51
|
Impact of Chlorella vulgaris as feed ingredient and carbohydrases on the health status and hepatic lipid metabolism of finishing pigs. Res Vet Sci 2022; 144:44-53. [DOI: 10.1016/j.rvsc.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
52
|
Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094402] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microalgae are a known source of proteins, prebiotics, lipids, small molecules, anti-oxidants and bioactives with health benefits that can be harnessed for the development of functional foods, feeds, cosmeceuticals and pharmaceuticals. This review collates information on the supply, processing costs, target markets and value of microalgae, as well as microalgal proteins, lipids, vitamins and minerals. It discusses the potential impact that microalgae could have on global food and feed supply and highlights gaps that exist with regards to the use of microalgal proteins and ingredients as foods and supplements.
Collapse
|
53
|
Protein potential of Desmodesmus asymmetricus grown in greenhouse as an alternative food source for aquaculture. World J Microbiol Biotechnol 2022; 38:92. [DOI: 10.1007/s11274-022-03275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
54
|
Dixit RB, Sagaram US, Gocher C, Krishna Kumar GR, Dasgupta S. Biomolecular characterisation of marine microalga in comparison to fishmeal and soymeal as an alternative feed ingredient. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:365-372. [PMID: 34747066 DOI: 10.1002/pca.3094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Marine microalgae protein has better solubility and digestibility than other protein-based feeds. Apart from protein, high-value biomolecules have an immense potential to enhance the quality of feed, but knowledge about them is scarce. OBJECTIVE Marine microalga Picochlorum sp. biomass molecular characterisation along with commonly used protein feed such as fishmeal and soymeal for potential feed ingredients. METHODOLOGY Liquid chromatography coupled with mass spectrometry (LC-MS) was used for biomolecular characterisation. The correlation of biomolecules sets was evaluated using principal component analysis (PCA) and heatmap clustering. RESULTS LC-MS identified 116 biomolecules cumulatively among microalga, fishmeal, and soymeal that includes fatty acids, acylglycerols, vitamins, sterols, pigments, nucleotides, unique amino acids, amines, sugars and miscellaneous. These 116 biomolecules were screened based on their functional importance as feed ingredients. Among the different sets of biomolecules, microalga contained a more diverse set of fatty acids, pigments, sterols, and vitamins than acylglycerols, unique amino acids, nucleotides, and sugars. Fishmeal contained a more diverse set of acylglycerols, unique amino acids, nucleotides, and amines, while soymeal contained the highest number of sugars and miscellaneous biomolecules. The PCA confirmed the significance level (P > 95%) and heatmap clustering showed the diversity and relatedness of biomolecules among the microalga, fishmeal, and soymeal. CONCLUSION This study showed that the marine microalga Picochlorum sp. biomass has a rich source of biomolecules and could complement fishmeal or soymeal in feed and is also sustainable and economical as compared to fishmeal and soymeal.
Collapse
Affiliation(s)
- Rakhi Bajpai Dixit
- Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, India
| | - Uma Shankar Sagaram
- Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, India
| | - Chandra Gocher
- Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, India
| | - G Raja Krishna Kumar
- Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, India
| | - Santanu Dasgupta
- Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, India
| |
Collapse
|
55
|
Microalgae as Feed Ingredients and a Potential Source of Competitive Advantage in Livestock Production: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
56
|
Hamouda RA, Abd El Latif A, Elkaw EM, Alotaibi AS, Alenzi AM, Hamza HA. Assessment of Antioxidant and Anticancer Activities of Microgreen Alga Chlorella vulgaris and Its Blend with Different Vitamins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051602. [PMID: 35268702 PMCID: PMC8911722 DOI: 10.3390/molecules27051602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 01/09/2023]
Abstract
There is a very vital antioxidant extracted from microgreen alga. Chlorella vulgaris has major advantages and requires high yield worldwide. Some microalgae require vitamins for their growth promotion. This study was held to determine the impact of different vitamins including Thiamine (B1), Riboflavin (B2), Pyridoxine (B6), and Ascorbic acid (c) at concentrations of 0.02, 0.04, 0.06, and 0.08 mg/L of each. Each vitamin was added to the BG11 growth medium to determine the effect on growth, total carbohydrate, total protein, pigments content, antioxidant activities of Chlorella vulgaris. Moreover, antitumor effects of methanol extract of C. vulgaris without and with the supplement of thiamine against Human prostate cancer (PC-3), Hepatocellular carcinoma (HEPG-2), Colorectal carcinoma (HCT-116) and Epitheliod Carcinoma (Hela) was estimated in vitro. C. vulgaris supplemented with various vitamins showed a significant increase in biomass, pigment content, total protein, and total carbohydrates in comparison to the control. Thiamine was the best vitamin influencing as an antioxidant. C. vulgaris supplemented with thiamine had high antitumor effects in vitro. So, it’s necessary to add vitamins to BG11 media for enhancement of the growth and metabolites.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts, Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32897, Egypt; (E.M.E.); (H.A.H.)
- Correspondence: or
| | - Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Ebtihal M. Elkaw
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32897, Egypt; (E.M.E.); (H.A.H.)
| | - Amenah S. Alotaibi
- Biology Department, College of Sciences, Tabuk University, Tabuk 71491, Saudi Arabia; (A.S.A.); (A.M.A.)
| | - Asma Massad Alenzi
- Biology Department, College of Sciences, Tabuk University, Tabuk 71491, Saudi Arabia; (A.S.A.); (A.M.A.)
| | - Hanafy A. Hamza
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32897, Egypt; (E.M.E.); (H.A.H.)
| |
Collapse
|
57
|
Farfan-Cabrera LI, Franco-Morgado M, González-Sánchez A, Pérez-González J, Marín-Santibáñez BM. Microalgae Biomass as a New Potential Source of Sustainable Green Lubricants. Molecules 2022; 27:1205. [PMID: 35208995 PMCID: PMC8875479 DOI: 10.3390/molecules27041205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/31/2022] Open
Abstract
Lubricants are materials able to reduce friction and/or wear of any type of moving surfaces facilitating smooth operations, maintaining reliable machine functions, and reducing risks of failures while contributing to energy savings. At present, most worldwide used lubricants are derived from crude oil. However, production, usage and disposal of these lubricants have significant impact on environment and health. Hence, there is a growing pressure to reduce demand of this sort of lubricants, which has fostered development and use of green lubricants, as vegetable oil-based lubricants (biolubricants). Despite the ecological benefits of producing/using biolubricants, availability of the required raw materials and agricultural land to create a reliable chain supply is still far from being established. Recently, biomass from some microalgae species has attracted attention due to their capacity to produce high-value lipids/oils for potential lubricants production. Thus, this multidisciplinary work reviews the main chemical-physical characteristics of lubricants and the main attempts and progress on microalgae biomass production for developing oils with pertinent lubricating properties. In addition, potential microalgae strains and chemical modifications to their oils to produce lubricants for different industrial applications are identified. Finally, a guide for microalgae oil selection based on its chemical composition for specific lubricant applications is provided.
Collapse
Affiliation(s)
- Leonardo I. Farfan-Cabrera
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Mariana Franco-Morgado
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Armando González-Sánchez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - José Pérez-González
- Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Laboratorio de Reología y Física de la Materia Blanda, U.P. Adolfo López Mateos Edif. 9, Col. Lindavista, Alc. Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Benjamín M. Marín-Santibáñez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, U.P. Adolfo López Mateos Edif. 7, Col. Lindavista, Alc. Gustavo A. Madero, Mexico City 07738, Mexico;
| |
Collapse
|
58
|
Cerezo IM, Fumanal M, Tapia-Paniagua ST, Bautista R, Anguís V, Fernández-Díaz C, Alarcón FJ, Moriñigo MA, Balebona MC. Solea senegalensis Bacterial Intestinal Microbiota Is Affected by Low Dietary Inclusion of Ulva ohnoi. Front Microbiol 2022; 12:801744. [PMID: 35211100 PMCID: PMC8861459 DOI: 10.3389/fmicb.2021.801744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The inclusion of macroalgae in the diets of farmed fish offers the opportunity for an added-value dietary ingredient to the nutraceutical feed. The composition of algae varies greatly among species. Several Ulva species have been considered in aquafeed formulations for different farmed fish, and Ulva ohnoi is being applied recently. However, the effects of seaweed dietary inclusion on the host must be evaluated. Considering the important role of the host intestinal microbiota, the potential effects of U. ohnoi dietary inclusion need to be studied. In this study, the characterization of the intestinal microbiome of Solea senegalensis, a flatfish with high potential for aquaculture in South Europe, receiving U. ohnoi (5%)-supplemented diet for 90 days has been carried out. In addition, the functional profiles of bacterial communities have been determined by using PICRUSt, a computational approach to predict the functional composition of a metagenome by using marker gene data and a database of reference genomes. The results show that long-term dietary administration of U. ohnoi (5%)-supplemented feed modulates S. senegalensis intestinal microbiota, especially in the posterior intestinal section. Increased relative abundance of Vibrio jointly with decreased Stenotrophomonas genus has been detected in fish receiving Ulva diet compared to control-fed fish. The influence of the diet on the intestinal functionality of S. senegalensis has been studied for the first time. Changes in bacterial composition were accompanied by differences in predicted microbiota functionality. Increased abundance of predicted genes involved in xenobiotic biodegradation and metabolism were observed in the microbiota when U. ohnoi diet was used. On the contrary, predicted percentages of genes associated to penicillin and cephalosporin biosynthesis as well as beta-lactam resistance were reduced after feeding with Ulva diet.
Collapse
Affiliation(s)
- Isabel M. Cerezo
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
- Unidad de Bioinformática – SCBI, Universidad de Málaga, Málaga, Spain
| | - Milena Fumanal
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| | | | - Rocio Bautista
- Unidad de Bioinformática – SCBI, Universidad de Málaga, Málaga, Spain
| | | | | | | | - Miguel A. Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| | - M. Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
59
|
Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Varjani S, Liu Q, Bui XT, Hoang NB. Bio-membrane integrated systems for nitrogen recovery from wastewater in circular bioeconomy. CHEMOSPHERE 2022; 289:133175. [PMID: 34875297 DOI: 10.1016/j.chemosphere.2021.133175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Wastewater contains a significant amount of recoverable nitrogen. Hence, the recovery of nitrogen from wastewater can provide an option for generating some revenue by applying the captured nitrogen to producing bio-products, in order to minimize dangerous or environmental pollution consequences. The circular bio-economy can achieve greater environmental and economic sustainability through game-changing technological developments that will improve municipal wastewater management, where simultaneous nitrogen and energy recovery are required. Over the last decade, substantial efforts were undertaken concerning the recovery of nitrogen from wastewater. For example, bio-membrane integrated system (BMIS) which integrates biological process and membrane technology, has attracted considerable attention for recovering nitrogen from wastewater. In this review, current research on nitrogen recovery using the BMIS are compiled whilst the technologies are compared regarding their energy requirement, efficiencies, advantages and disadvantages. Moreover, the bio-products achieved in the nitrogen recovery system processes are summarized in this paper, and the directions for future research are suggested. Future research should consider the quality of recovered nitrogenous products, long-term performance of BMIS and economic feasibility of large-scale reactors. Nitrogen recovery should be addressed under the framework of a circular bio-economy.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, PR China.
