51
|
Frankfurt M, Nassrallah Z, Luine V. Steroid Hormone Interaction with Dendritic Spines: Implications for Neuropsychiatric Disease. ADVANCES IN NEUROBIOLOGY 2023; 34:349-366. [PMID: 37962800 DOI: 10.1007/978-3-031-36159-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines, key sites for neural plasticity, are influenced by gonadal steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine density in areas important to cognitive function, the hippocampus, and prefrontal cortex. Most of these animal model studies investigated the effects of estrogen in females, but we also include more recent data on androgen effects in both males and females. The underlying genomic and non-genomic mechanisms related to gonadal steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible reasons for the observed sex differences in many neuropsychiatric diseases, which appear to be caused, in part, by aberrant synaptic connections that may involve dendritic spine pathology. Overall, knowledge concerning the regulation of dendritic spines by gonadal hormones has grown since the initial discoveries in the 1990s, and current research points to a potential role for aberrant spine functioning in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hempstead, NY, USA.
| | - Zeinab Nassrallah
- Department of Science Education Zucker School of Medicine, 500 Hofstra University, Hempstead, NY, USA
| | - Victoria Luine
- Department of Psychology, Hunter College, New York, NY, USA
| |
Collapse
|
52
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
53
|
Maeda N, Shimizu S, Takahashi Y, Kubota R, Uomoto S, Takesue K, Takashima K, Okano H, Ojiro R, Ozawa S, Tang Q, Jin M, Ikarashi Y, Yoshida T, Shibutani M. Oral Exposure to Lead Acetate for 28 Days Reduces the Number of Neural Progenitor Cells but Increases the Number and Synaptic Plasticity of Newborn Granule Cells in Adult Hippocampal Neurogenesis of Young-Adult Rats. Neurotox Res 2022; 40:2203-2220. [PMID: 36098941 DOI: 10.1007/s12640-022-00577-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/31/2022]
Abstract
Lead (Pb) causes developmental neurotoxicity. Developmental exposure to Pb acetate (PbAc) induces aberrant hippocampal neurogenesis by increasing or decreasing neural progenitor cell (NPC) subpopulations in the dentate gyrus (DG) of rats. To investigate whether hippocampal neurogenesis is similarly affected by PbAc exposure in a general toxicity study, 5-week-old Sprague-Dawley rats were orally administered PbAc at 0, 4000, and 8000 ppm (w/v) in drinking water for 28 days. After exposure to 4000 or 8000 ppm PbAc, Pb had accumulated in the brains. Neurogenesis was suppressed by 8000 ppm PbAc, which was related to decreased number of type-2b NPCs, although number of mature granule cells were increased by both PbAc doses. Gene expression in the 8000 ppm PbAc group suggested suppressed NPC proliferation and increased apoptosis resulting in suppressed neurogenesis. PbAc exposure increased numbers of metallothionein-I/II+ cells and GFAP+ astrocytes in the DG hilus, and upregulated Mt1, antioxidant genes (Hmox1 and Gsta5), and Il6 in the DG, suggesting the induction of oxidative stress and neuroinflammation related to Pb accumulation resulting in suppressed neurogenesis. PbAc at 8000 ppm also upregulated Ntrk2 and increased the number of CALB2+ interneurons, suggesting the activation of BDNF-TrkB signaling and CALB2+ interneuron-mediated signals to ameliorate suppressed neurogenesis resulting in increased number of newborn granule cells. PbAc at both doses increased the number of ARC+ granule cells, suggesting the facilitation of synaptic plasticity of newborn granule cells through the activation of BDNF-TrkB signaling. These results suggest that PbAc exposure during the young-adult stage disrupted hippocampal neurogenesis, which had a different pattern from developmental exposure to PbAc. However, the induction of oxidative stress/neuroinflammation and activation of identical cellular signals occurred irrespective of the life stage at PbAc exposure.
Collapse
Affiliation(s)
- Natsuno Maeda
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Reiji Kubota
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, BeiBei District, No. 2 Tiansheng Road, Chongqing, 400715, People's Republic of China
| | - Yoshiaki Ikarashi
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan. .,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
54
|
Continuous Exposure to Alpha-Glycosyl Isoquercitrin from Gestation Ameliorates Disrupted Hippocampal Neurogenesis in Rats Induced by Gestational Injection of Valproic Acid. Neurotox Res 2022; 40:2278-2296. [PMID: 36094739 DOI: 10.1007/s12640-022-00574-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
This study examined the ameliorating effect of alpha-glycosyl isoquercitrin (AGIQ), an antioxidant, on disrupted hippocampal neurogenesis in the dentate gyrus (DG) in a rat model of autism spectrum disorder induced by prenatal valproic acid (VPA) exposure. Dams were intraperitoneally injected with 500 mg/kg VPA on gestational day 12. AGIQ was administered in the diet at 0.25 or 0.5% to dams from gestational day 13 until weaning at postnatal day (PND) 21 and then to pups until PND 63. At PND 21, VPA-exposed offspring showed decreased numbers of type-2a and type-3 neural progenitor cells (NPCs) among granule cell lineage subpopulations. AGIQ treatment at both doses rescued the reduction in type-3 NPCs. AGIQ upregulated Reln and Vldlr transcript levels in the DG at 0.5% and ≥ 0.25%, respectively, and increased the number of reelin+ interneurons in the DG hilus at 0.5%. AGIQ at 0.25% and/or 0.5% also upregulated Ntrk2, Cntf, Igf1, and Chrnb2. At PND 63, there were no changes in the granule cell lineage subpopulations in response to VPA or AGIQ. AGIQ at 0.25% increased the number of FOS+ granule cells, accompanied by Gria2 and Gria3 upregulation and increasing trend in the number of FOS+ granule cells at 0.5%. There was no definitive evidence of VPA-induced oxidative stress in the hippocampus throughout postnatal life. These results indicate that AGIQ ameliorates the VPA-induced disruption of hippocampal neurogenesis at weaning involving reelin, BDNF-TrkB, CNTF, and IGF1 signaling, and enhances FOS-mediated synaptic plasticity in adulthood, potentially through AMPA-receptor upregulation. The ameliorating effects of AGIQ may involve direct interactions with neural signaling cascades rather than antioxidant capacity.
Collapse
|
55
|
Jensen KT, Kadmon Harpaz N, Dhawale AK, Wolff SBE, Ölveczky BP. Long-term stability of single neuron activity in the motor system. Nat Neurosci 2022; 25:1664-1674. [PMID: 36357811 PMCID: PMC11152193 DOI: 10.1038/s41593-022-01194-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/03/2022] [Indexed: 11/12/2022]
Abstract
How an established behavior is retained and consistently produced by a nervous system in constant flux remains a mystery. One possible solution to ensure long-term stability in motor output is to fix the activity patterns of single neurons in the relevant circuits. Alternatively, activity in single cells could drift over time provided that the population dynamics are constrained to produce the same behavior. To arbitrate between these possibilities, we recorded single-unit activity in motor cortex and striatum continuously for several weeks as rats performed stereotyped motor behaviors-both learned and innate. We found long-term stability in single neuron activity patterns across both brain regions. A small amount of drift in neural activity, observed over weeks of recording, could be explained by concomitant changes in task-irrelevant aspects of the behavior. These results suggest that long-term stable behaviors are generated by single neuron activity patterns that are themselves highly stable.
Collapse
Affiliation(s)
- Kristopher T Jensen
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Naama Kadmon Harpaz
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Steffen B E Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
56
|
Isoflavone-Enriched Soybean Leaves (Glycine Max) Alleviate Cognitive Impairment Induced by Ovariectomy and Modulate PI3K/Akt Signaling in the Hippocampus of C57BL6 Mice. Nutrients 2022; 14:nu14224753. [PMID: 36432439 PMCID: PMC9697522 DOI: 10.3390/nu14224753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
(1) Background: The estrogen decline during perimenopause can induce various disorders, including cognitive impairment. Phytoestrogens, such as isoflavones, lignans, and coumestans, have been tried as a popular alternative to avoid the side effects of conventional hormone replacement therapy, but their exact mechanisms and risk are not fully elucidated. In this study, we investigated the effects of isoflavone-enriched soybean leaves (IESLs) on the cognitive impairment induced by ovariectomy in female mice. (2) Methods: Ovariectomy was performed at 9 weeks of age to mimic menopausal women, and the behavior tests for cognition were conducted 15 weeks after the first administration. IESLs were administered for 18 weeks. (3) Results: The present study showed the effects of IESLs on the cognitive function in the OVX (ovariectomized) mice. Ovariectomy markedly increased the body weight and fat accumulation in the liver and perirenal fat, but IESL treatment significantly inhibited them. In the behavioral tests, ovariectomy impaired cognitive functions, but administration of IESLs restored it. In addition, in the OVX mice, administration of IESLs restored decreased estrogen receptor (ER) β and PI3K/Akt expression in the hippocampus. (4) Conclusions: The positive effects of IESLs on cognitive functions may be closely related to the ER-mediated PI3/Akt signaling pathway in the hippocampus.
