Biotec Limited, Mohan Cooperative Industrial Estate, Badarpur New Delhi 110044, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
55
|
Sethi G, Varghese RP, Lakra AK, Nayak SS, Krishna R, Hwang JH. Immunoinformatics and structural aided approach to develop multi-epitope based subunit vaccine against Mycobacterium tuberculosis. Sci Rep 2024; 14:15923. [PMID: 38987613 PMCID: PMC11237054 DOI: 10.1038/s41598-024-66858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis (Mtb), which is one of the prominent reasons for the death of millions worldwide. The bacterium has a substantially higher mortality rate than other bacterial diseases, and the rapid rise of drug-resistant strains only makes the situation more concerning. Currently, the only licensed vaccine BCG (Bacillus Calmette-Guérin) is ineffective in preventing adult pulmonary tuberculosis prophylaxis and latent tuberculosis re-activation. Therefore, there is a pressing need to find novel and safe vaccines that provide robust immune defense and have various applications. Vaccines that combine epitopes from multiple candidate proteins have been shown to boost immunity against Mtb infection. This study applies an immunoinformatic strategy to generate an adequate multi-epitope immunization against Mtb employing five antigenic proteins. Potential B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes were speculated from the intended proteins and coupled with 50 s ribosomal L7/L12 adjuvant, and the vaccine was constructed. The vaccine's physicochemical profile demonstrates antigenic, soluble, and non-allergic. In the meantime, docking, molecular dynamics simulations, and essential dynamics analysis revealed that the multi-epitope vaccine structure interacted strongly with Toll-like receptors (TLR2 and TLR3). MM-PBSA analysis was performed to ascertain the system's intermolecular binding free energies accurately. The immune simulation was applied to the vaccine to forecast its immunogenic profile. Finally, in silico cloning was used to validate the vaccine's efficacy. The immunoinformatics analysis suggests the multi-epitope vaccine could induce specific immune responses, making it a potential candidate against Mtb. However, validation through the in-vivo study of the developed vaccine is essential to assess its efficacy and immunogenicity profile, which will assure active protection against Mtb.
Collapse
Affiliation(s)
- Guneswar Sethi
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | | | - Avinash Kant Lakra
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | | | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
56
|
Shah M, Sitara F, Sarfraz A, Shehroz M, Wara TU, Perveen A, Ullah N, Zaman A, Nishan U, Ahmed S, Ullah R, Ali EA, Ojha SC. Development of a subunit vaccine against the cholangiocarcinoma causing Opisthorchis viverrini: a computational approach. Front Immunol 2024; 15:1281544. [PMID: 39050853 PMCID: PMC11266093 DOI: 10.3389/fimmu.2024.1281544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Opisthorchis viverrini is the etiological agent of the disease opisthorchiasis and related cholangiocarcinoma (CCA). It infects fish-eating mammals and more than 10 million people in Southeast Asia suffered from opisthorchiasis with a high fatality rate. The only effective drug against this parasite is Praziquantel, which has significant side effects. Due to the lack of appropriate treatment options and the high death rate, there is a dire need to develop novel therapies against this pathogen. In this study, we designed a multi-epitope chimeric vaccine design against O. viverrini by using immunoinformatics approaches. Non-allergenic and immunogenic MHC-1, MHC-2, and B cell epitopes of three candidate proteins thioredoxin peroxidase (Ov-TPx-1), cathepsin F1 (Ov-CF-1) and calreticulin (Ov-CALR) of O. viverrini, were predicted to construct a potent multiepitope vaccine. The coverage of the HLA-alleles of these selected epitopes was determined globally. Four vaccine constructs made by different adjuvants and linkers were evaluated in the context of their physicochemical properties, antigenicity, and allergenicity. Protein-protein docking and MD simulation found that vaccines 3 was more stable and had a higher binding affinity for TLR2 and TLR4 immune receptors. In-silico restriction cloning of vaccine model led to the formation of plasmid constructs for expression in a suitable host. Finally, the immune simulation showed strong immunological reactions to the engineered vaccine. These findings suggest that the final vaccine construct has the potential to be validated by in vivo and in vitro experiments to confirm its efficacy against the CCA causing O. viverrini.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Farva Sitara
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree, Pakistan
| | - Tehreem Ul Wara
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Najeeb Ullah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Aqal Zaman
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Sarfraz Ahmed
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
57
|
Masum MHU, Wajed S, Hossain MI, Moumi NR, Talukder A, Rahman MM. An mRNA vaccine for pancreatic cancer designed by applying in silico immunoinformatics and reverse vaccinology approaches. PLoS One 2024; 19:e0305413. [PMID: 38976715 PMCID: PMC11230540 DOI: 10.1371/journal.pone.0305413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is the most prevalent pancreatic cancer, which is considered a significant global health concern. Chemotherapy and surgery are the mainstays of current pancreatic cancer treatments; however, a few cases are suitable for surgery, and most of the cases will experience recurrent episodes. Compared to DNA or peptide vaccines, mRNA vaccines for pancreatic cancer have more promise because of their delivery, enhanced immune responses, and lower proneness to mutation. We constructed an mRNA vaccine by analyzing S100 family proteins, which are all major activators of receptors for advanced glycation end products. We applied immunoinformatic approaches, including physicochemical properties analysis, structural prediction and validation, molecular docking study, in silico cloning, and immune simulations. The designed mRNA vaccine was estimated to have a molecular weight of 165023.50 Da and was highly soluble (grand average of hydropathicity of -0.440). In the structural assessment, the vaccine seemed to be a well-stable and functioning protein (Z score of -8.94). Also, the docking analysis suggested that the vaccine had a high affinity for TLR-2 and TLR-4 receptors. Additionally, the molecular mechanics with generalized Born and surface area solvation analysis of the "Vaccine-TLR-2" (-141.07 kcal/mol) and "Vaccine-TLR-4" (-271.72 kcal/mol) complexes also suggests a strong binding affinity for the receptors. Codon optimization also provided a high expression level with a GC content of 47.04% and a codon adaptation index score 1.0. The appearance of memory B-cells and T-cells was also observed over a while, with an increased level of helper T-cells and immunoglobulins (IgM and IgG). Moreover, the minimum free energy of the mRNA vaccine was predicted at -1760.00 kcal/mol, indicating the stability of the vaccine following its entry, transcription, and expression. This hypothetical vaccine offers a groundbreaking tool for future research and therapeutic development of pancreatic cancer.
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shah Wajed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Infectiology: Biology of Infectious Diseases, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Md Imam Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nusrat Rahman Moumi
- Medical Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | - Asma Talukder
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Md Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
58
|
Kumar A, Dutt M, Dehury B, Martinez GS, Singh KP, Kelvin DJ. Formulation of next-generation polyvalent vaccine candidates against three important poxviruses by targeting DNA-dependent RNA polymerase using an integrated immunoinformatics and molecular modeling approach. J Infect Public Health 2024; 17:102470. [PMID: 38865776 DOI: 10.1016/j.jiph.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Poxviruses comprise a group of large double-stranded DNA viruses and are known to cause diseases in humans, livestock animals, and other animal species. The Mpox virus (MPXV; formerly Monkeypox), variola virus (VARV), and volepox virus (VPXV) are among the prevalent poxviruses of the Orthopoxviridae genera. The ongoing Mpox infectious disease pandemic caused by the Mpox virus has had a major impact on public health across the globe. To date, only limited repurposed antivirals and vaccines are available for the effective treatment of Mpox and other poxviruses that cause contagious diseases. METHODS The present study was conducted with the primary goal of formulating multi-epitope vaccines against three evolutionary closed poxviruses i.e., MPXV, VARV, and VPXV using an integrated immunoinformatics and molecular modeling approach. DNA-dependent RNA polymerase (DdRp), a potential vaccine target of poxviruses, has been used to determine immunodominant B and T-cell epitopes followed by interactions analysis with Toll-like receptor 2 at the atomic level. RESULTS Three multi-epitope vaccine constructs, namely DdRp_MPXV (V1), DdRp_VARV (V2), and DdRp_VPXV (V3) were designed. These vaccine constructs were found to be antigenic, non-allergenic, non-toxic, and soluble with desired physicochemical properties. Protein-protein docking and interaction profiling analysis depicts a strong binding pattern between the targeted immune receptor TLR2 and the structural models of the designed vaccine constructs, and manifested a number of biochemical bonds (hydrogen bonds, salt bridges, and non-bonded contacts). State-of-the-art all-atoms molecular dynamics simulations revealed highly stable interactions of vaccine constructs with TLR2 at the atomic level throughout the simulations on 300 nanoseconds. Additionally, the outcome of the immune simulation analysis suggested that designed vaccines have the potential to induce protective immunity against targeted poxviruses. CONCLUSIONS Taken together, formulated next-generation polyvalent vaccines were found to have good efficacy against closely related poxviruses (MPXV, VARV, and VPXV) as demonstrated by our extensive immunoinformatics and molecular modeling evaluations; however, further experimental investigations are still needed.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Mansi Dutt
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Gustavo Sganzerla Martinez
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Krishna Pal Singh
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India
| | - David J Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada.
| |
Collapse
|
59
|
Kolla HB, Dutt M, Kumar A, Hebbandi Nanjunadappa R, Karakach T, Singh KP, Kelvin D, Clement Mertens PP, Umeshappa CS. Immuno-informatics study identifies conserved T cell epitopes in non-structural proteins of Bluetongue virus serotypes: formulation of a computationally optimized next-generation broad-spectrum multi-epitope vaccine. Front Immunol 2024; 15:1424307. [PMID: 39011043 PMCID: PMC11246920 DOI: 10.3389/fimmu.2024.1424307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Mansi Dutt
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Anuj Kumar
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Roopa Hebbandi Nanjunadappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Karam Pal Singh
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, India
| | - David Kelvin
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
60
|
Samman N, Mohabatkar H, Behbahani M, Ganjlikhani Hakemi M. Bioinformatics design of a peptide vaccine containing sarcoma antigen NY-SAR-35 epitopes against breast cancer and evaluation of its immunological function in BALB/c mouse model. PLoS One 2024; 19:e0306117. [PMID: 38923980 PMCID: PMC11207152 DOI: 10.1371/journal.pone.0306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The development of a cancer vaccine has become an essential focus in the field of medical biotechnology and immunology. In our study, the NY-SAR-35 cancer/testis antigen was targeted to design a novel peptide vaccine using bioinformatics tools, and BALB/c mice were used to evaluate the vaccine's immunological function. This evaluation involved assessing peptide-specific IgG levels in the serum via ELISA and measuring the levels of IFN-γ, IL-4, and granzyme B in the supernatant of cultured splenocytes. The final vaccine construct consisted of two T lymphocyte epitopes linked by the AAY linker. This construct displayed high antigenicity, non-allergenicity, non-toxicity, stability, and ability to induce IFN-γ and IL-4. It showed stable dynamics with both human MHC-I and II molecules, as well as mouse MHC-II molecules, and revealed strong Van der Waals and electrostatic energies. Emulsifying our peptide vaccine in incomplete Freund's adjuvant resulted in a remarkable increase in the levels of IgG. The splenocytes of mice that received the combination of peptide and adjuvant displayed a noteworthy increase in IFN-γ, IL-4, and granzyme B secretion. Additionally, their lymphocytes exhibited higher proliferation rates compared to the control group. Our data demonstrated that our vaccine could stimulate a robust immune response, making it a promising candidate for cancer prevention. However, clinical trials are necessary to assess its efficacy in humans.
