51
|
Scandorieiro S, Kimura AH, de Camargo LC, Gonçalves MC, da Silva JVH, Risso WE, de Andrade FG, Zaia CTBV, Lonni AASG, Dos Reis Martinez CB, Durán N, Nakazato G, Kobayashi RKT. Hydrogel-Containing Biogenic Silver Nanoparticles: Antibacterial Action, Evaluation of Wound Healing, and Bioaccumulation in Wistar Rats. Microorganisms 2023; 11:1815. [PMID: 37512989 PMCID: PMC10383514 DOI: 10.3390/microorganisms11071815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Wound infections are feared complications due to their potential to increase healthcare costs and cause mortality since multidrug-resistant bacteria reduce treatment options. This study reports the development of a carbomer hydrogel containing biogenic silver nanoparticles (bioAgNPs) and its effectiveness in wound treatment. This hydrogel showed in vitro bactericidal activity after 2 h, according to the time-kill assay. It also reduced bacterial contamination in rat wounds without impairing their healing since the hydrogel hydrophilic groups provided hydration for the injured skin. The high number of inflammatory cells in the first days of the skin lesion and the greater degree of neovascularization one week after wound onset showed that the healing process occurred normally. Furthermore, the hydrogel-containing bioAgNPs did not cause toxic silver accumulation in the organs and blood of the rats. This study developed a bioAgNP hydrogel for the treatment of wounds; it has a potent antimicrobial action without interfering with cicatrization or causing silver bioaccumulation. This formulation is effective against bacteria that commonly cause wound infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, and for which new antimicrobials are urgently needed, according to the World Health Organization's warning.
Collapse
Affiliation(s)
- Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil
| | - Angela Hitomi Kimura
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Larissa Ciappina de Camargo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Marcelly Chue Gonçalves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - João Vinícius Honório da Silva
- Laboratory of Histopathological Analysis, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Wagner Ezequiel Risso
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Fábio Goulart de Andrade
- Laboratory of Histopathological Analysis, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Cássia Thaïs Bussamra Vieira Zaia
- Laboratory of Neuroendocrine Physiology and Metabolism, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Audrey Alesandra Stinghen Garcia Lonni
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Nelson Durán
- Institute of Biology, State University of Campinas, Campinas 13083-862, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
52
|
Platt AP, Bradley BT, Nasir N, Stein SR, Ramelli SC, Ramos-Benitez MJ, Dickey JM, Purcell M, Singireddy S, Hays N, Wu J, Raja K, Curto R, Salipante SJ, Chisholm C, Carnes S, Marshall DA, Cookson BT, Vannella KM, Madathil RJ, Soherwardi S, McCurdy MT, Saharia KK, Rabin J, Nih Covid-Autopsy Consortium, Grazioli A, Kleiner DE, Hewitt SM, Lieberman JA, Chertow DS. Pulmonary Co-Infections Detected Premortem Underestimate Postmortem Findings in a COVID-19 Autopsy Case Series. Pathogens 2023; 12:932. [PMID: 37513779 PMCID: PMC10383307 DOI: 10.3390/pathogens12070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial and fungal co-infections are reported complications of coronavirus disease 2019 (COVID-19) in critically ill patients but may go unrecognized premortem due to diagnostic limitations. We compared the premortem with the postmortem detection of pulmonary co-infections in 55 fatal COVID-19 cases from March 2020 to March 2021. The concordance in the premortem versus the postmortem diagnoses and the pathogen identification were evaluated. Premortem pulmonary co-infections were extracted from medical charts while applying standard diagnostic definitions. Postmortem co-infection was defined by compatible lung histopathology with or without the detection of an organism in tissue by bacterial or fungal staining, or polymerase chain reaction (PCR) with broad-range bacterial and fungal primers. Pulmonary co-infection was detected premortem in significantly fewer cases (15/55, 27%) than were detected postmortem (36/55, 65%; p < 0.0001). Among cases in which co-infection was detected postmortem by histopathology, an organism was identified in 27/36 (75%) of cases. Pseudomonas, Enterobacterales, and Staphylococcus aureus were the most frequently identified bacteria both premortem and postmortem. Invasive pulmonary fungal infection was detected in five cases postmortem, but in no cases premortem. According to the univariate analyses, the patients with undiagnosed pulmonary co-infection had significantly shorter hospital (p = 0.0012) and intensive care unit (p = 0.0006) stays and significantly fewer extra-pulmonary infections (p = 0.0021). Bacterial and fungal pulmonary co-infection are under-recognized complications in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Andrew P Platt
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Benjamin T Bradley
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Nadia Nasir
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sydney R Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Sabrina C Ramelli
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcos J Ramos-Benitez
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- Department of Basic Sciences, Division of Microbiology, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - James M Dickey
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | - Nicole Hays
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jocelyn Wu
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine Raja
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan Curto
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Claire Chisholm
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | | | - Desiree A Marshall
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Brad T Cookson
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Kevin M Vannella
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Ronson J Madathil
- Department of Surgery, Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Michael T McCurdy
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland St. Joseph Medical Center, Towson, MD 21204, USA
| | - Kapil K Saharia
- Institute of Human Virology, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph Rabin
- R Adams Cowley Shock Trauma Center, Department of Surgery and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Alison Grazioli
- R Adams Cowley Shock Trauma Center, Department of Medicine and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua A Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
53
|
Gurukkalot K, Rajendran V. Repurposing Polyether Ionophores as a New-Class of Anti-SARS-Cov-2 Agents as Adjunct Therapy. Curr Microbiol 2023; 80:273. [PMID: 37414909 DOI: 10.1007/s00284-023-03366-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
The emergence of SARS-CoV-2 and its variants have posed a significant threat to humankind in tackling the viral spread. Furthermore, currently repurposed drugs and frontline antiviral agents have failed to cure severe ongoing infections effectively. This insufficiency has fuelled research for potent and safe therapeutic agents to treat COVID-19. Nonetheless, various vaccine candidates have displayed a differential efficacy and need for repetitive dosing. The FDA-approved polyether ionophore veterinary antibiotic for treating coccidiosis has been repurposed for treating SARS-CoV-2 infection (as shown by both in vitro and in vivo studies) and other deadly human viruses. Based on selectivity index values, ionophores display therapeutic effects at sub-nanomolar concentrations and exhibit selective killing ability. They act on different viral targets (structural and non-structural proteins), host-cell components leading to SARS-CoV-2 inhibition, and their activity is further enhanced by Zn2+ supplementation. This review summarizes the anti-SARS-CoV-2 potential and molecular viral targets of selective ionophores like monensin, salinomycin, maduramicin, CP-80,219, nanchangmycin, narasin, X-206 and valinomycin. Ionophore combinations with Zn2+ are a new therapeutic strategy that warrants further investigation for possible human benefits.
Collapse
Affiliation(s)
- Keerthana Gurukkalot
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
54
|
Mani BI, Kishore PV, Khine WY, Thottacherry DJ, Chong PL, Abdullah MS, Asli R, Momin NR, Rahman NA, Chong CF, Chong VH. COVID-19 and Mycobacterium coinfection in Brunei Darussalam: case series. Western Pac Surveill Response J 2023; 14:1-7. [PMID: 37955034 PMCID: PMC10632094 DOI: 10.5365/wpsar.2023.14.3.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Affiliation(s)
- Babu Ivan Mani
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
| | | | - Wai Yan Khine
- Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, Brunei Darussalam
| | | | - Pui Lin Chong
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
| | - Muhamad Syafiq Abdullah
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
| | - Rosmonaliza Asli
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
| | - Natalie Raimiza Momin
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Noor Affizan Rahman
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
- Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Chee Fui Chong
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
| | - Vui Heng Chong
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
- Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
55
|
Binkhamis K, Alhaider AS, Sayed AK, Almufleh YK, Alarify GA, Alawlah NY. Prevalence of secondary infections and association with mortality rates of hospitalized COVID-19 patients. Ann Saudi Med 2023; 43:243-253. [PMID: 37554024 PMCID: PMC10716834 DOI: 10.5144/0256-4947.2023.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND ICU and other patients hospitalized with corona-virus disease 2019 (COVID-19) are more susceptible to secondary infections. Undetected secondary infections tend to have a severe clinical impact, associated with prolonged hospitalization and higher rates of inpatient mortality. OBJECTIVES Estimate the prevalence of secondary infections, determine the frequency of microbial species detected at different body sites, and measure the association between secondary infections and outcomes among hospitalized COVID-19 patients. DESIGN Cross-sectional analytical study. SETTING Tertiary care center in Riyadh PATIENTS AND METHODS: Data were collected through retrospective chart review of hospitalized COVID-19 patients >18 years old from March 2020 until May 2022 at King Saud University Medical City (27 months). Rates of secondary infections among hospitalized COVID-19 patients were described and data on clinical outcomes (intensive care admission, invasive management procedures and mortality) was collected. MAIN OUTCOME MEASURES Features and rates of infection and mortality. SAMPLE SIZE 260 RESULTS: In total, 24.2% of the study population had secondary infections. However, only 68.8% of patients had secondary infection testing, from which 35.2% had a confirmed secondary infection. These patients had a significantly higher prevalence of diabetes mellitus (P<.0001) and cardiovascular diseases (P=.001). The odds of ICU admissions (63.3%) among secondarily infected patients was 8.4 times higher compared to patients with only COVID-19 infection (17.3%). Secondarily infected patients were more likely to receive invasive procedures (OR=5.068) and had a longer duration of hospital stay compared to COVID-19 only patients. Overall mortality was 16.2%, with a predominantly higher proportion among those secondarily infected (47.6% vs 6.1%) (OR=14.015). Bacteria were the most commonly isolated organisms, primarily from blood (23.3%), followed by fungal isolates, which were mostly detected in urine (17.2%). The most detected organism was Candida albicans (17.2%), followed by Escherichia coli (9.2%), Klebsiella pneumoniae (9.2%) and Pseudomonas aeruginosa (9.2%). CONCLUSION Secondary infections were prevalent among hospitalized COVID-19 patients. Secondarily infected patients had longer hospital stay, higher odds of ICU admission, mortality, and invasive procedures. LIMITATION Single-center study, retrospective design and small sample size. CONFLICT OF INTEREST None.
Collapse
Affiliation(s)
- Khalifa Binkhamis
- From the Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- From the King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | | | - Ayah K. Sayed
- From the College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Yara K. Almufleh
- From the College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ghadah A. Alarify
- From the College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Norah Y. Alawlah
- From the College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
56
|
Singh R, Malik P, Kumar M, Kumar R, Alam MS, Mukherjee TK. Secondary fungal infections in SARS-CoV-2 patients: pathological whereabouts, cautionary measures, and steadfast treatments. Pharmacol Rep 2023:10.1007/s43440-023-00506-z. [PMID: 37354313 DOI: 10.1007/s43440-023-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The earliest documented COVID-19 case caused by the SARS-CoV-2 coronavirus occurred in Wuhan, China, in December 2019. Since then, several SARS-CoV-2 mutants have rapidly disseminated as exemplified by the community spread of the recent omicron variant. The disease already attained a pandemic status with ever-dwindling mortality even after two and half years of identification and considerable vaccination. Aspergillosis, candidiasis, cryptococcosis and mucormycosis are the prominent fungal infections experienced by the majority of SARS-CoV-2 high-risk patients. In its entirety, COVID-19's nexus with these fungal infections may worsen the intricacies in the already beleaguered high-risk patients, making this a topic of substantial clinical concern. Thus, thorough knowledge of the subject is necessary. This article focuses on the concomitant fungal infection(s) in COVID-19 patients, taking into account their underlying causes, the screening methods, manifested drug resistance, and long-term effects. The information and knowledge shared herein could be crucial for the management of critically ill, aged, and immunocompromised SARS-CoV-2 patients who have had secondary fungal infections (SFIs).
Collapse
Affiliation(s)
- Raj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mukesh Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, PO Box 620, 130, Bosher-Muscat, Sultanate of Oman
| | - Tapan Kumar Mukherjee
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, UP, India.