Collapse
|
57
|
Tronson NC, Schuh KM. Hormonal contraceptives, stress, and the brain: The critical need for animal models. Front Neuroendocrinol 2022; 67:101035. [PMID: 36075276 DOI: 10.1016/j.yfrne.2022.101035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
Hormonal contraceptives are among the most important health and economic developments in the 20thCentury, providing unprecedented reproductive control and a range of health benefits including decreased premenstrual symptoms and protections against various cancers. Hormonal contraceptives modulate neural function and stress responsivity. These changes are usually innocuous or even beneficial, including their effects onmood. However, in approximately 4-10% of users, or up to 30 million people at any given time, hormonal contraceptives trigger depression or anxiety symptoms. How hormonal contraceptives contribute to these responses and who is at risk for adverse outcomes remain unknown. In this paper, we discussstudies of hormonal contraceptive use in humans and describe the ways in which laboratory animal models of contraceptive hormone exposure will be an essential tool for expanding findings to understand the precise mechanisms by which hormonal contraceptives influence the brain, stress responses, and depression risk.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Kristen M Schuh
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
58
|
Sui SX, Balanta-Melo J, Pasco JA, Plotkin LI. Musculoskeletal Deficits and Cognitive Impairment: Epidemiological Evidence and Biological Mechanisms. Curr Osteoporos Rep 2022; 20:260-272. [PMID: 35764750 PMCID: PMC9522710 DOI: 10.1007/s11914-022-00736-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW Cognitive impairment is associated with obesity, sarcopenia, and osteoporosis. However, no critical appraisal of the literature on the relationship between musculoskeletal deficits and cognitive impairment, focusing on the epidemiological evidence and biological mechanisms, has been published to date. Herein, we critically evaluate the literature published over the past 3 years, emphasizing interesting and important new findings, and provide an outline of future directions that will improve our understanding of the connections between the brain and the musculoskeletal system. RECENT FINDINGS Recent literature suggests that musculoskeletal deficits and cognitive impairment share pathophysiological pathways and risk factors. Cytokines and hormones affect both the brain and the musculoskeletal system; yet, lack of unified definitions and standards makes it difficult to compare studies. Interventions designed to improve musculoskeletal health are plausible means of preventing or slowing cognitive impairment. We highlight several musculoskeletal health interventions that show potential in this regard.
Collapse
Affiliation(s)
- Sophia X Sui
- Epi-Centre for Healthy Ageing, Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, PO Box 281 (Barwon Health), Geelong, VIC, 3220, Australia.
| | - Julián Balanta-Melo
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MS5022A, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
- Universidad del Valle School of Dentistry, Cali, Colombia
| | - Julie A Pasco
- Epi-Centre for Healthy Ageing, Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, PO Box 281 (Barwon Health), Geelong, VIC, 3220, Australia
- Department of Medicine-Western Campus, The University of Melbourne, St Albans, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MS5022A, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
59
|
Borgsted C, Hoegsted E, Henningsson S, Pinborg A, Ganz M, Frokjaer VG. Hippocampal volume changes in a pharmacological sex-hormone manipulation risk model for depression in women. Horm Behav 2022; 145:105234. [PMID: 35905507 DOI: 10.1016/j.yhbeh.2022.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
Abstract
Hormone transition phases may trigger depression in some women, yet the underlying mechanisms remain elusive. In a pharmacological sex-hormone manipulation model, we previously reported that estradiol reductions, induced with a gonadotropin-releasing hormone agonist (GnRHa), provoked subclinical depressive symptoms in healthy women, especially if neocortical serotonin transporter (SERT) binding also increased. Within this model, we here evaluated if GnRHa, compared to placebo, reduced hippocampal volume, in a manner that depended on the magnitude of the estradiol decrease and SERT binding, and if this decrease translated to the emergence of subclinical depressive symptoms. Sixty-three healthy, naturally cycling women were included in a randomized, double-blind, placebo-controlled GnRHa-intervention study. We quantified the change from baseline to follow-up (n = 60) in serum estradiol (ΔEstradiol), neocortical SERT binding ([11C] DASB positron emission tomography; ΔSERT), subclinical depressive symptoms (Hamilton depression rating scale; ΔHAMD-17), and hippocampal volume (magnetic resonance imaging data analyzed in Freesurfer 7.1, ΔHippocampus). Group differences in ΔHippocampus were evaluated in a t-test. Within the GnRHa group, associations between ΔEstradiol, ΔHippocampus, and ΔHAMD-17, in addition to ΔSERT-by-ΔEstradiol interaction effects on ΔHippocampus, were evaluated with linear regression models. Mean ΔHippocampus was not significantly different between the GnRHa and placebo group. Within the GnRHa group, hippocampal volume reductions were associated with the magnitude of estradiol decrease (p = 0.04, Cohen's f2 = 0.18), controlled for baseline SERT binding, but not subclinical depressive symptoms. There was no ΔSERT-by-ΔEstradiol interaction effects on ΔHippocampus. If replicated, our data highlight a possible association between estradiol fluctuations and hippocampal plasticity, adjusted for serotonergic contributions.
Collapse
Affiliation(s)
- Camilla Borgsted
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark; Mental Health Services in the Capital Region of Denmark, Kristineberg 3, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Emma Hoegsted
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark
| | - Susanne Henningsson
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Kettegård Allé 30, 2650 Hvidovre, Denmark
| | - Anja Pinborg
- Department of Fertility, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark; Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen O, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark; Mental Health Services in the Capital Region of Denmark, Kristineberg 3, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
60
|
Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 2022; 56:101133. [PMID: 35841648 PMCID: PMC9289873 DOI: 10.1016/j.dcn.2022.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human amygdala is critical for emotional learning, valence coding, and complex social interactions, all of which mature throughout childhood, puberty, and adolescence. Across these ages, the amygdala paralaminar nucleus (PL) undergoes significant structural changes including increased numbers of mature neurons. The PL contains a large population of immature excitatory neurons at birth, some of which may continue to be born from local progenitors. These progenitors disappear rapidly in infancy, but the immature neurons persist throughout childhood and adolescent ages, indicating that they develop on a protracted timeline. Many of these late-maturing neurons settle locally within the PL, though a small subset appear to migrate into neighboring amygdala subnuclei. Despite its prominent growth during postnatal life and possible contributions to multiple amygdala circuits, the function of the PL remains unknown. PL maturation occurs predominately during late childhood and into puberty when sex hormone levels change. Sex hormones can promote developmental processes such as neuron migration, dendritic outgrowth, and synaptic plasticity, which appear to be ongoing in late-maturing PL neurons. Collectively, we describe how the growth of late-maturing neurons occurs in the right time and place to be relevant for amygdala functions and neuropsychiatric conditions.
Collapse
|
61
|
Jett S, Schelbaum E, Jang G, Boneu Yepez C, Dyke JP, Pahlajani S, Diaz Brinton R, Mosconi L. Ovarian steroid hormones: A long overlooked but critical contributor to brain aging and Alzheimer's disease. Front Aging Neurosci 2022; 14:948219. [PMID: 35928995 PMCID: PMC9344010 DOI: 10.3389/fnagi.2022.948219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian hormones, particularly 17β-estradiol, are involved in numerous neurophysiological and neurochemical processes, including those subserving cognitive function. Estradiol plays a key role in the neurobiology of aging, in part due to extensive interconnectivity of the neural and endocrine system. This aspect of aging is fundamental for women's brains as all women experience a drop in circulating estradiol levels in midlife, after menopause. Given the importance of estradiol for brain function, it is not surprising that up to 80% of peri-menopausal and post-menopausal women report neurological symptoms including changes in thermoregulation (vasomotor symptoms), mood, sleep, and cognitive performance. Preclinical evidence for neuroprotective effects of 17β-estradiol also indicate associations between menopause, cognitive aging, and Alzheimer's disease (AD), the most common cause of dementia affecting nearly twice more women than men. Brain imaging studies demonstrated that middle-aged women exhibit increased indicators of AD endophenotype as compared to men of the same age, with onset in perimenopause. Herein, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining cognition in women, with evidence implicating menopause-related declines in 17β-estradiol in cognitive aging and AD risk. We will review research focused on the role of endogenous and exogenous estrogen exposure as a key underlying mechanism to neuropathological aging in women, with a focus on whether brain structure, function and neurochemistry respond to hormone treatment. While still in development, this research area offers a new sex-based perspective on brain aging and risk of AD, while also highlighting an urgent need for better integration between neurology, psychiatry, and women's health practices.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
62
|
Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol 2022; 66:101010. [PMID: 35716803 PMCID: PMC9715398 DOI: 10.1016/j.yfrne.2022.101010] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Women are at twice the risk for anxiety and depression disorders as men are, although the underlying biological factors and mechanisms are largely unknown. In this review, we address this sex disparity at both the etiological and mechanistic level. We dissect the role of fluctuating sex hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. We provide parallel evidence in humans and rodents that brain structure and function vary with naturally-cycling ovarian hormones. This female-unique brain plasticity and associated vulnerability are primarily driven by estrogen level changes. For the first time, we provide a sex hormone-driven molecular mechanism, namely chromatin organizational changes, that regulates neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. Finally, we map out future directions including experimental and clinical studies that will facilitate novel sex- and gender-informed approaches to treat depression and anxiety disorders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
63
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
64
|
Coughlin C, Ben-Asher E, Roome HE, Varga NL, Moreau MM, Schneider LL, Preston AR. Interpersonal Family Dynamics Relate to Hippocampal CA Subfield Structure. Front Neurosci 2022; 16:872101. [PMID: 35784846 PMCID: PMC9247275 DOI: 10.3389/fnins.2022.872101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Social environments that are extremely enriched or adverse can influence hippocampal volume. Though most individuals experience social environments that fall somewhere in between these extremes, substantially less is known about the influence of normative variation in social environments on hippocampal structure. Here, we examined whether hippocampal volume tracks normative variation in interpersonal family dynamics in 7- to 12-year-olds and adults recruited from the general population. We focused on interpersonal family dynamics as a prominent feature of one's social world. Given evidence that CA1 and CA2 play a key role in tracking social information, we related individual hippocampal subfield volumes to interpersonal family dynamics. More positive perceptions of interpersonal family dynamics were associated with greater CA1 and CA2/3 volume regardless of age and controlling for socioeconomic status. These data suggest that CA subfields are sensitive to normative variation in social environments and identify interpersonal family dynamics as an impactful environmental feature.