Collapse
Affiliation(s)
- Nour Samman
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mazdak Ganjlikhani Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
61
|
Kaur B, Karnwal A, Bansal A, Malik T. An Immunoinformatic-Based In Silico Identification on the Creation of a Multiepitope-Based Vaccination Against the Nipah Virus. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4066641. [PMID: 38962403 PMCID: PMC11221950 DOI: 10.1155/2024/4066641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024]
Abstract
The zoonotic viruses pose significant threats to public health. Nipah virus (NiV) is an emerging virus transmitted from bats to humans. The NiV causes severe encephalitis and acute respiratory distress syndrome, leading to high mortality rates, with fatality rates ranging from 40% to 75%. The first emergence of the disease was found in Malaysia in 1998-1999 and later in Bangladesh, Cambodia, Timor-Leste, Indonesia, Singapore, Papua New Guinea, Vietnam, Thailand, India, and other South and Southeast Asian nations. Currently, no specific vaccines or antiviral drugs are available. The potential advantages of epitope-based vaccines include their ability to elicit specific immune responses while minimizing potential side effects. The epitopes have been identified from the conserved region of viral proteins obtained from the UniProt database. The selection of conserved epitopes involves analyzing the genetic sequences of various viral strains. The present study identified two B cell epitopes, seven cytotoxic T lymphocyte (CTL) epitopes, and seven helper T lymphocyte (HTL) epitope interactions from the NiV proteomic inventory. The antigenic and physiological properties of retrieved protein were analyzed using online servers ToxinPred, VaxiJen v2.0, and AllerTOP. The final vaccine candidate has a total combined coverage range of 80.53%. The tertiary structure of the constructed vaccine was optimized, and its stability was confirmed with the help of molecular simulation. Molecular docking was performed to check the binding affinity and binding energy of the constructed vaccine with TLR-3 and TLR-5. Codon optimization was performed in the constructed vaccine within the Escherichia coli K12 strain, to eliminate the danger of codon bias. However, these findings must require further validation to assess their effectiveness and safety. The development of vaccines and therapeutic approaches for virus infection is an ongoing area of research, and it may take time before effective interventions are available for clinical use.
Collapse
Affiliation(s)
- Beant Kaur
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Arun Karnwal
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Anu Bansal
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma University, Jimma, Ethiopia
| |
Collapse
|
62
|
Yu C, Wu Q, Xin J, Yu Q, Ma Z, Xue M, Xu Q, Zheng C. Designing a smallpox B-cell and T-cell multi-epitope subunit vaccine using a comprehensive immunoinformatics approach. Microbiol Spectr 2024; 12:e0046524. [PMID: 38700327 PMCID: PMC11237557 DOI: 10.1128/spectrum.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Smallpox is a highly contagious human disease caused by the variola virus. Although the disease was eliminated in 1979 due to its highly contagious nature and historical pathogenicity, with a mortality rate of up to 30%, this virus is an important candidate for biological weapons. Currently, vaccines are the critical measures to prevent this virus infection and spread. In this study, we designed a peptide vaccine using immunoinformatics tools, which have the potential to activate human immunity against variola virus infection efficiently. The design of peptides derives from vaccine-candidate proteins showing protective potential in vaccinia WR strains. Potential non-toxic and nonallergenic T-cell and B-cell binding and cytokine-inducing epitopes were then screened through a priority prediction using special linkers to connect B-cell epitopes and T-cell epitopes, and an appropriate adjuvant was added to the vaccine construction to enhance the immunogenicity of the peptide vaccine. The 3D structure display, docking, and free energy calculation analysis indicate that the binding affinity between the vaccine peptide and Toll-like receptor 3 is high, and the vaccine receptor complex is highly stable. Notably, the vaccine we designed is obtained from the protective protein of the vaccinia and combined with preventive measures to avoid side effects. This vaccine is highly likely to produce an effective and safe immune response against the variola virus infection in the body. IMPORTANCE In this work, we designed a vaccine with a cluster of multiple T-cell/B-cell epitopes, which should be effective in inducing systematic immune responses against variola virus infection. Besides, this work also provides a reference in vaccine design for preventing monkeypox virus infection, which is currently prevalent.
Collapse
Affiliation(s)
- Changqing Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiujuan Yu
- Department of Dermatology, The First People's Hospital of Mudanjiang, Mudanjiang, China
| | - Zhixin Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingyuan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infection Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
63
|
Bhalerao P, Singh S, Prajapati VK, Bhatt TK. Exploring malaria parasite surface proteins to devise highly immunogenic multi-epitope subunit vaccine for Plasmodium falciparum. J Genet Eng Biotechnol 2024; 22:100377. [PMID: 38797552 PMCID: PMC11089370 DOI: 10.1016/j.jgeb.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Malaria has remained a major health concern for decades among people living in tropical and sub-tropical countries. Plasmodium falciparum is one of the critical species that cause severe malaria and is responsible for major mortality. Moreover, the parasite has generated resistance against all WHO recommended drugs and therapies. Therefore, there is an urgent need for preventive measures in the form of reliable vaccines to achieve the target of a malaria-free world. Surface proteins are the preferable choice for subunit vaccine development because they are rapidly detected and engaged by host immune cells and vaccination-induced antibodies. Additionally, abundant surface or membrane proteins may contribute to the opsonization of pathogens by vaccine-induced antibodies. RESULTS In our study, we have listed all those surface proteins from the literature that could be functionally important and essential for infection and immune evasion of the malaria parasite. Eight Plasmodium surface and membrane proteins from the pre-erythrocyte and erythrocyte stages were shortlisted. Thirty-seven epitopes (B-cell, CTL, and HTL epitopes) from these proteins were predicted using immune-informatic tools and joined with suitable peptide linkers to design a vaccine construct. A TLR-4 agonist peptide adjuvant was added at the N-terminus of the multi-epitope series, followed by the PADRE sequence and EAAAK linker. The TLR-4 receptor was docked with the construct's anticipated model structure. The complex of vaccine and TLR-4, with the lowest energy -1514, was found to be stable under simulated physiological settings. CONCLUSION This study has provided a novel multi-epitope construct that may be exploited further for the development of an efficient vaccine for malaria.
Collapse
Affiliation(s)
- Preshita Bhalerao
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
64
|
Kashif M, Waseem M, Subbarao N. In silico prediction of CD8 + and CD4 + T cell epitopes in Leishmania major proteome: Using immunoinformatics. J Mol Graph Model 2024; 129:108759. [PMID: 38492406 DOI: 10.1016/j.jmgm.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The leishmaniases are NDTs (neglected tropical diseases) that affect people all over the world. They are brought on by protozoans from the genus Leishmania and disseminated by phlebotomine flies that are afflicted with the disease. The best option to manage and lower the incidence of these diseases has been thought by the creation of a safe and effective vaccination. This research used an in silico based mining approach to look for high potential epitopes that might bind to MHC Class I and MHC Class II molecules (mainly; HLA-A*02:01 & HLA-DRB1*03:01) from human population in order to promote vaccine development. Based on the presence of signal peptides, GPI anchors, antigenicity predictions, and a subtractive proteomic technique, we have screened 17 putative antigenic proteins from the 8083 total proteins of L. major. After that thorough immunogenic epitope prediction were done using IEDB-AR tools. We isolated five immunogenic epitopes (three 9-mer & two 15-mer) from five antigenic proteins through docking and MD simulation analysis. Finally, these five anticipated epitopes, viz., TLPEIPVNV, ELMAPVFGL, TLAAAVALL, NSINIRLDGVTSAGF and NVPLVVDASSLFRVA have considerably stronger binding potential with their respective alleles and may trigger immunological responses. The goal of this work was to identify MHC restricted epitopes for CD8+ and CD4+ T cells activation using immunoinformatics in order to identify potential vaccine candidates against L. major parasites.
Collapse
Affiliation(s)
- Mohammad Kashif
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mohd Waseem
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
65
|
Banesh S, Gupta N, Reddy CV, Mallikarjunachari U, Patil N, Uddhavesh S, Saudagar P. A novel approach to design chimeric multi epitope vaccine against Leishmania exploiting infected host cell proteome. Heliyon 2024; 10:e31306. [PMID: 38813178 PMCID: PMC11133825 DOI: 10.1016/j.heliyon.2024.e31306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Leishmaniasis is a major infectious disease having high mortality which could be attributed to lack of a suitable vaccine candidate. We propose a novel approach to design multiepitope vaccine to leishmaniasis exploiting specific membrane proteome from infected macrophage from host. The MHC-I, MHC-II and BC epitopes predicted for unique proteins from the infected macrophages and Leishmania and a MEV designed in various combinations (1a-1m). The epitope arrangements 1a, 1k, 1l, and 1 m showed a strong antigenicity profile and immune response. The molecular dynamics simulation indicate the 1k, 1l, and 1 m constructs have strong affinity toward TLR-2, TLR-3, and TLR-4. Overall the structural and immunogenicity profile suggests 1k is top candidate. Further, a computational model system with TLR-2, TLR-3, TLR-4, BCR, MHC-I and MHC-II was generated for 1k construct to understand the MEV interactions with immune components. Dihedral distribution and distance was enumerated to understand the movement of immune components towards 1k. The results indicate 1k has strong affinity for the immune response molecules especially TLR-3, BCR and MHC-II are coming in close contact with the MEV through the simulation. The study suggests that designed multi-epitope vaccine 1k has potential to induce proper immune response but warrants further studies.