- Department of Biotechnology, Amity University, Major Arterial Road, Action Area II, Rajarhat, New Town, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
57
|
Nelson MC, Manos CK, Flanagan E, Prahalad S. COVID-19 after rituximab therapy in cSLE patients. Ther Adv Vaccines Immunother 2023; 11:25151355231181242. [PMID: 37362155 PMCID: PMC10285438 DOI: 10.1177/25151355231181242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is an autoimmune disease associated with significant morbidity and mortality. Rituximab is a B-cell depleting therapy utilized in the treatment of SLE. In adults, rituximab has been associated with increased risk of adverse outcomes in patients who develop coronavirus disease 2019 (COVID-19). We aimed to assess the impact of prior rituximab treatment on clinical outcomes from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in children with SLE. To describe the impact of rituximab on outcomes from SARS-CoV-2 infection, we conducted a retrospective study of pediatric SLE patients in our center diagnosed with COVID-19 who had previously received rituximab between February 2019 and October 2022. Patients' clinical characteristics, disease activity, and outcomes were assessed. Of the eight subjects assessed, five required hospitalizations for COVID-19, four required ICU admission, and two were seen in the emergency department for their symptoms. One patient ultimately expired from her illness. The median time between rituximab administration and COVID-19 diagnosis was 3 months. We assessed the clinical outcomes, including the need of ICU admission and fatal outcome, of COVID-19 in our cSLE patient population after rituximab administration. Approximately 60% of our patients required hospitalization for their illness, and seven out of eight patients required healthcare utilization to include hospitalization and/or emergency department visits.
Collapse
Affiliation(s)
| | - Cynthia K. Manos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USAChildren’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Elaine Flanagan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USAChildren’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Sampath Prahalad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USAChildren’s Healthcare of Atlanta, Atlanta, GA, USADepartment of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
58
|
Biondo C, Ponzo E, Midiri A, Ostone GB, Mancuso G. The Dark Side of Nosocomial Infections in Critically Ill COVID-19 Patients. Life (Basel) 2023; 13:1408. [PMID: 37374189 DOI: 10.3390/life13061408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially serious acute respiratory infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since the World Health Organization (WHO) declared COVID-19 a global pandemic, the virus has spread to more than 200 countries with more than 500 million cases and more than 6 million deaths reported globally. It has long been known that viral respiratory tract infections predispose patients to bacterial infections and that these co-infections often have an unfavourable clinical outcome. Moreover, nosocomial infections, also known as healthcare-associated infections (HAIs), are those infections that are absent at the time of admission and acquired after hospitalization. However, the impact of coinfections or secondary infections on the progression of COVID-19 disease and its lethal outcome is still debated. The aim of this review was to assess the literature on the incidence of bacterial co-infections and superinfections in patients with COVID-19. The review also highlights the importance of the rational use of antibiotics in patients with COVID-19 and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, alternative antimicrobial agents to counter the emergence of multidrug-resistant bacteria causing healthcare-associated infections in COVID-19 patients will also be discussed.
Collapse
Affiliation(s)
- Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Elena Ponzo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
59
|
Arumairaj A, Safavi A, Amin H, Poor A, Trenard N. Methicillin-Resistant Staphylococcus aureus (MRSA) Empyema Post-COVID Infection Causing Severe Septic Shock and Multiorgan Failure. Cureus 2023; 15:e41054. [PMID: 37519525 PMCID: PMC10374408 DOI: 10.7759/cureus.41054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Secondary bacterial infections post-COVID infection posed a major challenge to the healthcare settings during the COVID pandemic. We present the case of an 81-year-old patient who was initially admitted for COVID pneumonia in a tertiary care hospital and was managed with a course of dexamethasone and had a good outcome. However, post-discharge, the patient developed symptoms of productive cough, hemoptysis and shortness of breath. Evaluation of the patient revealed that the patient had developed a secondary bacterial infection with Methicillin-resistant Staphylococcus aureus (MRSA), resulting in MRSA pneumonia and empyema. The patient was started on appropriate antibiotics and underwent thoracocentesis followed by video-assisted thoracoscopic surgery (VATS) and decortication. MRSA infection resulted in severe septic shock, acute respiratory distress syndrome (ARDS) and multiorgan failure. Successful intensive care unit (ICU) management of the life-threatening complications resulted in the remarkable recovery of the patient.
Collapse
Affiliation(s)
- Antony Arumairaj
- Internal Medicine, Metropolitan Hospital Center/New York Medical College, New York City, USA
| | - Ali Safavi
- Surgery, Division of Thoracic Surgery, Metropolitan Hospital Center/New York Medical College, New York City, USA
| | - Hossam Amin
- Internal Medicine/Division of Pulmonary Critical Care Medicine, Metropolitan Hospital Center/New York Medical College, New York City, USA
| | - Armeen Poor
- Internal Medicine/Division of Pulmonary Critical Care Medicine, Metropolitan Hospital Center/New York Medical College, New York City, USA
| | - Natoushka Trenard
- Internal Medicine/Division of Pulmonary Critical Care Medicine, Metropolitan Hospital Center/New York Medical College, New York City, USA
| |
Collapse
|
60
|
Samaee HR, Eslami G, Rahimzadeh G, Saeedi M, Davoudi Badabi A, Asare-Addo K, Nokhodchi A, Roozbeh F, Moosazadeh M, Ghasemian R, Alikhani A, Rezai MS. Inhalation phage therapy as a new approach to preventing secondary bacterial pneumonia in patients with moderate to severe COVID-19: A double-blind clinical trial study. J Drug Deliv Sci Technol 2023; 84:104486. [PMID: 37123173 PMCID: PMC10116154 DOI: 10.1016/j.jddst.2023.104486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Inhalation phage therapy is proposed as a replacement approach for antibiotics in the treatment of pulmonary bacterial infections. This study investigates phage therapy on bacterial pneumonia in patients with moderate to severe COVID-19 via the inhalation route. In this double-blind clinical trial, 60 patients with positive COVID-19 hospitalized in three central Mazandaran hospitals were chosen and randomly divided into two intervention and control groups. Standard country protocol drugs plus 10 mL of phage suspension every 12 h with a mesh nebulizer was prescribed for 7 days in the intervention group. The two groups were compared in terms of O2Sat, survival rate, severe secondary pulmonary bacterial infection and duration of hospitalization. Comparing the results between the intervention and control group, in terms of the trend of O2Sat change, negative sputum culture, no fever, no dyspnea, duration of hospitalization, duration of intubation and under ventilation, showed that the difference between these two groups was statistically different (P value < 0.05). In conclusion, inhalation phage therapy may have a potential effect on secondary infection and in the outcome of COVID-19 patients. However, more clinical trials with control confounding factors are needed to further support this concept.
Collapse
Affiliation(s)
- Hamid Reza Samaee
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Gohar Eslami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Golnar Rahimzadeh
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Davoudi Badabi
- Antimicrobial Resistance Research Center and Communicable Diseases Institute, Department of Infectious Diseases, Ghaem Shahr Razi Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Lab, School of Life Sciences, University of Sussex, Brighton, UK
| | - Fatemeh Roozbeh
- Department of Infectious Diseases, Boo Ali Sina Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Moosazadeh
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roya Ghasemian
- Antimicrobial Resistance Research Center, Department of Infectious Diseases, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Alikhani
- Antimicrobial Resistance Research Center and Communicable Diseases Institute, Department of Infectious Diseases, Ghaem Shahr Razi Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Sadegh Rezai
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
61
|
Ojha R, Singh S, Gupta N, Kumar K, Padhi AK, Prajapati VK. Multi-pathogen based chimeric vaccine to fight against COVID-19 and concomitant coinfections. Biotechnol Lett 2023:10.1007/s10529-023-03380-0. [PMID: 37148345 PMCID: PMC10163573 DOI: 10.1007/s10529-023-03380-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/21/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND COVID-19 has proved to be a fatal disease of the year 2020, due to which thousands of people globally have lost their lives, and still, the infection cases are at a high rate. Experimental studies suggested that SARS-CoV-2 interacts with various microorganisms, and this coinfection is accountable for the augmentation of infection severity. METHODS AND RESULTS In this study, we have designed a multi-pathogen vaccine by involving the immunogenic proteins from S. pneumonia, H. influenza, and M. tuberculosis, as they are dominantly associated with SARS-CoV-2. A total of 8 antigenic protein sequences were selected to predict B-cell, HTL, and CTL epitopes restricted to the most prevalent HLA alleles. The selected epitopes were antigenic, non-allergenic, and non-toxic and were linked with adjuvant and linkers to make the vaccine protein more immunogenic, stable, and flexible. The tertiary structure, Ramachandran plot, and discontinuous B-cell epitopes were predicted. Docking and MD simulation study has shown efficient binding of the chimeric vaccine with the TLR4 receptor. CONCLUSION The in silico immune simulation analysis has shown a high level of cytokines and IgG after a three-dose injection. Hence, this strategy could be a better way to decrease the disease's severity and could be used as a weapon to prevent this pandemic.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Kishangarh, 305817, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Kishangarh, 305817, Rajasthan, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Kishangarh, 305817, Rajasthan, India
| | - Ketan Kumar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Kishangarh, 305817, Rajasthan, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Kishangarh, 305817, Rajasthan, India.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bhatinda, Punjab, India.
| |
Collapse
|
62
|
Pullen RL. Immunodeficiency. Nursing 2023; 53:18-24. [PMID: 37074273 DOI: 10.1097/01.nurse.0000923656.99987.5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
ABSTRACT Immunodeficiency is an immune system defect that increases a person's susceptibility to infection. This article discusses the signs, symptoms, and management of patients with immunodeficiency.
Collapse
Affiliation(s)
- Richard L Pullen
- Richard Pullen is a professor of nursing at the Texas Tech University Health Sciences Center School of Nursing. He is also a member of the Nursing2023 editorial board
| |
Collapse
|
63
|
Cut TG, Mavrea A, Cumpanas AA, Novacescu D, Oancea CI, Bratosin F, Marinescu AR, Laza R, Mocanu A, Pescariu AS, Manolescu D, Dumache R, Enache A, Hogea E, Lazureanu VE. A Retrospective Assessment of Sputum Samples and Antimicrobial Resistance in COVID-19 Patients. Pathogens 2023; 12:pathogens12040620. [PMID: 37111506 PMCID: PMC10143659 DOI: 10.3390/pathogens12040620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Data on bacterial or fungal pathogens and their impact on the mortality rates of Western Romanian COVID-19 patients are scarce. As a result, the purpose of this research was to determine the prevalence of bacterial and fungal co- and superinfections in Western Romanian adults with COVID-19, hospitalized in in-ward settings during the second half of the pandemic, and its distribution according to sociodemographic and clinical conditions. The unicentric retrospective observational study was conducted on 407 eligible patients. Expectorate sputum was selected as the sampling technique followed by routine microbiological investigations. A total of 31.5% of samples tested positive for Pseudomonas aeruginosa, followed by 26.2% having co-infections with Klebsiella pneumoniae among patients admitted with COVID-19. The third most common Pathogenic bacteria identified in the sputum samples was Escherichia coli, followed by Acinetobacter baumannii in 9.3% of samples. Commensal human pathogens caused respiratory infections in 67 patients, the most prevalent being Streptococcus penumoniae, followed by methicillin-sensitive and methicillin-resistant Staphylococcus aureus. A total of 53.4% of sputum samples tested positive for Candida spp., followed by 41.1% of samples with Aspergillus spp. growth. The three groups with positive microbial growth on sputum cultures had an equally proportional distribution of patients admitted to the ICU, with an average of 30%, compared with only 17.3% among hospitalized COVID-19 patients with negative sputum cultures (p = 0.003). More than 80% of all positive samples showed multidrug resistance. The high prevalence of bacterial and fungal co-infections and superinfections in COVID-19 patients mandates for strict and effective antimicrobial stewardship and infection control policies.