Collapse
Affiliation(s)
- Christine Coughlin
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
| | - Eliya Ben-Asher
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Hannah E. Roome
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
| | - Nicole L. Varga
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
| | - Michelle M. Moreau
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Lauren L. Schneider
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Alison R. Preston
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
65
|
Sex-specific multi-level 3D genome dynamics in the mouse brain. Nat Commun 2022; 13:3438. [PMID: 35705546 PMCID: PMC9200740 DOI: 10.1038/s41467-022-30961-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/24/2022] [Indexed: 01/08/2023] Open
Abstract
The female mammalian brain exhibits sex hormone-driven plasticity during the reproductive period. Recent evidence implicates chromatin dynamics in gene regulation underlying this plasticity. However, whether ovarian hormones impact higher-order chromatin organization in post-mitotic neurons in vivo is unknown. Here, we mapped the 3D genome of ventral hippocampal neurons across the oestrous cycle and by sex in mice. In females, we find cycle-driven dynamism in 3D chromatin organization, including in oestrogen response elements-enriched X chromosome compartments, autosomal CTCF loops, and enhancer-promoter interactions. With rising oestrogen levels, the female 3D genome becomes more similar to the male 3D genome. Cyclical enhancer-promoter interactions are partially associated with gene expression and enriched for brain disorder-relevant genes and pathways. Our study reveals unique 3D genome dynamics in the female brain relevant to female-specific gene regulation, neuroplasticity, and disease risk. Here the authors provide evidence that 3D chromatin structure in the mouse brain differs between males and females and undergoes dynamic remodelling during the female ovarian cycle. They show female-specific 3D genome dynamics affects neuronal gene expression and brain disorder-relevant genes, and could play a role in reproductive hormone-induced brain plasticity and female-specific risk for brain disorders.
Collapse
|
66
|
LaDage LD. Seasonal variation in gonadal hormones, spatial cognition, and hippocampal attributes: More questions than answers. Horm Behav 2022; 141:105151. [PMID: 35299119 DOI: 10.1016/j.yhbeh.2022.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/04/2022]
Abstract
A large body of research has been dedicated to understanding the factors that modulate spatial cognition and attributes of the hippocampus, a highly plastic brain region that underlies spatial processing abilities. Variation in gonadal hormones impacts spatial memory and hippocampal attributes in vertebrates, although the direction of the effect has not been entirely consistent. To add complexity, individuals in the field must optimize fitness by coordinating activities with the appropriate environmental cues, and many of these behaviors are correlated tightly with seasonal variation in gonadal hormone release. As such, it remains unclear if the relationship among systemic gonadal hormones, spatial cognition, and the hippocampus also exhibits seasonal variation. This review presents an overview of the relationship among gonadal hormones, the hippocampus, and spatial cognition, and how the seasonal release of gonadal hormones correlates with seasonal variation in spatial cognition and hippocampal attributes. Additionally, this review presents other neuroendocrine mechanisms that may be involved in modulating the relationship among seasonality, gonadal hormone release, and the hippocampus and spatial cognition, including seasonal rhythms of steroid hormone binding globulins, neurosteroids, sex steroid hormone receptor expression, and hormone interactions. Here, endocrinology, ecology, and behavioral neuroscience are brought together to present an overview of the research demonstrating the mechanistic effects of systemic gonadal hormones on spatial cognition and the hippocampus, while, at a functional level, superimposing seasonal effects to examine ecologically-relevant circannual changes in gonadal hormones and spatial behaviors.
Collapse
Affiliation(s)
- Lara D LaDage
- Penn State Altoona, Division of Mathematics & Natural Sciences, 3000 Ivyside Dr., Altoona, PA 16601, USA.
| |
Collapse
|
67
|
Scene memory and hippocampal volume in middle-aged women with early hormone loss. Neurobiol Aging 2022; 117:97-106. [DOI: 10.1016/j.neurobiolaging.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
|
68
|
Effects of circulating estradiol on physiological, behavioural, and subjective correlates of anxiety: A double-blind, randomized, placebo-controlled trial. Psychoneuroendocrinology 2022; 138:105682. [PMID: 35123210 DOI: 10.1016/j.psyneuen.2022.105682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Anxiety-related behaviours as well as the prevalence of anxiety disorders show a large sex difference in humans. Clinical studies in humans as well as behavioural studies in rodents suggest that estradiol may have anxiolytic properties. In line with this, anxiety symptoms fluctuate with estradiol levels along the menstrual cycle. However, the influence of estradiol on subjective, behavioural, as well as physiological correlates of anxiety has never been systematically addressed in humans. We ran a double-blind, randomized, placebo-controlled study (N = 126) to investigate the effects of estradiol on anxiety in men and women. In healthy volunteers, circulating estradiol levels were elevated through estradiol administration over two consecutive days to simulate the rise in estradiol levels around ovulation. Subjective, behavioral, as well as, physiological correlates of anxiety were assessed using a virtual reality elevated plus-maze (EPM). Estradiol treatment reduced the physiological stress response with blunted heart rate response and lower cortisol levels compared to placebo treatment in both sexes. In contrast, respiration frequency was only reduced in women after estradiol treatment. Behavioural measures of anxiety as well as subjective anxiety on the EPM were not affected by estradiol treatment. In general, women showed more avoidance and less approach behavior and reported higher subjective anxiety levels on the EPM than men. These results highlight the limited anxiolytic properties of circulating levels of estradiol in humans, which influence physiological markers of anxiety but not approach and avoidance behaviour or subjective anxiety levels.
Collapse
|
69
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
70
|
Handley EE, Reale LA, Chuckowree JA, Dyer MS, Barnett GL, Clark CM, Bennett W, Dickson TC, Blizzard CA. Estrogen Enhances Dendrite Spine Function and Recovers Deficits in Neuroplasticity in the prpTDP-43A315T Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:2962-2976. [PMID: 35249200 PMCID: PMC9016039 DOI: 10.1007/s12035-022-02742-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/09/2022] [Indexed: 10/31/2022]
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) attacks the corticomotor system, with motor cortex function affected early in disease. Younger females have a lower relative risk of succumbing to ALS than males and older females, implicating a role for female sex hormones in disease progression. However, the mechanisms driving this dimorphic incidence are still largely unknown. We endeavoured to determine if estrogen mitigates disease progression and pathogenesis, focussing upon the dendritic spine as a site of action. Using two-photon live imaging we identify, in the prpTDP-43A315T mouse model of ALS, that dendritic spines in the male motor cortex have a reduced capacity for remodelling than their wild-type controls. In contrast, females show higher capacity for remodelling, with peak plasticity corresponding to highest estrogen levels during the estrous cycle. Estrogen manipulation through ovariectomies and estrogen replacement with 17β estradiol in vivo was found to significantly alter spine density and mitigate disease severity. Collectively, these findings reveal that synpatic plasticity is reduced in ALS, which can be amelioriated with estrogen, in conjuction with improved disease outcomes.
Collapse
|
71
|
Grant CV, Russart KLG, Pyter LM. A novel targeted approach to delineate a role for estrogen receptor-β in ameliorating murine mammary tumor-associated neuroinflammation. Endocrine 2022; 75:949-958. [PMID: 34797509 DOI: 10.1007/s12020-021-02931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Circulating estrogens in breast cancer patients and survivors are often extremely low due to menopause and estrogen-reducing cancer treatments. Simultaneously, circulating inflammatory markers, and inflammatory proteins in brains of rodent tumor models, can be elevated and correlate with debilitating neurological and psychological comorbidities. Because estrogen has anti-inflammatory properties in the brain, we hypothesized that mammary tumor-induced neuroinflammation is driven, in part, by reduced brain estrogen signaling. METHODS An ovariectomized mouse model of postmenopausal breast cancer utilizing the ERα-positive 67NR mammary tumor cell line was used for these experiments. A novel, orally bioavailable, and brain penetrant ERβ agonist was administered daily via oral gavage. Following treatment, estrogen-responsive genes were measured in brain regions. Central and circulating inflammatory markers were measured via RT-qPCR and a multiplex cytokine array, respectively. RESULTS We present novel findings that peripheral mammary tumors alter estrogen signaling genes including receptors and aromatase in the hypothalamus, hippocampus, and frontal cortex. Mammary tumors induced peripheral and central inflammation, however, pharmacological ERβ activation was not sufficient to reduce this inflammation. CONCLUSIONS Data presented here suggest that compensating for low circulating estrogen with ERβ brain activation is not sufficient to attenuate mammary tumor-induced neuroinflammation, and is therefore not a likely candidate for the treatment of behavioral symptoms in patients. The novel finding that mammary tumors alter estrogen signaling-related genes is a clinically relevant advancement to the understanding of how peripheral tumor biology modulates neurobiology. This is necessary to predict and prevent behavioral comorbidities (e.g., cognitive impairment) prevalent in cancer patients and survivors.