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Bich Hoang
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
60
|
Improved growth of bait microalgae Isochrysis and aquacultural wastewater treatment with mixotrophic culture. Bioprocess Biosyst Eng 2022; 45:589-597. [PMID: 34994848 DOI: 10.1007/s00449-021-02681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
This research of mixotrophic microalgae Isochrysis 3011 with glycerol was combined with the treatment of aqua-cultural wastewater, different initial concentrations, and optimized light intensities. The algae growth rate, removal efficiencies of total nitrogen (TN) and total phosphorus (TP) were determined. Results showed that the suitable initial concentration was 0.4 g L-1, and the optimum light intensity was 60 µmol m-2 s-1. The growth of the mixotrophic group was better than that of the autotrophic culture. The biomass yield of the mixotrophic group with glycerol was 0.17 g L-1 d-1, and the removal rates of TN and TP were 73.39% and 95.61%, respectively. The content of total lipid and total protein in mixotrophic group were higher than the values of the autotrophic group. This indicates that aquaculture wastewater treatment with mixotrophic bait microalgae can obtain superior micro-algal biomass, which is also a potential technology for wastewater utilization and ecological protection.
Collapse
|
61
|
Dietary supplementation with microalgae enhances the zebrafish growth performance by modulating immune status and gut microbiota. Appl Microbiol Biotechnol 2022; 106:773-788. [PMID: 34989826 DOI: 10.1007/s00253-021-11751-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
Microalgae are known to be abundant in various habitats around the globe, and are rich in high value-added products such as fatty acids, polysaccharides, proteins, and pigments. Microalgae can be exploited as the basic and primitive food source of aquatic animals. We investigated the effects of dietary supplementation with Schizochytrium sp., Spirulina platensis, Chloroella sorokiniana, Chromochloris zofingiensis, and Dunaliella salina on the growth performance, immune status, and intestinal health of zebrafish (Danio rerio). The results showed that these five microalgae diets could improve the feed conversion rate (FCR), especially the D. salina (FCR = 1.02%) and Schizochytrium sp. (FCR = 1.20%) additive groups. Moreover, the microalgae diets decreased the gene expression level of the pro-inflammatory cytokines IL6, IL8, and IL1β at a normal physiological state of the intestine, especially the Schizochytrium sp., S. platensis, and D. salina dietary groups. The expression of neutrophil marker b7r was increased in the C. sorokiniana diet group; after, the zebrafish were challenged with Vibrio anguillarum, improving the ability to resist this disease. We also found that microalgae diets could regulate the gut microbiota of fish as well as increase the relative abundance of probiotics. To further explain, Cetobacterium was significantly enriched in the S. platensis additive group and Stenotrophomonas was higher in the Schizochytrium sp. additive group than in the other groups. Conversely, harmful bacteria Mycoplasma reduced in all tested microalgae diet groups. Our study indicated that these microalgae could serve as a food source supplement and benefit the health of fish. KEY POINTS: • Microalgae diets enhanced the growth performance of zebrafish. • Microalgae diets attenuated the intestinal inflammatory responses of zebrafish. • Microalgae diets modulated the gut microbiota composition to improve fish health.
Collapse
|
62
|
Abstract
The efficient use of natural resources is essential for the planet’s sustainability and ensuring food security. Colombia’s large availability of water resources in combination with its climatic characteristics allows for the development of many microalgae species. The use of microalgae can potentially contribute to sustainable production in support of the agri-food sector. The nutritional composition (proteins, carbohydrates, fatty acids, vitamins, pigments, and antioxidants) of microalgae along with the ease of producing high biomass yields make them an excellent choice for human and animal nutrition and agriculture. Several species of microalgae have been studied seeking to develop food supplements for pigs, ruminants, poultry, fish, crustaceans, rabbits, and even bees. Important benefits to animal health, production, and improved bromatological and organoleptic characteristics of milk, meat, and eggs have been observed. Based on the functional properties of some microalgae species, foods and supplements have also been developed for human nutrition. Moreover, because microalgae contain essential nutrients, they can be utilized as biofertilizers by replacing chemical fertilizers, which are detrimental to the environment. In view of the above, the study of microalgae is a promising research area for the development of biotechnology and bioeconomy in Colombia.
Collapse
|
63
|
Pascon G, Messina M, Petit L, Valente LMP, Oliveira B, Przybyla C, Dutto G, Tulli F. Potential application and beneficial effects of a marine microalgal biomass produced in a high-rate algal pond (HRAP) in diets of European sea bass, Dicentrarchus labrax. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62185-62199. [PMID: 34185272 PMCID: PMC8589781 DOI: 10.1007/s11356-021-14927-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/11/2021] [Indexed: 04/12/2023]
Abstract
Microalgae have been used as live food in aquatic species. In recent years, the interest in microalgae has considerably increased, thanks to the evolution of production techniques that have identified them as an ecologically attractive aquafeed ingredient. The present study provides the first data about the effects of dietary inclusion of a microalgae consortium grown in a high-rate algal pond system on zootechnical performance, morphometric indices, and dietary nutrient digestibility as well as morphology and functionality of the digestive system of European sea bass, Dicentrarchus labrax. A dietary treatment including a commercial mono-cultured microalgae (Nannochloropsis sp.) biomass was used for comparison. Six hundred and thirty-six European sea bass juveniles (18 ± 0.28 g) were randomly allotted into 12 experimental groups and fed 4 different diets for 10 weeks: a control diet based on fish meal, fish oil, and plant protein sources; a diet including 10% of Nannochloropsis spp. biomass (100 g/kg diet); and two diets including two levels (10% and 20%) of the microalgal consortium (100 and 200 g/kg diet). Even at the highest dietary inclusion level, the microalgal consortium (200 g/kg diet) did not affect feed palatability and fish growth performance. A significant decrease in the apparent digestibility of dry matter, protein, and energy was observed in diets including 10 and 20% of the microalgal consortium, but all fish exhibited a well-preserved intestinal histomorphology. Moreover, dietary inclusion with the microalgal consortium significantly increased the enzymatic activity of maltase, sucrase-isomaltase, and ɤ-glutamil transpeptidase in the distal intestine of the treated European sea bass. Algal consortium grown using fish farm effluents represents an attempt to enhance the utilization of natural biomasses in aquafeeds when used at 10 % as substitute of vegetable ingredients in diet for European sea bass.
Collapse
Affiliation(s)
- Giulia Pascon
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Maria Messina
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy.
| | - Lisa Petit
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas les flots, Laboratoire L-3AS, 34250, Palavas-les-Flots, France
| | - Luisa Maria Pinheiro Valente
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Beatriz Oliveira
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Cyrille Przybyla
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas les flots, Laboratoire L-3AS, 34250, Palavas-les-Flots, France
| | - Gilbert Dutto
- IFREMER French Research Institute for Exploitation of the Sea, Laboratoire Service d'Expérimentations Aquacoles, 34250, Palavas les flots, France
| | - Francesca Tulli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| |
Collapse
|
64
|
Functional Feeds to Tackle Meagre ( Argyrosomus regius) Stress: Physiological Responses under Acute Stressful Handling Conditions. Mar Drugs 2021; 19:md19110598. [PMID: 34822469 PMCID: PMC8617847 DOI: 10.3390/md19110598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Marine algae are recognised sources of bioactive compounds that have attracted great interest as nutritional supplements for aquaculture fish. Intensive rearing conditions often expose fish to husbandry-related stressors, rendering fish more susceptible to disease and reducing production yields. The present work evaluated the potential of two marine algae extracts (Fucus vesiculosus and Nannochloropsis gaditana) as nutritional supplements to mitigate stress effects in meagre (Argyrosomus regius) exposed to an acute handling stress (AS). A plant-based diet was used as a control, and three other diets were prepared, which were similar to the control diet but supplemented with 1% of each algal extract or a combination of the two extracts (0.5% each). The effects of supplemented diets on stress biomarkers, antioxidant enzyme activities, and immune response were analysed in fish exposed to AS after 4 weeks of feeding. Supplemented diets did not affect growth performance but the inclusion of F. vesiculosus promoted higher feed efficiency, as compared to the control group. Dietary algal extracts supplementation reduced plasma glucose levels, increased white blood cell counts, and reduced the expression of pro-inflammatory genes when compared with the control. N. gaditana supplementation led to a reduction in hepatic antioxidant enzyme activity and glutathione levels, while F. vesiculosus supplementation increased muscle glutathione reductase activity and reduced lipid peroxidation. These findings support the potential of algal extracts as nutraceuticals in aquafeeds to enhance the ability of fish to cope with husbandry-related stressful conditions and ultimately improve fish health and welfare.
Collapse
|
65
|
Chen W, Jafarzadeh S, Thakur M, Ólafsdóttir G, Mehta S, Bogason S, Holden NM. Environmental impacts of animal-based food supply chains with market characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147077. [PMID: 34088125 DOI: 10.1016/j.scitotenv.2021.147077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Animal-based food supply chains lead to significant environmental impacts, which can be influenced by production systems, distribution networks and consumption patterns. To develop strategy aimed at reducing the environmental impact of animal-based food supply chains, the common environmental hotspots among different types of food, the role of transport logistics and the consequence of end market need to be better understood. Life cycle assessment was adopted to model three types of animal-based food chains (beef, butter and salmon), with specific technologies, high spatial-resolution logistics and typical consumption patterns for three markets: local, regional (intra-European) and international. The results confirmed that the farm production stage usually had the greatest environmental impact, except when air transport was used for distribution. Potentially, the role of end market also can significantly influence the environmental impacts. To understand more, three improvement options were examined in detail with regard to hotspots for climate change: novel feed ingredients (farm production stage), sustainable aviation fuel (transport and logistics stage) and reduction of wasted food (consumption and end of life stage). Significant reduction was achieved in the salmon system by sustainable aviation fuel (64%) and novel feed (15%). Minimizing food waste drove the greatest reduction in the beef supply chain (23%) and the international butter supply chain can reduce 50% of GHG mission by adopting sustainable aviation fuel. Combined interventions could reduce GHG emission of animal-based food supply chains by 15% to 82%, depending on market, transport and food waste behaviour. The results show that eco-efficiency information of animal-based foods should include the full supply chain. The effective mitigation strategy to achieve the greatest reduction should not only consider the impacts on-farm, but also detail of the downstream impacts, such as food distribution network and consumption patterns.