Collapse
Affiliation(s)
- Sooram Banesh
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Neharika Gupta
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Chethireddy Vihadhar Reddy
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Uppuladinne Mallikarjunachari
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Nupoor Patil
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Sonavane Uddhavesh
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
66
|
Zhu F, Zhou Z, Ma S, Xu Y, Tan C, Yang H, Zhang P, Qin R, Luo Y, Pan P, Chen J. Design of a cryptococcus neoformans vaccine by subtractive proteomics combined with immunoinformatics. Int Immunopharmacol 2024; 135:112242. [PMID: 38772296 DOI: 10.1016/j.intimp.2024.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The emergence of Cryptococcus neoformans has posed an undeniable burden to many regions worldwide, with its strains mainly entering the lungs through the respiratory tract and spreading throughout the body. Limitations of drug regimens, such as high costs and limited options, have directed our attention toward the promising field of vaccine development. In this study, the subtractive proteomics approach was employed to select target proteins from databases that can accurately cover serotypes A and D of the Cryptococcus neoformans. Further, two multi-epitope vaccines consisting of T and B cell epitopes were demonstrated that they have good structural stability and could bind with immune receptor to induce desired immune responses in silico. After further evaluation, these vaccines show the potential for large-scale production and applicability to the majority of the population of the world. In summary, these two vaccines have been theoretically proven to combat Cryptococcus neoformans infections, awaiting further experimental validation of their actual protective effects.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Caixia Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
67
|
Kumar A, Misra G, Mohandas S, Yadav PD. Multi-epitope vaccine design using in silico analysis of glycoprotein and nucleocapsid of NIPAH virus. PLoS One 2024; 19:e0300507. [PMID: 38728300 PMCID: PMC11086869 DOI: 10.1371/journal.pone.0300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/29/2024] [Indexed: 05/12/2024] Open
Abstract
According to the 2018 WHO R&D Blueprint, Nipah virus (NiV) is a priority disease, and the development of a vaccine against NiV is strongly encouraged. According to criteria used to categorize zoonotic diseases, NiV is a stage III disease that can spread to people and cause unpredictable outbreaks. Since 2001, the NiV virus has caused annual outbreaks in Bangladesh, while in India it has caused occasional outbreaks. According to estimates, the mortality rate for infected individuals ranges from 70 to 91%. Using immunoinformatic approaches to anticipate the epitopes of the MHC-I, MHC-II, and B-cells, they were predicted using the NiV glycoprotein and nucleocapsid protein. The selected epitopes were used to develop a multi-epitope vaccine construct connected with linkers and adjuvants in order to improve immune responses to the vaccine construct. The 3D structure of the engineered vaccine was anticipated, optimized, and confirmed using a variety of computer simulation techniques so that its stability could be assessed. According to the immunological simulation tests, it was found that the vaccination elicits a targeted immune response against the NiV. Docking with TLR-3, 7, and 8 revealed that vaccine candidates had high binding affinities and low binding energies. Finally, molecular dynamic analysis confirms the stability of the new vaccine. Codon optimization and in silico cloning showed that the proposed vaccine was expressed to a high degree in Escherichia coli. The study will help in identifying a potential epitope for a vaccine candidate against NiV. The developed multi-epitope vaccine construct has a lot of potential, but they still need to be verified by in vitro & in vivo studies.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Gauri Misra
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Sreelekshmy Mohandas
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| | - Pragya D. Yadav
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| |
Collapse
|
68
|
Sarfraz A, Qurrat-Ul-Ain Fatima S, Shehroz M, Ahmad I, Zaman A, Nishan U, Tayyab M, Sheheryar, Moura AA, Ullah R, Ali EA, Shah M. Decrypting the multi-genome data for chimeric vaccine designing against the antibiotic resistant Yersinia pestis. Int Immunopharmacol 2024; 132:111952. [PMID: 38555818 DOI: 10.1016/j.intimp.2024.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.
Collapse
Affiliation(s)
- Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | | | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree 47150, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aqal Zaman
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Muhammad Tayyab
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Pakistan
| | - Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | | | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan.
| |
Collapse
|
69
|
Tao Y, Zhang Y, Li Y, Liu Q, Zhu J, Ji M, Feng G, Xu Z. Computer-aided designing of a novel multi‑epitope DNA vaccine against severe fever with thrombocytopenia syndrome virus. BMC Infect Dis 2024; 24:476. [PMID: 38714948 PMCID: PMC11077804 DOI: 10.1186/s12879-024-09361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (Dabie bandavirus), which has become a substantial risk to public health. No specific treatment is available now, that calls for an effective vaccine. Given this, we aimed to develop a multi-epitope DNA vaccine through the help of bioinformatics. The final DNA vaccine was inserted into a special plasmid vector pVAX1, consisting of CD8+ T cell epitopes, CD4+ T cell epitopes and B cell epitopes (six epitopes each) screened from four genome-encoded proteins--nuclear protein (NP), glycoprotein (GP), RNA-dependent RNA polymerase (RdRp), as well as nonstructural protein (NSs). To ascertain if the predicted structure would be stable and successful in preventing infection, an immunological simulation was run on it. In conclusion, we designed a multi-epitope DNA vaccine that is expected to be effective against Dabie bandavirus, but in vivo trials are needed to verify this claim.
Collapse
Affiliation(s)
- Yiran Tao
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yu Zhang
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yumeng Li
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, People's Republic of China
| | - Minjun Ji
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, People's Republic of China
| | - Gaoqian Feng
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhipeng Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China.
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
70
|
Sarvmeili J, Baghban Kohnehrouz B, Gholizadeh A, Shanehbandi D, Ofoghi H. Immunoinformatics design of a structural proteins driven multi-epitope candidate vaccine against different SARS-CoV-2 variants based on fynomer. Sci Rep 2024; 14:10297. [PMID: 38704475 PMCID: PMC11069592 DOI: 10.1038/s41598-024-61025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The ideal vaccines for combating diseases that may emerge in the future require more than simply inactivating a few pathogenic strains. This study aims to provide a peptide-based multi-epitope vaccine effective against various severe acute respiratory syndrome coronavirus 2 strains. To design the vaccine, a library of peptides from the spike, nucleocapsid, membrane, and envelope structural proteins of various strains was prepared. Then, the final vaccine structure was optimized using the fully protected epitopes and the fynomer scaffold. Using bioinformatics tools, the antigenicity, allergenicity, toxicity, physicochemical properties, population coverage, and secondary and three-dimensional structures of the vaccine candidate were evaluated. The bioinformatic analyses confirmed the high quality of the vaccine. According to further investigations, this structure is similar to native protein and there is a stable and strong interaction between vaccine and receptors. Based on molecular dynamics simulation, structural compactness and stability in binding were also observed. In addition, the immune simulation showed that the vaccine can stimulate immune responses similar to real conditions. Finally, codon optimization and in silico cloning confirmed efficient expression in Escherichia coli. In conclusion, the fynomer-based vaccine can be considered as a new style in designing and updating vaccines to protect against coronavirus disease.
Collapse
Affiliation(s)
- Javad Sarvmeili
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, 51666, Iran
| | | | - Ashraf Gholizadeh
- Department of Animal Biology, University of Tabriz, Tabriz, 51666, Iran
| | - Dariush Shanehbandi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, 51666, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, 33131, Iran
| |
Collapse
|
71
|
Ahmad S, Demneh FM, Rehman B, Almanaa TN, Akhtar N, Pazoki-Toroudi H, Shojaeian A, Ghatrehsamani M, Sanami S. In silico design of a novel multi-epitope vaccine against HCV infection through immunoinformatics approaches. Int J Biol Macromol 2024; 267:131517. [PMID: 38621559 DOI: 10.1016/j.ijbiomac.2024.131517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, P.O. Box 36, Lebanon; Department of Natural Sciences, Lebanese American University, Beirut, P.O. Box 36, Lebanon
| | - Fatemeh Mobini Demneh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha khan University, Charsadda, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology & Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
72
|
Al‐Madhagi H, Kanawati A, Tahan Z. Design of multi-epitope chimeric vaccine against Monkeypox virus and SARS-CoV-2: A vaccinomics perspective. J Cell Mol Med 2024; 28:e18452. [PMID: 38801408 PMCID: PMC11129729 DOI: 10.1111/jcmm.18452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
The current era we experience is full with pandemic infectious agents that no longer threatens the major local source but the whole globe. Almost the most emerging infectious agents are severe acute respiratory syndrome coronavirus-2 (SARS CoV-2), followed by monkeypox virus (MPXV). Since no approved antiviral drugs nor licensed active vaccines are yet available, we aimed to utilize immunoinformatics approach to design chimeric vaccine against the two mentioned viruses. This is the first study to deal with design divalent vaccine against SARS-CoV-2 and MPXV. ORF8, E and M proteins from Omicron SARS-CoV-2 and gp182 from MPXV were used as the protein precursor from which multi-epitopes (inducing B-cell, helper T cells, cytotoxic T cells and interferon-ɣ) chimeric vaccine was contrived. The structure of the vaccine construct was predicted, validated, and docked to toll-like receptor-2 (TLR-2). Moreover, its sequence was also used to examine the immune simulation profile and was then inserted into the pET-28a plasmid for in silico cloning. The vaccine construct was probable antigen (0.543) and safe (non-allergen) with strong binding energy to TLR-2 (-1169.8 kcal/mol) and found to have significant immune simulation profile. In conclusion, the designed chimeric vaccine was potent and safe against SARS-CoV-2 and MPXV, which deserves further consideration.
Collapse
Affiliation(s)
- Haitham Al‐Madhagi
- Biochemical Technology Program, Faculty of Applied SciencesDhamar UniversityDhamarYemen
| | - Adeela Kanawati
- Division of Biochemistry, Chemistry DepartmentUniversity of AleppoAleppoSyria
| | - Zaher Tahan
- Division of Microbiology, Biology DepartmentUniversity of AleppoAleppoSyria
| |
Collapse
|
73
|
Khichi S, Morang S, Dhamija P, Handu S. A Multi-epitope Subunit Vaccine Identification and Development Against Scrub Typhus (Orientia tsutsugamushi) Using Immunoinformatics Approaches. Cureus 2024; 16:e61009. [PMID: 38910723 PMCID: PMC11194024 DOI: 10.7759/cureus.61009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Background The pathogen Orientia tsutsugamushi, which causes scrub typhus, is rapidly spreading throughout the tropics. As a measure to improve public health, the development of a vaccine for human use is essential. Scrub typhus is listed as one of the underdiagnosed and underreported febrile infections. This vector-borne zoonotic infection appears as eschar on the patient's skin. Methods Immunoinformatics was employed to predict the multi-epitope subunit vaccine that will activate both B and T cells. The final vaccine includes lipoprotein LprA as an adjuvant at the N-terminus along with B-cell, helper T lymphocyte (HTL), and cytotoxic T lymphocyte (CTL)-binding epitopes to boost immunogenicity. Assessing the vaccine's physiochemistry demonstrates that it is both antigenic and non-allergic. The vaccine structure was developed, enhanced, confirmed, and disulfide-engineered to provide the best possible model. Using molecular docking, the interaction of the produced vaccine with toll-like receptor 2 (TLR2) was analyzed, and the vaccine-receptor complex was stabilized by molecular dynamics (MD) simulation. According to in silico cloning, Escherichia coli can efficiently produce the recommended vaccine. Additionally, the efficacy of the in silico-developed vaccine must be evaluated in an in vitro and in vivo experiment. Results The developed vaccine successfully stimulates cellular and humoral immune responses. The vaccine, which has three B-cell epitopes, three HCL epitopes, and nine CTL epitopes, can bind firmly to immunological receptors. Dynamic investigations of the vaccine-receptor complex show a strong interaction and stable conformation. Conclusion In this study, the vaccine candidate demonstrated strong antigenicity, stability, and solubility while also being non-allergenic to host cells. The vaccine candidate's stability with the TLR2 immune receptor is established by binding studies, and in silico cloning verifies efficient and stable expression in the bacterial system.