Collapse
Affiliation(s)
- Corena V Grant
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Kathryn L G Russart
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Minnesota State University Moorhead, Moorhead, MN, USA
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
72
|
Shimizu S, Maeda N, Takahashi Y, Uomoto S, Takesue K, Ojiro R, Tang Q, Ozawa S, Okano H, Takashima K, Woo GH, Yoshida T, Shibutani M. Oral exposure to aluminum chloride for 28 days suppresses neural stem cell proliferation and increases mature granule cells in adult hippocampal neurogenesis of young-adult rats. J Appl Toxicol 2022; 42:1337-1353. [PMID: 35146777 DOI: 10.1002/jat.4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
Aluminum (Al), a common light metal, affects the developing nervous system. Developmental exposure to Al chloride (AlCl3 ) induces aberrant neurogenesis by targeting neural stem cells (NSCs) and/or neural progenitor cells (NPCs) in the dentate gyrus (DG) of rats and mice. To investigate whether hippocampal neurogenesis is similarly affected by AlCl3 exposure in a general toxicity study, AlCl3 was orally administered to 5-week-old Sprague Dawley rats at dosages of 0, 4000, or 8000 ppm in drinking water for 28 days. AlCl3 downregulated Sox2 transcript levels in the DG at the highest dosage and produced a dose-dependent decrease of SOX2+ cells without altering numbers of GFAP+ or TBR2+ cells in the subgranular zone, suggesting that AlCl3 decreases Type 2a NPCs. High-dose exposure downregulated Pcna, upregulated Pvalb, and altered expression of genes suggestive of oxidative stress induction (upregulation of Nos2 and downregulation of antioxidant enzyme genes), indicating suppressed proliferation and differentiation of Type 1 NSCs. AlCl3 doses also increased mature granule cells in the DG. Upregulation of Reln may have contributed to an increase of granule cells to compensate for the decrease of Type 2a NPCs. Moreover, upregulation of Calb2, Gria2, Mapk3, and Tgfb3, as well as increased numbers of activated astrocytes in the DG hilus, may represent ameliorating responses against suppressed neurogenesis. These results suggest that 28-day exposure of young-adult rats to AlCl3 differentially targeted NPCs and mature granule cells in hippocampal neurogenesis, yielding a different pattern of disrupted neurogenesis from developmental exposure.
Collapse
Affiliation(s)
- Saori Shimizu
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Natsuno Maeda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon-si, Chungbuk, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
73
|
Takahashi Y, Okano H, Takashima K, Ojiro R, Tang Q, Ozawa S, Ogawa B, Woo GH, Yoshida T, Shibutani M. Oral exposure to high-dose ethanol for 28 days in rats reduces neural stem cells and immediate nascent neural progenitor cells as well as FOS-expressing newborn granule cells in adult hippocampal neurogenesis. Toxicol Lett 2022; 360:20-32. [DOI: 10.1016/j.toxlet.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
74
|
Abstract
PURPOSE OF REVIEW Vestibular disorders are gender distributed with a higher prevalence in women. Although research has increased in this field, the mechanisms underlying this unbalance is unclear. This review summarises recent advances in this research sphere, and briefly discusses sex hormone effects on various vestibular conditions and highlights some recent theories. RECENT FINDINGS Recent work has identified a direct link between aberrant gonadal hormone levels and vestibular dysfunction. Benign paroxysmal positional vertigo research suggests that the disorder may be linked to the rapid decrease in oestrogen, observed in menopausal women, which disrupts otoconial metabolism within the inner ear. A successful hormonal therapeutic intervention study has advanced our knowledge of hormonal influences in the inner ear in Ménière's disease. Also, several studies have focused on potential mechanisms involved in the interaction between Vestibular Migraine, Mal de Debarquement Syndrome, and gonadal hormones. SUMMARY In females, gonadal hormones and sex-specific synaptic plasticity may play a significant role in the underlying pathophysiology of peripheral and central vestibular disorders. Overall, this review concludes that clinical assessment of female vestibular patients requires a multifaceted approach which includes auditory and vestibular medicine physicians, gynaecologists and/or endocrinologists, in conjunction with hormonal profile evaluations.
Collapse
Affiliation(s)
- Viviana Mucci
- School of Science, Campbelltown Campus, Western Sydney University, NSW, Australia
| | | | - Yves Jacquemyn
- Antwerp University Hospital UZA, Drie Eikenstraat 655, 2650 Edegem Belgium and Antwerp University UA, ASTARC and GHI, Wilrijk, Belgium
| | - Cherylea J Browne
- School of Science, Campbelltown Campus, Western Sydney University, NSW, Australia
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
75
|
Wijesena HR, Nonneman DJ, Keel BN, Lents CA. Gene expression in the amygdala and hippocampus of cyclic and acyclic gilts. J Anim Sci 2022; 100:6497483. [PMID: 34984470 PMCID: PMC8801052 DOI: 10.1093/jas/skab372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/02/2022] [Indexed: 01/07/2023] Open
Abstract
Age at first estrus is the earliest phenotypic indicator of future reproductive success of gilts. Prebreeding anestrus is a major reason for reproductive failure leading to culling of replacement gilts. The two types of prebreeding anestrus are delay in attaining puberty (prepubertal anestrus, PPA) and silent ovulation (behavioral anestrus, BA). Neural tissues such as amygdala and hippocampus play a major role in regulating sexual behavior, social interactions, and receptivity to males. Differences in gene expression in the amygdala and hippocampus of gilts were analyzed in three comparisons: 1) PPA cases and cyclic controls at follicular phase of estrous cycle, 2) BA cases and cyclic controls at luteal phase of estrous cycle, and 3) gilts at different stages of the ovarian cycle (cyclic gilts at follicular phase and luteal phase of estrous cycle) to gain functional understanding of how these rarely studied tissues may differ between pubertal phenotypes and different stages of the estrous cycle of gilts. Differentially expressed genes (DEG) between PPA and BA cases and their respective cyclic controls were involved in neurological and behavioral disorders as well as nervous system functions that could directly or indirectly involved in development of behaviors related to estrus. The comparison between cyclic follicular and luteal phase control gilts identified the greatest number of DEG in the hippocampus and amygdala. These DEG were involved in adult neurogenesis and neural synapse (e.g., GABAergic, dopamine, cholinergic), suggesting that these tissues undergo structural changes and synaptic plasticity in gilts. This is the first report to demonstrate that the stage of estrous cycle is associated with dynamic changes in gene expression within porcine hippocampus and amygdala and indicates a role of gonadal steroids in regulating their biology.
Collapse
Affiliation(s)
- Hiruni R Wijesena
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Brittney N Keel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA,Corresponding author:
| |
Collapse
|
76
|
Sheppard PAS, Puri TA, Galea LAM. Sex Differences and Estradiol Effects in MAPK and Akt Cell Signaling across Subregions of the Hippocampus. Neuroendocrinology 2022; 112:621-635. [PMID: 34407537 DOI: 10.1159/000519072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rapid effects of estrogens within the hippocampus of rodents are dependent upon cell-signaling cascades, and activation of these cascades by estrogens varies by sex. Whether these pathways are rapidly activated within the dentate gyrus (DG) and CA1 by estrogens across sex and the anatomical longitudinal axis has been overlooked. METHODS Gonadally intact female and male rats were given either vehicle or physiological systemic low (1.1 µg/kg) or high (37.3 µg/kg) doses of 17β-estradiol 30 min prior to tissue collection. To control for the effects of circulating estrogens, an additional group of female rats was ovariectomized (OVX) and administered 17β-estradiol. Brains were extracted, and tissue punches of the CA1 and DG were taken along the longitudinal hippocampal axis (dorsal and ventral) and analyzed for key mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) cascade phosphoproteins. RESULTS Intact females had higher Akt pathway phosphoproteins (pAkt, pGSK-3β, and pp70S6K) than males in the DG (dorsal and ventral) and lower pERK1/2 in the dorsal DG. Most effects of 17β-estradiol on cell signaling occurred in OVX animals. In OVX animals, 17β-estradiol increased cell signaling of MAPK and Akt phosphoproteins (pERK1/2, pJNK, pAkt, and pGSK-3β) in the CA1 and pERK1/2 and pJNK DG. DISCUSSION/CONCLUSIONS Systemic 17β-estradiol treatment rapidly alters phosphoprotein levels in the hippocampus, dependent on reproductive status, and intact females have greater expression of Akt phosphoproteins than that in intact males in the DG. These findings shed light on underlying mechanisms of sex differences in hippocampal function and response to interventions that affect MAPK or Akt signaling.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanvi A Puri
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
77
|
Koszegi Z, Cheong RY. Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Front Endocrinol (Lausanne) 2022; 13:999236. [PMID: 36187099 PMCID: PMC9521328 DOI: 10.3389/fendo.2022.999236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogens can alter the biology of various tissues and organs, including the brain, and thus play an essential role in modulating homeostasis. Despite its traditional role in reproduction, it is now accepted that estrogen and its analogues can exert neuroprotective effects. Several studies have shown the beneficial effects of estrogen in ameliorating and delaying the progression of neurodegenerative diseases, including Alzheimer's and Parkinson's disease and various forms of brain injury disorders. While the classical effects of estrogen through intracellular receptors are more established, the impact of the non-classical pathway through receptors located at the plasma membrane as well as the rapid stimulation of intracellular signaling cascades are still under active research. Moreover, it has been suggested that the non-classical estrogen pathway plays a crucial role in neuroprotection in various brain areas. In this mini-review, we will discuss the use of compounds targeting the non-classical estrogen pathway in their potential use as treatment in neurodegenerative diseases and brain injury disorders.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Y. Cheong
- Timeline Bioresearch AB, Medicon Village, Lund, Sweden
- *Correspondence: Rachel Y. Cheong,
| |
Collapse
|
78
|
Muthu SJ, Lakshmanan G, Shimray KW, Kaliyappan K, Sathyanathan SB, Seppan P. Testosterone Influence on Microtubule-Associated Proteins and Spine Density in Hippocampus: Implications on Learning and Memory. Dev Neurosci 2022; 44:498-507. [PMID: 35609517 DOI: 10.1159/000525038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
The thorny protrusions or spines increase the neuronal surface area, facilitate synaptic interconnections among neurons, and play an essential role in the hippocampus. Increasing evidence suggests that testosterone, the gonadal hormone, plays an important role in neurogenesis and synaptic plasticity. The role of testosterone on microtubule-associated proteins on dendritic neurite stability in the hippocampus and its impact on learning disability is not elucidated. Adult male Wistar albino rats were randomly selected for the control, castrated, castrated + testosterone, and control + testosterone groups. Bilateral orchidectomy was done, and the testosterone propionate was administered during the entire trial period, i.e., 14 days. The learning assessments were done using working/reference memory versions of the 8-arm radial maze and hippocampal tissues processed for histological and protein expressions. There were reduced expressions of microtubule-associated protein 2 (MAP2), postsynaptic density protein 95 (PSD95), and androgen receptor (AR) and increased expression of pTau in the castrated group. Conversely, the expression of MAP2, PSD95, and AR was increased, and the pTau expression was reduced in the hippocampus of the castrated rat administrated with testosterone. Androgen-depleted rats showed impaired synaptic plasticity in the hippocampus associated with contracted microtubule dynamics. Along with learning disability, there was an increased number of reference memory errors and working memory errors in castrated rats. Observations suggest that androgen regulates expression of neural tissue-specific MAPs and plays a vital role in hippocampus synaptic plasticity and that a similar mechanism may underlie neurological disorders in aging and hypogonadal men.