Collapse
Affiliation(s)
- Wenhao Chen
- School of Biosystems & Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| | | | | | - Guðrún Ólafsdóttir
- School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107 Reykjavík, Iceland
| | | | - Sigurdur Bogason
- School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107 Reykjavík, Iceland
| | - Nicholas M Holden
- School of Biosystems & Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
66
|
Insights into the technology utilized to cultivate microalgae in dairy effluents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
67
|
Zhang L, Zhang XT, Jin P, Zhao H, Liu X, Sheng Q. Effects of oral administration of Spirulina platensis and probiotics on serum immunity indexes, colonic immune factors, fecal odor, and fecal flora in mice. Anim Sci J 2021; 92:e13593. [PMID: 34289202 DOI: 10.1111/asj.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/01/2022]
Abstract
To evaluate the effects of Spirulina platensis and probiotics on growth, immunity indexes, fecal flora, and fecal odor in mice, 40 mice were randomly allotted to four groups, and each was administrated with nothing, S. platensis, probiotics, or both for 28 days, respectively. Then, many indexes were measured. The results showed that S. platensis was more effective (P < 0.001) than probiotics in improving mice's feed conversion ration (FCR). In immunity, probiotics administration increased (P < 0.042) serum IgE, IgM, IFN-γ, colonic AHR, TLR4, and NF-κB protein expression and decreased (P < 0.039) serum IL-1α, IL-21, IL-22, and colonic ARNT gene expression. However, the S. platensis showed weaker effect, which increased (P < 0.025) the serum IgE, IgM, TNF-α, and the colonic AHR and NF-κB protein expression, and decreased (P < 0.01) serum IL-21. Probiotics consumption decreased the fecal odor by decreasing (P < 0.02) fecal Escherichia coli, indole-3-acetic acid (IAA), and skatole contents, and the S. platensis decreased (P = 0.04) the IAA. These results indicated that oral administration of probiotics, S. platensis, or both of them in mice probably benefited body's immunity and reduced fecal odor. However, their mechanisms were still unclear and need further study.
Collapse
Affiliation(s)
- Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Xing Tao Zhang
- The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Pingting Jin
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Hongbo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingkai Sheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
68
|
Fries-Craft K, Meyer MM, Bobeck EA. Algae-based feed ingredient protects intestinal health during Eimeria challenge and alters systemic immune responses with differential outcomes observed during acute feed restriction. Poult Sci 2021; 100:101369. [PMID: 34333388 PMCID: PMC8342793 DOI: 10.1016/j.psj.2021.101369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/29/2023] Open
Abstract
Compounds in microalgae-derived feed ingredients in poultry diets may improve intestinal physiology and immunity to protect against damage induced by physiological and pathogen challenges, but mechanisms are examined sparingly. The study objective was to evaluate changes to intestinal morphology, permeability, and systemic immunity in broilers fed a proprietary microalgae ingredient during 2 separate challenge studies. In study 1, two replicate 28 d battery cage trials used 200 Ross 308 broilers each (n = 400) fed a control diet ± 0.175% algae ingredient. Half of the birds were subjected to a 12 h feed restriction challenge and fluorescein isothiocyanate dextran (FITC-D) intestinal permeability assay on d 28. Study 2 used 800 broilers randomly assigned to the same dietary treatments and housed in floor pens for 42 d. At d 14, intestine and spleen samples were collected from 10 birds/ diet. Half of the remainder was orally inoculated with 10X Coccivac-B52 vaccine in a 2 × 2 factorial treatment design (diet and Eimeria inoculation). The FITC-D assay was conducted at 1, 3, 7, and 14 d post-inoculation (pi) while intestinal and spleen samples were collected at 3, 7, 14, and 28 dpi for histomorphology and flow cytometric immune cell assessment. Study 1 validated intestinal leakage via FITC-D absorbance induced by feed restriction but showed no algae-associated protective effects. In study 2, algae preserved intestinal integrity during coccidiosis (P = 0.04) and simultaneously protected jejunal villus height as early as 7dpi (P < 0.0001), whereas intestinal damage resolution in control birds did not occur until 14 dpi. Algae inclusion increased splenic T cells in unchallenged broilers at d 14 by 29.6% vs. control (P < 0.0001), specifically γδ T cell populations, without impacting performance (P < 0.03). During Eimeria challenge, splenic T cells in algae-fed birds did not show evidence of recruitment to peripheral tissues, while control birds showed a 16.7% reduction compared to their uninoculated counterparts from 3 to 7 dpi (P < 0.0001). This evidence suggests the algae ingredient altered the immune response in a manner that reduced recruitment from secondary lymphoid organs in addition to protecting intestinal physiology.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - M M Meyer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
69
|
Mavrommatis A, Sotirakoglou K, Kamilaris C, Tsiplakou E. Effects of Inclusion of Schizochytrium spp. and Forage-to-Concentrate Ratios on Goats' Milk Quality and Oxidative Status. Foods 2021; 10:1322. [PMID: 34201334 PMCID: PMC8228103 DOI: 10.3390/foods10061322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Although the dietary inclusion level of polyunsaturated fatty acids (PUFA) and the forage: concentrate (F:C) ratio affect milk quality, their interaction has not been broadly studied. To address such gaps and limitations a two-phase trial using twenty-two dairy goats was carried out. During the first phase, both groups (20 HF n = 11; high forage and 20 HG n = 11; high grain) were supplemented with 20 g Schizochytrium spp./goat/day. The 20 HF group consumed a diet with F:C ratio 60:40 and the 20 HG-diet consisted of F:C = 40:60. In the second phase, the supplementation level of Schizochytrium spp. was increased to 40 g/day/goat while the F:C ratio between the two groups were remained identical (40 HF n = 11; high forage and 40 HG n = 11; high grain). Neither the Schizochytrium spp. supplementation levels (20 vs. 40) nor the F:C ratio (60:40 vs. 40:60) affected milk performance. The high microalgae level (40 g) in combination with high grain diet (40 HG) modified the proportions of docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and conjugated linoleic acid (CLA) and the ω3/ω6 ratio in milk, to a beneficial manner according to human health recommendation guidelines. However, the highest inclusion level of Schizochytrium spp. (40 g) and foremost in combination with the high grain diets (40 HG) induced an oxidative response as observed by the increased protein carbonyls (CP) and malondialdehyde (MDA) levels in milk and blood plasma indicating severe limitations for a long-term, on-farm application. In conclusion, the supplementation with 20 g Schizochytrium spp. and high forage diet (60:40) appears to be an ideal formula to enrich dairy products with essential biomolecules for human health without adversely affect milk oxidative stability.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Kyriaki Sotirakoglou
- Laboratory of Mathematics and Statistics, Department of Natural Resources and Agricultural Engineering, School of Environment and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Charalampos Kamilaris
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK;
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| |
Collapse
|
70
|
Gupta AK, Seth K, Maheshwari K, Baroliya PK, Meena M, Kumar A, Vinayak V, Harish. Biosynthesis and extraction of high-value carotenoid from algae. FRONT BIOSCI-LANDMRK 2021; 26:171-190. [PMID: 34162044 DOI: 10.52586/4932] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/07/2021] [Indexed: 11/09/2022]
Abstract
Algae possess a considerable potential as bio-refinery for the scale-up production of high-value natural compounds like-carotenoids. Carotenoids are accessory pigments in the light-harvesting apparatus and also act as antioxidants and photo-protectors in green cells. They play important roles for humans, like-precursors of vitamin A, reduce the risk of some cancers, helps in the prevention of age-related diseases, cardiovascular diseases, improve skin health, and stimulates immunity. To date, about 850 types of natural carotenoid compounds have been reported and they have approximated 1.8 billion US$ of global market value. In comparison to land plants, there are few reports on biosynthetic pathways and molecular level regulation of algal carotenogenesis. Recent advances of algal genome sequencing, data created by high-throughput technologies and transcriptome studies, enables a better understanding of the origin and evolution of de novo carotenoid biosynthesis pathways in algae. Here in this review, we focused on, the biochemical and molecular mechanism of carotenoid biosynthesis in algae. Additionally, structural features of different carotenoids are elaborated from a chemistry point of view. Furthermore, current understandings of the techniques designed for pigment extraction from algae are reviewed. In the last section, applications of different carotenoids are elucidated and the growth potential of the global market value of carotenoids are also discussed.
Collapse
Affiliation(s)
- Amit Kumar Gupta
- Department of Botany, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| | - Kunal Seth
- Department of Botany, Government Science College, Pardi, 396125 Valsad, Gujarat, India
| | - Kirti Maheshwari
- Department of Botany, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| | - Prabhat Kumar Baroliya
- Department of Chemistry, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| | - Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, 470003 Sagar, MP, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, 470003 Sagar, MP, India
| | - Harish
- Department of Botany, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| |
Collapse
|
71
|
Abstract
Microalgae have become an attractive natural source of a diverse range of biomolecules, including enzymatic and non-enzymatic antioxidants; nevertheless, economically sustainable production of such compounds from microalgae biomass is still challenging. The main hurdles are: (a) increasing microalgae yield; (b) achieving optimal cultivation conditions; (c) energy-efficient and cost-effective downstream processing (extraction and purification); (d) optimal storage of post-processed antioxidant molecules. This review provides a detailed overview of enzymatic and non-enzymatic antioxidants in the cellular metabolism of the commercially important microalgae Dunaliella, industrial applications of antioxidant enzymes, strategies to enhanced antioxidant accumulation in cells, and the opportunities and limitations of current technologies for antioxidant enzymes production from microalgae biomass as an alternative to common microbial sources.