Collapse
Affiliation(s)
- Shalini Khichi
- Pharmacology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Sikha Morang
- Pharmacology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Puneet Dhamija
- Pharmacology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Shailendra Handu
- Pharmacology, All India Institute of Medical Sciences, Rishikesh, IND
| |
Collapse
|
74
|
Wang J, Jiang F, Cheng P, Ye Z, Li L, Yang L, Zhuang L, Gong W. Construction of novel multi-epitope-based diagnostic biomarker HP16118P and its application in the differential diagnosis of Mycobacterium tuberculosis latent infection. MOLECULAR BIOMEDICINE 2024; 5:15. [PMID: 38679629 PMCID: PMC11056354 DOI: 10.1186/s43556-024-00177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease that significantly threatens human health. However, the differential diagnosis of latent tuberculosis infection (LTBI) and active tuberculosis (ATB) remains a challenge for clinicians in early detection and preventive intervention. In this study, we developed a novel biomarker named HP16118P, utilizing 16 helper T lymphocyte (HTL) epitopes, 11 cytotoxic T lymphocyte (CTL) epitopes, and 8 B cell epitopes identified from 15 antigens associated with LTBI-RD using the IEDB database. We analyzed the physicochemical properties, spatial structure, and immunological characteristics of HP16118P using various tools, which indicated that it is a hydrophilic and relatively stable alkaline protein. Furthermore, HP16118P exhibited good antigenicity and immunogenicity, while being non-toxic and non-allergenic, with the potential to induce immune responses. We observed that HP16118P can stimulate the production of high levels of IFN-γ+ T lymphocytes in individuals with ATB, LTBI, and health controls. IL-5 induced by HP16118P demonstrated potential in distinguishing LTBI individuals and ATB patients (p=0.0372, AUC=0.8214, 95% CI [0.5843 to 1.000]) with a sensitivity of 100% and specificity of 71.43%. Furthermore, we incorporated the GM-CSF, IL-23, IL-5, and MCP-3 induced by HP16118P into 15 machine learning algorithms to construct a model. It was found that the Quadratic discriminant analysis model exhibited the best diagnostic performance for discriminating between LTBI and ATB, with a sensitivity of 1.00, specificity of 0.86, and accuracy of 0.93. In summary, HP16118P has demonstrated strong antigenicity and immunogenicity, with the induction of GM-CSF, IL-23, IL-5, and MCP-3, suggesting their potential for the differential diagnosis of LTBI and ATB.
Collapse
Affiliation(s)
- Jie Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Department of Clinical Laboratory, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Fan Jiang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Section of Health, No. 94804 Unit of the Chinese People's Liberation Army, Shanghai, 200434, China
- Resident standardization training cadet corps, Air Force Hospital of Eastern Theater, Nanjing, 210002, China
| | - Peng Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Linsheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
75
|
Chaudhuri D, Datta J, Majumder S, Giri K. Peptide based vaccine designing against endemic causing mammarenavirus using reverse vaccinology approach. Arch Microbiol 2024; 206:217. [PMID: 38619666 DOI: 10.1007/s00203-024-03942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
76
|
Rizarullah, Aditama R, Giri-Rachman EA, Hertadi R. Designing a Novel Multiepitope Vaccine from the Human Papilloma Virus E1 and E2 Proteins for Indonesia with Immunoinformatics and Molecular Dynamics Approaches. ACS OMEGA 2024; 9:16547-16562. [PMID: 38617694 PMCID: PMC11007845 DOI: 10.1021/acsomega.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
One of the deadliest malignant cancer in women globally is cervical cancer. Specifically, cervical cancer is the second most common type of cancer in Indonesia. The main infectious agent of cervical cancer is the human papilloma virus (HPV). Although licensed prophylactic vaccines are available, cervical cancer cases are on the rise. Therapy using multiepitope-based vaccines is a very promising therapy for cervical cancer. This study aimed to develop a multiepitope vaccine based on the E1 and E2 proteins of HPV 16, 18, 45, and 52 using in silico. In this study, we develop a novel multiepitope vaccine candidate using an immunoinformatic approach. We predicted the epitopes of the cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) and evaluated their immunogenic properties. Population coverage analysis of qualified epitopes was conducted to determine the successful use of the vaccine worldwide. The epitopes were constructed into a multiepitope vaccine by using AAY linkers between the CTL epitopes and GPGPG linkers between the HTL epitopes. The tertiary structure of the multiepitope vaccine was modeled with AlphaFold and was evaluated by Prosa-web. The results of vaccine construction were analyzed for B-cell epitope prediction, molecular docking with Toll like receptor-4 (TLR4), and molecular dynamics simulation. The results of epitope prediction obtained 4 CTL epitopes and 7 HTL epitopes that are eligible for construction of multiepitope vaccines. Prediction of the physicochemical properties of multiepitope vaccines obtained good results for recombinant protein production. The interaction showed that the interaction of the multiepitope vaccine-TLR4 complex is stable based on the binding free energy value -106.5 kcal/mol. The results of the immune response simulation show that multiepitope vaccine candidates could activate the adaptive and humoral immune systems and generate long-term B-cell memory. According to these results, the development of a multiepitope vaccine with a reverse vaccinology approach is a breakthrough to develop potential cervical cancer therapeutic vaccines.
Collapse
Affiliation(s)
- Rizarullah
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
- Department
of Biochemistry, Faculty of Medicine, Abulyatama
University, Jl. Blangbintang Lama, Aceh Besar 23372, Indonesia
| | - Reza Aditama
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| | - Ernawati Arifin Giri-Rachman
- Genetics
and Molecular Biotechnology Research Division, School of Life Sciences
and Technology, Bandung Institute of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| | - Rukman Hertadi
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
77
|
Trabelsi K, Ben Khalaf N, Ramadan AR, Elsharkawy A, Ashoor D, Chlif S, Boussoffara T, Ben-Ahmed M, Kumar M, Fathallah MD. A novel approach to designing viral precision vaccines applied to SARS-CoV-2. Front Cell Infect Microbiol 2024; 14:1346349. [PMID: 38628551 PMCID: PMC11018900 DOI: 10.3389/fcimb.2024.1346349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
Efficient precision vaccines against several highly pathogenic zoonotic viruses are currently lacking. Proteolytic activation is instrumental for a number of these viruses to gain host-cell entry and develop infectivity. For SARS-CoV-2, this process is enhanced by the insertion of a furin cleavage site at the junction of the spike protein S1/S2 subunits upstream of the metalloprotease TMPRSS2 common proteolytic site. Here, we describe a new approach based on specific epitopes selection from the region involved in proteolytic activation and infectivity for the engineering of precision candidate vaccinating antigens. This approach was developed through its application to the design of SARS-CoV-2 cross-variant candidates vaccinating antigens. It includes an in silico structural analysis of the viral region involved in infectivity, the identification of conserved immunogenic epitopes and the selection of those eliciting specific immune responses in infected people. The following step consists of engineering vaccinating antigens that carry the selected epitopes and mimic their 3D native structure. Using this approach, we demonstrated through a Covid-19 patient-centered study of a 500 patients' cohort, that the epitopes selected from SARS-CoV-2 protein S1/S2 junction elicited a neutralizing antibody response significantly associated with mild and asymptomatic COVID-19 (p<0.001), which strongly suggests protective immunity. Engineered antigens containing the SARS-CoV-2 selected epitopes and mimicking the native epitopes 3D structure generated neutralizing antibody response in mice. Our data show the potential of this combined computational and experimental approach for designing precision vaccines against viruses whose pathogenicity is contingent upon proteolytic activation.
Collapse
Affiliation(s)
- Khaled Trabelsi
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Noureddin Ben Khalaf
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Ahmed R. Ramadan
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Amany Elsharkawy
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Dana Ashoor
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Sadok Chlif
- Department of Family and Community Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Thouraya Boussoffara
- Transmission, Control and Immunobiology of Infections Laboratory, Institute Pasteur of Tunis, Tunis, Tunisia
| | - Melika Ben-Ahmed
- Transmission, Control and Immunobiology of Infections Laboratory, Institute Pasteur of Tunis, Tunis, Tunisia
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - M-Dahmani Fathallah
- Health Biotechnology Program, King Fahad Chair for Health Biotechnology, Department of Life Sciences College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
78
|
Qousain Naqvi ST, Muhammad SA, Guo J, Zafar S, Ali A, Anderson LJ, Rostad CA, Bai B. Experimental trials of predicted CD4 + and CD8 + T-cell epitopes of respiratory syncytial virus. Front Immunol 2024; 15:1349749. [PMID: 38629077 PMCID: PMC11018974 DOI: 10.3389/fimmu.2024.1349749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Background Respiratory syncytial virus (RSV) is the most common cause of viral lower respiratory tract infections (LRTIs) in young children around the world and an important cause of LRTI in the elderly. The available treatments and FDA-approved vaccines for RSV only lessen the severity of the infection and are recommended for infants and elderly people. Methods We focused on developing a broad-spectrum vaccine that activates the immune system to directly combat RSV. The objective of this study is to identify CD4+ and CD8+ T-cell epitopes using an immunoinformatics approach to develop RSV vaccines. The efficacy of these peptides was validated through in-vitro and in-vivo studies involving healthy and diseased animal models. Results For each major histocompatibility complex (MHC) class-I and II, we found three epitopes of RSV proteins including F, G, and SH with an antigenic score of >0.5 and a projected SVM score of <5. Experimental validation of these peptides on female BALB/c mice was conducted before and after infection with the RSV A2 line 19f. We found that the 3RVMHCI (CD8+) epitope of the F protein showed significant results of white blood cells (19.72 × 103 cells/μl), neutrophils (6.01 × 103 cells/μl), lymphocytes (12.98 × 103 cells/μl), IgG antibodies (36.9 µg/ml), IFN-γ (86.96 ng/L), and granzyme B (691.35 pg/ml) compared to control at the second booster dose of 10 µg. Similarly, 4RVMHCII (CD4+) of the F protein substantially induced white blood cells (27.08 × 103 cells/μl), neutrophils (6.58 × 103 cells/μl), lymphocytes (16.64 × 103 cells/μl), IgG antibodies (46.13 µg/ml), IFN-γ (96.45 ng/L), and granzyme B (675.09 pg/ml). In-vitro studies showed that 4RVMHCII produced a significant level of antibodies in sera on day 45 comparable to mice infected with the virus. 4RVMHCII also induced high IFN-γ and IL-2 secretions on the fourth day of the challenge compared to the preinfectional stage. Conclusion In conclusion, epitopes of the F protein showed considerable immune response and are suitable for further validation.
Collapse
Affiliation(s)
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jinlei Guo
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Sidra Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Amjad Ali
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Larry J. Anderson
- Department of Pediatrics and Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christina A. Rostad
- Department of Pediatrics and Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Baogang Bai
- School of Information and Technology, Wenzhou Business College, Wenzhou, Zhejiang, China
- Engineering Research Center of Intelligent Medicine, Wenzhou, Zhejiang Province, China
- The First School of Medical, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
79
|
Yazdani Z, Rafiei A, Ghoreyshi M, Abediankenari S. In Silico Analysis of a Candidate Multi-epitope Peptide Vaccine Against Human Brucellosis. Mol Biotechnol 2024; 66:769-783. [PMID: 36940016 PMCID: PMC10026239 DOI: 10.1007/s12033-023-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Brucellosis is one of the neglected endemic zoonoses in the world. Vaccination appears to be a promising health strategy to prevent it. This study used advanced computational techniques to develop a potent multi-epitope vaccine for human brucellosis. Seven epitopes from four main brucella species that infect humans were selected. They had significant potential to induce cellular and humoral responses. They showed high antigenic ability without the allergenic characteristic. In order to improve its immunogenicity, suitable adjuvants were also added to the structure of the vaccine. The physicochemical and immunological properties of the vaccine were evaluated. Then its two and three-dimensional structure was predicted. The vaccine was docked with toll-like receptor4 to assess its ability to stimulate innate immune responses. For successful expression of the vaccine protein in Escherichia coli, in silico cloning, codon optimization, and mRNA stability were evaluated. The immune simulation was performed to reveal the immune response profile of the vaccine after injection. The designed vaccine showed the high ability to induce immune response, especially cellular responses to human brucellosis. It showed the appropriate physicochemical properties, a high-quality structure, and a high potential for expression in a prokaryotic system.
