51
|
Oh SR, Park SB, Cho YJ. p,p'-DDT induces apoptosis in human endometrial stromal cells via the PI3K/AKT pathway and oxidative stress. Clin Exp Reprod Med 2024; 51:247-259. [PMID: 38711333 PMCID: PMC11372311 DOI: 10.5653/cerm.2022.05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/06/2023] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Bis-[4-chlorophenyl]-1,1,1-trichloroethane (DDT), one of the most widely used synthetic pesticides, is an endocrine-disrupting chemical with the potential to interfere with the human reproductive system. The effects of DDT and one of its metabolites, p,p'-DDT, on human endometrial stromal cells (ESCs) and health outcomes remain unknown. In this study, we investigated whether p,p'-DDT induces an imbalance in cell proliferation and apoptosis in human ESCs via oxidative stress. METHODS We assessed apoptosis in ESCs by quantifying the expression of markers associated with both intrinsic and extrinsic pathways. Additionally, we measured levels of reactive oxygen species (ROS), antioxidant enzyme activity, and estrogen receptors (ERs). We also examined changes in signaling involving nuclear factor kappa-light-chain-enhancer of activated B cells. RESULTS Following treatment with 1,000 pg/mL of p,p'-DDT, we observed an increase in Bax expression, a decrease in Bcl-2 expression, and increases in the expression of caspases 3, 6, and 8. We also noted a rise in the generation of ROS and a reduction in glutathione peroxidase expression after treatment with p,p'-DDT. Additionally, p,p'-DDT treatment led to changes in ER expression and increases in the protein levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (phospho-AKT), and phospho-extracellular signal-regulated kinase (phospho-ERK). CONCLUSION p,p'-DDT was found to induce apoptosis in human ESCs through oxidative stress and an ER-mediated pathway. The activation of the PI3K/AKT and ERK pathways could represent potential mechanisms by which p,p'-DDT prompts apoptosis in human ESCs and may be linked to endometrial pathologies.
Collapse
Affiliation(s)
- So Ra Oh
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seung Bin Park
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Yeon Jean Cho
- Department of Obstetrics and Gynecology, Samsung Jeil Women's Clinic, Busan, Republic of Korea
| |
Collapse
|
52
|
Michelangeli F, Mohammed NA, Jones B, Tairu M, Al‐Mousa F. Cytotoxicity by endocrine disruptors through effects on ER Ca 2+ transporters, aberrations in Ca 2+ signalling pathways and ER stress. FEBS Open Bio 2024; 14:1384-1396. [PMID: 39138623 PMCID: PMC11492318 DOI: 10.1002/2211-5463.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Concerns regarding man-made organic chemicals pervading our ecosystem and having adverse and detrimental effects upon organisms, including man, have now been studied for several decades. Since the 1970s, some environmental pollutants were identified as having endocrine disrupting affects. These endocrine disrupting chemicals (EDC) were initially shown to have estrogenic or anti-estrogenic properties and some were also shown to bind to a variety of hormone receptors. However, since the 1990s it has also been identified that many of these EDC additionally, have the ability of causing abnormal alterations in Ca2+ signalling pathways (also commonly involved in hormone signalling), leading to exaggerated elevations in cytosolic [Ca2+] levels, that is known to cause activation of a number of cell death pathways. The major emphasis of this review is to present a personal perspective of the evidence for some types of EDC, specifically alkylphenols and brominated flame retardants (BFRs), causing direct effects on Ca2+ transporters (mainly the SERCA Ca2+ ATPases), culminating in acute cytotoxicity and cell death. Evidence is also presented to indicate that this Ca2+ATPase inhibition, which leads to abnormally elevated cytosolic [Ca2+], as well as a decreased luminal ER [Ca2+], which triggers the ER stress response, are both involved in acute cytotoxicity.