Collapse
Affiliation(s)
- Sakthi Jothi Muthu
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Ganesh Lakshmanan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Khayinmi Wungpam Shimray
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Kathiravan Kaliyappan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | | | - Prakash Seppan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| |
Collapse
|
79
|
The form, function, and evolutionary significance of neural aromatization. Front Neuroendocrinol 2022; 64:100967. [PMID: 34808232 DOI: 10.1016/j.yfrne.2021.100967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
Songbirds have emerged as exceptional research subjects for helping us appreciate and understand estrogen synthesis and function in brain. In the context of recognizing the vertebrate-wide importance of brain aromatase expression, in this review we highlight where we believe studies of songbirds have provided clarification and conceptual insight. We follow by focusing on more recent studies of aromatase and neuroestrogen function in the hippocampus and the pallial auditory processing region NCM of songbirds. With perspectives drawn from this body of work, we speculate that the evolution of enhanced neural estrogen signaling, including in the mediation of social behaviors, may have given songbirds the resilience to radiate into one of the most successful vertebrate groups on the planet.
Collapse
|
80
|
Ho TC, Gifuni AJ, Gotlib IH. Psychobiological risk factors for suicidal thoughts and behaviors in adolescence: a consideration of the role of puberty. Mol Psychiatry 2022; 27:606-623. [PMID: 34117365 PMCID: PMC8960417 DOI: 10.1038/s41380-021-01171-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Suicide is the second leading cause of death among adolescents. While clinicians and researchers have begun to recognize the importance of considering multidimensional factors in understanding risk for suicidal thoughts and behaviors (STBs) during this developmental period, the role of puberty has been largely ignored. In this review, we contend that the hormonal events that occur during puberty have significant effects on the organization and development of brain systems implicated in the regulation of social stressors, including amygdala, hippocampus, striatum, medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex. Guided by previous experimental work in adults, we also propose that the influence of pubertal hormones and social stressors on neural systems related to risk for STBs is especially critical to consider in adolescents with a neurobiological sensitivity to hormonal changes. Furthermore, facets of the pubertal transition, such as pubertal timing, warrant deeper investigation and may help us gain a more comprehensive understanding of sex differences in the neurobiological and psychosocial mechanisms underlying adolescent STBs. Ultimately, advancing our understanding of the pubertal processes that contribute to suicide risk will improve early detection and facilitate the development of more effective, sex-specific, psychiatric interventions for adolescents.
Collapse
Affiliation(s)
- Tiffany C. Ho
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA USA ,grid.266102.10000 0001 2297 6811Department of Psychiatry and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA USA
| | - Anthony J. Gifuni
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA USA ,grid.14709.3b0000 0004 1936 8649Psychiatry Department and Douglas Mental Health University Institute, McGill University, Montréal, QC Canada
| | - Ian H. Gotlib
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA USA
| |
Collapse
|
81
|
Ogawa B, Nakanishi Y, Wakamatsu M, Takahashi Y, Shibutani M. Repeated administration of acrylamide for 28 days reduces late-stage progenitor cells and immature granule cells accompanying impaired neurite outgrowth in the adult hippocampal neurogenesis in young-adult rats. J Toxicol Sci 2022; 47:467-482. [DOI: 10.2131/jts.47.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bunichiro Ogawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yutaka Nakanishi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Masaki Wakamatsu
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
82
|
Datta G, Miller NM, Du W, Geiger JD, Chang S, Chen X. Endolysosome Localization of ERα Is Involved in the Protective Effect of 17α-Estradiol against HIV-1 gp120-Induced Neuronal Injury. J Neurosci 2021; 41:10365-10381. [PMID: 34764157 PMCID: PMC8672688 DOI: 10.1523/jneurosci.1475-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the prevalence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; however, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In this study, we determined the extent to which and mechanisms by which 17α-estradiol (17αE2), a natural less-feminizing estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neurons, estrogen receptor α (ERα) is localized to endolysosomes and 17αE2 acidifies endolysosomes. ERα knockdown or overexpressing an ERα mutant that is deficient in endolysosome localization prevents 17αE2-induced endolysosome acidification. Furthermore, 17αE2-induced increases in dendritic spine density depend on endolysosome localization of ERα. Pretreatment with 17αE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such protective effects depended on endolysosome localization of ERα. In male HIV-1 transgenic rats, we show that 17αE2 treatment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a novel endolysosome-dependent pathway that governs the ERα-mediated neuroprotective actions of 17αE2, findings that might lead to the development of novel therapeutic strategies against HAND.SIGNIFICANCE STATEMENT Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition and synaptic function. The estrogen receptor subtype ERα is present on endolysosomes and plays a critical role in the enhancing effects of 17αE2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective actions of estrogen. Furthermore, 17αE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions in dendritic spines, and these protective effects of 17αE2 were mediated via endolysosome localization of ERα. Such findings provide a rationale for developing 17αE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Wenjuan Du
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Sulie Chang
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| |
Collapse
|
83
|
Grković I, Mitrović N, Dragić M. Ectonucleotidases in the hippocampus: Spatial distribution and expression after ovariectomy and estradiol replacement. VITAMINS AND HORMONES 2021; 118:199-221. [PMID: 35180927 DOI: 10.1016/bs.vh.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular purine nucleotides, such as adenosine 5'-triphosphate (ATP), are important modulators of hippocampal function and plasticity. In the extracellular space, ATP is inherently short-lived molecule, which undergoes rapid enzymatic degradation to adenosine by ectonucleotidases. Given that ectonucleotidases have distinct and overlapping distribution in the hippocampus, and as ovarian hormones participate in a formation, maturation, and a refinement of synaptic contacts, both during development and in adulthood, the present chapter summarizes known data about spatial distribution of selected ecto-enzymes and estradiol-induced effects on ectonucleotidases in the rat hippocampus.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
84
|
Radaghdam S, Karamad V, Nourazarian A, Shademan B, Khaki-Khatibi F, Nikanfar M. Molecular mechanisms of sex hormones in the development and progression of Alzheimer's disease. Neurosci Lett 2021; 764:136221. [PMID: 34500000 DOI: 10.1016/j.neulet.2021.136221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/23/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a form of brain disorder characterized by various pathological changes in the brain. Numerous studies have shown that sex hormones are involved in the disease. For instance, progesterone, estrogen, and testosterone are well-known steroid sex hormones that play an essential role in AD pathogenesis. The Gender-dependency of AD is attributed to the effect of these hormones on the brain, which plays a neuroprotective role. In recent years, much research has been performed on the protective role of these hormones against nerve cell damage, which are promising for AD management. Hence, in the current review, we aim to decipher the protective role of steroid hormones in AD. Accordingly, we will discuss their functional mechanisms at the genomic and non-genomic scales.
Collapse
Affiliation(s)
- Saeed Radaghdam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
85
|
Takashima K, Nakajima K, Shimizu S, Ojiro R, Tang Q, Okano H, Takahashi Y, Ozawa S, Jin M, Yoshinari T, Yoshida T, Sugita-Konishi Y, Shibutani M. Disruption of postnatal neurogenesis and adult-stage suppression of synaptic plasticity in the hippocampal dentate gyrus after developmental exposure to sterigmatocystin in rats. Toxicol Lett 2021; 349:69-83. [PMID: 34126181 DOI: 10.1016/j.toxlet.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Exposure to sterigmatocystin (STC) raises concerns on developmental neurological disorders. The present study investigated the effects of maternal oral STC exposure on postnatal hippocampal neurogenesis of offspring in rats. Dams were exposed to STC (1.7, 5.0, and 15.0 ppm in diet) from gestational day 6 until day 21 post-delivery (weaning), and offspring were maintained without STC exposure until adulthood on postnatal day (PND) 77, in accordance with OECD chemical testing guideline Test No. 426. On PND 21, 15.0-ppm STC decreased type-3 neural progenitor cell numbers in the subgranular zone (SGZ) due to suppressed proliferation. Increased γ-H2AX-immunoreactive (+) cell numbers in the SGZ and Ercc1 upregulation and Brip1 downregulation in the dentate gyrus suggested induction of DNA double-strand breaks in SGZ cells. Upregulation of Apex1 and Ogg1 and downregulation of antioxidant genes downstream of NRF2-Keap1 signaling suggested induction of oxidative DNA damage. Increased p21WAF1/CIP1+ SGZ cell numbers and suppressed cholinergic signaling through CHRNB2-containing receptors in GABAergic interneurons suggested potential neurogenesis suppression mechanisms. Multiple mechanisms involving N-methyl-d-aspartate (NMDA) receptor-mediated glutamatergic signaling and various GABAergic interneuron subpopulations, including CHRNA7-expressing somatostatin+ interneurons activated by BDNF-TrkB signaling, may be involved in ameliorating the neurogenesis. Upregulation of Arc, Ptgs2, and genes encoding NMDA receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors suggested synaptic plasticity facilitation. On PND 77, ARC+ granule cells decreased, and Nos2 was upregulated following 15.0 ppm STC exposure, suggesting oxidative stress-mediated synaptic plasticity suppression. Inverse pattern in gene expression changes in vesicular glutamate transporter isoforms, Slc17a7 and Slc17a6, from weaning might also be responsible for the synaptic plasticity suppression. The no-observed-adverse-effect level of maternal oral STC exposure for offspring neurogenesis was determined to be 5.0 ppm, translating to 0.34-0.85 mg/kg body weight/day.