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Students Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrafarin Ghoreyshi
- Students Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
80
|
Samudrala M, Dhaveji S, Savsani K, Dakshanamurthy S. AutoEpiCollect, a Novel Machine Learning-Based GUI Software for Vaccine Design: Application to Pan-Cancer Vaccine Design Targeting PIK3CA Neoantigens. Bioengineering (Basel) 2024; 11:322. [PMID: 38671743 PMCID: PMC11048108 DOI: 10.3390/bioengineering11040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Previous epitope-based cancer vaccines have focused on analyzing a limited number of mutated epitopes and clinical variables preliminarily to experimental trials. As a result, relatively few positive clinical outcomes have been observed in epitope-based cancer vaccines. Further efforts are required to diversify the selection of mutated epitopes tailored to cancers with different genetic signatures. To address this, we developed the first version of AutoEpiCollect, a user-friendly GUI software, capable of generating safe and immunogenic epitopes from missense mutations in any oncogene of interest. This software incorporates a novel, machine learning-driven epitope ranking method, leveraging a probabilistic logistic regression model that is trained on experimental T-cell assay data. Users can freely download AutoEpiCollectGUI with its user guide for installing and running the software on GitHub. We used AutoEpiCollect to design a pan-cancer vaccine targeting missense mutations found in the proto-oncogene PIK3CA, which encodes the p110ɑ catalytic subunit of the PI3K kinase protein. We selected PIK3CA as our gene target due to its widespread prevalence as an oncokinase across various cancer types and its lack of presence as a gene target in clinical trials. After entering 49 distinct point mutations into AutoEpiCollect, we acquired 361 MHC Class I epitope/HLA pairs and 219 MHC Class II epitope/HLA pairs. From the 49 input point mutations, we identified MHC Class I epitopes targeting 34 of these mutations and MHC Class II epitopes targeting 11 mutations. Furthermore, to assess the potential impact of our pan-cancer vaccine, we employed PCOptim and PCOptim-CD to streamline our epitope list and attain optimized vaccine population coverage. We achieved a world population coverage of 98.09% for MHC Class I data and 81.81% for MHC Class II data. We used three of our predicted immunogenic epitopes to further construct 3D models of peptide-HLA and peptide-HLA-TCR complexes to analyze the epitope binding potential and TCR interactions. Future studies could aim to validate AutoEpiCollect's vaccine design in murine models affected by PIK3CA-mutated or other mutated tumor cells located in various tissue types. AutoEpiCollect streamlines the preclinical vaccine development process, saving time for thorough testing of vaccinations in experimental trials.
Collapse
Affiliation(s)
- Madhav Samudrala
- College of Arts and Sciences, The University of Virginia, Charlottesville, VA 22903, USA
| | | | - Kush Savsani
- College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 22043, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
81
|
Bautista E, Jung YH, Jaramillo M, Ganesh H, Varma A, Savsani K, Dakshanamurthy S. AutoPepVax, a Novel Machine-Learning-Based Program for Vaccine Design: Application to a Pan-Cancer Vaccine Targeting EGFR Missense Mutations. Pharmaceuticals (Basel) 2024; 17:419. [PMID: 38675381 PMCID: PMC11053815 DOI: 10.3390/ph17040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The current epitope selection methods for peptide vaccines often rely on epitope binding affinity predictions, prompting the need for the development of more sophisticated in silico methods to determine immunologically relevant epitopes. Here, we developed AutoPepVax to expedite and improve the in silico epitope selection for peptide vaccine design. AutoPepVax is a novel program that automatically identifies non-toxic and non-allergenic epitopes capable of inducing tumor-infiltrating lymphocytes by considering various epitope characteristics. AutoPepVax employs random forest classification and linear regression machine-learning-based models, which are trained with datasets derived from tumor samples. AutoPepVax, along with documentation on how to run the program, is freely available on GitHub. We used AutoPepVax to design a pan-cancer peptide vaccine targeting epidermal growth factor receptor (EGFR) missense mutations commonly found in lung adenocarcinoma (LUAD), colorectal adenocarcinoma (CRAD), glioblastoma multiforme (GBM), and head and neck squamous cell carcinoma (HNSCC). These mutations have been previously targeted in clinical trials for EGFR-specific peptide vaccines in GBM and LUAD, and they show promise but lack demonstrated clinical efficacy. Using AutoPepVax, our analysis of 96 EGFR mutations identified 368 potential MHC-I-restricted epitope-HLA pairs from 49,113 candidates and 430 potential MHC-II-restricted pairs from 168,669 candidates. Notably, 19 mutations presented viable epitopes for MHC I and II restrictions. To evaluate the potential impact of a pan-cancer vaccine composed of these epitopes, we used our program, PCOptim, to curate a minimal list of epitopes with optimal population coverage. The world population coverage of our list ranged from 81.8% to 98.5% for MHC Class II and Class I epitopes, respectively. From our list of epitopes, we constructed 3D epitope-MHC models for six MHC-I-restricted and four MHC-II-restricted epitopes, demonstrating their epitope binding potential and interaction with T-cell receptors. AutoPepVax's comprehensive approach to in silico epitope selection addresses vaccine safety, efficacy, and broad applicability. Future studies aim to validate the AutoPepVax-designed vaccines with murine tumor models that harbor the studied mutations.
Collapse
Affiliation(s)
- Enrico Bautista
- Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | - Harrish Ganesh
- Virginia Commonwealth University, Richmond, VA 22043, USA
| | - Aryaan Varma
- The George Washington University, Washington, DC 20052, USA
| | - Kush Savsani
- Virginia Commonwealth University, Richmond, VA 22043, USA
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
82
|
Nguyen TL, Kim H. Immunoinformatics and computational approaches driven designing a novel vaccine candidate against Powassan virus. Sci Rep 2024; 14:5999. [PMID: 38472237 PMCID: PMC10933373 DOI: 10.1038/s41598-024-56554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Powassan virus (POWV) is an arthropod-borne virus (arbovirus) capable of causing severe illness in humans for severe neurological complications, and its incidence has been on the rise in recent years due to climate change, posing a growing public health concern. Currently, no vaccines to prevent or medicines to treat POWV disease, emphasizing the urgent need for effective countermeasures. In this study, we utilize bioinformatics approaches to target proteins of POWV, including the capsid, envelope, and membrane proteins, to predict diverse B-cell and T-cell epitopes. These epitopes underwent screening for critical properties such as antigenicity, allergenicity, toxicity, and cytokine induction potential. Eight selected epitopes were then conjugated with adjuvants using various linkers, resulting in designing of a potentially stable and immunogenic vaccine candidate against POWV. Moreover, molecular docking, molecular dynamics simulations, and immune simulations revealed a stable interaction pattern with the immune receptor, suggesting the vaccine's potential to induce robust immune responses. In conclusion, our study provided a set of derived epitopes from POWV's proteins, demonstrating the potential for a novel vaccine candidate against POWV. Further in vitro and in vivo studies are warranted to advance our efforts and move closer to the goal of combatting POWV and related arbovirus infections.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- eGnome, Inc., Seoul, 05836, Republic of Korea.
| |
Collapse
|
83
|
Tan C, Zhou J, Wu A, Li C. In silico development of a novel anti-mutation, multi-epitope mRNA vaccine against MPXV variants of emerging lineage and sub-lineages by using immunoinformatics approaches. J Biomol Struct Dyn 2024:1-18. [PMID: 38450722 DOI: 10.1080/07391102.2024.2325109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
Over the past year, an unexpected surge in human monkeypox (hMPX) cases has been observed. This outbreak differs from previous ones, displaying distinct epidemiological characteristics and transmission patterns, believed to be influenced by a newly emerging monkeypox virus (MPXV) lineage. Notably, this emerging MPXV lineage has exhibited several non-synonymous mutations, some of which are linked to immunomodulatory activities and antigenic characteristics that aid in host detection. However, specific treatments or vaccines for human monkeypox are currently lacking. Hence, we aim to develop a multi-epitope mRNA vaccine by using immunoinformatics approaches against the MPXV, particularly its emerging variants. Six proteins (A29L, A35R, B6R, M1R, H3L, and E8L) were chosen for epitope and mutation site identification. Seventeen top-performing epitopes and eight epitopes containing mutation sites were selected and combined with adjuvants, the PADRE sequence, and linkers for vaccine development. The molecular and physical properties of the designed vaccine (WLmpx) were favorable. Immunological characteristics of WLmpx were assessed through molecular docking, molecular dynamics (MD) simulations, and immune simulations. Finally, the vaccine sequence was utilized to formulate an mRNA-based vaccine. The informatics-based predicted results indicated that the designed vaccine exhibits significant potential in eliciting high-level humoral and cellular immune responses, but further validation through in vivo and vitro studies is warranted.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Caixia Tan
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, China
| | - Jingxiang Zhou
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, China
| |
Collapse
|
84
|
Arora A, Patiyal S, Sharma N, Devi NL, Kaur D, Raghava GPS. A random forest model for predicting exosomal proteins using evolutionary information and motifs. Proteomics 2024; 24:e2300231. [PMID: 37525341 DOI: 10.1002/pmic.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Non-invasive diagnostics and therapies are crucial to prevent patients from undergoing painful procedures. Exosomal proteins can serve as important biomarkers for such advancements. In this study, we attempted to build a model to predict exosomal proteins. All models are trained, tested, and evaluated on a non-redundant dataset comprising 2831 exosomal and 2831 non-exosomal proteins, where no two proteins have more than 40% similarity. Initially, the standard similarity-based method Basic Local Alignment Search Tool (BLAST) was used to predict exosomal proteins, which failed due to low-level similarity in the dataset. To overcome this challenge, machine learning (ML) based models were developed using compositional and evolutionary features of proteins achieving an area under the receiver operating characteristics (AUROC) of 0.73. Our analysis also indicated that exosomal proteins have a variety of sequence-based motifs which can be used to predict exosomal proteins. Hence, we developed a hybrid method combining motif-based and ML-based approaches for predicting exosomal proteins, achieving a maximum AUROC of 0.85 and MCC of 0.56 on an independent dataset. This hybrid model performs better than presently available methods when assessed on an independent dataset. A web server and a standalone software ExoProPred (https://webs.iiitd.edu.in/raghava/exopropred/) have been created to help scientists predict and discover exosomal proteins and find functional motifs present in them.