Collapse
Affiliation(s)
- Talida Georgiana Cut
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Academy of Romanian Scientists, Splaiul Independentei, Nr. 54, 50085 Bucharest, Romania
| | - Adelina Mavrea
- Department VII, Internal Medicine II, Discipline of Cardiology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Academy of Romanian Scientists, Splaiul Independentei, Nr. 54, 50085 Bucharest, Romania
| | - Cristian Iulian Oancea
- Department XIII, Discipline of Pneumology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Felix Bratosin
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Adelina Raluca Marinescu
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Ruxandra Laza
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexandra Mocanu
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexandru Silvius Pescariu
- Academy of Romanian Scientists, Splaiul Independentei, Nr. 54, 50085 Bucharest, Romania
- Department VII, Internal Medicine II, Discipline of Cardiology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Diana Manolescu
- Department XV, Discipline of Radiology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Raluca Dumache
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department VIII, Discipline of Forensic Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexandra Enache
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department VIII, Discipline of Forensic Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Elena Hogea
- Department XIV, Discipline of Microbiology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Voichita Elena Lazureanu
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
64
|
Scandorieiro S, Teixeira FMMB, Nogueira MCL, Panagio LA, de Oliveira AG, Durán N, Nakazato G, Kobayashi RKT. Antibiofilm Effect of Biogenic Silver Nanoparticles Combined with Oregano Derivatives against Carbapenem-Resistant Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12040756. [PMID: 37107119 PMCID: PMC10135348 DOI: 10.3390/antibiotics12040756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Resistant bacteria may kill more people than COVID-19, so the development of new antibacterials is essential, especially against microbial biofilms that are reservoirs of resistant cells. Silver nanoparticles (bioAgNP), biogenically synthesized using Fusarium oxysporum, combined with oregano derivatives, present a strategic antibacterial mechanism and prevent the emergence of resistance against planktonic microorganisms. Antibiofilm activity of four binary combinations was tested against enteroaggregative Escherichia coli (EAEC) and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC): oregano essential oil (OEO) plus bioAgNP, carvacrol (Car) plus bioAgNP, thymol (Thy) plus bioAgNP, and Car plus Thy. The antibiofilm effect was accessed using crystal violet, MTT, scanning electron microscopy, and Chromobacterium violaceum anti-quorum-sensing assays. All binary combinations acted against preformed biofilm and prevented its formation; they showed improved antibiofilm activity compared to antimicrobials individually by reducing sessile minimal inhibitory concentration up to 87.5% or further decreasing biofilm metabolic activity and total biomass. Thy plus bioAgNP extensively inhibited the growth of biofilm in polystyrene and glass surfaces, disrupted three-dimensional biofilm structure, and quorum-sensing inhibition may be involved in its antibiofilm activity. For the first time, it is shown that bioAgNP combined with oregano has antibiofilm effect against bacteria for which antimicrobials are urgently needed, such as KPC.
Collapse
Affiliation(s)
- Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil
| | - Franciele Maira M B Teixeira
- Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de Sao Jose do Rio Preto, São José do Rio Preto 15090-000, Brazil
| | - Mara C L Nogueira
- Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de Sao Jose do Rio Preto, São José do Rio Preto 15090-000, Brazil
| | - Luciano A Panagio
- Laboratory of Medical Mycology and Oral Microbiology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Admilton G de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Laboratory of Electron Microscopy and Microanalysis, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Nelson Durán
- Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Renata K T Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
65
|
Elton L, Abdel Hamid MM, Tembo J, Elbadawi H, Maluzi K, Abdelraheem MH, Cullip T, Kabanda C, Roulston K, Honeyborne I, Thomason MJ, Elhag K, Mohammed A, Adam A, Mulonga K, Sikakena K, Matibula P, Kabaso M, Nakazwe R, Fwoloshi S, Zumla A, McHugh TD. A pandemic within a pandemic? Admission to COVID-19 wards in hospitals is associated with increased prevalence of antimicrobial resistance in two African settings. Ann Clin Microbiol Antimicrob 2023; 22:25. [PMID: 37055793 PMCID: PMC10101537 DOI: 10.1186/s12941-023-00575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Patients who develop severe illness due to COVID-19 are more likely to be admitted to hospital and acquire bacterial co-infections, therefore the WHO recommends empiric treatment with antibiotics. Few reports have addressed the impact of COVID-19 management on emergence of nosocomial antimicrobial resistance (AMR) in resource constrained settings. This study aimed to ascertain whether being admitted to a COVID-19 ward (with COVID-19 infection) compared to a non-COVID-19 ward (as a COVID-19 negative patient) was associated with a change in the prevalence of bacterial hospital acquired infection (HAI) species or resistance patterns, and whether there were differences in antimicrobial stewardship (AMS) and infection prevention and control (IPC) guidelines between COVID-19 and non-COVID-19 wards. The study was conducted in Sudan and Zambia, two resource constrained settings with differing country-wide responses to COVID-19. METHODS Patients suspected of having hospital acquired infections were recruited from COVID-19 wards and non-COVID-19 wards. Bacteria were isolated from clinical samples using culture and molecular methods and species identified. Phenotypic and genotypic resistance patterns were determined by antibiotic disc diffusion and whole genome sequencing. Infection prevention and control guidelines were analysed for COVID-19 and non-COVID-19 wards to identify potential differences. RESULTS 109 and 66 isolates were collected from Sudan and Zambia respectively. Phenotypic testing revealed significantly more multi-drug resistant isolates on COVID-19 wards in both countries (Sudan p = 0.0087, Zambia p = 0.0154). The total number of patients with hospital acquired infections (both susceptible and resistant) increased significantly on COVID-19 wards in Sudan, but the opposite was observed in Zambia (both p = ≤ 0.0001). Genotypic analysis showed significantly more β-lactam genes per isolate on COVID-19 wards (Sudan p = 0.0192, Zambia p = ≤ 0.0001). CONCLUSIONS Changes in hospital acquired infections and AMR patterns were seen in COVID-19 patients on COVID-19 wards compared to COVID-19 negative patients on non-COVID-19 wards in Sudan and Zambia. These are likely due to a potentially complex combination of causes, including patient factors, but differing emphases on infection prevention and control, and antimicrobial stewardship policies on COVID-19 wards were highlighted.
Collapse
Affiliation(s)
- Linzy Elton
- Centre for Clinical Microbiology, University College London, London, UK.
| | | | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | - Hana Elbadawi
- Institute for Endemic Diseases, University of Khartoum, Khartoum, Sudan
- MRC Clinical Trials Unit, University College London, London, UK
| | | | - Mohammed H Abdelraheem
- Institute for Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Sudan Atomic Energy Commission, Nuclear Application in Biological Sciences, Khartoum, Sudan
| | - Teresa Cullip
- Institute for Global Health, University College London, London, UK
| | - Caren Kabanda
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | - Kerry Roulston
- Centre for Clinical Microbiology, University College London, London, UK
| | | | - Margaret J Thomason
- Centre for Clinical Microbiology, University College London, London, UK
- MRC Clinical Trials Unit, University College London, London, UK
| | - Kamal Elhag
- Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | | | - Abdelsalam Adam
- Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | | | - Kapatiso Sikakena
- University Teaching Hospitals, Department of Internal Medicine, Infectious Diseases Unit, Lusaka, Zambia
| | - Peter Matibula
- University Teaching Hospitals, Department of Internal Medicine, Infectious Diseases Unit, Lusaka, Zambia
| | - Mwewa Kabaso
- University Teaching Hospitals, Department of Internal Medicine, Infectious Diseases Unit, Lusaka, Zambia
| | - Ruth Nakazwe
- University Teaching Hospitals, Department of Internal Medicine, Infectious Diseases Unit, Lusaka, Zambia
| | - Sombo Fwoloshi
- University Teaching Hospitals, Department of Internal Medicine, Infectious Diseases Unit, Lusaka, Zambia
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, University College London, London, UK
- National Institute for Health and Care Research Biomedical Research Centre, University College London, London, UK
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London, UK
| |
Collapse
|
66
|
Simón-Fuentes M, Herrero C, Acero-Riaguas L, Nieto C, Lasala F, Labiod N, Luczkowiak J, Alonso B, Delgado R, Colmenares M, Corbí ÁL, Domínguez-Soto Á. TLR7 Activation in M-CSF-Dependent Monocyte-Derived Human Macrophages Potentiates Inflammatory Responses and Prompts Neutrophil Recruitment. J Innate Immun 2023; 15:517-530. [PMID: 37040733 PMCID: PMC10315069 DOI: 10.1159/000530249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is an endosomal pathogen-associated molecular pattern (PAMP) receptor that senses single-stranded RNA (ssRNA) and whose engagement results in the production of type I IFN and pro-inflammatory cytokines upon viral exposure. Recent genetic studies have established that a dysfunctional TLR7-initiated signaling is directly linked to the development of inflammatory responses. We present evidence that TLR7 is preferentially expressed by monocyte-derived macrophages generated in the presence of M-CSF (M-MØ). We now show that TLR7 activation in M-MØ triggers a weak MAPK, NFκB, and STAT1 activation and results in low production of type I IFN. Of note, TLR7 engagement reprograms MAFB+ M-MØ towards a pro-inflammatory transcriptional profile characterized by the expression of neutrophil-attracting chemokines (CXCL1-3, CXCL5, CXCL8), whose expression is dependent on the transcription factors MAFB and AhR. Moreover, TLR7-activated M-MØ display enhanced pro-inflammatory responses and a stronger production of neutrophil-attracting chemokines upon secondary stimulation. As aberrant TLR7 signaling and enhanced pulmonary neutrophil/lymphocyte ratio associate with impaired resolution of virus-induced inflammatory responses, these results suggest that targeting macrophage TLR7 might be a therapeutic strategy for viral infections where monocyte-derived macrophages exhibit a pathogenic role.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Lucia Acero-Riaguas
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Concha Nieto
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Fatima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Maria Colmenares
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
67
|
Nortey RA, Kretchy IA, Koduah A, Buabeng KO. Biopsychosocial analysis of antibiotic use for the prevention or management of COVID-19 infections: A scoping review. Res Social Adm Pharm 2023; 19:573-581. [PMID: 36496334 PMCID: PMC9715464 DOI: 10.1016/j.sapharm.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The novelty and complexity of the COVID-19 pandemic has resulted in various coping mechanisms adopted by individuals as a means of averting the perceived fatalities of the pandemic. The use of antibiotics in the management of COVID-19 is clinically recommended under specific conditions. However, there are increasing trends of non-adherence to the recommended criteria resulting in the unwarranted use of antibiotics as an adaptative approach to the ongoing pandemic. OBJECTIVE The objective was to identify and classify factors associated with the unwarranted use of antibiotics in the management of COVID-19 from published literature and the perspectives of key stakeholders along a Biopsychosocial model. METHODS Literature was searched in the following databases: PubMed/MEDLINE, Scopus, Embase and Google Scholar for studies published between 31st December 2019 and 31st January 2022. The Arskey and O'Malley framework modified by Levac in the six-stage methodological process was adopted for this review and included: a) identification of research questions, b) identification of relevant research articles, c) selection of studies, d) data charting and synthesis, e) summary, discussion and analysis, and f) stakeholder consultations. RESULTS Out of 10,252 records identified from all sources, 12 studies were selected for inclusion in this scoping review. The selected articles reflected both antibiotic use and COVID-19 whilst capturing the biological (medical) and psychosocial perspectives. Most of the studies reported the overuse or abuse of Azithromycin especially in hospital settings. Common themes across the review and stakeholder consultations included fear, anxiety, media influences and deficits in public knowledge. CONCLUSION The findings of the study highlight the complexity of antibiotic control especially in the context of a pandemic. The identified determinants of antibiotic use provide the necessary framework to simulate health emergencies and be better positioned in the future through the development of targeted and comprehensive policies on antibiotic stewardship.