Collapse
|
72
|
Kiran BR, Venkata Mohan S. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:836. [PMID: 33919450 PMCID: PMC8143517 DOI: 10.3390/plants10050836] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are multifaceted photosynthetic microorganisms with emerging business potential. They are present ubiquitously in terrestrial and aquatic environments with rich species diversity and are capable of producing significant biomass. Traditionally, microalgal biomass is being used as food and feed in many countries around the globe. The production of microalgal-based bioactive compounds at an industrial scale through biotechnological interventions is gaining interest more recently. The present review provides a detailed overview of the key algal metabolites, which plays a crucial role in nutraceutical, functional foods, and animal/aquaculture feed industries. Bioactive compounds of microalgae known to exhibit antioxidant, antimicrobial, antitumor, and immunomodulatory effects were comprehensively reviewed. The potential microalgal species and biological extracts against human pathogens were also discussed. Further, current technologies involved in upstream and downstream bioprocessing including cultivation, harvesting, and cell disruption were documented. Establishing microalgae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being.
Collapse
Affiliation(s)
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India;
| |
Collapse
|
73
|
Malla A, Rosales-Mendoza S, Phoolcharoen W, Vimolmangkang S. Efficient Transient Expression of Recombinant Proteins Using DNA Viral Vectors in Freshwater Microalgal Species. FRONTIERS IN PLANT SCIENCE 2021; 12:650820. [PMID: 33897742 PMCID: PMC8058379 DOI: 10.3389/fpls.2021.650820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
The increase in the world population, the advent of new infections and health issues, and the scarcity of natural biological products have spotlighted the importance of recombinant protein technology and its large-scale production in a cost-effective manner. Microalgae have become a significant promising platform with the potential to meet the increasing demand for recombinant proteins and other biologicals. Microalgae are safe organisms that can grow rapidly and are easily cultivated with basic nutrient requirements. Although continuous efforts have led to considerable progress in the algae genetic engineering field, there are still many hurdles to overcome before these microorganisms emerge as a mature expression system. Hence, there is a need to develop efficient expression approaches to exploit microalgae for the production of recombinant proteins at convenient yields. This study aimed to test the ability of the DNA geminiviral vector with Rep-mediated replication to transiently express recombinant proteins in the freshwater microalgal species Chlamydomonas reinhardtii and Chlorella vulgaris using Agrobacterium-mediated transformation. The SARS-CoV-2 receptor binding domain (RBD) and basic fibroblast growth factor (bFGF) are representative antigen proteins and growth factor proteins, respectively, that were subcloned in a geminiviral vector and were used for nuclear transformation to transiently express these proteins in C. reinhardtii and C. vulgaris. The results showed that the geminiviral vector allowed the expression of both recombinant proteins in both algal species, with yields at 48 h posttransformation of up to 1.14 μg/g RBD and 1.61 ng/g FGF in C. vulgaris and 1.61 μg/g RBD and 1.025 ng/g FGF in C. reinhardtii. Thus, this study provides a proof of concept for the use of DNA viral vectors for the simple, rapid, and efficient production of recombinant proteins that repress the difficulties faced in the genetic transformation of these unicellular green microalgae. This concept opens an avenue to explore and optimize green microalgae as an ideal economically valuable platform for the production of therapeutic and industrially relevant recombinant proteins in shorter time periods with significant yields.
Collapse
Affiliation(s)
- Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
74
|
Sahin OI, Öztürk B. Microalgal biomass — a bio-based additive: evaluation of green smoothies during storage. INTERNATIONAL FOOD RESEARCH JOURNAL 2021. [DOI: 10.47836/ifrj.28.2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microalgae biomass addition to food has been studied for its nutritional fortification. The present work investigates the impact of microalgae (Chlorella vulgaris and Dunaliella salina) addition, in terms of quality characteristics, during a 28-day storage at 5°C. As much as 2.5% (w/v) of C. vulgaris and D. salina were separately added to fresh green smoothies (spinach, green apple, and cucumber) as food additive. Without any thermal application during storage at 5°C, the changes in pH, total soluble, solid contents, titratable acidity, microbial loads, phenolic contents, antioxidant activity, and sensory characteristics were determined. The addition of microalgae biomass, either Chlorella or Dunaliella, was found statistically significant, but this addition did not make a significant difference during the 28-day storage. Compared to control samples (at day 0; 163.16 mg GAE/100 g and 2.56 mmol GAE/100 g), Dunaliella biomass affected green smoothie more positively on total phenolic (at day 0; 395.79 mg GAE/100 g) and antioxidant activity (at day 0; 5.54 mmol GAE/100 g), than Chlorella biomass (at day 0; 384.21 mg GAE/100 g and 4.22 mmol GAE/100 g). Also, a shelf-life study on 28-day storage at 5°C found that Dunaliella-added smoothies were more preferred by the panellists, while Chlorella-added samples exhibited off-odour and off-flavour through storage. Smoothie supplementation with 2.5% microalgae biomass caused a decrease in the initial microbial load. Due to this reduction, it can be said that microalgae supplementation as an additive was effective, and microalgae-added samples were shown below the "microbiologically consumable level" throughout the 28-day shelf-life study.
Collapse
|
75
|
El Baky HHA, El Baroty GS, Mostafa EM. Optimization Growth of Spirulina (Arthrospira) Platensis in Photobioreactor Under Varied Nitrogen Concentration for Maximized Biomass, Carotenoids and Lipid Contents. Recent Pat Food Nutr Agric 2021; 11:40-48. [PMID: 30588890 DOI: 10.2174/2212798410666181227125229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/14/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022]
Abstract
AIMS AND BACKGROUND Spirulina (Arthrospira) platensis (SP) microalgae were cultured in Zarrouk Medium (ZM), containing three nitrogen concentrations (N-limited, N-optimal and Nrich medium) in ten liter-photo-bioreactor (10 L PBR) for 15-days, in order to study changes in lipid compounds (total carotenoids and total lipids and their effect on fatty acid profile). Based on US patent, the yield of bioactive compounds (such as gamma-linolenic acid GLA, C18:3) extracted from microalgae biomass, mainly depends on the extraction processes (1). GLA has much attention with respect to its therapeutic properties such as its ability to decrease blood cholesterol levels. METHODS The impact of the addition of N in cultures of S. platensis in terms of growth, biomasses and induced lipid compounds (total carotenoids and total lipid contents and its fatty acid profile), as well as the Sonication (SON) and Microwave (MIC) process as aiding techniques for lipid extraction compared with a Cold Condition (COL), was examined. GC/MS method was used to determine the fatty acid profile of lipid extract of SP cultures. RESULTS In all S. platensis tested culture, the SP was growing successfully, with varying degrees. In N-rich media, the highest cell growth rate and biomass yield were obtained compared with that recorded in other cultures. Under an N-limited condition, SP had higher Total Carotenoids (TCAR, 45.54 mg/g dw) and total lipid contents (TL, 29.51%± 1.92 g/100g dw) compared with that recorded either in N-rich (11.2 mg/g dw) or in N-optimal (6.23 mg/g dw) cultures. Thus, SP copes with the N -stress by altering the metabolic pathways towards inducing lipid biosynthesis. To maximize the TL and TCAR extraction yields, from N-limited cultures, a set of operating process was applied including the Sonication (SON) and Microwave (MIC), which were used as aiding techniques for lipid extraction compared with the Cold Condition (COL) techniques. The results showed that the extraction efficiency of the S. platensis TL increased in the following order: MIC (29.51%± 1.92) > SON (25.46% ± 1.65> COL (20.43% ±1.43). In a comparative study for its fatty acid profiles (FAPs) among all SP cultures, lipids were analyzed by GC/MS. The predominant fatty acids (>10%, of total FA) were found to be myristic acid (C14:0, MA), palmitic acid (C16:0, PA) and oleic acid (C18:1). CONCLUSION The study concluded that the N-limited condition was found to have a strong influence on biomass dry weight and lipid contents and total carotenoids in SP cells compared to either Nrich or N-optimal conditions. The use of sonication and the microwave techniques lead to a great increase in the extraction of lipid contents and in high amount Polyunsaturated Fatty Acids (PUFAs) in N-limited cultures, in particular, the omega-6 (ω 6) and omega-3 (ω 3) of the essential C18 fatty acids. It seems that the SP rich in lipid content with a high amount of GLC produced under nitrogen limitation in PBR conditions can be used as a food additive or as a nutritional supplement.
Collapse
Affiliation(s)
- Hanaa H Abd El Baky
- Plant Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Gamal S El Baroty
- Biochemistry Department of, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Enas M Mostafa
- Biotechnology & Genetic Engineering Pilot plant unit at National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
76
|
Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The need to reduce the costs associated with microalgae cultivation encouraged scientific research into coupling this process with wastewater treatment. Thus, the aim of this work was to assess the growth of Chlorella vulgaris (Chlorophyta) in different effluents from a municipal wastewater treatment plant (WWTP), namely secondary effluent (SE) and sludge run-off (SR). Assays were performed, under the same conditions, in triplicate with 4 dilution ratios of the wastewaters (25%, 50%, 75% and 100%) with the standard culture medium bold basal medium double nitrated (BBM2N) as a control. The capability of C. vulgaris for biomass production, chlorophyll synthesis and nutrients removal in the SE and SR was evaluated. The 25% SE and 25% SR showed increased specific growth rates (0.47 and 0.55 day−1, respectively) and higher biomass yields (8.64 × 107 and 1.95 × 107 cells/mL, respectively). Regarding the chlorophyll content, the 100% SR promoted the highest concentration of this pigment (2378 µg/L). This green microalga was also able to remove 94.8% of total phosphorus of SE, while in 50% SR, 31.2% was removed. Removal of 73.9% and 65.9% of total nitrogen in 50% and 100% SR, respectively, was also observed. C. vulgaris growth can, therefore, be maximized with the addition of municipal effluents, to optimize biomass production, while cleansing the effluents.