Collapse
Affiliation(s)
- Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, PR China.
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yoshiko Sugita-Konishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
86
|
Takahashi Y, Yamashita R, Okano H, Takashima K, Ogawa B, Ojiro R, Tang Q, Ozawa S, Woo GH, Yoshida T, Shibutani M. Aberrant neurogenesis and late onset suppression of synaptic plasticity as well as sustained neuroinflammation in the hippocampal dentate gyrus after developmental exposure to ethanol in rats. Toxicology 2021; 462:152958. [PMID: 34547370 DOI: 10.1016/j.tox.2021.152958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Drinking alcohol during pregnancy may cause fetal alcohol spectrum disorder. The present study investigated the effects of maternal oral ethanol (EtOH) exposure (0, 10, or 12.5 % in drinking water) from gestational day 6 until day 21 post-delivery (weaning) on postnatal hippocampal neurogenesis at weaning and in adulthood on postnatal day 77 in rat offspring. At weaning, type-3 neural progenitor cells (NPCs) were decreased in the subgranular zone (SGZ), accompanied by Chrnb2 downregulation and Grin2b upregulation in the dentate gyrus (DG). These results suggested suppression of CHRNB2-mediated cholinergic signaling in γ-aminobutyric acid (GABA)ergic interneurons in the DG hilus and increased glutamatergic signaling through the NR2B subtype of N-methyl-d-aspartate (NMDA) receptors, resulting in NPC reduction. In contrast, upregulation of Chrna7 may increase CHRNA7-mediated cholinergic signaling in immature granule cells, and upregulation of Ntrk2 may cause an increase in somatostatin-immunoreactive (+) GABAergic interneurons, suggesting a compensatory response against NPC reduction. Promotion of SGZ cell proliferation increased type-2a NPCs. Moreover, an increase in calbindin-d-29 K+ interneurons and upregulation of Reln, Drd2, Tgfb2, Il18, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor subunit genes might participate in this compensatory response. In adulthood, reduction of FOS+ cells and downregulation of Fos and Arc suggested suppression of granule cell synaptic plasticity, reflecting upregulation of Tnf and downregulation of Cntf, Ntrk2, and AMPA-type glutamate receptor genes. In the DG hilus, gliosis and hyper-ramified microglia, accompanying upregulation of C3, appeared at weaning, suggesting contribution to suppressed synaptic plasticity in adulthood. M1 microglia increased throughout adulthood, suggesting sustained neuroinflammation. These results indicate that maternal EtOH exposure temporarily disrupts hippocampal neurogenesis and later suppresses synaptic plasticity. Induction of neuroinflammation might initially ameliorate neurogenesis (as evident by upregulation of Tgfb2 and Il18) but later suppress synaptic plasticity (as evident by upregulation of C3 at weaning and Tnf in adulthood).
Collapse
Affiliation(s)
- Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Risako Yamashita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Bunichiro Ogawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 27136, Republic of Korea.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
87
|
Hsu CMK, Ney LJ, Honan C, Felmingham KL. Gonadal steroid hormones and emotional memory consolidation: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 130:529-542. [PMID: 34517034 DOI: 10.1016/j.neubiorev.2021.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Anxiety and stress-related disorders are more prevalent in women and associated with negative emotional memory consolidation as well as impaired fear extinction recall. Recent research has identified a role of gonadal steroid hormones in influencing emotional memories and fear extinction, however most individual studies have small samples and employed various protocols. A systematic review and meta-analysis were conducted on studies that examined sex hormones (estrogen, progesterone, testosterone, allopregnanolone, dehydroepiandrosterone) on four aspects of memory, namely, intentional recall (k = 13), recognition memory (k = 7), intrusive memories (k = 9), and extinction recall (k = 11). The meta-analysis on natural cycling women revealed that progesterone level was positively associated with negative recall and negative intrusive memories, and this effect on intentional recall was enhanced under stress induction. Estradiol level was positively associated with extinction recall. This study reveals an important role of progesterone and estradiol in influencing emotional memory consolidation. It highlights the need to control for these hormonal effects and examine progesterone and estradiol concurrently across all menstrual phases in future emotional memory paradigms.
Collapse
Affiliation(s)
- Chia-Ming K Hsu
- School of Psychological Sciences, University of Tasmania, Australia.
| | - Luke J Ney
- School of Psychological Sciences, University of Tasmania, Australia
| | - Cynthia Honan
- School of Psychological Sciences, University of Tasmania, Australia
| | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
88
|
Yeo SH, Herde MK, Herbison AE. Morphological assessment of GABA and glutamate inputs to GnRH neurons in intact female mice using expansion microscopy. J Neuroendocrinol 2021; 33:e13021. [PMID: 34427015 DOI: 10.1111/jne.13021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023]
Abstract
The roles GABAergic and glutamatergic inputs in regulating the activity of the gonadotrophin-releasing hormone (GnRH) neurons at the time of the preovulatory surge remain unclear. We used expansion microscopy to compare the density of GABAergic and glutamatergic synapses on the GnRH neuron cell body and proximal dendrite in dioestrous and pro-oestrous female mice. An evaluation of all synapses immunoreactive for synaptophysin revealed that the highest density of inputs to rostral preoptic area GnRH neurons occurred within the first 45 µm of the primary dendrite (approximately 0.19 synapses µm-1 ) with relatively few synapses on the GnRH neuron soma or beyond 45 µm of the dendrite (0.05-0.08 synapses µm-1 ). Triple immunofluorescence labelling demonstrated a predominance of glutamatergic signalling with twice as many vesicular glutamate transporter 2 synapses detected compared to vesicular GABA transporter. Co-labelling with the GABAA receptor scaffold protein gephyrin and the glutamate receptor postsynaptic density marker Homer1 confirmed these observations, as well as the different spatial distribution of GABA and glutamate inputs along the dendrite. Quantitative assessments revealed no differences in synaptophysin, GABA or glutamate synapses at the proximal dendrite and soma of GnRH neurons between dioestrous and pro-oestrous mice. Taken together, these studies demonstrate that the GnRH neuron receives twice as many glutamatergic synapses compared to GABAergic synapses and that these inputs preferentially target the first 45 µm of the GnRH neuron proximal dendrite. These inputs appear to be structurally stable before the onset of pro-oestrous GnRH surge.
Collapse
Affiliation(s)
- Shel-Hwa Yeo
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michel K Herde
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
89
|
Endocrine Therapy With or Without CDK4/6 Inhibitors in Women With Hormone-receptor Positive Breast Cancer: What do we Know About the Effects on Cognition? Clin Breast Cancer 2021; 22:191-199. [PMID: 34556423 DOI: 10.1016/j.clbc.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Adjuvant endocrine therapy (ET) is the cornerstone of treatment for hormone-receptor positive breast cancer. Recently, ET is increasingly combined with "cyclin-dependent kinases 4 and 6'' (CDK4/6) inhibitors. Given the importance of estrogens in neural processes and the role of cyclin D in hippocampal cell proliferation, it is plausible that these therapies affect cognition, but studies on these potential cognitive effects are sparse. In this review, we summarize existing knowledge on the cognitive effects of ET and CDK4/6 inhibitors in pre-, peri- and postmenopausal patients with breast cancer. We show that several clinical studies support adverse cognitive effects, especially on verbal memory, after ET-induced decrease of estrogen-levels or inactivation of estrogen-receptors. Clinical studies on the cognitive effects of CDK4/6 inhibitors are virtually non-existent and no conclusions can yet be drawn. Longitudinal studies on the cognitive effects of the combined ET-CDK4/6 inhibitors are highly needed to properly inform patients about potential short-term and long-term cognitive side effects. These studies should preferably include cognitive assessments (including a measurement prior to ET), and be designed in such a way that they can account for variables such as type and duration of ET, CDK4/6 inhibition, menopausal status, and other disease- and treatment-related symptoms that can impact cognition, such as fatigue and distress.
Collapse
|
90
|
Zearalenone alters the excitability of rat neuronal networks after acute in vitro exposure. Neurotoxicology 2021; 86:139-148. [PMID: 34363844 DOI: 10.1016/j.neuro.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium species, detectable in various cereals and processed food products worldwide. ZEA displays a significant estrogenic activity, thus its main health risk is the interference with sexual maturation and reproduction processes. However, in addition to being key hormonal regulators of reproductive function, estrogenic compounds have a widespread role in brain, as neurotrophic and neuroprotective factors, and they may influence the activity of several brain areas not directly linked to reproduction, as well. Therefore, in the present study, acute effects of ZEA were studied on certain neuronal functions in rats. Experiments were performed on rat brain slices or live rats. Slices were incubated in ZEA-containing (10-100 μM) solution for 30 min. Electrically evoked and spontaneous field potentials were studied in the neocortex and in the hippocampus. At higher concentrations, ZEA incubation of the slices altered excitability and the pattern of epileptiform activity in neocortex and inhibited the development of LTP in hippocampus. For the verification of these in vitro results, in vivo electrophysiological and immunohistochemical investigations were also performed. ZEA was administered systemically (5 mg/kg, i.p.) to male rats and somatosensory evoked potentials and neuronal activation studied by c-fos expression were analyzed. No neuronal activation could be demonstrated in the hippocampus within 2 h of the injection. In the somatosensory cortex, ZEA did not change in vivo evoked potential parameters, but the activation of a small neuronal population could be demonstrated with the c-fos technique in this brain area. This result could be associated with the ZEA-induced alteration of epileptiform activity observed in vitro. Altogether, the toxin altered the excitability and plasticity of neuronal networks after direct treatment in slices, but the effects were less prominent on the given brain areas after systemic treatment in vivo. A probable explanation for the partial lack of in vivo effects may be that after a single injection, ZEA did not cross the blood-brain barrier at sufficient rate to allow the build-up of comparable concentrations in the investigated brain areas. However, in case of compromised blood-brain barrier functions or long-term repeated exposure, alterations in cortical and hippocampal functions cannot be ruled out.