Collapse
Affiliation(s)
- Radolf Ansbert Nortey
- Department of Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Private Mail Bag, University Post Office, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Irene Akwo Kretchy
- Department of Pharmacy Practice and Clinical Pharmacy, School of Pharmacy, University of Ghana, PO Box LG 43, Legon, Accra, Ghana.
| | - Augustina Koduah
- Department of Pharmacy Practice and Clinical Pharmacy, School of Pharmacy, University of Ghana, PO Box LG 43, Legon, Accra, Ghana.
| | - Kwame Ohene Buabeng
- Department of Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Private Mail Bag, University Post Office, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
68
|
Gomez AC, Ortiz T, Valenzuela A, Egoávil-Espejo R, Huerto-Huanuco R, Pinto JA, Lagos J, Ruiz J. Super-infection by multiple microorganisms in COVID-19 patients. Front Mol Biosci 2023; 10:1113969. [PMID: 36994427 PMCID: PMC10040592 DOI: 10.3389/fmolb.2023.1113969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: This study aimed to describe the clinical characteristics of patients with COVID-19 co-infected with multiple multidrug-resistant bacteria. Methods: Patients hospitalized in the AUNA network between January and May 2021, diagnosed with COVID-19 and at least two other infecting microorganisms, were retrospectively included in the analysis. Clinical and epidemiological data were extracted from clinical records. The susceptibility levels of the microorganisms were determined using automated methods. Antibiotic resistance was established among infecting bacteria accounting for ≥5 isolates. Results: A total of 27 patients (21 male and 6 female patients) met the inclusion criteria, with a maximum of eight co-infecting bacteria or fungi during admission time. Seven patients (25.9%) died, with a higher but not significant lethality among women (50% vs. 19.0%). A total of 15 patients presented at least one established comorbidity, with hypertension being the most frequent. The time elapsed between COVID-19 diagnosis and hospital attendance was 7.0 days, with that of patients with a fatal outcome being longer than that of living patients (10.6 vs. 5.4). Up to 20 different microorganisms were isolated, with Pseudomonas aeruginosa being the most common (34 isolates). In general, antibiotic resistance levels were high, especially in Acinetobacter baumannii isolates, with resistance levels of 88.9% to all antimicrobial agents tested, except colistin (0%). Conclusion: In conclusion, the present results show the presence of multiple microorganisms that co-infect COVID-19 patients. When fatal outcome rates are in the range of other reports, the presence of a series of multidrug-resistant microorganisms is of concern, showing the need to reinforce control measures to limit the expansion of almost untreatable microorganisms.
Collapse
Affiliation(s)
- Andrea C. Gomez
- Centro de Investigación Básica y Translacional, AUNA IDEAS, Lima, Peru
| | - Tamin Ortiz
- Servicio de Microbiología y Biología Molecular, Laboratorios AUNA, Lima, Peru
| | - Angélica Valenzuela
- Servicio de Microbiología y Biología Molecular, Laboratorios AUNA, Lima, Peru
| | - Rocío Egoávil-Espejo
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos—“One Health”, Universidad Científica del Sur, Lima, Peru
| | - Rosario Huerto-Huanuco
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos—“One Health”, Universidad Científica del Sur, Lima, Peru
| | - Joseph A. Pinto
- Centro de Investigación Básica y Translacional, AUNA IDEAS, Lima, Peru
| | - Jose Lagos
- Servicio de Microbiología y Biología Molecular, Laboratorios AUNA, Lima, Peru
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos—“One Health”, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
69
|
Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Biomolecules 2023; 13:biom13030466. [PMID: 36979401 PMCID: PMC10046784 DOI: 10.3390/biom13030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application due to potential toxicity to mammalian cells. Therefore, the objective of this study was to develop a potent ABP with minimal toxicity via phage display selection followed by computer-assisted modification. Briefly, a 12-mer phage-displayed peptide library was used to isolate peptides that bound to the cell surface of Pseudomonas aeruginosa with high affinity. The affinity-selected peptide with the highest selection frequency was modified to PAM-5 (KWKWRPLKRKLVLRM) with enhanced antibacterial features by using an online peptide database. Using in vitro microbroth dilution assay, PAM-5 was shown to be active against a panel of Gram-negative bacteria and selected Gram-positive bacteria. Interestingly, the peptide was stable in human plasma by exhibiting a similar bactericidal effect via ex vivo assay. Scanning electron microscopy and SYTOX Green uptake assay revealed that PAM-5 was able to cause membrane disruption and permeabilization of the bacteria. Additionally, the peptide was also able to bind to bacterial DNA as demonstrated by gel retardation assay. In the time-kill assay, PAM-5 was shown to kill the bacteria rapidly in 10 min. More importantly, PAM-5 was non-cytotoxic to Vero cells and non-haemolytic to human erythrocytes at all concentrations tested for the antibacterial assays. Thus, this study showed that the combination of phage display screening and computer-assisted modification could be used to develop potent novel ABPs, and PAM-5 derived from these approaches is worth to be further elucidated for its potential clinical use.
Collapse
|
70
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains asymptomatic in 33% to 90% of older adults depending on their immune status from prior infection, vaccination, and circulating strain. Older adults symptomatic with SARS-CoV-2 often both present atypically, such as with a blunted fever response, and develop more severe disease. Early and late reports showed that older adults have increased severity of coronavirus disease 2019 (COVID-19) with higher case fatality rates and higher intensive care needs compared with younger adults. Infection and vaccine-induced antibody response and long-term effects of COVID-19 also differ in older adults.
Collapse
|
71
|
Sendagire H, Kiwuwa S, Dhamani A, Akugizibwe R, Lwasa Y, Bukenya A, Mukasa HK, Kakeeto P, Nankinga Z, Bbosa G, Babirye J, Nankabirwa H, Nabadda S. Staging of COVID-19 disease; using selected laboratory profiles for prediction, prevention and management of severe SARS-CoV-2 infection in Africa-review. Afr Health Sci 2023; 23:1-15. [PMID: 37545952 PMCID: PMC10398495 DOI: 10.4314/ahs.v23i1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
There are many uncertainties on the future management of the coronavirus disease 19 (COVID-19) in Africa. By July 2021, Africa had lagged behind the rest of the world in Covid-19 vaccines uptake, accounting for just 1.6% of doses administered globally. During that time COVID 19 was causing an average death rate of 2.6% in Africa, surpassing the then global average of 2.2%. There were no clear therapeutic guidelines, yet inappropriate and unnecessary treatments may have led to unwanted adverse events such as worsening of hyperglycemia and precipitating of ketoacidosis in administration of steroid therapy. in order to provide evidence-based policy guidelines, we examined peer-reviewed published articles in PubMed on COVID 19, or up-to date data, we focused our search on publications from 1st May 2020 to 15th July, 2021. For each of the studies, we extracted data on pathophysiology, selected clinical chemistry and immunological tests, clinical staging and treatment. Our review reports a gross unmet need for vaccination, inadequate laboratory capacity for immunological tests and the assessment of individual immune status, clinical staging and prediction of disease severity. We recommend selected laboratory tools in the assessment of individual immune status, prediction of disease severity and determination of the exact timing for suitable therapy, especially in individuals with co-morbidities.
Collapse
Affiliation(s)
- Hakim Sendagire
- College of Health Sciences, Makerere University, Kampala, Uganda
- Faculty of Health Sciences, Islamic University in Uganda
- National Health Laboratory and Diagnostics Services, Ministry of Health, Uganda
| | - Steven Kiwuwa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ali Dhamani
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Yasin Lwasa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Andrew Bukenya
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | | - Godfrey Bbosa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Juliet Babirye
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Susan Nabadda
- National Health Laboratory and Diagnostics Services, Ministry of Health, Uganda
| |
Collapse
|
72
|
Liu YN, Zhang YF, Xu Q, Qiu Y, Lu QB, Wang T, Zhang XA, Lin SH, Lv CL, Jiang BG, Li H, Li ZJ, Gao GF, Yang WZ, Hay SI, Wang LP, Fang LQ, Liu W. Infection and co-infection patterns of community-acquired pneumonia in patients of different ages in China from 2009 to 2020: a national surveillance study. THE LANCET MICROBE 2023; 4:e330-e339. [PMID: 37001538 DOI: 10.1016/s2666-5247(23)00031-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Severe community-acquired pneumonia (SCAP) is associated with a substantial number of hospitalisations and deaths worldwide. Infection or co-infection patterns, along with their age dependence and clinical effects are poorly understood. We aimed to explore the causal and epidemiological characteristics by age, to better describe patterns of community-acquired pneumonia (CAP) and their association with severe disease. METHODS National surveillance of CAP was conducted through a network of hospitals in 30 provinces in China from 2009-20 inclusive. Patients with CAP were included if they had evidence of acute respiratory tract, had evidence of pneumonia by chest radiography, diagnosis of pneumonia within 24 h of hospital admission, and resided in the study catchment area. For the enrolled patients with CAP, nasopharyngeal and oral swabs were taken and tested for eight viral pathogens; and blood, urine, or expectorated sputum was tested for six bacterial pathogens. Clinical outcomes, including SCAP, were investigated with respect to age and patterns of infections or co-infections by performing binary logistic regression and multivariate analysis. FINDINGS Between January, 2009, and December, 2020, 18 807 patients with CAP (3771 [20·05%] with SCAP) were enrolled. For both children (aged ≤5 years) and older adults (aged >60 years), a higher overall rate of viral and bacterial infections, as well as viral-bacterial co-infections were seen in patients with SCAP than in patients with non-SCAP. For adults (aged 18-60 years), however, only a higher rate of bacterial-bacterial co-infection was observed. The most frequent pathogens associated with SCAP were respiratory syncytial virus (RSV; 21·30%) and Streptococcus pneumoniae (12·61%) among children, and influenza virus (10·94%) and Pseudomonas aeruginosa (15·37%) among older adults. Positive rates of detection of most of the tested pathogens decreased during 2020 compared with the 2009-19 period, except for RSV, P aeruginosa, and Klebsiella pneumoniae. Multivariate analyses showed SCAP was significantly associated with infection with human adenovirus, human rhinovirus, K pneumoniae, or co-infection of RSV and Haemophilus influenzae or RSV and Staphylococcus aureus in children and adolescents (aged <18 years), and significantly associated with infection with P aeruginosa, K pneumoniae, or S pneumoniae, or co-infection with P aeruginosa and K pneumoniae in adults (aged ≥18 years). INTERPRETATION Both prevalence and infection pattern of respiratory pathogens differed between patients with SCAP and patients with non-SCAP in an age-dependent manner. These findings suggest potential advantages to age-related strategies for vaccine schedules, as well as clinical diagnosis, treatment, and therapy. FUNDING China Mega-Project on Infectious Disease Prevention and The National Natural Science Funds of China. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
|
73
|
Gao R, Li X, Xue M, Shen N, Wang M, Zhang J, Cao C, Cai J. Development of lipidated polycarbonates with broad-spectrum antimicrobial activity. Biomater Sci 2023; 11:1840-1852. [PMID: 36655904 PMCID: PMC10848156 DOI: 10.1039/d2bm01995g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antimicrobial resistance is a global challenge owing to the lack of discovering effective antibiotic agents. Antimicrobial polymers containing the cationic groups and hydrophobic groups which mimic natural host-defense peptides (HDPs) show great promise in combating bacteria. Herein, we report the synthesis of lipidated polycarbonates bearing primary amino groups and hydrophobic moieties (including both the terminal long alkyl chain and hydrophobic groups in the sequences) by ring-opening polymerization. The hydrophobic/hydrophilic group ratios were adjusted deliberately and the lengths of the alkyl chains at the end of the polymers were modified to achieve the optimized combination for the lead polymers, which exhibited potent and broad-spectrum bactericidal activity against a panel of Gram-positive and Gram-negative bacteria. The polymers only showed very limited hemolytic activity, demonstrating their excellent selectivity. Comprehensive analyses using biochemical and biophysical assays revealed the strong interaction between the polymers and bacteria membranes. Moreover, the polymers also showed strong biofilm inhibition activity and did not readily induce antibiotic resistance. Our results suggest that lipidated polycarbonates could be a new class of antimicrobial agents.