Collapse
Affiliation(s)
- Akanksha Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Naorem Leimarembi Devi
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dashleen Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
85
|
Teixeira DG, Rodrigues-Neto JF, da Cunha DCS, Jeronimo SMB. Understanding SARS-CoV-2 spike glycoprotein clusters and their impact on immunity of the population from Rio Grande do Norte, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105556. [PMID: 38242186 DOI: 10.1016/j.meegid.2024.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
SARS-CoV-2 genome underwent mutations since it started circulating within the human population. The aim of this study was to understand the fluctuation of the spike clusters concomitant to the population immunity either due to natural infection and/or vaccination in a state of Brazil that had both high rate of natural infection and vaccination coverage. A total of 1725 SARS-CoV-2 sequences from the state of Rio Grande do Norte, Brazil, were retrieved from GISAID and subjected to cluster analysis. Immunoinformatics were used to predict T- and B-cell epitopes, followed by simulation to estimate either pro- or anti-inflammatory responses and to correlate with circulating variants. From March 2020 to June 2022, the state of Rio Grande do Norte reported 579,931 COVID-19 cases with a 1.4% fatality rate across the three major waves: May-Sept 2020, Feb-Aug 2021, and Jan-Mar 2022. Cluster 0 variants (wild type strain, Zeta) were prevalent in the first wave and Delta (AY.*), which circulated in Brazil in the latter half of 2021, featuring fewer unique epitopes. Cluster 1 (Gamma (P.1 + P.1.*)) dominated the first half of 2021. Late 2021 had two new clusters, Cluster 2 (Omicron, (B.1.1.529 + BA.*)), and Cluster 3 (BA.*) with the most unique epitopes, in addition to Cluster 4 (Delta sub lineages) which emerged in the second half of 2021 with fewer unique epitopes. Cluster 1 epitopes showed a high pro-inflammatory propensity, while others exhibited a balanced cytokine induction. The clustering method effectively identified Spike groups that may contribute to immune evasion and clinical presentation, and explain in part the clinical outcome.
Collapse
Affiliation(s)
- Diego Gomes Teixeira
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Firmino Rodrigues-Neto
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Caicó, Rio Grande do Norte, Brazil
| | - Dayse Caroline Severiano da Cunha
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Selma Maria Bezerra Jeronimo
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Departmento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande Norte, Natal, Rio Grande do Norte, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
86
|
Long Q, Wei M, Wang Y, Pang F. Design of a multi-epitope vaccine against goatpox virus using an immunoinformatics approach. Front Cell Infect Microbiol 2024; 13:1309096. [PMID: 38487680 PMCID: PMC10937444 DOI: 10.3389/fcimb.2023.1309096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/22/2023] [Indexed: 03/17/2024] Open
Abstract
Introduction Goatpox, a severe infectious disease caused by goatpox virus (GTPV), leads to enormous economic losses in the livestock industry. Traditional live attenuated vaccines cause serious side effects and exist a risk of dispersal. Therefore, it is urgent to develop efficient and safer vaccines to prevent and control of GTPV. Methods In the present study, we are aimed to design a multi-epitope subunit vaccine against GTPV using an immunoinformatics approach. Various immunodominant cytotoxic T lymphocytes (CTL) epitopes, helper T lymphocytes (HTL) epitopes, and B-cell epitopes from P32, L1R, and 095 proteins of GTPV were screened and liked by the AAY, GPGPG, and KK connectors, respectively. Furthermore, an adjuvant β-defensin was attached to the vaccine's N-terminal using the EAAAK linker to enhance immunogenicity. Results The constructed vaccine was soluble, non-allergenic and non-toxic and exhibited high levels of antigenicity and immunogenicity. The vaccine's 3D structure was subsequently predicted, refined and validated, resulting in an optimized model with a Z-value of -3.4. Molecular docking results demonstrated that the vaccine had strong binding affinity with TLR2(-27.25 kcal/mol), TLR3(-39.84 kcal/mol), and TLR4(-59.42 kcal/mol). Molecular dynamics simulation results indicated that docked vaccine-TLR complexes were stable. Immune simulation analysis suggested that the vaccine can induce remarkable increase in antibody titers of IgG and IgM, higher levels of IFN-γ and IL-2. Conclusion The designed GTPV multi-epitope vaccine is structurally stable and can induce robust humoral and cellular immune responses, which may be a promising vaccine candidate against GTPV.
Collapse
Affiliation(s)
| | | | | | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
87
|
Chao P, Zhang X, Zhang L, Yang A, Wang Y, Chen X. Proteomics-based vaccine targets annotation and design of multi-epitope vaccine against antibiotic-resistant Streptococcus gallolyticus. Sci Rep 2024; 14:4836. [PMID: 38418560 PMCID: PMC10901886 DOI: 10.1038/s41598-024-55372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/22/2024] [Indexed: 03/01/2024] Open
Abstract
Streptococcus gallolyticus is a non-motile, gram-positive bacterium that causes infective endocarditis. S. gallolyticus has developed resistance to existing antibiotics, and no vaccine is currently available. Therefore, it is essential to develop an effective S. gallolyticus vaccine. Core proteomics was used in this study together with subtractive proteomics and reverse vaccinology approach to find antigenic proteins that could be utilized for the design of the S. gallolyticus multi-epitope vaccine. The pipeline identified two antigenic proteins as potential vaccine targets: penicillin-binding protein and the ATP synthase subunit. T and B cell epitopes from the specific proteins were forecasted employing several immunoinformatics and bioinformatics resources. A vaccine (360 amino acids) was created using a combination of seven cytotoxic T cell lymphocyte (CTL), three helper T cell lymphocyte (HTL), and five linear B cell lymphocyte (LBL) epitopes. To increase immune responses, the vaccine was paired with a cholera enterotoxin subunit B (CTB) adjuvant. The developed vaccine was highly antigenic, non-allergenic, and stable for human use. The vaccine's binding affinity and molecular interactions with the human immunological receptor TLR4 were studied using molecular mechanics/generalized Born surface area (MMGBSA), molecular docking, and molecular dynamic (MD) simulation analyses. Escherichia coli (strain K12) plasmid vector pET-28a ( +) was used to examine the ability of the vaccine to be expressed. According to the outcomes of these computer experiments, the vaccine is quite promising in terms of developing a protective immunity against diseases. However, in vitro and animal research are required to validate our findings.
Collapse
Affiliation(s)
- Peng Chao
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xueqin Zhang
- Department of Nephrology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lei Zhang
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Aiping Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yong Wang
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaoyang Chen
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| |
Collapse
|
88
|
Fatima I, Alshabrmi FM, Aziz T, Alamri AS, Alhomrani M, Alghamdi S, Alghuraybi RA, Babalghith AO, Bamagous GA, Alhindi Z, Dablool AS, Alhhazmi AA, Alruways MW. Revolutionizing and identifying novel drug targets in Citrobacter koseri via subtractive proteomics and development of a multi-epitope vaccine using reverse vaccinology and immuno-informatics. J Biomol Struct Dyn 2024:1-14. [PMID: 38407210 DOI: 10.1080/07391102.2024.2316762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Citrobacter koseri is a gram-negative rod that has been linked to infections in people with significant comorbidities and immunocompromised immune systems. It is most commonly known to cause urinary tract infections. Thus, the development of an efficacious C. koseri vaccine is imperative, as the pathogen has acquired resistance to current antibiotics. Subtractive proteomics was employed during this research to identify potential antigenic proteins to design an effective vaccine against C. koseri. The pipeline identified two antigenic proteins as potential vaccine targets: DP-3-O-acyl-N-acetylglucosamine deacetylase and Arabinose 5-phosphate isomerase. B and T cell epitopes from the specific proteins were forecasted employing several immunoinformatic and bioinformatics resources. A vaccine was created using a combination of seven cytotoxic T cell lymphocytes (CTL), five helper T cell lymphocyte (HTL), and seven linear B cell lymphocyte (LBL) epitopes. An adjuvant (β-defensin) was added to the vaccine to enhance immunological responses. The created vaccine was stable for use in humans, highly antigenic, and non-allergenic. The vaccine's molecular and interactions binding affinity with the human immunological receptor TLR3 were studied using MMGBSA, molecular dynamics (MD) simulations, and molecular docking analyses. E. coli (strain-K12) plasmid vector pET-28a (+) was used to examine the ability of the vaccine to be expressed. The vaccine shows great promise in terms of developing protective immunity against diseases, based on the results of these computer experiments. However, in vitro and animal research are required to validate our findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Israr Fatima
- Department of Bioinformatics, College of Life Science, Northwest Agriculture and Forestry University, Yangling, China
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene, and Quality, Department of Agriculture, University of Ioannina, Arta, Greece
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Reem Ahmad Alghuraybi
- Laboratory and Blood Bank Department, Alnoor Specialist Hospital, Ministry of Health Makkah, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department College of Medicine Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zain Alhindi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Anas S Dablool
- Public health Department, Health Sciences College at Al-Leith، Umm Al-Qura University, Makkah, Saudi Arabia
| | - Areej A Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Mashael W Alruways
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
89
|
Paranthaman P, Veerappapillai S. Tackling suppressive cancer microenvironment by NARF-derived immune modulatory vaccine and its validation using simulation strategies. FRONTIERS IN PHYSICS 2024; 12. [DOI: 10.3389/fphy.2024.1342115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Introduction: Targeting tumor microenvironment is beneficial and present an ideal setting for the development of futuristic immunotherapy. Here, we make use of Nuclear prelamin A recognition factor (NARF), a protein linked to the coactivation of transcriptional regulators in human breast cancer stem cells (CSC) in our investigation.Methods: In this study, we initially computed the epitope regions possessing the ability to stimulate both T and B cells within the NARF protein. These identified epitope areas were fused with an adjuvant such as RpfB and RpfE as well as linkers like AAY, GPGPG, KK, and EAAAK. The constructed vaccine was further characterized by assessing its physicochemical properties and population coverage. The potential interactions of the designed vaccine with different toll-like receptors were examined by a sequence of computational studies. Of note, docking study were employed to understand its mechanism of action. Molecular dynamics and immune simulation studies were conducted to comprehend more into their structural stability and immune responses. The resultant vaccine was back-translated, codon-optimised and introduced into pET-28 (+) vector.Results and discussion: We hypothesize from the results that the designed NARF protein-based vaccine in our analysis could effectively provoke the immune responses in the target organism through TLR-7 binding and promotes MHC class-II mediated antigen presentation. Indeed, comprehensive evaluations conducted in both in vitro and in vivo settings are imperative to substantiate the safety and efficacy of the developed vaccine.