Collapse
|
91
|
de Souza LO, Machado GDB, de Freitas BS, Rodrigues SLC, Severo MPA, Molz P, da Silva JAC, Bromberg E, Roesler R, Schröder N. The G protein-coupled estrogen receptor (GPER) regulates recognition and aversively-motivated memory in male rats. Neurobiol Learn Mem 2021; 184:107499. [PMID: 34352396 DOI: 10.1016/j.nlm.2021.107499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Estrogens, particularly 17β-estradiol (estradiol, E2), regulate memory formation. E2 acts through its intracellular receptors, estrogen receptors (ER) ERα and ERβ, as well as a recently identified G protein-coupled estrogen receptor (GPER). Although the effects of E2 on memory have been investigated, studies examining the effects of GPER stimulation are scarce. Selective GPER agonism improves memory in ovariectomized female rats, but little information is available regarding the effects of GPER stimulation in male rodents. The aim of the present study was to investigate the effects of the GPER agonist, G1, on consolidation and reconsolidation of inhibitory avoidance (IA) and object recognition (OR) memory in male rats. Animals received vehicle, G1 (15, 75, 150 µg/kg; i.p.), or the GPER antagonist G15 (100 µg/kg; i.p.) immediately after training, or G1 (150 µg/kg; i.p.) 3 or 6 h after training. To investigate reconsolidation, G1 was administered immediately after IA retention Test 1. Results indicated that G1 administered immediately after training at the highest dose enhanced both OR and IA memory consolidation, while GPER blockade immediately after training impaired OR. No effects of GPER stimulation were observed when G1 was given 3 or 6 h after training or after Test 1. The present findings provide evidence that GPER is involved in the early stages of memory consolidation in both neutral and emotional memory tasks in male adult rats.
Collapse
Affiliation(s)
- Lariza Oliveira de Souza
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Dalto Barroso Machado
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sarah Luize Camargo Rodrigues
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Paula Arakaki Severo
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Molz
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Afonso Corrêa da Silva
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nadja Schröder
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
| |
Collapse
|
92
|
Neural basis for estrous cycle-dependent control of female behaviors. Neurosci Res 2021; 176:1-8. [PMID: 34331974 DOI: 10.1016/j.neures.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/30/2023]
Abstract
Females display changes in distinct behaviors along the estrous cycle. Levels of circulating ovarian sex steroid hormones peak around ovulation, which occur around estrus phase of the cycle. This increase of sex hormones is thought to be important for changes in behaviors, however, neural circuit mechanisms of periodic behavioral changes in females are not understood well. Different lines of research indicate sex hormonal effects on several forms of neuronal plasticity. This review provides an overview of behavioral and plastic changes that occur in an estrous cycle-dependent manner and explores the current research linking these changes to understand neural circuit mechanisms that control female behaviors.
Collapse
|
93
|
Le Fèvre C, Cheng X, Loit MP, Keller A, Cebula H, Antoni D, Thiery A, Constans JM, Proust F, Noel G. Role of hippocampal location and radiation dose in glioblastoma patients with hippocampal atrophy. Radiat Oncol 2021; 16:112. [PMID: 34158078 PMCID: PMC8220779 DOI: 10.1186/s13014-021-01835-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/06/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The hippocampus is a critical organ for irradiation. Thus, we explored changes in hippocampal volume according to the dose delivered and the location relative to the glioblastoma. METHODS All patients were treated for glioblastoma with surgery, concomitant radiotherapy and temozolomide, and adjuvant temozolomide. Hippocampi were retrospectively delineated on three MRIs, performed at baseline, at the time of relapse, and on the last MRI available at the end of follow-up. A total of 98, 96, and 82 hippocampi were measured in the 49 patients included in the study, respectively. The patients were stratified into three subgroups according to the dose delivered to 40% of the hippocampus. In the group 1 (n = 6), the hippocampal D40% was < 7.4 Gy, in the group 2 (n = 13), only the Hcontra D40% was < 7.4 Gy, and in the group 3 (n = 30), the D40% for both hippocampi was > 7.4 Gy. RESULTS Regardless of the time of measurement, homolateral hippocampal volumes were significantly lower than those contralateral to the tumor. Regardless of the side, the volumes at the last MRI were significantly lower than those measured at baseline. There was a significant correlation among the decrease in hippocampal volume regardless of its side, and Dmax (p = 0.001), D98% (p = 0.028) and D40% (p = 0.0002). After adjustment for the time of MRI, these correlations remained significant. According to the D40% and volume at MRIlast, the hippocampi decreased by 4 mm3/Gy overall. CONCLUSIONS There was a significant relationship between the radiotherapy dose and decrease in hippocampal volume. However, at the lowest doses, the hippocampi seem to exhibit an adaptive increase in their volume, which could indicate a plasticity effect. Consequently, shielding at least one hippocampus by delivering the lowest possible dose is recommended so that cognitive function can be preserved. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Xue Cheng
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France.,Department of Radiation Oncology, Chongqing University Three Gorges Hospital, 165 Xin Cheng Road, Wanzhou District, Chongqing, 404000, China
| | | | | | - Hélène Cebula
- Neurosurgery Service, Hautepierre University Hospital, 1, rue Molière, 67000, Strasbourg, France
| | - Delphine Antoni
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Alicia Thiery
- Statistic Department, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Jean-Marc Constans
- Radiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France
| | - François Proust
- Neurosurgery Service, Hautepierre University Hospital, 1, rue Molière, 67000, Strasbourg, France
| | - Georges Noel
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France.
| |
Collapse
|
94
|
Androvičová R, Pfaus JG, Ovsepian SV. Estrogen pendulum in schizophrenia and Alzheimer's disease: Review of therapeutic benefits and outstanding questions. Neurosci Lett 2021; 759:136038. [PMID: 34116197 DOI: 10.1016/j.neulet.2021.136038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Although produced largely in the periphery, gonadal steroids play a key role in regulating the development and functions of the central nervous system and have been implicated in several chronic neuropsychiatric disorders, with schizophrenia and Alzheimer's disease (AD) most prominent. Despite major differences in pathobiology and clinical manifestations, in both conditions, estrogen transpires primarily with protective effects, buffering the onset and progression of diseases at various levels. As a result, estrogen replacement therapy (ERT) emerges as one of the most widely discussed adjuvant interventions. In this review, we revisit evidence supporting the protective role of estrogen in schizophrenia and AD and consider putative cellular and molecular mechanisms. We explore the underlying functional processes relevant to the manifestation of these devastating conditions, with a focus on synaptic transmission and plasticity mechanisms. We discuss specific effects of estrogen deficit on neurotransmitter systems such as cholinergic, dopaminergic, serotoninergic, and glutamatergic. While the evidence from both, preclinical and clinical reports, in general, are supportive of the protective effects of estrogen from cognitive decline to synaptic pathology, numerous questions remain, calling for further research.
Collapse
Affiliation(s)
- Renáta Androvičová
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Saak V Ovsepian
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
95
|
Sheppard PAS, Asling HA, Walczyk-Mooradally A, Armstrong SE, Elad VM, Lalonde J, Choleris E. Protein synthesis and actin polymerization in the rapid effects of 17β-estradiol on short-term social memory and dendritic spine dynamics in female mice. Psychoneuroendocrinology 2021; 128:105232. [PMID: 33892375 DOI: 10.1016/j.psyneuen.2021.105232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
Estrogens rapidly facilitate learning and memory, including social recognition - the ability of an animal to recognize another. In ovariectomized female mice, systemic or dorsal hippocampal administration of 17β-estradiol (E2) facilitates short-term social recognition memory within 40 min. Within the same timeframe, E2 increases dendritic spine density in CA1 dorsal hippocampal neurons of behavioural task-naïve mice and in hippocampal sections. Mechanisms underlying these effects remain unclear. Estrogens rapidly modulate actin cytoskeletal dynamics through actin polymerization and the translation of key synaptic proteins. We first determined doses of actin polymerization inhibitor latrunculin A (LAT) and protein synthesis inhibitor anisomycin (ANI) that would block short-term social recognition memory when infused into the dorsal hippocampus of ovariectomized female mice 15 min prior to testing. The highest doses that did not block social recognition prevented the facilitating effects of E2, whereas DNA transcription inhibitor, actinomycin D, could not block social recognition. As task performance may interfere with E2-facilitated increases in dendritic spine density, dendritic spine density and length were examined in task-performing and task-naïve mice. E2 increased dendritic spine density 15 but not 40 min following treatment, regardless of whether the animal had performed the social recognition task. This effect was blocked by LAT, but not ANI. Thus, both actin polymerization and protein synthesis are necessary for E2 to rapidly facilitate social recognition, whereas actin polymerization, but not protein synthesis, is required for the rapid increase in dendritic spine density brought on by E2.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Hayley A Asling
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Sabrina E Armstrong
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Vissy M Elad
- Department of Human Health and Nutrition Sciences, University of Guelph, Guelph, ON, Canada; Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
96
|
Khaleghi M, Rajizadeh MA, Bashiri H, Kohlmeier KA, Mohammadi F, Khaksari M, Shabani M. Estrogen attenuates physical and psychological stress-induced cognitive impairments in ovariectomized rats. Brain Behav 2021; 11:e02139. [PMID: 33811472 PMCID: PMC8119870 DOI: 10.1002/brb3.2139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/14/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Women are more vulnerable to stress-related disorders than men, which is counterintuitive as female sex hormones, especially estrogen, have been shown to be protective against stress disorders. METHODS In this study, we investigated whether two different models of stress act differently on ovariectomized (OVX) rats and the impact of estrogen on physical or psychological stress-induced impairments in cognitive-behaviors. Adult female Wistar rats at 21-22 weeks of age were utilized for this investigation. Sham and OVX rats were subjected to physical and psychological stress for 1 hr/day for 7 days, and cognitive performance was assessed using morris water maze (MWM) and passive avoidance (PA) tests. The open field and elevated plus maze tests (EPM) evaluated exploratory and anxiety-like behaviors. RESULTS In sham and OVX rats, both physical and psychological stressors were associated with an increase in EPM-determined anxiety-like behavior. OVX rats exhibited decreased explorative behavior in comparison with nonstressed sham rats (p < .05). Both physical stress and psychological stress resulted in disrupted spatial cognition as assayed in the MWM (p < .05) and impaired learning and memory as determined by the PA test when the OVX and sham groups were compared with the nonstressed sham group. Estrogen increased explorative behavior, learning and memory (p < .05), and decreased anxiety-like behavior compared with vehicle in OVX rats exposed to either type of stressor. CONCLUSIONS When taken together, estrogen and both stressors had opposite effects on memory, anxiety, and PA performance in a rat model of menopause, which has important implications for potential protective effects of estrogen in postmenopausal women exposed to chronic stress.