Collapse
Affiliation(s)
- Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Xuming Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Menglin Xue
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Ning Shen
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Jingyao Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Chuanhai Cao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
74
|
A multiplex-NGS approach to identifying respiratory RNA viruses during the COVID-19 pandemic. Arch Virol 2023; 168:87. [PMID: 36786897 PMCID: PMC9926447 DOI: 10.1007/s00705-023-05717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
A methodological approach based on reverse transcription (RT)-multiplex PCR followed by next-generation sequencing (NGS) was implemented to identify multiple respiratory RNA viruses simultaneously. A convenience sampling from respiratory surveillance and SARS-CoV-2 diagnosis in 2020 and 2021 in Montevideo, Uruguay, was analyzed. The results revealed the cocirculation of SARS-CoV-2 with human rhinovirus (hRV) A, B and C, human respiratory syncytial virus (hRSV) B, influenza A virus, and metapneumovirus B1. SARS-CoV-2 coinfections with hRV or hRSV B and influenza A virus coinfections with hRV C were identified in adults and/or children. This methodology combines the benefits of multiplex genomic amplification with the sensitivity and information provided by NGS. An advantage is that additional viral targets can be incorporated, making it a helpful tool to investigate the cocirculation and coinfections of respiratory viruses in pandemic and post-pandemic contexts.
Collapse
|
75
|
Nazir A, Song J, Chen Y, Liu Y. Phage-Derived Depolymerase: Its Possible Role for Secondary Bacterial Infections in COVID-19 Patients. Microorganisms 2023; 11:microorganisms11020424. [PMID: 36838389 PMCID: PMC9961776 DOI: 10.3390/microorganisms11020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
As of 29 July 2022, there had been a cumulative 572,239,451 confirmed cases of COVID-19 worldwide, including 6,390,401 fatalities. COVID-19 patients with severe symptoms are usually treated with a combination of virus- and drug-induced immuno-suppression medicines. Critical clinical complications of the respiratory system due to secondary bacterial infections (SBIs) could be the reason for the high mortality rate in COVID-19 patients. Unfortunately, antimicrobial resistance is increasing daily, and only a few options are available in our antimicrobial armory. Hence, alternative therapeutic options such as enzymes derived from bacteriophages can be considered for treating SBIs in COVID-19 patients. In particular, phage-derived depolymerases have high antivirulent potency that can efficiently degrade bacterial capsular polysaccharides, lipopolysaccharides, and exopolysaccharides. They have emerged as a promising class of new antibiotics and their therapeutic role for bacterial infections is already confirmed in animal models. This review provides an overview of the rising incidence of SBIs among COVID-19 patients. We present a practicable novel workflow for phage-derived depolymerases that can easily be adapted for treating SBIs in COVID-19 patients.
Collapse
Affiliation(s)
| | | | - Yibao Chen
- Correspondence: (Y.C.); (Y.L.); Tel./Fax: +86-531-6665-5093 (Y.C. & Y.L.)
| | - Yuqing Liu
- Correspondence: (Y.C.); (Y.L.); Tel./Fax: +86-531-6665-5093 (Y.C. & Y.L.)
| |
Collapse
|
76
|
Lakshmipathy D, Appakudal Ramaswamy A, Maharajan HRP, Anand RM, Thangam A, Santharaj RK. Molecular detection and identification of fungal pathogens infections occurring in COVID-19 recovered patients. Virusdisease 2023; 34:88-91. [PMID: 36776382 PMCID: PMC9898846 DOI: 10.1007/s13337-022-00805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/26/2022] [Indexed: 02/05/2023] Open
Abstract
The major outbreak of Corona virus disease COVID-19 caused by SARS-CoV-2 had brought about 4.55 million deaths and had shaken the health care system all over the world. From the year 2020 the recovered COVID-19 patients had started to develop microbial infection, most predominantly fungal infection in which Mucormycosis gained immediate attention as it has worsen the mortality rate in humans. In the present study of 53 COVID-19 recovered patients presented with microbial infection, the analysis of frequency distribution of fungal infection preponderantly with Rhizopus oryzae, followed by Aspergillus and Candida species.
Collapse
Affiliation(s)
- Dhanurekha Lakshmipathy
- grid.414795.a0000 0004 1767 4984Sankara Nethralaya Referral Laboratory, Medical Research Foundation, No: 21, Pycrofts Garden Road, Nungambakkam, Chennai, 600 006 India
| | - Anand Appakudal Ramaswamy
- grid.414795.a0000 0004 1767 4984L&T Microbiology Research Centre, Medical Research Foundation, Chennai, 600 006 India
| | - Hema Raja Pushpam Maharajan
- grid.414795.a0000 0004 1767 4984Sankara Nethralaya Referral Laboratory, Medical Research Foundation, No: 21, Pycrofts Garden Road, Nungambakkam, Chennai, 600 006 India
| | - Revathy Menon Anand
- grid.414795.a0000 0004 1767 4984Sankara Nethralaya Referral Laboratory, Medical Research Foundation, No: 21, Pycrofts Garden Road, Nungambakkam, Chennai, 600 006 India
| | - Aishwariya Thangam
- grid.414795.a0000 0004 1767 4984Sankara Nethralaya Referral Laboratory, Medical Research Foundation, No: 21, Pycrofts Garden Road, Nungambakkam, Chennai, 600 006 India
| | - Ranjith Kumar Santharaj
- grid.414795.a0000 0004 1767 4984Sankara Nethralaya Referral Laboratory, Medical Research Foundation, No: 21, Pycrofts Garden Road, Nungambakkam, Chennai, 600 006 India
| |
Collapse
|
77
|
Ramos LS, Mokus L, Frota HF, Santos MV, Oliveira SSC, Oliveira MME, Costa GL, Alves AL, Bernardes-Engemann AR, Orofino-Costa R, Aor AC, Branquinha MH, Santos ALS. SARS-CoV-2 Post-Infection and Sepsis by Saccharomyces cerevisiae: A Fatal Case Report-Focus on Fungal Susceptibility and Potential Virulence Attributes. Trop Med Infect Dis 2023; 8:tropicalmed8020099. [PMID: 36828515 PMCID: PMC9963862 DOI: 10.3390/tropicalmed8020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for approximately 6.8 million deaths worldwide, threatening more than 753 million individuals. People with severe coronavirus disease-2019 (COVID-19) infection often exhibit an immunosuppression condition, resulting in greater chances of developing co-infections with bacteria and fungi, including opportunistic yeasts belonging to the Saccharomyces and Candida genera. In the present work, we have reported the case of a 75-year-old woman admitted at a Brazilian university hospital with an arterial ulcer in the left foot, which was being prepared for surgical amputation. The patient presented other underlying diseases and presented positive tests for COVID-19 prior to hospitalization. She received antimicrobial treatment, but her general condition worsened quickly, leading to death by septic shock after 4 days of hospitalization. Blood samples collected on the day she died were positive for yeast-like organisms, which were later identified as Saccharomyces cerevisiae by both biochemical and molecular methods. The fungal strain exhibited low minimal inhibitory concentration values for the antifungal agents tested (amphotericin B, 5-flucytosine, caspofungin, fluconazole and voriconazole), and it was able to produce important virulence factors, such as extracellular bioactive molecules (e.g., aspartic peptidase, phospholipase, esterase, phytase, catalase, hemolysin and siderophore) and biofilm. Despite the activity against planktonic cells, the antifungals were not able to impact the mature biofilm parameters (biomass and viability). Additionally, the S. cerevisiae strain caused the death of Tenebrio molitor larvae, depending on the fungal inoculum, and larvae immunosuppression with corticosteroids increased the larvae mortality rate. In conclusion, the present study highlighted the emergence of S. cerevisiae as an opportunistic fungal pathogen in immunosuppressed patients presenting several severe comorbidities, including COVID-19 infection.
Collapse
Affiliation(s)
- Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Luca Mokus
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Heloisa F. Frota
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Marcos V. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Manoel M. E. Oliveira
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Gisela L. Costa
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Ana Luísa Alves
- Unidade Docente-Assistencial de Dermatologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Andréa R. Bernardes-Engemann
- Laboratório de Micologia, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Rosane Orofino-Costa
- Unidade Docente-Assistencial de Dermatologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
- Laboratório de Micologia, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Laboratório de Micologia, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
- Correspondence: (M.H.B.); (A.L.S.S.)
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
- Correspondence: (M.H.B.); (A.L.S.S.)
| |
Collapse
|
78
|
Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol 2023; 205:e0029522. [PMID: 36409130 PMCID: PMC9879096 DOI: 10.1128/jb.00295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral-bacterial coinfections of the respiratory tract have long been associated with worsened disease outcomes. Clinical and basic research studies demonstrate that these infections are driven via complex interactions between the infecting pathogens, microbiome, and host immune response, although how these interactions contribute to disease progression is still not fully understood. Research over the last decade shows that the gut has a significant role in mediating respiratory outcomes, in a phenomenon known as the "gut-lung axis." Emerging literature demonstrates that acute respiratory viruses can modulate the gut-lung axis, suggesting that dysregulation of gut-lung cross talk may be a contributing factor during respiratory coinfection. This review will summarize the current literature regarding modulation of the gut-lung axis during acute respiratory infection, with a focus on the role of the microbiome, secondary infections, and the host immune response.
Collapse
Affiliation(s)
- Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yasmin Hilliam
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
79
|
Kim Y, Oh KT, Youn YS, Lee ES. Polymyxin B/chlorine e6 conjugated hyaluronate dot particles for antimicrobial photodynamic therapy. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yoonyoung Kim
- Department of Biotechnology The Catholic University of Korea Bucheon‐si Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy Sungkyunkwan University Suwon‐si Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology The Catholic University of Korea Bucheon‐si Republic of Korea
- Department of Biomedical‐Chemical Engineering The Catholic University of Korea Bucheon‐si Republic of Korea
| |
Collapse
|
80
|
Hoque MN, Rahman MS, Sarkar MMH, Habib MA, Akter S, Banu TA, Goswami B, Jahan I, Hossain MA, Khan MS, Islam T. Transcriptome analysis reveals increased abundance and diversity of opportunistic fungal pathogens in nasopharyngeal tract of COVID-19 patients. PLoS One 2023; 18:e0278134. [PMID: 36656835 PMCID: PMC9851516 DOI: 10.1371/journal.pone.0278134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/09/2022] [Indexed: 01/20/2023] Open
Abstract
We previously reported that SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiomes (bacteria, archaea and commensal respiratory viruses) with inclusion of pathobionts. This study aimed to assess the possible changes in the abundance and diversity of resident mycobiome in the nasopharyngeal tract (NT) of humans due to SARS-CoV-2 infections. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 = 8, Recovered = 7, and Healthy = 7) were collected for RNA-sequencing followed by taxonomic profiling of mycobiome. Our analyses indicate that SARS-CoV-2 infection significantly increased (p < 0.05, Wilcoxon test) the population and diversity of fungi in the NT with inclusion of a high proportion of opportunistic pathogens. We detected 863 fungal species including 533, 445, and 188 species in COVID-19, Recovered, and Healthy individuals, respectively that indicate a distinct mycobiome dysbiosis due to the SARS-CoV-2 infection. Remarkably, 37% of the fungal species were exclusively associated with SARS-CoV-2 infection, where S. cerevisiae (88.62%) and Phaffia rhodozyma (10.30%) were two top abundant species. Likewise, Recovered humans NT samples were predominated by Aspergillus penicillioides (36.64%), A. keveii (23.36%), A. oryzae (10.05%) and A. pseudoglaucus (4.42%). Conversely, Nannochloropsis oceanica (47.93%), Saccharomyces pastorianus (34.42%), and S. cerevisiae (2.80%) were the top abundant fungal species in Healthy controls nasal swabs. Importantly, 16% commensal fungal species found in the Healthy controls were not detected in either COVID-19 patients or when they were cured from COVID-19 (Recovered). We also detected several altered metabolic pathways correlated with the dysbiosis of fungal mycobiota in COVID-19 patients. Our results suggest that SARS-CoV-2 infection causes significant dysbiosis of mycobiome and related metabolic functions possibly play a determining role in the progression of SARS-CoV-2 pathogenesis. These findings might be helpful for developing mycobiome-based diagnostics, and also devising appropriate therapeutic regimens including antifungal drugs for prevention and control of concurrent fungal coinfections in COVID-19 patients.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Md Ahashan Habib
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - M. Anwar Hossain
- Jashore Unive rsity of Science and Technology, Jashore, Bangladesh
| | - M. Salim Khan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, Bangladesh
| |
Collapse
|
81
|
Kuznetsov KO, Tukbaeva LR, Kazakova VV, Mirzoeva KR, Bogomolova EA, Salakhutdinova AI, Ponomareva DY, Garipova AR, Mutsolgova MSM, Galimkhanov AG, Sakhibgareev MI, Guzhvieva ER. The Role of COVID-19 in Antibiotic Resistance in Pediatric Population. PEDIATRIC PHARMACOLOGY 2023. [DOI: 10.15690/pf.v19i6.2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There is data on the irrational use of antimicrobial drugs in pediatric population during the COVID-19 pandemic. This could lead to potential development of antibiotic resistance and increased morbidity and mortality among this vulnerable population group. The aim of this review is to study the role of COVID-19 in antimicrobial drugs administration and antibiotic resistance development, as well as to determine a set of measures for its prevention. Recent studies results have shown that COVID-19 pandemic had both direct and indirect impact on antibiotic resistance development in pediatric population. The COVID-19 outbreak has revealed weaknesses in health systems around the world. Antibiotics administration in patients with coronavirus infection during this period exceeded the number of cases with bacterial co-infection or other diseases. Thus, it indicates irrational antibiotic treatment. There were cases of inappropriate antibiotics administration during the crisis caused by the COVID-19 pandemic even in regions with long-term rational antibiotic treatment programs. One of the most viable methods to combat antibiotic resistance is to improve approaches in health care and to increase preparedness to infectious outbreaks. Increasing clinical competence of medical workers, accessibility of medical facilities, permanent supply of high-quality and cheap antibiotics, vaccines, reducing COVID-19 testing time, and adequate administration of antibacterial agents are the measures that can prevent diseases caused by drug resistance. All stakeholders (health authorities, regulating authorities, politicians, scientific community, pharmaceutical companies) have to collaborate and achieve results to implement all the mentioned above protection measures.