Collapse
|
77
|
Jareonsin S, Pumas C. Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production. Front Bioeng Biotechnol 2021; 9:628597. [PMID: 33644020 PMCID: PMC7907617 DOI: 10.3389/fbioe.2021.628597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, most commercial recombinant technologies rely on host systems. However, each host has their own benefits and drawbacks, depending on the target products. Prokaryote host is lack of post-transcriptional and post-translational mechanisms, making them unsuitable for eukaryotic productions like phytochemicals. Even there are other eukaryote hosts (e.g., transgenic animals, mammalian cell, and transgenic plants), but those hosts have some limitations, such as low yield, high cost, time consuming, virus contamination, and so on. Thus, flexible platforms and efficient methods that can produced phytochemicals are required. The use of heterotrophic microalgae as a host system is interesting because it possibly overcome those obstacles. This paper presents a comprehensive review of heterotrophic microalgal expression host including advantages of heterotrophic microalgae as a host, genetic engineering of microalgae, genetic transformation of microalgae, microalgal engineering for phytochemicals production, challenges of microalgal hosts, key market trends, and future view. Finally, this review might be a directions of the alternative microalgae host for high-value phytochemicals production in the next few years.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
78
|
Effect of pluronic block polymers and N-acetylcysteine culture media additives on growth rate and fatty acid composition of six marine microalgae species. Appl Microbiol Biotechnol 2021; 105:2139-2156. [PMID: 33576880 PMCID: PMC7907027 DOI: 10.1007/s00253-021-11147-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/13/2022]
Abstract
Abstract The efficiency of microalgal biomass production is a determining factor for the economic competitiveness of microalgae-based industries. N-acetylcysteine (NAC) and pluronic block polymers are two compounds of interest as novel culture media constituents because of their respective protective properties against oxidative stress and shear-stress-induced cell damage. Here we quantify the effect of NAC and two pluronic (F127 and F68) culture media additives upon the culture productivity of six marine microalgal species of relevance to the aquaculture industry (four diatoms-Chaetoceros calcitrans, Chaetoceros muelleri, Skeletonema costatum, and Thalassiosira pseudonana; two haptophytes-Tisochrysis lutea and Pavlova salina). Algal culture performance in response to the addition of NAC and pluronic, singly or combined, is dosage- and species-dependent. Combined NAC and pluronic F127 algal culture media additives resulted in specific growth rate increases of 38%, 16%, and 24% for C. calcitrans, C. muelleri, and P. salina, respectively. Enhanced culture productivity for strains belonging to the genus Chaetoceros was paired with an ~27% increase in stationary-phase cell density. For some of the species examined, culture media enrichments with NAC and pluronic resulted in increased omega-3-fatty acid content of the algal biomass. Larval development (i.e., growth and survival) of the Pacific oyster (Crassostrea gigas) was not changed when fed a mixture of microalgae grown in NAC- and F127-supplemented culture medium. Based upon these results, we propose that culture media enrichment with NAC and pluronic F127 is an effective and easily adopted approach to increase algal productivity and enhance the nutritional quality of marine microalgal strains commonly cultured for live-feed applications in aquaculture. Key points • Single and combined NAC and pluronic F127 culture media supplementation significantly enhanced the productivity of Chaetoceros calcitrans and Chaetoceros muelleri cultures. • Culture media enrichments with NAC and F127 can increase omega-3-fatty acid content of algal biomass. • Microalgae grown in NAC- and pluronic F127-supplemented culture media are suitable for live-feed applications. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11147-8.
Collapse
|
79
|
El-Baz FK, Abdo SM, El-Sayed DAA, Mostafa MA, Elsherif HMR, Safaa HM, Abdon AS. Application of Defatted Scenedesmus Obliquus Biomass for Broilers’ Nutrition. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - SM Abdo
- National Research Centre, Egypt
| | | | | | | | - HM Safaa
- Cairo University, Egypt; University of Bisha, Kingdom of Saudi Arabia
| | | |
Collapse
|
80
|
Ma K, Bao Q, Wu Y, Chen S, Zhao S, Wu H, Fan J. Evaluation of Microalgae as Immunostimulants and Recombinant Vaccines for Diseases Prevention and Control in Aquaculture. Front Bioeng Biotechnol 2020; 8:590431. [PMID: 33304890 PMCID: PMC7701134 DOI: 10.3389/fbioe.2020.590431] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Microalgae are often used as nutritional supplements for aquatic animals and are widely used in the aquaculture industry, providing direct or indirect nutrients for many aquatic animals. Microalgae are abundant in nature, of high nutritional value, and some of them are non-toxic and rich in antioxidants so that they can be explored as a medicinal carrier for human or animals. Natural wild-type microalgae can be adopted as an immunostimulant to enhance non-specific immune response and improve growth performance, among which Haematococcus pluvialis, Arthrospira (Spirulina) platensis, and Chlorella spp. are commonly used. At present, there have been some successful cases of using microalgae to develop oral vaccines in the aquaculture industry. Researchers usually develop recombinant vaccines based on Chlamydomonas reinhardtii, Dunaliella salina, and cyanobacteria. Among them, in the genetic modification of eukaryotic microalgae, many examples are expressing antigen genes in chloroplasts. They are all used for the prevention and control of single infectious diseases and most of them are resistant to shrimp virus infection. However, there is still no effective strategy targeting polymicrobial infections and few commercial vaccines are available. Although several species of microalgae are widely developed in the aquaculture industry, many of them have not yet established an effective and mature genetic manipulation system. This article systematically analyzes and discusses the above problems to provide ideas for the future development of highly effective microalgae recombinant oral vaccines.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiuwen Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yue Wu
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Siwei Chen
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Shuxin Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
81
|
Mohan Singh H, Tyagi VV, Kothari R, Azam R, Singh Slathia P, Singh B. Bioprocessing of cultivated Chlorella pyrenoidosa on poultry excreta leachate to enhance algal biomolecule profile for resource recovery. BIORESOURCE TECHNOLOGY 2020; 316:123850. [PMID: 32738558 DOI: 10.1016/j.biortech.2020.123850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the cultivation of Chlorella pyrenoidosa on poultry excreta leachate to enhance the biochemical composition of algal biomass. The growth of microalgae was analyzed with different concentrations of poultry excreta leachate in BG-11 and distilled water. The biomolecules observed have high value in the form of carbohydrates (0.64 gL-1), protein (1.02 gL-1), chlorophyll (20 µg mL-1) and lipid amount (0.49 gL-1) with PEL BG -25%. Biomass produced in PEL BG -25% was also found to be 60% (2.5 gL-1) higher than the BG-11 medium as a control (1.5gL-1). Recovery of nutrients was observed with leachate wastewater concentration in terms of nitrate (84.2%), ammonium nitrogen (53.1%), and inorganic phosphate (96.2%). Hence, sustainability of microalgae cultivation in wastewater provides a new insight for resource utilization.
Collapse
Affiliation(s)
- Har Mohan Singh
- School of Energy Management, Shri Mata Vaishno Devi University, Jammu (J&K) 182320, India
| | - V V Tyagi
- School of Energy Management, Shri Mata Vaishno Devi University, Jammu (J&K) 182320, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Samba (J&K) 181143, India.
| | - Rifat Azam
- Bioenergy and Wastewater Treatment Laboratory, Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P 226025, India
| | - Parvez Singh Slathia
- School of Biotechnology, Shri Mata Vaishno Devi University, Jammu (J&K) 182320, India
| | - Bhaskar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi 835205, India
| |
Collapse
|
82
|
Stereochemistry of Astaxanthin Biosynthesis in the Marine Harpacticoid Copepod Tigriopus Californicus. Mar Drugs 2020; 18:md18100506. [PMID: 33028032 PMCID: PMC7600253 DOI: 10.3390/md18100506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
The harpacticoid copepod Tigriopus californicus has been recognized as a model organism for the study of marine pollutants. Furthermore, the nutritional profile of this copepod is of interest to the aquafeed industry. Part of this interest lies in the fact that Tigriopus produces astaxanthin, an essential carotenoid in salmonid aquaculture. Here, we study for the first time the stereochemistry of the astaxanthin produced by this copepod. We cultured T. californicus with different feeding sources and used chiral high-performance liquid chromatography with diode array detection (HPLC-DAD) to determine that T. californicus synthesizes pure 3S,3’S-astaxanthin. Using meso-zeaxanthin as feed, we found that the putative ketolase enzyme from T. californicus can work with β-rings with either 3R- or 3S-oriented hydroxyl groups. Despite this ability, experiments in the presence of hydroxylated and non-hydroxylated carotenoids suggest that T. californicus prefers to use the latter to produce 3S,3’S-astaxanthin. We suggest that the biochemical tools described in this work can be used to study the mechanistic aspects of the recently identified avian ketolase.
Collapse
|
83
|
Mularczyk M, Michalak I, Marycz K. Astaxanthin and other Nutrients from Haematococcus pluvialis-Multifunctional Applications. Mar Drugs 2020; 18:E459. [PMID: 32906619 PMCID: PMC7551667 DOI: 10.3390/md18090459] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Bioactive compounds of natural origin are gaining increasing popularity. High biological activity and bioavailability, beneficial effects on health and safety of use are some of their most desirable features. Low production and processing costs render them even more attractive. Microorganisms have been used in the food, medicinal, cosmetic and energy industries for years. Among them, microalgae have proved to be an invaluable source of beneficial compounds. Haematococcus pluvialis is known as the richest source of natural carotenoid called astaxanthin. In this paper, we focus on the cultivation methods of this green microalga, its chemical composition, extraction of astaxanthin and analysis of its antioxidant, anti-inflammatory, anti-diabetic and anticancer activities. H. pluvialis, as well as astaxanthin can be used not only for the treatment of human and animal diseases, but also as a valuable component of diet and feed.
Collapse
Affiliation(s)
- Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland;
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland;
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland;
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland
| |
Collapse
|
84
|
Fan GJ, Shih BL, Lin HC, Lee TT, Lee CF, Lin YF. Effect of dietary supplementation of Sargassum meal on laying performance and egg quality of Leghorn layers. Anim Biosci 2020; 34:449-456. [PMID: 32882775 PMCID: PMC7961194 DOI: 10.5713/ajas.20.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/13/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Seaweeds could be an alternative and functional feed resource. The purpose of this experiment is to investigate the effect of dietary supplementation of Sargassum meal on laying performance and egg quality of layers. METHODS Two hundred 36-wk-old layers were divided into five treatment groups. Each treatment had four replicates with 10 hens per experimental unit. The corn-soybean meal basal diet was formulated as control group. Sargassum meals were included 0%, 1%, 2%, 3%, or 5% to diets for five treatment groups, respectively. Treatment groups were isocaloric-isonitrogenous diets. Laying performance and egg quality were measured for eight weeks. RESULTS Sargassum meal supplementation did not affect daily feed intake. Supplementation 1% to 3% of Sargassum meal in diets increased daily laying rate and egg mass compared with those from control group (p<0.05). Egg qualities among five groups were all similar. Supplementation of 3% Sargassum meal increased the lightness of egg yolk (p<0.05). Eggs produced from layers fed 1% and 2% Sargassum meal had a higher consumer's acceptability than the control group (p<0.05). In blood characteristics, contents of glucose, nitrogen, triiodothyronine (T3) and thyroxine (T4) increased as the increase of supplementation ratio of Sargassum meal (p<0.05). In serum antibody titers, supplementation of 2% Sargassum meal stimulated a higher immunoglobulin M (IgM) level than that from control group (p<0.05). However, IgM content of layers fed diets with Sargassum meal ≥3% were decreased (p<0.05). There was no difference in IgA and IgG titers among groups. CONCLUSION Supplementation of 1% to 3% Sargassum meal has shown to increase egg laying rate and egg mass of Leghorn layers. However, high supplementation (5%) would negatively affect laying performance. In consideration of laying performance, egg quality, consumer responses, and blood antibody, supplementation of Sargassum meal was suggested 2% in the diet for layers.