Collapse
Affiliation(s)
- Mina Khaleghi
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Department of Physiology and Pharmacology, Kerman University of Medical Science, Kerman Iran and Sirjan School of Medical Sciences, Sirjan, Iran
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fatemeh Mohammadi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
97
|
Luders E, Gaser C, Gingnell M, Engman J, Sundström Poromaa I, Kurth F. Gray matter increases within subregions of the hippocampal complex after pregnancy. Brain Imaging Behav 2021; 15:2790-2794. [PMID: 33881733 DOI: 10.1007/s11682-021-00463-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/01/2022]
Abstract
Neuroimaging findings - although still relatively sparse in the realm of postpartum research - suggest significant tissue increases within the hippocampus or its vicinity after giving birth. Given that the hippocampus is not a homogenous structure, effects may manifest differently across the hippocampal complex. Thus, the goal of this study was to determine the presence, magnitude, and direction of postpartum gray matter changes within five hippocampal subregions, specifically the dentate gyrus, the subiculum, and the subfields of the cornu ammonis (CA1, CA2 and CA3). For this purpose, we analyzed brain images of 14 healthy women acquired at immediate postpartum (within 1-2 days of childbirth) and at late postpartum (at 4-6 weeks after childbirth). Changes in hippocampal gray matter between both time points were calculated for all subregions as well as the hippocampal complex as a whole by integrating imaging-based intensity information with microscopically defined cytoarchitectonic probabilities. Hippocampal gray matter increased significantly within the right subiculum, right CA2, and right CA3. These findings may suggest that brain tissue lost during pregnancy is being restored after giving birth, perhaps even expanded compared to before pregnancy. Possible events on the microanatomical level include dendritic branching as well as the generation of new synapses, glia cells, and blood vessels. Altogether, the outcomes of our study confirm that hippocampal gray matter increases in the female human brain after giving birth, with differential effects across the hippocampal complex.
Collapse
Affiliation(s)
- Eileen Luders
- School of Psychology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. .,Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Christian Gaser
- Departments of Psychiatry and Neurology, Jena University Hospital, Jena, Germany
| | - Malin Gingnell
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jonas Engman
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | | | - Florian Kurth
- School of Psychology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
98
|
Rasia-Filho AA, Guerra KTK, Vásquez CE, Dall’Oglio A, Reberger R, Jung CR, Calcagnotto ME. The Subcortical-Allocortical- Neocortical continuum for the Emergence and Morphological Heterogeneity of Pyramidal Neurons in the Human Brain. Front Synaptic Neurosci 2021; 13:616607. [PMID: 33776739 PMCID: PMC7991104 DOI: 10.3389/fnsyn.2021.616607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Human cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70-85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as "pyramidal-like" neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. "Pyramidal-like" to "classic" pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, "atypical" or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer's disease and in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T. Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Escobar Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Dall’Oglio
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roman Reberger
- Medical Engineering Program, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cláudio R. Jung
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry and Biochemistry Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
99
|
Acosta H, Tuulari JJ, Kantojärvi K, Lewis JD, Hashempour N, Scheinin NM, Lehtola SJ, Fonov VS, Collins DL, Evans A, Parkkola R, Lähdesmäki T, Saunavaara J, Merisaari H, Karlsson L, Paunio T, Karlsson H. A variation in the infant oxytocin receptor gene modulates infant hippocampal volumes in association with sex and prenatal maternal anxiety. Psychiatry Res Neuroimaging 2021; 307:111207. [PMID: 33168330 DOI: 10.1016/j.pscychresns.2020.111207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Genetic variants in the oxytocin receptor (OTR) have been linked to distinct social phenotypes, psychiatric disorders and brain volume alterations in adults. However, to date, it is unknown how OTR genotype shapes prenatal brain development and whether it interacts with maternal prenatal environmental risk factors on infant brain volumes. In 105 Finnish mother-infant dyads (44 female, 11-54 days old), the association of offspring OTR genotype rs53576 and its interaction with prenatal maternal anxiety (revised Symptom Checklist 90, gestational weeks 14, 24, 34) on infant bilateral amygdalar, hippocampal and caudate volumes were probed. A sex-specific main effect of rs53576 on infant left hippocampal volumes was observed. In boys compared to girls, left hippocampal volumes were significantly larger in GG-homozygotes compared to A-allele carriers. Furthermore, genotype rs53576 and prenatal maternal anxiety significantly interacted on right hippocampal volumes irrespective of sex. Higher maternal anxiety was associated both with larger hippocampal volumes in A-allele carriers than GG-homozygotes, and, though statistically weak, also with smaller right caudate volumes in GG-homozygotes than A-allele carriers. Our study results suggest that OTR genotype enhances hippocampal neurogenesis in male GG-homozygotes. Further, prenatal maternal anxiety might induce brain alterations that render GG-homozygotes compared to A-allele carriers more vulnerable to depression.
Collapse
Affiliation(s)
- H Acosta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Germany.
| | - J J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland; Turku Collegium for Science and Medicine, University of Turku, Finland; Department of Psychiatry, University of Oxford, Oxford, United Kingdom (Sigrid Juselius Fellowship)
| | - K Kantojärvi
- Finnish Institute for Health and Welfare, Genomics and Biobank Unit, Helsinki, Finland; Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - J D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - N Hashempour
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - N M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - S J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - V S Fonov
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - D L Collins
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - A Evans
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - R Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - T Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - J Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - H Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Department of Future Technologies, University of Turku, Turku, Finland; Center of Computational Imaging and Personalized Diagnostics, Case Western Reserve University, OH, United States
| | - L Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Finland
| | - T Paunio
- Finnish Institute for Health and Welfare, Genomics and Biobank Unit, Helsinki, Finland; Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - H Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Finland
| |
Collapse
|
100
|
Rubin BR, Johnson MA, Berman JM, Goldstein E, Pertsovskaya V, Zhou Y, Contoreggi NH, Dyer AG, Gray JD, Waters EM, McEwen BS, Kreek MJ, Milner TA. Sex and chronic stress alter delta opioid receptor distribution within rat hippocampal CA1 pyramidal cells following behavioral challenges. Neurobiol Stress 2020; 13:100236. [PMID: 33344692 PMCID: PMC7739044 DOI: 10.1016/j.ynstr.2020.100236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Following oxycodone (Oxy) conditioned place preference (CPP), delta opioid receptors (DORs) differentially redistribute in hippocampal CA3 pyramidal cells in female and male rats in a manner that would promote plasticity and opioid-associative learning processes. However, following chronic immobilization stress (CIS), males do not acquire Oxy-CPP and the trafficking of DORs in CA3 pyramidal neurons is attenuated. Here, we examined the subcellular distribution of DORs in CA1 pyramidal cells using electron microscopy in these same cohorts. CPP Saline (Sal)-females compared to Sal-males have more cytoplasmic and total DORs in dendrites and more DOR-labeled spines. Following Oxy-CPP, DORs redistribute from near-plasmalemma pools in dendrites to spines in males. CIS Control females compared to control males have more near-plasmalemmal dendritic DORs. Following CIS, dendritic DORs are elevated in the cytoplasm in females and near-plasmalemma in males. CIS plus CPP CIS Sal-females compared to CIS Sal-males have more DORs on the plasmalemma of dendrites and in spines. After Oxy, the distribution of DORs does not change in either females or males. Conclusion Following Oxy-CPP, DORs within CA1 pyramidal cells remain positioned in naïve female rats to enhance sensitivity to DOR agonists and traffic to dendritic spines in naïve males where they can promote plasticity processes. Following CIS plus behavioral enrichment, DORs are redistributed within CA1 pyramidal cells in females in a manner that could enhance sensitivity to DOR agonists. Conversely, CIS plus behavioral enrichment does not alter DORs in CA1 pyramidal cells in males, which may contribute to their diminished capacity to acquire Oxy-CPP.
Collapse
Affiliation(s)
- Batsheva R. Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Megan A. Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Jared M. Berman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Ellen Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Vera Pertsovskaya
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Natalina H. Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Andreina G. Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
- Corresponding author. Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RM 307 New York, NY 10065, United States.
| |
Collapse
|