Collapse
|
82
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
83
|
Calderon M, Gysin G, Gujjar A, McMaster A, King L, Comandé D, Hunter E, Payne B. Bacterial co-infection and antibiotic stewardship in patients with COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:14. [PMID: 36624396 PMCID: PMC9828368 DOI: 10.1186/s12879-022-07942-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Understanding the proportion of patients with COVID-19 who have respiratory bacterial co-infections and the responsible pathogens is important for managing COVID-19 effectively while ensuring responsible antibiotic use. OBJECTIVE To estimate the frequency of bacterial co-infection in COVID-19 hospitalized patients and of antibiotic prescribing during the early pandemic period and to appraise the use of antibiotic stewardship criteria. METHODS Systematic review and meta-analysis was performed using major databases up to May 5, 2021. We included studies that reported proportion/prevalence of bacterial co-infection in hospitalized COVID-19 patients and use of antibiotics. Where available, data on duration and type of antibiotics, adverse events, and any information about antibiotic stewardship policies were also collected. RESULTS We retrieved 6,798 studies and included 85 studies with data from more than 30,000 patients. The overall prevalence of bacterial co-infection was 11% (95% CI 8% to 16%; 70 studies). When only confirmed bacterial co-infections were included the prevalence was 4% (95% CI 3% to 6%; 20 studies). Overall antibiotic use was 60% (95% CI 52% to 68%; 52 studies). Empirical antibiotic use rate was 62% (95% CI 55% to 69%; 11 studies). Few studies described criteria for stopping antibiotics. CONCLUSION There is currently insufficient evidence to support widespread empirical use of antibiotics in most hospitalised patients with COVID-19, as the overall proportion of bacterial co-infection is low. Furthermore, as the use of antibiotics during the study period appears to have been largely empirical, clinical guidelines to promote and support more targeted administration of antibiotics in patients admitted to hospital with COVID-19 are required.
Collapse
Affiliation(s)
- Maria Calderon
- grid.419334.80000 0004 0641 3236Department of Infection and Tropical Medicine, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Queen Victoria Rd., Newcastle-Upon-Tyne, NE1 4LP UK
| | - Grace Gysin
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU UK ,grid.1006.70000 0001 0462 7212School of Medicine, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Akash Gujjar
- grid.1006.70000 0001 0462 7212School of Medicine, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Ashleigh McMaster
- grid.419334.80000 0004 0641 3236Department of Infection and Tropical Medicine, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Queen Victoria Rd., Newcastle-Upon-Tyne, NE1 4LP UK
| | - Lisa King
- grid.1006.70000 0001 0462 7212School of Medicine, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Daniel Comandé
- grid.414661.00000 0004 0439 4692Instituto de Efectividad Clinica y Sanitaria, Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina
| | - Ewan Hunter
- grid.419334.80000 0004 0641 3236Department of Infection and Tropical Medicine, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Queen Victoria Rd., Newcastle-Upon-Tyne, NE1 4LP UK
| | - Brendan Payne
- grid.419334.80000 0004 0641 3236Department of Infection and Tropical Medicine, Newcastle-Upon-Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Queen Victoria Rd., Newcastle-Upon-Tyne, NE1 4LP UK ,grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU UK
| |
Collapse
|
84
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
85
|
Ye Z, Chen L, Zhong H, Cao L, Fu P, Xu J. Epidemiology and clinical characteristics of Epstein-Barr virus infection among children in Shanghai, China, 2017-2022. Front Cell Infect Microbiol 2023; 13:1139068. [PMID: 37026057 PMCID: PMC10072160 DOI: 10.3389/fcimb.2023.1139068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
Objective To investigate the epidemiology and infectious characteristics of Epstein-Barr virus (EBV) infection among children in Shanghai, China from 2017 to 2022. Methods We conducted a retrospective analysis of 10,260 inpatient patients who were subjected EBV nucleic acid testing from July 2017 to December 2022. Demographic information, clinical diagnosis, laboratory findings, etc. were collected and analyzed. EBV nucleic acid testing were performed by real-time PCR. Results A total of 2192 (21.4%) inpatient children were EBV-positive, with the average age of 7.3 ± 0.1 y. EBV detection was stable from 2017 to 2020 (26.9~30.1%), but showed essential decreases in 2021 (16.0%) and 2022 (9.0%). EBV was highest (>30%) detected from three quarters (Q) including 2018-Q4, 2019-Q4 and 2020-Q3. There were 24.5% of EBV coinfection with other pathogens, including bacteria (16.8%), other viruses (7.1%) and fungi (0.7%). EBV viral loads increased when coinfecting with bacteria ((142.2 ± 40.1) ×104/mL) or other viruses ((165.7 ± 37.4) ×104/mL). CRP significantly increased in EBV/fungi coinfection, while procalcitonin (PCT) and IL-6 showed remarkable increases in EBV/bacteria coinfection. Most (58.9%) of EBV-associated diseases belonged to immune disorders. The primary EBV-related diseases were systemic lupus erythematosus (SLE, 16.1%), immunodeficiency (12.4%), infectious mononucleosis (IM, 10.7%), pneumonia (10.4%) and Henoch-schonlein purpura (HSP, 10.2%). EBV viral loads were highest ((233.7 ± 27.4) × 104/mL) in patients with IM. Conclusion EBV was prevalent among children in China, the viral loads increased when coinfecting with bacteria or other viruses. SLE, immunodeficiency and IM were the primary EBV-related diseases.
Collapse
Affiliation(s)
- Zhicheng Ye
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Luxi Chen
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huaqing Zhong
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lingfeng Cao
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Pan Fu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Nosocomial Infection Control Department, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Jin Xu, ; Pan Fu,
| | - Jin Xu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Jin Xu, ; Pan Fu,
| |
Collapse
|
86
|
Rathore A, Patel F, Gupta N, Asiimwe DD, Rollini F, Ravi M. First case of Arcobacter species isolated in pericardial fluid in an HIV and COVID-19 patient with worsening cardiac tamponade. IDCases 2023; 32:e01771. [PMID: 37151209 PMCID: PMC10160497 DOI: 10.1016/j.idcr.2023.e01771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Arcobacter spp. is an emerging pathogen that is increasingly recognized as a cause of human infections. Gastrointestinal manifestations are most described in the case report literature. We present a case of the first documented case of Arcobacter spp. isolated in pericardial fluid in an immunocompromised patient with worsening cardiac tamponade that was successfully managed with an urgent pericardiocentesis and ensuing steroids, antibiotics, and a pericardial drain. The patient had a past medical history of HIV, latent syphilis, PCP pneumonia, ESRD, and hypertension, and presented with worsening dyspnea, subjective fever, myalgias, cough, pleuritic chest pain, and pericardial rub. Diagnostic workup revealed a positive COVID-19 PCR test, elevated high-sensitive cardiac troponins, elevated CRP, elevated D-dimer, and elevated creatinine. An ECG revealed diffuse ST-segment elevation, and imaging showed cardiomegaly with pulmonary vascular congestion and diffuse interstitial edema. Urgent TTE showed a large circumferential pericardial effusion with tamponade physiology present. Culture on aerobic blood agar grew Arcobacter spp. of unknown specific species, and blood cultures were also positive for Arcobacter spp. Treatment involved intravenous meropenem for five days, followed by oral ciprofloxacin, low-dose colchicine, and a tapered dose of ibuprofen. Repeat laboratory data and TTE showed complete resolution of the pericardial effusion and improved left ventricular function. This case highlights the potential for Arcobacter spp. to cause severe infections and the importance of considering it as a possible pathogen in patients with atypical presentations.
Collapse
Affiliation(s)
- Azeem Rathore
- Department of Medicine, University of Florida Health Science Center, Jacksonville, FL 32209, USA
- Correspondence to: 653–1 West 8th Street, L20, Jacksonville, FL 32209, USA.
| | - Falguni Patel
- Department of Medicine, University of Florida Health Science Center, Jacksonville, FL 32209, USA
| | - Nidhi Gupta
- Department of Medicine, University of Florida Health Science Center, Jacksonville, FL 32209, USA
| | - Denis D. Asiimwe
- Division of Infectious Diseases, University of Florida Health Science Center, Jacksonville, FL 32209, USA
| | - Fabiana Rollini
- Division of Cardiology, University of Florida Health Science Center, Jacksonville, FL 32209, USA
| | - Malleswari Ravi
- Division of Infectious Diseases, University of Florida Health Science Center, Jacksonville, FL 32209, USA
| |
Collapse
|
87
|
An AY, Baghela A, Zhang P, Falsafi R, Lee AH, Trahtemberg U, Baker AJ, dos Santos CC, Hancock REW. Severe COVID-19 and non-COVID-19 severe sepsis converge transcriptionally after a week in the intensive care unit, indicating common disease mechanisms. Front Immunol 2023; 14:1167917. [PMID: 37090709 PMCID: PMC10115984 DOI: 10.3389/fimmu.2023.1167917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features. To what extent they share mechanistically-based gene expression trajectories throughout hospitalization was unknown. Our objective was to compare gene expression trajectories between severe COVID-19 patients and contemporaneous non-COVID-19 severe sepsis patients in the intensive care unit (ICU). Methods In this prospective single-center observational cohort study, whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Results At ICU admission, despite COVID-19 patients being almost clinically indistinguishable from non-COVID-19 sepsis patients, COVID-19 patients had 1,215 differentially expressed genes compared to non-COVID-19 sepsis patients. After one week in the ICU, the number of differentially expressed genes dropped to just 9 genes. This drop coincided with decreased expression of antiviral genes and relatively increased expression of heme metabolism genes over time in COVID-19 patients, eventually reaching expression levels seen in non-COVID-19 sepsis patients. Both groups also had similar underlying immune dysfunction, with upregulation of immune processes such as "Interleukin-1 signaling" and "Interleukin-6/JAK/STAT3 signaling" throughout disease compared to healthy controls. Discussion Early on, COVID-19 patients had elevated antiviral responses and suppressed heme metabolism processes compared to non-COVID-19 severe sepsis patients, although both had similar underlying immune dysfunction. However, after one week in the ICU, these diseases became indistinguishable on a gene expression level. These findings highlight the importance of early antiviral treatment for COVID-19, the potential for heme-related therapeutics, and consideration of immunomodulatory therapies for both diseases to treat shared immune dysfunction.