Collapse
Affiliation(s)
- Geng-Jen Fan
- Nutrition Division, Livestock Research Institute, Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan.,Department of Animal Science, National Chung Hsing University, Taichung 402204, Taiwan
| | - Bor-Ling Shih
- Nutrition Division, Livestock Research Institute, Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Hui-Chiu Lin
- Penghu Marine Biology Research Center, Fisheries Research Institute, Council of Agriculture, Executive Yuan, Makung, Penghu 880010, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402204, Taiwan
| | - Churng-Faung Lee
- Nutrition Division, Livestock Research Institute, Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Yih-Fwu Lin
- Nutrition Division, Livestock Research Institute, Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| |
Collapse
|
85
|
Schlageter-Tello A, Fahey GC, Freel T, Koutsos L, Miller PS, Weiss WP. ASAS-NANP SYMPOSIUM: RUMINANT/NONRUMINANT FEED COMPOSITION: Challenges and opportunities associated with creating large feed composition tables. J Anim Sci 2020; 98:5885170. [PMID: 32766838 PMCID: PMC7457960 DOI: 10.1093/jas/skaa240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 11/14/2022] Open
Abstract
Traditional feed composition tables have been a useful tool in the field of animal nutrition throughout the last 70 yr. The objective of this paper is to discuss the challenges and opportunities associated with creating large feed ingredient composition tables. This manuscript will focus on three topics discussed during the National Animal Nutrition Program (NANP) Symposium in ruminant and nonruminant nutrition carried out at the American Society of Animal Science Annual Meeting in Austin, TX, on July 11, 2019, namely: 1) Using large datasets in feed composition tables and the importance of standard deviation in nutrient composition as well as different methods to obtain accurate standard deviation values, 2) Discussing the importance of fiber in animal nutrition and the evaluation of different methods to estimate fiber content of feeds, and 3) Description of novel feed sources, such as insects, algae, and single-cell protein, and challenges associated with the inclusion of such feeds in feed composition tables. Development of feed composition tables presents important challenges. For instance, large datasets provided by different sources tend to have errors and misclassifications. In addition, data are in different file formats, data structures, and feed classifications. Managing such large databases requires computers with high processing power and software that are also able to run automated procedures to consolidate files, to screen out outlying observations, and to detect misclassified records. Complex algorithms are necessary to identify misclassified samples and outliers aimed to obtain accurate nutrient composition values. Fiber is an important nutrient for both monogastrics and ruminants. Currently, there are several methods available to estimate the fiber content of feeds. However, many of them do not estimate fiber accurately. Total dietary fiber should be used as the standard method to estimate fiber concentrations in feeds. Finally, novel feed sources are a viable option to replace traditional feed sources from a nutritional perspective, but the large variation in nutrient composition among batches makes it difficult to provide reliable nutrient information to be tabulated. Further communication and cooperation among different stakeholders in the animal industry are required to produce reliable data on the nutrient composition to be published in feed composition tables.
Collapse
Affiliation(s)
- Andres Schlageter-Tello
- National Animal Nutrition Program, University of Kentucky, Lexington, KY.,Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - George C Fahey
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | | | | | - Phillip S Miller
- National Animal Nutrition Program, University of Kentucky, Lexington, KY.,Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - William P Weiss
- National Animal Nutrition Program, University of Kentucky, Lexington, KY.,Department of Animal Sciences, The Ohio State University, Wooster, OH
| |
Collapse
|
86
|
Abstract
Single-cell ingredients (SCI) are a relatively broad class of materials that encompasses bacterial, fungal (yeast), microalgal-derived products or the combination of all three microbial groups into microbial bioflocs and aggregates. In this review we focus on those dried and processed single-cell organisms used as potential ingredients for aqua-feeds where the microorganisms are considered non-viable and are used primarily to provide protein, lipids or specific nutritional components. Among the SCI, there is a generalised dichotomy in terms of their use as either single-cell protein (SCP) resources or single-cell oil (SCO) resources, with SCO products being those oleaginous products containing 200 g/kg or more of lipids, whereas those products considered as SCP resources tend to contain more than 300 g/kg of protein (on a dry basis). Both SCP and SCO are now widely being used as protein/amino acid sources, omega-3 sources and sources of bioactive molecules in the diets of several species, with the current range of both these ingredient groups being considerable and growing. However, the different array of products becoming available in the market, how they are produced and processed has also resulted in different nutritional qualities in those products. In assessing this variation among the products and the application of the various types of SCI, we have taken the approach of evaluating their use against a set of standardised evaluation criteria based around key nutritional response parameters and how these criteria have been applied against salmonids, shrimp, tilapia and marine fish species.
Collapse
|
87
|
Rumin J, Nicolau E, Gonçalves de Oliveira Junior R, Fuentes-Grünewald C, Picot L. Analysis of Scientific Research Driving Microalgae Market Opportunities in Europe. Mar Drugs 2020; 18:E264. [PMID: 32443631 PMCID: PMC7281102 DOI: 10.3390/md18050264] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
A bibliographic database of scientific papers published by authors affiliated to research institutions worldwide, especially focused in Europe and in the European Atlantic Area, and containing the keywords "microalga(e)" or "phytoplankton" was built. A corpus of 79,020 publications was obtained and analyzed using the Orbit Intellixir software to characterize the research trends related to microalgae markets, markets opportunities and technologies that could have important impacts on markets evolution. Six major markets opportunities, the production of biofuels, bioplastics, biofertilizers, nutraceuticals, pharmaceuticals and cosmetics, and two fast-evolving technological domains driving markets evolution, microalgae harvesting and extraction technologies and production of genetically modified (GM-)microalgae, were highlighted. We here present an advanced analysis of these research domains to give an updated overview of scientific concepts driving microalgae markets.
Collapse
Affiliation(s)
- Judith Rumin
- La Rochelle Université, UMRi CNRS 7266 LIENSs, Avenue Crépeau, 17042 La Rochelle, France; (J.R.); (R.G.d.O.J.)
| | - Elodie Nicolau
- IFREMER, Laboratoire BRM/PBA, Rue de l’Ile d’Yeu, 44311 Nantes, France;
| | | | | | - Laurent Picot
- La Rochelle Université, UMRi CNRS 7266 LIENSs, Avenue Crépeau, 17042 La Rochelle, France; (J.R.); (R.G.d.O.J.)
| |
Collapse
|
88
|
Enigmatic Microalgae from Aeroterrestrial and Extreme Habitats in Cosmetics: The Potential of the Untapped Natural Sources. COSMETICS 2020. [DOI: 10.3390/cosmetics7020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With the increasing demand for natural and safe products in cosmetics, algae with their diverse and valuable bioactive compounds are gaining vital importance. Until now, cosmetics have focused mainly on the use of freshwater and marine algae. However, algae are not restricted to aquatic habitats. They are found in essentially every type of aeroterrestrial and extreme environment on the Earth. There, they have to cope with harsh ecological conditions and have developed special strategies to thrive in these inimical habitats. Although not thoroughly studied, their adaptations include protective biochemical compounds which can find their application or are already used in the field of cosmetics. With proper cultivation techniques, algae from these habitats can provide novel sources of high-value functional products for the cosmetics industry, which have the advantage of being obtained in eco-friendly and cost-effective processes. However, it has to be considered that a few aeroterrestrial and extremophilic algae can be toxin producers, and in order to ensure conformity to the safe quality standards, all new ingredients must be properly tested. The aim of the present review is to unveil the hidden and underestimated potential of the enigmatic algae of aeroterrestrial and extreme habitats for the rapidly developing modern cosmetic industries.
Collapse
|
89
|
A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 2020; 41:107545. [PMID: 32272160 DOI: 10.1016/j.biotechadv.2020.107545] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
This work reviews applications of high added value molecules produced from microalgae. Older forms of valorization - health food and quality feed, polyunsaturated fatty acids, pigments, carbohydrates - are currently penetrating their markets. They are driven by desirable properties: texturer and dye for food industry, antioxidant for cosmetics and the appetite of the general public for biosourced compounds. Most recent developments, such as peptides, vitamins, polyphenols, phytosterols and phytohormones, are struggling to meet their market and reach economical competitiveness. Still they are pushed forward by the very powerful driver that is pharmaceutical industry. In addition this work also proposes to link microalgae phyla and related potential applications. This is done through highlighting of which bioactive compounds can be found in which phyla. While some seem to be restricted to aquaculture, Cyanobacteria, Chlorophyta and Rhodophyta show great promises.
Collapse
|
90
|
A Review of Landfill Leachate Treatment by Microalgae: Current Status and Future Directions. Processes (Basel) 2020. [DOI: 10.3390/pr8040384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Solid waste generation has been projected to increase worldwide. Presently, the most applied methodology to dispose of solid waste is landfilling. However, these landfill sites, over time release a significant quantity of leachate, which can pose serious environmental issues, including contamination of water resources. There exist many physicochemical and biological landfill leachate treatment schemes with varying degrees of success. With an increasing focus on sustainability, there has been a demand for developing eco-friendly, green treatment schemes for landfill leachates with viable resource recovery and minimum environmental footprints. Microalgae-based techniques can be a potential candidate for such a treatment scenario. In this article, research on microalgae-based landfill leachate treatments reported in the last 15 years have been summarized and critically reviewed. The scale-up aspect of microalgae technology has been discussed, and the related critical factors have been elucidated. The article also analyzes the resource recovery potential for microalgal techniques with respect to leachate treatment and explores possible methodologies to minimize the environmental footprints of the microalgae-based treatment process. The future research potential in the area has been identified and discussed.