Collapse
|
90
|
Senapati S, Singh H, Bk T, Verma N, Kumar U. HLA sequencing identifies novel associations and suggests clinical relevance of DPB1*04:01 in ANCA-associated Granulomatosis with polyangiitis. Gene 2024; 896:148024. [PMID: 38040271 DOI: 10.1016/j.gene.2023.148024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Granulomatosis with polyangiitis (GPA) is a rare systemic autoimmune disease. Major contributions of HLA genes have been reported; however, HLA typing-based diagnosis or risk prediction in GPA has not been established. We have performed a sequencing-based HLA genotyping in a north Indian GPA cohort and controls to identify clinically relevant novel associations. PR3-ANCA-positive 40 GPA patients and 40 healthy controls from north India were recruited for the study. Targeted sequencing of HLA-A,-B,-C,-DRB1,-DQB1, and -DPB1 was performed. Allelic and haplotypic associations were tested. Molecular docking of susceptibility HLA alleles with reported super-antigen epitopes was performed. The association of substituted amino acids located at the antigen-binding domain of HLA was evaluated. Genetic association of five HLA-alleles was identified in GPA. The novel association was identified for C*15:02 (p = 0.04; OR = 0.27(0.09-0.88)). The strongest association was observed for DPB1*04:01 (p < 0.0001; OR = 6.2(3.08-11.71)), previously reported in European studies. 35 of 40 GPA subjects had at least one DPB1*04:01 allele, and its significant risk was previously not reported from the Indian population. Significantly associated haplotypes DRB1*03:01-DQB1*02:01-DPB1*04:01 (p = 0.02; OR = 3.46(1.11-12.75)) and DRB1*07:01-DQB1*02:02-DPB1*04:01 (p = 0.04; OR = 3.35(0.95-14.84)) were the most frequent in GPA patients. Ranging from 89 % to 100 % of GPA patients with organ involvement can be explained by at least one DPB1*04:01 allele. A strong interaction between the HLA and three epitopes of the reported super antigen TSST-1 of Staphylococcus aureus was confirmed. Our study highlighted the potential applicability of HLA typing for screening and diagnosis of GPA. A large multi-centric study and genotype-phenotype correlation analysis among GPA patients will enable the establishment of HLA-typing based GPA diagnosis.
Collapse
Affiliation(s)
- Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Punjab, India.
| | - Harinder Singh
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Punjab, India
| | - Thelma Bk
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Narendra Verma
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
91
|
Tomer R, Patiyal S, Kaur D, Choudhury S, Raghava GPS. Genome-based solutions for managing mucormycosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:383-403. [PMID: 38448141 DOI: 10.1016/bs.apcsb.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
An uncommon opportunistic fungal infection known as mucormycosis is caused by a class of molds called mucoromycetes. Currently, antifungal therapy and surgical debridement are the primary treatment options for mucormycosis. Despite the importance of comprehensive knowledge on mucormycosis, there is a lack of well-annotated databases that provide all relevant information. In this study, we have gathered and organized all available information related to mucormycosis that include disease's genome, proteins, diagnostic methods. Furthermore, using the AlphaFold2.0 prediction tool, we have predicted the tertiary structures of potential drug targets. We have categorized the information into three major sections: "genomics/proteomics," "immunotherapy," and "drugs." The genomics/proteomics module contains information on different strains responsible for mucormycosis. The immunotherapy module includes putative sequence-based therapeutics predicted using established tools. Drugs module provides information on available drugs for treating the disease. Additionally, the drugs module also offers prerequisite information for designing computationally aided drugs, such as putative targets and predicted structures. In order to provide comprehensive information over internet, we developed a web-based platform MucormyDB (https://webs.iiitd.edu.in/raghava/mucormydb/).
Collapse
Affiliation(s)
- Ritu Tomer
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, India
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, India.
| |
Collapse
|
92
|
Lee JJ, Abdullah M, Liu J, Carvalho IA, Junior AS, Moreira MAS, Mohammed H, DeLisa MP, McDonough SP, Chang YF. Proteomic profiling of membrane vesicles from Mycobacterium avium subsp. paratuberculosis: Navigating towards an insilico design of a multi-epitope vaccine targeting membrane vesicle proteins. J Proteomics 2024; 292:105058. [PMID: 38065354 DOI: 10.1016/j.jprot.2023.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/01/2024]
Abstract
Bacteria typically produce membrane vesicles (MVs) at varying levels depending on the surrounding environments. Gram-negative bacterial outer membrane vesicles (OMVs) have been extensively studied for over 30 years, but MVs from Gram-positive bacteria only recently have been a focus of research. In the present study, we isolated MVs from Mycobacterium avium subsp. paratuberculosis (MAP) and analyzed their protein composition using LC-MS/MS. A total of 316 overlapping proteins from two independent preparations were identified in our study, and topology prediction showed these cargo proteins have different subcellular localization patterns. When MVs were administered to bovine-derived macrophages, significant up-regulation of pro-inflammatory cytokines was observed via qRT-PCR. Proteome functional annotation revealed that many of these proteins are involved in the cellular protein metabolic process, tRNA aminoacylation, and ATP synthesis. Secretory proteins with high antigenicity and adhesion capability were mapped for B-cell and T-cell epitopes. Antigenic, Immunogenic and IFN-γ inducing B-cell, MHC-I, and MHC-II epitopes were stitched together through linkers to form multi-epitope vaccine (MEV) construct against MAP. Strong binding energy was observed during the docking of the 3D structure of the MEV with the bovine TLR2, suggesting that the putative MEV may be a promising vaccine candidate against MAP. However, in vitro and in vivo analysis is required to prove the immunogenic concept of the MEV which we will follow in our future studies. SIGNIFICANCE: Johne's disease is a chronic infection caused by Mycobacterium avium subsp. paratuberculosis that has a potential link to Crohn's disease in humans. The disease is characterized by persistent diarrhea and enteritis, resulting in significant economic losses due to reduced milk yield and premature culling of infected animals. The dairy industry in the United States alone experiences losses of approximately USD 250 million due to Johne's disease. The current vaccine against Johne's disease is limited by several factors, including variable efficacy, limited duration of protection, interference with diagnostic tests, inability to prevent infection, and logistical and cost-related challenges. Nevertheless, a multiepitope vaccine design approach targeting M. avium subsp. paratuberculosis has the potential to overcome these challenges and offer improved protection against Johne's disease.
Collapse
Affiliation(s)
- Jen-Jie Lee
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Mohd Abdullah
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Jinjing Liu
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Isabel Azevedo Carvalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Abelardo Silva Junior
- Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL CEP 57072-900, Brazil
| | | | - Hussni Mohammed
- Departement of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States; Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, United States; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, United States
| | - Sean P McDonough
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
93
|
Razim A, Pacyga-Prus K, Kazana-Płuszka W, Zabłocka A, Macała J, Ciepłucha H, Gamian A, Górska S. Differential patterns of antibody response against SARS-CoV-2 nucleocapsid epitopes detected in sera from patients in the acute phase of COVID-19, convalescents, and pre-pandemic individuals. Pathog Dis 2024; 82:ftae025. [PMID: 39354682 PMCID: PMC11556334 DOI: 10.1093/femspd/ftae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 0.7 billion people and caused over 7 million deaths worldwide. At the same time, our knowledge about this virus is still incipient. In some cases, there is pre-pandemic immunity; however, its source is unknown. The analysis of patients' humoral responses might shed light on this puzzle. In this paper, we evaluated the antibody recognition of nucleocapsid protein, one of the structural proteins of SARS-CoV-2. For this purpose, we used pre-pandemic acute COVID-19 and convalescent patients' sera to identify and map nucleocapsid protein epitopes. We identified a common epitope KKSAAEASKKPRQKRTATKA recognized by sera antibodies from all three groups. Some motifs of this sequence are widespread among various coronaviruses, plants or human proteins indicating that there might be more sources of nucleocapsid-reactive antibodies than previous infections with seasonal coronavirus. The two sequences MSDNGPQNQRNAPRITFGGP and KADETQALPQRQKKQQTVTL were detected as specific for sera from patients in the acute phase of infection and convalescents making them suitable for future development of vaccines against SARS-CoV-2. Knowledge of the humoral response to SARS-CoV-2 infection is essential for the design of appropriate diagnostic tools and vaccine antigens.
Collapse
Affiliation(s)
- Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Katarzyna Pacyga-Prus
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Wioletta Kazana-Płuszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Agnieszka Zabłocka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Józefa Macała
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Hubert Ciepłucha
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
94
|
Dikhit MR, Sen A. Elucidation of conserved multi-epitope vaccine against Leishmania donovani using reverse vaccinology. J Biomol Struct Dyn 2024; 42:1293-1306. [PMID: 37054523 DOI: 10.1080/07391102.2023.2201630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Visceral leishmaniasis (VL) is a tropical disease that causes severe public health problems in humans when untreated. As no licensed vaccine exists against VL, we aimed to formulate a potential MHC-restricted chimeric vaccine construct against this dreadful parasitic disease. Amastin-like protein derived from L. donovani is considered to be stable, immunogenic and non-allergic. A comprehensive established framework was used to explore the set of immunogenic epitopes with estimated population coverage of 96.08% worldwide. The rigorous assessment revealed 6 promiscuous T-epitopes which can plausibly be presented by more than 66 diverse HLA alleles. Further docking and simulation study of peptide receptor complexes identified a strong and stable binding interaction with better structural compactness. The predicted epitopes were combined with appropriate linkers and adjuvant molecules and their translation efficiency was evaluated in pET28+(a), an bacterial expression vector using in-silico cloning. Molecular docking followed by MD simulation study revealed a stable interaction between chimeric vaccine construct with TLRs. Immune simulation of the chimeric vaccine constructs showed an elevated Th1 immune response against both B and T epitopes. With this, the detailed computational analysis suggested that the chimeric vaccine construct can evoke a robust immune response against Leishmania donovani infection. Future studies are required to validate the role of amastin as a promising vaccine target.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manas Ranjan Dikhit
- Department of Molecular Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Abhik Sen
- Department of Molecular Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
95
|
Asadollahi P, Kalani BS. Novel toxin-based mRNA vaccine against Clostridium perfringens using in silico approaches. Toxicon 2024; 238:107584. [PMID: 38185287 DOI: 10.1016/j.toxicon.2023.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
Clostridium perfringens is a bacterium that causes gastrointestinal diseases in humans and animals. The several powerful toxins such as alpha toxin (CPA), beta toxin (CPB), enterotoxin (CPE), Epsilon toxin (ETX), and theta toxin, play a major role in its pathogenesis. Traditional vaccine development methods are time-consuming and costly. In silico approaches offer an alternative strategy for designing vaccines by analyzing biological data and predicting immunogenic peptides. In this study, computational tools were utilized to design a RNA vaccine targeting C. perfringens toxins. Toxin protein sequences were retrieved and their linear B-cell, MHCI, and MHCII binding epitopes were predicted. Allergenicity, toxigenicity, and IFN-γ induction were assessed to select non-allergenic, non-toxic, and IFN-γ-inducing epitopes. Molecular docking was performed to identify epitopes that fit within the binding cleft of MHC alleles. A final peptide vaccine construct was designed with selected epitopes separated by a linker sequence. The antigenicity and physicochemical properties of the vaccine were evaluated. Immune response simulation showed enhanced secondary and tertiary immune responses, increased levels of immunoglobulins, cytotoxic T lymphocytes, helper T lymphocytes, macrophage activity, and elevated levels IFN-γ and interleukin-2. Docking analysis was done to assess interactions between the vaccine structure and Toll-like receptors. Codon optimization was performed, and a final RNA vaccine construct was designed. The secondary structure of the RNA vaccine was predicted and validated. Overall, this study demonstrates the potential of in silico approaches for designing an RNA vaccine against C. perfringens toxins, contributing to improved prevention and control of associated diseases.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