Collapse
Affiliation(s)
- Andy Y. An
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Baghela
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Peter Zhang
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy H. Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Uriel Trahtemberg
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
- Department of Critical Care, Galilee Medical Center, Nahariya, Israel
| | - Andrew J. Baker
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Claudia C. dos Santos
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Robert E. W. Hancock,
| |
Collapse
|
88
|
Akrami S, Montazeri EA, Saki M, Neisi N, Khedri R, Dini SA, Motlagh AA, Ahmadi F. Bacterial profiles and their antibiotic resistance background in superinfections caused by multidrug-resistant bacteria among COVID-19 ICU patients from southwest Iran. J Med Virol 2023; 95:e28403. [PMID: 36515422 PMCID: PMC9877791 DOI: 10.1002/jmv.28403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
This study investigated the bacterial causes of superinfections and their antibiotic resistance pattern in severe coronavirus disease 2019 (COVID-19) patients admitted to the intensive care unit (ICU) of Razi Hospital in Ahvaz, southwest Iran. In this cross-sectional study, endotracheal tube (ETT) secretion samples of 77 intubated COVID-19 patients, confirmed by reverse transcription-quantitative polymerase chain reaction, were investigated by standard microbiology test and analytical profile index kit. Antibiotic susceptibility testing was performed by disc diffusion. The presence of Haemophilus influenzae and Mycoplasma pneumoniae was investigated by the polymerase chain reaction (PCR). Using culture and PCR methods, 56 (72.7%) of the 77 COVID-19 patients (mean age of 55 years, 29 male and 27 female) had superinfections. Using culture, 67 isolates including 29 (43.2%) Gram-positive and 38 (56.7%) Gram-negative bacteria (GNB) were identified from 49 COVID-19 patients. The GNB were more predominant than the Gram-positive pathogens. Klebsiella pneumoniae (28.4%, n = 19/67) was the most common isolate followed by Staphylococcus aureus (22.4%, n = 15/67). Using PCR, 10.4% (8/77) and 11.7% (9/77) of ETT secretion specimens had H. influenzae and M. pneumoniae amplicons, respectively. Gram-positive and Gram-negative isolates showed high resistance rates (>70.0%) to majority of the tested antibiotics including fluoroquinolone, carbapenems, and cephalosporins and 68.7% (46/67) of isolates were multidrug-resistant (MDR). This study showed a high frequency rate of superinfections by MDR bacteria among COVID-19 patients in southwest Iran. The prevention of long-term consequences caused by COVID-19, demands continuous antibiotic surveillance particularly in management of bacterial superinfections.
Collapse
Affiliation(s)
- Sousan Akrami
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, School of MedicineTehran University of Medical SciencesTehranIran
- Students’ Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Niloofar Neisi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Reza Khedri
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Sahar Allah Dini
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Infectious Diseases and Tropical Medicine, Razi Teaching Hospital, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Atefeh Akbari Motlagh
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Infectious Diseases and Tropical Medicine, Razi Teaching Hospital, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Fatemeh Ahmadi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Infectious Diseases and Tropical Medicine, Razi Teaching Hospital, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
89
|
Arjmand B, Alavi-Moghadam S, Sarvari M, Rezaei-Tavirani M, Rezazadeh- Mafi A, Arjmand R, Nikandish M, Nasli‐Esfahani E, Larijani B. Critical roles of cytokine storm and bacterial infection in patients with COVID-19: therapeutic potential of mesenchymal stem cells. Inflammopharmacology 2023; 31:171-206. [PMID: 36600055 PMCID: PMC9812357 DOI: 10.1007/s10787-022-01132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 has been a shocking disaster for healthcare systems worldwide since December 2019. This virus can affect all systems of the body and its symptoms vary from a simple upper respiratory infection to fatal complications including end-organ damage. On the other hand, the normal immune system plays a pivotal role in the recovery of infectious diseases such as COVID-19. However, occasionally, exaggerated immune system inflammation and an excessive synthesis of cytokines, known as a "cytokine storm," can deteriorate the patient's clinical condition. Secondary bacterial co-infection is another problem in COVID-19 which affects the prognosis of patients. Although there are a few studies about this complication, they suggest not using antibiotics commonly, especially broad-spectrum ones. During this pandemic, various approaches and therapeutics were introduced for treating COVID-19 patients. However, available treatments are not helpful enough, especially for complicated cases. Hence, in this era, cell therapy and regenerative medicine will create new opportunities. Therefore, the therapeutic benefits of mesenchymal stem cells, especially their antimicrobial activity, will help us understand how to treat COVID-19. Herein, mesenchymal stem cells may stop the immune system from becoming overactive in COVID-19 patients. On the other side, the stem cells' capacity for repair could encourage natural healing processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ahmad Rezazadeh- Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli‐Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
90
|
Tran QL, Benitez G, Shehadeh F, Kaczynski M, Mylonakis E. Clinical Outcomes Associated with SARS-CoV-2 Co-Infection with Rhinovirus and Adenovirus in Adults-A Retrospective Matched Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:646. [PMID: 36612967 PMCID: PMC9819765 DOI: 10.3390/ijerph20010646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
(1) Background: Respiratory co-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viruses are common, but data on clinical outcomes and laboratory biomarkers indicative of disease severity are limited. We aimed to compare clinical outcomes and laboratory biomarkers of patients with SARS-CoV-2 alone to those of patients with SARS-CoV-2 and either rhinovirus or adenovirus. (2) Methods: Hospitalized patients co-infected with SARS-CoV-2 and rhinovirus and patients co-infected with SARS-CoV-2 and adenovirus were matched to patients infected with SARS-CoV-2 alone. Outcomes of interest were the cumulative incidences of mechanical ventilation use, intensive care unit (ICU) admission, 30-day all-cause mortality, and 30-day all-cause readmission from the day of discharge. We also assessed differences in laboratory biomarkers from the day of specimen collection. (3) Results: Patients co-infected with SARS-CoV-2 and rhinovirus, compared with patients infected with SARS-CoV-2, had significantly greater 30-day all-cause mortality (8/23 (34.8%) vs. 8/69 (11.6%), p = 0.02). Additionally, median alanine transaminase (13 IU/L vs. 24 IU/L, p = 0.03), aspartate transaminase (25 IU/L vs. 36 IU/L, p = 0.04), and C-reactive protein (34.86 mg/L vs. 94.68 mg/L, p = 0.02) on day of specimen collection were significantly lower in patients co-infected with SARS-CoV-2 and rhinovirus in comparison to patients infected with SARS-CoV-2 alone. Clinical outcomes and laboratory markers did not differ significantly between patients with SARS-CoV-2 and adenovirus co-infection and patients with SARS-CoV-2 mono-infection. (4) Conclusion: SARS-CoV-2 and rhinovirus co-infection, compared with SARS-CoV-2 mono-infection alone, is positively associated with 30-day all-cause mortality among hospitalized patients. However, our lack of significant findings in our analysis of patients with SARS-CoV-2 and adenovirus co-infection may suggest that SARS-CoV-2 co-infections have variable significance, and further study is warranted.
Collapse
Affiliation(s)
- Quynh-Lam Tran
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Gregorio Benitez
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Fadi Shehadeh
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Matthew Kaczynski
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
91
|
Biondo C. New Insights into Bacterial Pathogenesis. Pathogens 2022; 12:pathogens12010038. [PMID: 36678386 PMCID: PMC9860650 DOI: 10.3390/pathogens12010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Pathogenicity, or the ability of a microorganism to cause disease, depends on several factors, among which the immune status of the host and the microbial species involved in the exposure play a key role [...].
Collapse
Affiliation(s)
- Carmelo Biondo
- Department of Human Pathology, University of Messina, Via C. Valeria n.1, Policlinico Universitario "G. Martino", Gazzi, 98125 Messina, Italy
| |
Collapse
|
92
|
Batule S, Soldevila B, Figueredo C, Julián MT, Egea-Cortés L, Reyes-Ureña J, Casabona J, Mateu L, Paredes R, Clotet B, López R, Puig-Domingo M, Alonso N. Factors associated with critical care requirements in diabetic patients treated with dexamethasone for COVID-19 infection in the first wave of the pandemia. Front Endocrinol (Lausanne) 2022; 13:1009028. [PMID: 36619546 PMCID: PMC9815103 DOI: 10.3389/fendo.2022.1009028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Diabetes mellitus (DM) and hyperglycemia are important risk factors for poor outcomes in hospitalized patients with coronavirus disease 2019 (COVID-19). The aim of the present study was to analyze the factors associated with the composite outcome of the necessity of invasive mechanical ventilation (IMV) or admission to the intensive care unit (ICU) in subjects with severe COVID-19 infection treated with dexamethasone comparing patients with DM vs. patients without DM. Research design and methods An observational retrospective cohort study was performed, including hospitalized subjects with a diagnosis of SARS-CoV-2 pneumonia. Inclusion criteria were: age ≥18 years old with severe COVID-19 disease requiring daily intravenous 6 mg dexamethasone treatment for 10 days. Exclusion criteria were: <18 years old, non-severe illness and/or patients in charge of ICU. Variables related to clinical and analytical parameters, glycemic control, acquired-hospital superinfections, mortality, IMV requirement, ICU admission and length of stay were included. Results Two hundred and nine individuals with COVID-19 disease treated with dexamethasone were included. One hundred twenty-five out of these subjects (59.8%) were patients with DM. Overall, from the 209 subjects, 66 (31.6%) required IMV or were admitted to the ICU, with significant differences between patients with DM (n=50) vs. patients without DM (n=16) (76% vs. 24%, p=0.002). Among the group of subjects with DM (n=125), those who required IMV or were admitted to the ICU showed higher serum concentrations of C-reactive protein, interleukin-6, D-dimer, ferritin and pro-calcitonin and significantly lower serum concentrations of albumin compared to those who did not require IMV or were not admitted to the ICU. Besides, between these two groups of patients with DM, we observed no differences in glycemic parameters, including median capillary blood glucose values, glycosylated hemoglobin, coefficient of variability and hypoglycemic episodes. In the multinomial analysis, factors independently associated with the composite outcome of IMV or admission to the ICU in the insulin-treated group were the National Early Warning Score (NEWS) 2 score (OR 1.55 [1.17-2.17], p=0.005) and the presence of hospital-acquired superinfections (OR 35.21 [5.11-386.99], p=0.001). Conclusions In our study, parameters related to glycemic control were not associated with IMV requirement nor admission to the ICU in patients with DM and severe COVID-19 disease receiving daily 6 mg of dexamethasone for 10 days. However, hospital-acquired superinfections and disease severity at admission were independent factors associated with this composite outcome.