Collapse
|
91
|
Lee A, You L, Harris L, Oh S, Fisher-Heffernan R, Brennan K, de Lange C, Huber L, Karrow N. Effect of algae or fish oil supplementation and porcine maternal stress on the adrenal transcriptome of male offspring fed a low-quality protein diet. Brain Behav Immun Health 2020; 4:100058. [PMID: 34589844 PMCID: PMC8474508 DOI: 10.1016/j.bbih.2020.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
Offspring adrenal function may be negatively affected in utero by maternal stressors such as microbial infection. Maternal supplementation with immunomodulatory compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) may help minimize the adverse effects of maternal stress on fetal hypothalamic-pituitary-adrenal development and improve offspring health. Presently, n-3 PUFA sources are primarily fish-based, but n-3 PUFA microalgae (AL) may be an alternative. Previously, it was determined that maternal AL or fish oil (FO) supplementation to sows, in addition to maternal stress induced by Escherichia coli lipopolysaccharide (LPS) challenge appeared to have a greater influence on the stress response of male offspring compared to females. To further elaborate on these findings, this study assessed the effects of maternal AL or FO supplementation combined with a maternal LPS challenge on adrenal gene expression in male offspring fed a nursery diet containing low-quality protein sources. Forty-eight sows were fed gestation diets starting on gestation day (gd) 75 containing either 3.12% AL, 3.1% FO, or a control diet containing 1.89% corn oil. On gd 112, half the sows in each treatment were administered 10 μg/kg LPS i.m. Piglets were weaned at 21 days of age onto a common low-quality plant-based protein diet, and one week after weaning, four piglets per sow were administered 40 μg/kg LPS i.m. Two hours later, the piglets were euthanized to obtain adrenal tissue, and total RNA was extracted to carry out transcriptome analysis using the Affymetrix GeneChip WT Plus assay and subsequent validation by real-time PCR. Analysis revealed that adrenal steroidogenesis, fatty acid metabolism and immune function were significantly influenced by maternal diet and stress. Increased expression of immune-related genes including lymphocyte antigen 96, TLR-2 and NF-κB suggests that maternal AL supplementation may increase offspring sensitivity to inflammation after weaning. Decreased expression of lymphocyte antigen 96 in male offspring from sows receiving maternal LPS challenge also suggests a possible role of maternal stress in diminishing the offspring immune response to immune stress challenge. Increased expression of the genes encoding the 11BHSD2 enzyme in offspring from sows fed FO may also reduce the magnitude of the stress response. These data provide insight to the immune and metabolic mechanisms that may be influenced by maternal diet and stress. Expression of adrenal steroidogenesis genes were influenced by maternal treatment. Expression of lipid metabolism genes and immune function genes were enriched. Maternal algae supplementation may increase offspring sensitivity to inflammation. Maternal stress may reduce the offspring immune response to immune challenges. Maternal fish oil supplementation may reduce the offspring stress response.
Collapse
Affiliation(s)
- A.V. Lee
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
| | - L. You
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
| | - L.E. Harris
- Centre for Animal Nutrigenomics and Applied Animal Nutrition, Alltech Inc, Nicholasville, KY, 40356, USA
| | - S. Oh
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
| | | | - K.M. Brennan
- Centre for Animal Nutrigenomics and Applied Animal Nutrition, Alltech Inc, Nicholasville, KY, 40356, USA
| | - C.F.M. de Lange
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
| | - L. Huber
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
| | - N.A. Karrow
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
- Corresponding author.
| |
Collapse
|
92
|
Baskararaj S, Panneerselvam T, Govindaraj S, Arunachalam S, Parasuraman P, Pandian SRK, Sankaranarayanan M, Mohan UP, Palanisamy P, Ravishankar V, Kunjiappan S. Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy. 3 Biotech 2020; 10:136. [PMID: 32158632 DOI: 10.1007/s13205-020-2132-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
This study aimed to formulate and characterize the folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii to enhance the anticancer activity. Twenty valued bioactive compounds (3-hydroxy benzoicacid, gallicacid, chlorogenicacid, cinnamicacid, artemiseole, hydrazine carbothioamide, etc.,) are confirmed from methanol extract of K. alvarezii using analytical techniques like HPLC and GC-MS. The delivery of bioactive compounds of K. alvarezii via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. FR targeted PEGylated liposome was constructed by modified thin-film hydration technique using FA-PEG-DSPE/cholesterol/DSPC (5:40:55) and bioactive compounds of K. alvarezii was encapsulated. Their morphology, size, shape, physiological stability and drug release kinetics were studied. The study reports of K. alvarezii extract-encapsulated PEGylated liposome showed spherical shaped particles with amorphous in nature. The mean diameter of K. alvarezii extract-encapsulated PEGylated and FA-conjugated PEGylated liposomes was found to be 110 ± 6 nm and 140 ± 5 nm, respectively. Based on the stability studies, it could be confirmed that FA-conjugated PEGylated liposome was highly stable in various physiological buffer medium. FA-conjugated PEGylated liposome can steadily release the bioactive compounds of K. alvarezii extract in acidic medium (pH 5.4). MTT assay demonstrated the concentration-dependent cytotoxicity against MCF-7 cells after 24 h with IC50 of 81 µg/mL. Also, PEGylated liposome enhanced the delivery of K. alvarezii extract in MCF-7 cells. After treatment, typical apoptotic morphology of condensed nuclei and distorted membrane bodies was picturized. Additionally, PEGylated liposome targets the mitochondria of MCF-7 cells and significantly increased the level of ROS and contributes to the damage of mitochondrial transmembrane potential. Hence, PEGylated liposome could positively deliver the bioactive compounds of K. alvarezii extract into FR-positive breast cancer cells (MCF-7) and exhibit great potential in anticancer therapy.
Collapse
|
93
|
Akgül F. Effects of nitrogen concentration on growth, biomass, and biochemical composition of Desmodesmus communis (E. Hegewald) E. Hegewald. Prep Biochem Biotechnol 2019; 50:98-105. [PMID: 31809237 DOI: 10.1080/10826068.2019.1697884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrogen, being one of the building blocks of biomacromolecules, is an important nutrient for microalgae growth. Nitrogen availability alters the growth and biochemical composition of microalgae. We investigated the effects of different nitrogen concentrations on specific growth rate (SGR), biomass productivity (BP), total protein and lipid content and amino acid and fatty acid composition of Desmodesmus communis. Nitrogen deficiency increased algal growth and changed the lipid amount and composition. The maximum growth and BP were detected in 75% N-medium. The highest total protein and lipid amount were detected in 50% N- and 75% N-media, respectively. Amino acid and fatty acid compositions of samples varied widely depending on the nutrient concentrations. The amount of unsaturated fatty acid (USFAs) was higher than saturated fatty acid (SFAs) and Linolenic acid percentage is higher than the limit of European standards in all media. The data reported here provide important contributions how nitrogen scarcity and abundance affect the growth and biochemical content of microalgae and this information can further be utilized in culture optimization in studies aimed at microalgae production for biofuels.
Collapse
Affiliation(s)
- Füsun Akgül
- Faculty of Science and Arts, Department of Molecular Biology and Genetics, Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
94
|
Wang S, Sirbu D, Thomsen L, Kuhnert N, Ullrich MS, Thomsen C. Comparative lipidomic studies of Scenedesmus sp. (Chlorophyceae) and Cylindrotheca closterium (Bacillariophyceae) reveal their differences in lipid production under nitrogen starvation. JOURNAL OF PHYCOLOGY 2019; 55:1246-1257. [PMID: 31127609 DOI: 10.1111/jpy.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Microalgae are a promising resource for the highly sustainable production of various biomaterials (food and feed), high-value biochemicals, or biofuels. However, factors influencing the valued lipid production from oleaginous algae require a more detailed investigation. This study elucidates the variations in lipid metabolites between a marine diatom (Cylindrotheca closterium) and a freshwater green alga (Scenedesmus sp.) under nitrogen starvation at the molecular species level, with emphasis on triacylglycerols using liquid chromatography-electrospray ionization mass spectrometry techniques. A comprehensive analysis was carried out by comparing the changes in total lipids, growth kinetics, fatty acid compositions, and glycerolipid profiles at the molecular species level at different time points of nitrogen starvation. A total of 60 and 72 triacylglycerol molecular species, along with numerous other polar lipids, were identified in Scenedesmus sp. and C. closterium, respectively, providing the most abundant triacylglycerol profiles for these two species. During nitrogen starvation, more triacylglycerol of Scenedesmus sp. was synthesized via the "eukaryotic pathway" in the endoplasmic reticulum, whereas the increase in triacylglycerol in C. closterium was mainly a result of the "prokaryotic pathway" in the chloroplasts after 96 h of nitrogen starvation. The distinct responses of lipid synthesis to nitrogen starvation exhibited by the two species indicate different strategies of lipid accumulation, notably triacylglycerols, in green algae and diatoms. Scenedesmus sp. and Cylindrotheca closterium could serve as excellent candidates for the mass production of biofuels or polyunsaturated fatty acids for nutraceutical purposes.
Collapse
Affiliation(s)
- Song Wang
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Diana Sirbu
- Department of Life Science and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Laurenz Thomsen
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Science and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Matthias S Ullrich
- Department of Life Science and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | | |
Collapse
|
95
|
Silveira Júnior AM, Faustino SMM, Cunha AC. Bioprospection of biocompounds and dietary supplements of microalgae with immunostimulating activity: a comprehensive review. PeerJ 2019; 7:e7685. [PMID: 31592343 PMCID: PMC6777487 DOI: 10.7717/peerj.7685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
The objective of this review is to analyze the role of microalgal bioprospecting and the application of microalgae as food supplements and immunostimulants in global and regional aquaculture, highlighting the Brazilian Amazon. This study evaluates the primary advantages of the application of the bioactive compounds of these microorganisms, simultaneously identifying the knowledge gaps that hinder their biotechnological and economic exploitation. The methodology used is comparative and descriptive-analytical, considering the hypothesis of the importance of bioprospecting microalgae, the mechanisms of crop development and its biotechnological and sustainable application. In this context, this review describes the primary applications of microalgae in aquaculture during the last decade (2005–2017). The positive effects of food replacement and/or complementation of microalgae on the diets of organisms, such as their influence on the reproduction rates, growth, and development of fish, mollusks and crustaceans are described and analyzed. In addition, the importance of physiological parameters and their association with the associated gene expression of immune responses in organisms supplemented with microalgae was demonstrated. Complementarily, the existence of technical-scientific gaps in a regional panorama was identified, despite the potential of microalgal cultivation in the Brazilian Amazon. In general, factors preventing the most immediate biotechnological applications in the use of microalgae in the region include the absence of applied research in the area. We conclude that the potential of these microorganisms has been relatively well exploited at the international level but not at the Amazon level. In the latter case, the biotechnological potential still depends on a series of crucial steps that involve the identification of species, the understanding of their functional characteristics and their applicability in the biotechnological area, especially in aquaculture.