96
|
Namdari H, Rezaei F, Heidarnejad F, Yaghoubzad-Maleki M, Karamigolbaghi M. Immunoinformatics Approach to Design a Chimeric CD70-Peptide Vaccine against Renal Cell Carcinoma. J Immunol Res 2024; 2024:2875635. [PMID: 38314087 PMCID: PMC10838208 DOI: 10.1155/2024/2875635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Renal cell carcinoma (RCC) accounts for the majority of cancer-related deaths worldwide. Overexpression of CD70 has been linked to advanced stages of RCC. Therefore, this study aims to develop a multiepitope vaccine targeting the overexpressed CD70 using immunoinformatics techniques. In this investigation, in silico multiepitope vaccines were constructed by linking specific CD70 protein epitopes for helper T lymphocytes and CD8+ T lymphocytes. To enhance immunogenicity, sequences of cell-penetrating peptide (CPP), penetratin (pAntp), along with the entire sequence of tumor necrosis factor-α (TNF-α), were attached to the N-terminal and C-terminal of the CD70 epitopes. Computational assessments were performed on these chimeric vaccines for antigenicity, allergenicity, peptide toxicity, population coverage, and physicochemical properties. Furthermore, refined 3D constructs were subjected to a range of analyses, encompassing structural B-cell epitope prediction and molecular docking. The chosen vaccine construct underwent diverse assessments such as molecular dynamics simulation, immune response simulation, and in silico cloning. All vaccines comprised antigenic, nontoxic, and nonallergenic epitopes, ensuring extensive global population coverage. The vaccine constructs demonstrated favorable physicochemical characteristics. The binding affinity of chimeric vaccines to the TNF receptor remained relatively stable, influenced by the alignment of vaccine components. Molecular docking and dynamics analyses predicted stable interactions between CD70-CPP-TNF and the TNF receptor, indicating potential efficacy. In silico codon optimization and cloning of the vaccine nucleic acid sequence were accomplished using the pET28a plasmid. Furthermore, this vaccine displayed the capacity to modulate humoral and cellular immune responses. Overall, the results suggest therapeutic potential for the chimeric CD70-CPP-TNF vaccine against RCC. However, validation through in vitro and in vivo experiments is necessary. This trial is registered with NCT04696731 and NCT04046445.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Rezaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heidarnejad
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
97
|
Roja B, Chellapandi P. Design and characterization of a multi-epitope vaccine against Clostridium botulinum A3 Loch Maree intoxication in humans. Gene 2024; 892:147865. [PMID: 37783297 DOI: 10.1016/j.gene.2023.147865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Clostridium botulinum Loch Maree expresses an extremely potent botulinum neurotoxin subtype, A3 causing botulism and several gastrointestinal disorders in mammals. Several recombinant vaccines have been developed for human botulism and no vaccine is currently available for the treatment of diseases caused by other virulence factors. Hence, we designed, constructed, and characterized a multi-epitope vaccine from new virulence proteins identified from this organism using an immunoinformatics approach. The vaccine construct used in this study was designed from 6B cell linear epitopes, 12 cytotoxic T cell lymphocyte epitopes, and 15 helper T cell lymphocyte epitopes, with a defensin adjuvant and adjusting linker sequences. A molecular modeling approach was used to model, refine, and validate the 3D structure of the vaccine construct. Molecular docking studies were performed to determine the stability of the molecular interactions between the vaccine construct and human toll-like receptor 7. The in silico molecular cloning was used to clone a codon-optimized synthetic vaccine gene in pCYB1 vector and expressed in Escherichia coli. The results of this study identified six new virulence proteins: peptidoglycan hydrolase, SCP-like extracellular protein, N-acetylmuramoyl-l-alanine amidase, putative membrane protein, drug/metabolite exporter, and bacillolysin. The top B-cell, cytotoxic T-cell lymphocyte, and helper T-lymphocyte epitopes were predicted from these virulence proteins with greater accuracy and reliability. HLA-A*02:01 and HLA-A*03:01 were identified as HLA-A-binding alleles for cytotoxic T-cell lymphocyte epitopes. DRB1*0110 and DRB1*0115 are the dominant alleles that bind to helper T-cell lymphocyte epitopes. The synthetic gene construct was highly expressed in a heterologous host and produced considerable amounts of antigenic protein. The multi-epitope vaccine is more conservative in the sequence-structure-function link, immunogenic with less allergenicity, and possibly provokes cellular and humoral immunity. The present study suggests that the designed multi-epitope vaccine is a promising prophylactic candidate for the virulence and intoxication caused by subtype A3 strains.
Collapse
Affiliation(s)
- B Roja
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
98
|
Simbulan AM, Banico EC, Sira EMJS, Odchimar NMO, Orosco FL. Immunoinformatics-guided approach for designing a pan-proteome multi-epitope subunit vaccine against African swine fever virus. Sci Rep 2024; 14:1354. [PMID: 38228670 DOI: 10.1038/s41598-023-51005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
Despite being identified over a hundred years ago, there is still no commercially available vaccine for the highly contagious and deadly African swine fever virus (ASFV). This study used immunoinformatics for the rapid and inexpensive designing of a safe and effective multi-epitope subunit vaccine for ASFV. A total of 18,858 proteins from 100 well-annotated ASFV proteomes were screened using various computational tools to identify potential epitopes, or peptides capable of triggering an immune response in swine. Proteins from genotypes I and II were prioritized for their involvement in the recent global ASFV outbreaks. The screened epitopes exhibited promising qualities that positioned them as effective components of the ASFV vaccine. They demonstrated antigenicity, immunogenicity, and cytokine-inducing properties indicating their ability to induce potent immune responses. They have strong binding affinities to multiple swine allele receptors suggesting a high likelihood of yielding more amplified responses. Moreover, they were non-allergenic and non-toxic, a crucial prerequisite for ensuring safety and minimizing any potential adverse effects when the vaccine is processed within the host. Integrated with an immunogenic 50S ribosomal protein adjuvant and linkers, the epitopes formed a 364-amino acid multi-epitope subunit vaccine. The ASFV vaccine construct exhibited notable immunogenicity in immune simulation and molecular docking analyses, and stable profiles in secondary and tertiary structure assessments. Moreover, this study designed an optimized codon for efficient translation of the ASFV vaccine construct into the Escherichia coli K-12 expression system using the pET28a(+) vector. Overall, both sequence and structural evaluations suggested the potential of the ASFV vaccine construct as a candidate for controlling and eradicating outbreaks caused by the pathogen.
Collapse
Affiliation(s)
- Alea Maurice Simbulan
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Edward C Banico
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Ella Mae Joy S Sira
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Nyzar Mabeth O Odchimar
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Fredmoore L Orosco
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines.
- Department of Science and Technology, S&T Fellows Program, Bicutan, 1634, Taguig, Metro Manila, Philippines.
- Department of Biology, University of the Philippines Manila, 1000, Manila, Philippines.
| |
Collapse
|
99
|
Dolley A, Goswami HB, Dowerah D, Dey U, Kumar A, Hmuaka V, Mukhopadhyay R, Kundu D, Varghese GM, Doley R, Chandra Deka R, Namsa ND. Reverse vaccinology and immunoinformatics approach to design a chimeric epitope vaccine against Orientia tsutsugamushi. Heliyon 2024; 10:e23616. [PMID: 38187223 PMCID: PMC10767154 DOI: 10.1016/j.heliyon.2023.e23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus is a vector-borne infectious disease caused by Orientia tsutsugamushi and it is reportedly associated with up to 20 % of hospitalized cases of febrile illnesses. The major challenge of vaccine development is the lack of identified antigens that can induce both heterotypic and homotypic immunity including the production of antibodies, cytotoxic T lymphocyte, and helper T lymphocytes. We employed a comprehensive immunoinformatic prediction algorithm to identify immunogenic epitopes of the 56-kDa type-specific cell membrane surface antigen and surface cell antigen A of O. tsutsugamushi to select potential candidates for developing vaccines and diagnostic assays. We identified 35 linear and 29 continuous immunogenic B-cell epitopes and 51 and 27 strong-binding T-cell epitopes of major histocompatibility complex class I and class II molecules, respectively, in the conserved and variable regions of the 56-kDa type-specific surface antigen. The predicted B- and T-cell epitopes were used to develop immunogenic multi-epitope candidate vaccines and showed to elicit a broad-range of immune protection. A stable interactions between the multi-epitope vaccines and the host fibronectin protein were observed using docking and simulation methods. Molecular dynamics simulation studies demonstrated that the multi-epitope vaccine constructs and fibronectin docked models were stable during simulation time. Furthermore, the multi-epitope vaccine exhibited properties such as antigenicity, non-allergenicity and ability to induce interferon gamma production and had strong associations with their respective human leukocyte antigen alleles of world-wide population coverage. A correlation of immune simulations and the in-silico predicted immunogenic potential of multi-epitope vaccines implicate for further investigations to accelerate designing of epitope-based vaccine candidates and chimeric antigens for development of serological diagnostic assays for scrub typhus.
Collapse
Affiliation(s)
- Anutee Dolley
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Himanshu Ballav Goswami
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Dikshita Dowerah
- Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Vanlal Hmuaka
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, 784001, Assam, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Debasree Kundu
- Department of Infectious Diseases, Christian Medical College, Vellore, 632002, Tamil Nadu, India
| | - George M. Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, 632002, Tamil Nadu, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Ramesh Chandra Deka
- Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
| | - Nima D. Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| |
Collapse
|
100
|
Nguyen TL, Kim H. Designing a Multiepitope Vaccine against Eastern Equine Encephalitis Virus: Immunoinformatics and Computational Approaches. ACS OMEGA 2024; 9:1092-1105. [PMID: 38222668 PMCID: PMC10785064 DOI: 10.1021/acsomega.3c07322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
Eastern equine encephalitis virus (EEEV) is a significant threat to human and animal populations, causing severe encephalitis, often leading to long-term neurological complications and even mortality. Despite this, no approved antiviral treatments or EEEV human vaccines currently exist. In response, we utilized immunoinformatics and computational approaches to design a multiepitope vaccine candidate for EEEV. By screening the structural polyprotein of EEEV, we predicted both T-cell and linear B-cell epitopes. These epitopes underwent comprehensive evaluations for their antigenicity, toxicity, and allergenicity. From these evaluations, we selected ten epitopes highly suitable for vaccine design, which were connected with adjuvants using a stable linker. The resulting vaccine construct demonstrated exceptional antigenic, nontoxic, nonallergenic, and physicochemical properties. Subsequently, we employed molecular docking and molecular dynamics simulations to reveal a stable interaction pattern between the vaccine candidate and Toll-like receptor 5. Besides, computational immune simulations predicted the vaccine's capability to induce robust immune responses. Our study addresses the urgent need for effective EEEV preventive strategies and offers valuable insights for EEEV vaccine development. As EEEV poses a severe threat with potential spread due to climate change, our research provides a crucial step in enhancing public health defenses against this menacing zoonotic disease.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Heebal Kim
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary
Program in Bioinformatics, Seoul National
University, Seoul 08826, Republic
of Korea
- eGnome,
Inc., Seoul 05836, Republic of Korea
| |
Collapse
|