Collapse
Affiliation(s)
- Sol Batule
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta Soldevila
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme Figueredo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - María Teresa Julián
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Egea-Cortés
- Centre d'Estudis Epidemiològics sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Badalona, Spain
| | - Juliana Reyes-Ureña
- Centre d'Estudis Epidemiològics sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Badalona, Spain
| | - Jordi Casabona
- Centre d'Estudis Epidemiològics sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Badalona, Spain
| | - Lourdes Mateu
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Roger Paredes
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Rosa López
- Direcció d'Organització i Sistemes Gerència Territorial Metropolitana Nord, Institut Català de la Salut, Badalona, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Alonso
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
93
|
Kanwal N, Thobani H, Arshad A, Kumar PA, Amjad F, Awan S, Irfan M. Factors predicting mortality among patients with COVID-19 associated hospital acquired pneumonia: insights from a tertiary care center. Monaldi Arch Chest Dis 2022; 93. [PMID: 36524352 DOI: 10.4081/monaldi.2022.2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Hospital acquired pneumonia (HAP) is a severe and dangerous complication in patients admitted with COVID-19, causing significant morbidity and mortality globally. However, the early detection and subsequent management of high-risk cases may prevent disease progression and improve clinical outcomes. This study was undertaken in order to identify predictors of mortality in COVID-19 associated HAP. A retrospective study was performed on all patients who were admitted to a tertiary care center with COVID-19 associated HAP from July 2020 till November 2020. Data was collected on relevant demographic, clinical and laboratory parameters to determine their association with in-hospital mortality; 1574 files were reviewed, out of which 162 were included in the final study. The mean age of subjects was 59.4±13.8 and a majority were male (78.4%). There were 71 (48.3%) mortalities in the study sample. Klebsiella pneumoniae (31.5%) and Pseudomonas aeruginosa (30.2%) were the most common organisms overall. Clinically significant growth of Aspergillus sp. was observed in 41 (29.0%) of patients. On univariate analysis, several factors were found to be associated with mortality, including male gender (p=0.04), D-dimers >1.3 mg/L (p<0.001), ferritin >1000 µg/mL (p<0.001), LDH >500I.U/mL (p<0.001) and procalcitonin >2.0 µg/mL (p<0.001). On multivariate analysis, ferritin >1000ng/mL, initial site of care in Special Care Units or Intensive Care Units, developing respiratory failure and developing acute kidney injury were factors independently associated with mortality in our patient sample. These results indicate that serum ferritin levels may be a potentially useful biomarker in the management of COVID-19 associated HAP.
Collapse
Affiliation(s)
- Nabila Kanwal
- Department of Medicine, Aga Khan University, Karachi.
| | | | - Ainan Arshad
- Department of Medicine, Aga Khan University, Karachi.
| | | | | | - Safia Awan
- Department of Medicine, Aga Khan University, Karachi.
| | - Muhammad Irfan
- Department of Medicine, Section of Pulmonology and Critical Care, Aga Khan University, Karachi.
| |
Collapse
|
94
|
López-Farfán D, Yerbanga RS, Parres-Mercader M, Torres-Puente M, Gómez-Navarro I, Sanou DMS, Yao AF, Bosco Ouédraogo J, Comas I, Irigoyen N, Gómez-Díaz E. Prevalence of SARS-CoV-2 and co-infection with malaria during the first wave of the pandemic (the Burkina Faso case). Front Public Health 2022; 10:1048404. [PMID: 36579069 PMCID: PMC9791192 DOI: 10.3389/fpubh.2022.1048404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, but this low incidence has been partly attributed to the limited testing capacity in most countries. In addition, the population in many African countries is at high risk of infection with endemic infectious diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of SARS-CoV-2 and for whole viral genome sequencing. Our results show a 3.2 and a 2.5% of SARS-CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, with marked differences linked to age. Importantly, we found 8 cases of confirmed co-infection and 11 cases of suspected co-infection mostly in children and teenagers. Finally, we report the genome sequences of 13 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages A.19, A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A, and 20B. This is the first population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants circulating in this Western African country. Besides, it highlights the non-negligible frequency of co-infection with malaria in African communities.
Collapse
Affiliation(s)
- Diana López-Farfán
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - R Serge Yerbanga
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso.,Institut des Sciences et Techniques (INSTech), Bobo-Dioulasso, Burkina Faso
| | - Marina Parres-Mercader
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - Manuela Torres-Puente
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV, CSIC), Valencia, Spain
| | - Inmaculada Gómez-Navarro
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV, CSIC), Valencia, Spain
| | | | - Adama Franck Yao
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | | | - Iñaki Comas
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV, CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBER), Madrid, Spain
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
95
|
Kapoula GV, Vennou KE, Bagos PG. Influenza and Pneumococcal Vaccination and the Risk of COVID-19: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:3086. [PMID: 36553093 PMCID: PMC9776999 DOI: 10.3390/diagnostics12123086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
A number of studies have investigated the potential on-specific effects of some routinely administered vaccines (e.g., influenza, pneumococcal) on COVID-19 related outcomes, with contrasting results. In order to elucidate this discrepancy, we conducted a systematic review and meta-analysis to assess the association between seasonal influenza vaccination and pneumococcal vaccination with SARS-CoV-2 infection and its clinical outcomes. PubMed and medRxiv databases were searched up to April 2022. A random effects model was used in the meta-analysis to pool odds ratio (OR) and adjusted estimates with 95% confidence intervals (CIs). Heterogeneity was quantitatively assessed using the Cochran's Q and the I2 index. Subgroup analysis, sensitivity analysis and assessment of publication bias were performed for all outcomes. In total, 38 observational studies were included in the meta-analysis and there was substantial heterogeneity. Influenza and pneumococcal vaccination were associated with lower risk of SARS-CoV-2 infection (OR: 0.80, 95% CI: 0.75-0.86 and OR: 0.70, 95% CI: 0.57-0.88, respectively). Regarding influenza vaccination, it seems that the majority of studies did not properly adjust for all potential confounders, so when the analysis was limited to studies that adjusted for age, gender, comorbidities and socioeconomic indices, the association diminished. This is not the case regarding pneumococcal vaccination, for which even after adjustment for such factors the association persisted. Regarding harder endpoints such as ICU admission and death, current data do not support the association. Possible explanations are discussed, including trained immunity, inadequate matching for socioeconomic indices and possible coinfection.
Collapse
Affiliation(s)
- Georgia V. Kapoula
- Department of Biochemistry, General Hospital of Lamia, 35131 Lamia, Greece
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Konstantina E. Vennou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| |
Collapse
|
96
|
Yadav A, Pandey R. Viral infectious diseases severity: co-presence of transcriptionally active microbes (TAMs) can play an integral role for disease severity. Front Immunol 2022; 13:1056036. [PMID: 36532032 PMCID: PMC9755851 DOI: 10.3389/fimmu.2022.1056036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Humans have been challenged by infectious diseases for all of their recorded history, and are continually being affected even today. Next-generation sequencing (NGS) has enabled identification of, i) culture independent microbes, ii) emerging disease-causing pathogens, and iii) understanding of the genome architecture. This, in turn, has highlighted that pathogen/s are not a monolith, and thereby allowing for the differentiation of the wide-ranging disease symptoms, albeit infected by a primary pathogen. The conventional 'one disease - one pathogen' paradigm has been positively revisited by considering limited yet important evidence of the co-presence of multiple transcriptionally active microbes (TAMs), potential pathogens, in various infectious diseases, including the COVID-19 pandemic. The ubiquitous microbiota presence inside humans gives reason to hypothesize that the microbiome, especially TAMs, contributes to disease etiology. Herein, we discuss current evidence and inferences on the co-infecting microbes particularly in the diseases caused by the RNA viruses - Influenza, Dengue, and the SARS-CoV-2. We have highlighted that the specific alterations in the microbial taxonomic abundances (dysbiosis) is functionally connected to the exposure of primary infecting pathogen/s. The microbial presence is intertwined with the differential host immune response modulating differential disease trajectories. The microbiota-host interactions have been shown to modulate the host immune responses to Influenza and SARS-CoV-2 infection, wherein the active commensal microbes are involved in the generation of virus-specific CD4 and CD8 T-cells following the influenza virus infection. Furthermore, COVID-19 dysbiosis causes an increase in inflammatory cytokines such as IL-6, TNF-α, and IL-1β, which might be one of the important predisposing factors for severe infection. Through this article, we aim to provide a comprehensive view of functional microbiomes that can have a significant regulatory impact on predicting disease severity (mild, moderate and severe), as well as clinical outcome (survival and mortality). This can offer fresh perspectives on the novel microbial biomarkers for stratifying patients for severe disease symptoms, disease prevention and augmenting treatment regimens.
Collapse
Affiliation(s)
- Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
97
|
Risk stratification for selecting empiric antibiotherapy during and after COVID-19. Curr Opin Infect Dis 2022; 35:605-613. [PMID: 36165454 DOI: 10.1097/qco.0000000000000881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW SARS-CoV-2 deeply modified the risk of bacterial infection, bacterial resistance, and antibiotic strategies. This review summarized what we have learned. RECENT FINDINGS During the COVID-19 pandemic, we observed an increase in healthcare-acquired infection and multidrug-resistant organism-related infection, triggered by several factors: structural factors, such as increased workload and ongoing outbreaks, underlying illnesses, invasive procedures, and treatment-induced immunosuppression. The two most frequently healthcare-acquired infections described in patients hospitalized with COVID-19 were bloodstream infection, related or not to catheters, health-acquired pneumonia (in ventilated or nonventilated patients). The most frequent species involved in bacteremia were Gram-positive cocci and Gram-negative bacilli in health-acquired pneumonia. The rate of Gram-negative bacilli is particularly high in late-onset ventilator-associated pneumonia, and the specific risk of Pseudomonas aeruginosa- related pneumonia increased when the duration of ventilation was longer than 7 days. A specificity that remains unexplained so far is the increase in enterococci bacteremia. SUMMARY The choice of empiric antibiotimicrobials depends on several factors such as the site of the infection, time of onset and previous length of stay, previous antibiotic therapy, and known multidrug-resistant organism colonization. Pharmacokinetics of antimicrobials could be markedly altered during SARS-CoV-2 acute respiratory failure, which should encourage to perform therapeutic drug monitoring.
Collapse
|
98
|
Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL. Antiviral peptides against SARS-CoV-2: therapeutic targets, mechanistic antiviral activity, and efficient delivery. Pharmacol Rep 2022; 74:1166-1181. [PMID: 36401119 PMCID: PMC9676828 DOI: 10.1007/s43440-022-00432-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
Collapse
Affiliation(s)
- Raahilah Zahir Essa
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| | - Yuan-seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Chit-laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
99
|
Taha I, Abdou Y, Hammad I, Nady O, Hassan G, Farid MF, Alofi FS, Alharbi N, Salamah E, Aldeeb N, Elmehallawy G, Alruwathi R, Sarah E, Rashad A, Rammah O, Shoaib H, Omar ME, Elmehallawy Y, Kassim S. Utilization of Antibiotics for Hospitalized Patients with Severe Coronavirus Disease 2019 in Al-Madinah Al-Munawara, Saudi Arabia: A Retrospective Study. Infect Drug Resist 2022; 15:7401-7411. [DOI: 10.2147/idr.s386162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022] Open
|
100
|
Brink AJ, Richards G, Tootla H, Prentice E. Epidemiology of Gram-negative bacteria during coronavirus disease 2019. What is the real pandemic? Curr Opin Infect Dis 2022; 35:595-604. [PMID: 36345854 DOI: 10.1097/qco.0000000000000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW Bacterial infections play a key role in hospital outcomes during the coronavirus disease 2019 (COVID-19) pandemic. Nonetheless, the global impact on the epidemiology of Gram-negative bacteria (GNB) and antibiotic resistance has not been clearly established. RECENT FINDINGS Multiple limitations exist in the current literature, in that substantial variability was observed with regard to methodology. Notwithstanding the heterogeneity, the evidence suggests that the COVID-19 pandemic had a substantial negative impact on global epidemiology with an increase in hospital-onset infections, associated with GNB. Similarly, an alarming increase in resistant GNB compared to prepandemic rates, was apparent. This was most evident for carbapenemase-producing Klebsiella pneumoniae (bloodstream infections), carbapenem-resistant Pseudomonas aeruginosa (ventilator-associated pneumonia), and carbapenem-resistant Acinetobacter baumannii (all infections). Significant variations were most apparent in the large, system-wide regional or national comparative assessments, vs. single-centre studies. Categorizing concurrent bacteria as co- or secondary-infections may be paramount to optimize standard of care. SUMMARY The data from most studies signal the probability that COVID-19 accelerated resistance. However, multiple limitations intrinsic to interpretation of current COVID-19 data, prevents accurately quantifying collateral damage on the global epidemiology and antibiotic resistance amongst GNB. It is likely to be substantial and renewed efforts to limit further increases is warranted.
Collapse
Affiliation(s)
- Adrian J Brink
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town
| | - Guy Richards
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Hafsah Tootla
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town.,National Health Laboratory Service, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Elizabeth Prentice
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town
| |
Collapse
|