Collapse
Affiliation(s)
- Arialdo M Silveira Júnior
- Department of Environment and Development, Federal University of Amapá, Macapá, Amapá, Brazil.,Postgraduate Program in Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Silvia Maria M Faustino
- Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Alan C Cunha
- Postgraduate Program in Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil.,Department of Exact and Natural Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
| |
Collapse
|
96
|
You L, Lee AV, Oh SY, Fisher-Heffernan RE, Edwards M, de Lange K, Karrow NA. Effect of lipopolysaccharide-induced immune stimulation and maternal fish oil and microalgae supplementation during late pregnancy on nursery pig hypothalamic-pituitary-adrenal function1. J Anim Sci 2019; 97:2940-2951. [PMID: 31081510 DOI: 10.1093/jas/skz166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/11/2019] [Indexed: 01/18/2023] Open
Abstract
The present study used Escherichia coli lipopolysaccharide (LPS) to investigate whether maternal immune challenge during late gestation altered programming of the offspring hypothalamus and hypothalamic-pituitary-adrenal axis (HPAA). In addition, interactions of maternal diet, supplementation with fish oil (FO) or microalgae (AL), and complex vs. simple weaning diets were investigated. Briefly, Landrace × Yorkshire sows (N = 48) were randomly assigned to diets supplemented with FO, AL, or a standard gestation control diet (CON) from day 75 of gestation (gd 75) until parturition. On gd 112, half the sows from each dietary treatment were immune challenged with LPS (10 μg/kg BW) or saline as a control. At 21 d postpartum, the offspring were weaned, and half the animals from each maternal treatment were allocated to either a complex or simple weaning diet. At 28 d postpartum, the offspring's hourly fever and 2-h cortisol responses to LPS immune challenge (40 μg/kg BW) were measured to assess hypothalamus and HPAA function. Results indicated that the maternal temperature of sows on the FO diet returned to baseline levels faster than sows on the AL and CON diets after LPS immune challenge (P < 0.05). In contrast, there was no difference in the maternal cortisol response across the dietary treatments (P > 0.10). Regardless of the dietary treatments, the maternal LPS immune challenge induced a greater cortisol response in male offspring (P = 0.05) and a greater fever response in female offspring (P = 0.03) when they were LPS immune challenged post-weaning. Male offspring from LPS-immune-challenged sows fed the FO and AL diets had a greater fever response than male offspring from the maternal CON diet group (P ≤ 0.05). Last, no effect of the complex or simple weaning diets was observed for the nursery pig cortisol or fever responses to LPS immune challenge. In conclusion, LPS immune challenge during late pregnancy altered responsiveness of the offspring hypothalamus and HPAA to this same microbial stressor, and a sex-specific response was influenced by maternal dietary supplementation with FO and AL.
Collapse
Affiliation(s)
- Lan You
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alison V Lee
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Se-Young Oh
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Michelle Edwards
- Statistical Consultant Service, Ontario Agriculture College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kees de Lange
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
97
|
Microalgae supplementation to late gestation sows and its effects on the health status of weaned piglets fed diets containing high- or low-quality protein sources. Vet Immunol Immunopathol 2019; 218:109937. [PMID: 31522084 DOI: 10.1016/j.vetimm.2019.109937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Maternal stress, such as a bacterial infection occurring in late gestation, may predispose offspring to a variety of diseases later in life. It may also alter programming of developing systems within the fetus, such as the hypothalamic-pituitary-adrenal (HPA) axis and immune system. Dietary supplementation during the last trimester of pregnancy with immune-modulating compounds may be a means of reducing potential adverse effects of maternal stress on the developing fetus. Essential omega-3 polyunsaturated fatty acids (n-3 PUFA) such as docosahexanoic acid (DHA) and eicosapentanoic acid are well-known for their immune-modulating and anti-inflammatory properties. Sources of these n-3 PUFA include fish products such as fish oil and microalgae, which may be a suitable alternative to fish-based products. The aim of this study was to determine the effect of supplementing gestating sow diets with n-3 PUFA and inducing an immune stress challenge in late gestation on piglet growth and immune responsiveness when placed on either a high- or low-quality protein diet after weaning. Forty-eight sows were fed gestation diets containing either 3.12% microalgae, 3.1% fish oil or a corn oil control diet containing 1.89% corn oil starting on gestation day (gd) 75. On gd112, half the sows in each treatment were immune stress challenged with bacterial lipopolysaccharide (LPS) endotoxin (10 μg/kg administered i.m). After farrowing, piglet BW gain was monitored weekly during lactation and pigs were weaned at 21 days of age. One week after weaning, four piglets per sow were immune stress challenged with LPS (40 μg/kg administered i.m.). At the same time, four piglets per sow were vaccinated with the novel antigens chicken ovalbumin (OVA) and Candida cellular antigen (CAA) and received booster vaccinations two weeks later. Four weeks after the initial vaccination, a transdermal hypersensitivity immune challenge was performed using the same antigens. Blood samples were also collected to quantify IgG antibody responses to both antigens. PUFA enrichment in sow blood and piglet brain was detected after sows were on feed for 40 days. Piglet growth was increased in pigs fed a high-quality diet in nursery phase 1. Concentrations of the cytokines IL-1ra, IL-6 and IL-10 were elevated in pigs fed a high-quality protein diet following LPS immune challenge. Overall, it appears that in the current study piglet nursery diet quality was more important for determining piglet health and growth than maternal diet and immune stress.
Collapse
|
98
|
Delamare-Deboutteville J, Batstone DJ, Kawasaki M, Stegman S, Salini M, Tabrett S, Smullen R, Barnes AC, Hülsen T. Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. WATER RESEARCH X 2019; 4:100031. [PMID: 31334494 PMCID: PMC6614599 DOI: 10.1016/j.wroa.2019.100031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 05/11/2023]
Abstract
Aquaculture is the fastest growing animal food production industry, now producing 50% of all food fish. However, aquaculture feeds remain dependent on fishmeal derived from capture fisheries, which must be reduced for continued sustainable growth. Purple phototrophic bacteria (PPB) efficiently yield biomass from wastewater with high product homogeneity, a relatively high protein fraction, and potential added value as an ingredient for fish feeds. Here we test bulk replacement of fishmeal with PPB microbial biomass in diets for Asian sea bass (Lates calcarifer), a high value carnivorous fish with high protein to energy requirement. Mixed culture PPB were grown in a novel 1 m3 attached photo-biofilm process using synthetic and real wastewater. Four experimental diets were formulated to commercial specifications but with the fishmeal substituted (0%, 33%, 66%, and 100%) with the synthetic grown PPB biomass and fed to a cohort of 540 juvenile fish divided amongst 12 tanks over 47 days. Weight and standard length were taken from individual fish at 18, 28, and 47d. No significant difference in survival was observed due to diet or other factors (94-100%). There was a negative correlation between PPB inclusion level and final weight (p = 5.94 × 10-5) with diet accounting for 4.1% of the variance over the trial (general linear model, R2 = 0.96, p = 1 × 10-6). Feed conversion ratio was also significantly influenced by diet (p = 6 × 10-7) with this factor accounting for 89% of variance. Specifically, feed conversion ratio (FCR) rose to 1.5 for the 100% replacement diet during the last sample period, approximately 1.0 for the partial replacement, and 0.8 for the nil replacement diet. However, this study demonstrates that bulk replacement of fishmeal by PPB is feasible, and commercially viable at 33% and 66% replacement.
Collapse
Affiliation(s)
- Jérôme Delamare-Deboutteville
- Advanced Water Management Centree, The University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Biological Sciences and Centre for Marine Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Damien J. Batstone
- Advanced Water Management Centree, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Minami Kawasaki
- School of Biological Sciences and Centre for Marine Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Samuel Stegman
- Advanced Water Management Centree, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Michael Salini
- Ridley Aqua-Feed Pty Ltd, PO Box 187, Deception Bay, 4504, Queensland, Australia
| | - Simon Tabrett
- Ridley Aqua-Feed Pty Ltd, PO Box 187, Deception Bay, 4504, Queensland, Australia
| | - Richard Smullen
- Ridley Aqua-Feed Pty Ltd, PO Box 187, Deception Bay, 4504, Queensland, Australia
| | - Andrew C. Barnes
- School of Biological Sciences and Centre for Marine Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Tim Hülsen
- Advanced Water Management Centree, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Corresponding author. Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
99
|
Feeding effects of the microalga Nannochloropsis sp. on juvenile turbot (Scophthalmus maximus L.). ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
100
|
Pszczółkowska A, Pszczółkowski W, Romanowska-Duda Z. Potential of Chlorella vulgaris culture for waste treatment from anaerobic biomass biodigestion at the Piaszczyna (Poland) integrated facility. JOURNAL OF PHYCOLOGY 2019; 55:816-829. [PMID: 30864149 DOI: 10.1111/jpy.12856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Many strains of microalgae are potentially useful for industrial purposes. Microalgal biomass and microalgae-derived substances are becoming valuable products with a widening range of applications including biofuels and human food. In this study, the possibility of using the methane waste from biomass biodigestion in the cultivation of Chlorella vulgaris biomass with simultaneous waste treatment was investigated. The methane waste from biomass biodigestion was obtained from a multifunctional facility (Piaszczyna, Poland) producing bioethanol from plant biomass with several steps to reuse the wastes, heat, and carbon dioxide. The growth and biomass yield, as well as photosynthetic performance of C. vulgaris on diluted waste, were similar to the results obtained on the standard mineral medium. The cultivation of C. vulgaris was the waste, treatment step that significantly reduced chemical oxygen demand. The results indicated that the waste contained micro- and macronutrients sufficient to sustain the growth of C. vulgaris cell culture up to 2 g of dry biomass per liter of culture. The results contributed to the development of the waste treatment step in the Piaszczyna facility that allowed for a further decrease in emissions and may lead to development of microalgae biomass-based products in the facility portfolio.
Collapse
Affiliation(s)
- Agata Pszczółkowska
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha str. 12/16, 90-237, Lodz, Poland
| | - Wiktor Pszczółkowski
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha str. 12/16, 90-237, Lodz, Poland
| | - Zdzislawa Romanowska-Duda
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha str. 12/16, 90-237, Lodz, Poland
| |
Collapse
|