Collapse
Affiliation(s)
- Francesco Michelangeli
- Chester Medical SchoolUniversity of ChesterUK
- School of BiosciencesUniversity of BirminghamUK
| | - Noor A. Mohammed
- School of BiosciencesUniversity of BirminghamUK
- Department of BiologyUniversity of DuhokIraq
| | | | | | - Fawaz Al‐Mousa
- General Directorate of Poison Control CentreMinistry of HealthRiyadhSaudi Arabia
| |
Collapse
|
53
|
Pool KR, Gajanayakage RH, Connolly C, Blache D. Ancestral lineages of dietary exposure to an endocrine disrupting chemical drive distinct forms of transgenerational subfertility in an insect model. Sci Rep 2024; 14:18153. [PMID: 39103404 PMCID: PMC11300584 DOI: 10.1038/s41598-024-67921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Across the globe, many species of insects are facing population decline. This is largely driven by anthropogenic changes to the environment, including the widespread exposure of invertebrates to endocrine disrupting chemicals (EDCs), which impair fertility. To test whether generations of Drosophila melanogaster born from parents exposed to a common dietary EDC, equol, could recover reproductive function, we quantified the reproductive capacity of the two subsequent generations. Using a novel suite of flow cytometry assays to assess sperm functionality in real time, we find that sperm function is compromised across three generations, even after non-exposed in individuals contribute to the breeding population. Though the sex ratio alters in response to EDC exposure, favouring the survival of female offspring, most lineages with ancestral EDC exposure exhibit persistent subfertility in both the male and female. Male offspring with ancestral EDC exposure present with reduced fertility and dysfunctional spermatozoa, whereby spermatozoa are metabolically stressed, lack DNA integrity and present with permanent epigenetic alterations. Across generations, male and female offspring demonstrate distinct patterns of reproductive characteristics, depending upon the specific lineage of EDC exposure. Our results illustrate how dietary EDCs present in agricultural plants could promote transgenerational subfertility and contribute to declining insect populations.
Collapse
Affiliation(s)
- Kelsey R Pool
- UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Raveena Hewa Gajanayakage
- UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Callum Connolly
- UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Dominique Blache
- UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
54
|
Kaimal A, Hooversmith JM, Mansi MHA, Holmes PV, MohanKumar PS, MohanKumar SMJ. Prenatal Exposure to Bisphenol A and/or Diethylhexyl Phthalate Impacts Brain Monoamine Levels in Rat Offspring. J Xenobiot 2024; 14:1036-1050. [PMID: 39189173 PMCID: PMC11348251 DOI: 10.3390/jox14030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
This study examines the sex-specific effects of gestational exposure (days 6-21) to endocrine-disrupting chemicals such as bisphenol A (BPA), diethylhexyl phthalate (DEHP), or their combination on brain monoamine levels that play an important role in regulating behavior. Pregnant Sprague-Dawley rats were orally administered saline, low doses (5 µg/kg BW/day) of BPA or DEHP, and their combination or a high dose (7.5 mg/kg BW/day) of DEHP alone or in combination with BPA during pregnancy. The offspring were subjected to a behavioral test and sacrificed in adulthood, and the brains were analyzed for neurotransmitter levels. In the paraventricular nucleus, there was a marked reduction in dopamine levels (p < 0.01) in male offspring from the BPA, DEHP, and B + D (HD) groups, which correlated well with their shock probe defensive burying times. Neurotransmitter changes in all brain regions examined were significant in female offspring, with DEHP (HD) females being affected the most, followed by the B + D groups. BPA and/or DEHP (LD) increased monoamine turnover in a region-specific manner in male offspring (p < 0.05). Overall, prenatal exposure to BPA, DEHP, or their combination alters monoamine levels in a brain region-specific, sex-specific, and dose-dependent manner, which could have implications for their behavioral and neuroendocrine effects.
Collapse
Affiliation(s)
- Amrita Kaimal
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Jessica M Hooversmith
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Maryam H Al Mansi
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Philip V Holmes
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Puliyur S MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Sheba M J MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
55
|
Yu M, Oskarsson A, Alexander J, Lundqvist J. Estrogenic, androgenic, and genotoxic activities of zearalenone and deoxynivalenol in in vitro bioassays including exogenous metabolic activation. Mycotoxin Res 2024; 40:331-346. [PMID: 38587710 PMCID: PMC11258189 DOI: 10.1007/s12550-024-00529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Zearalenone (ZEN) and deoxynivalenol (DON) and their derivatives are well-known mycotoxins, which can occur not only in crops but also in water bodies, including drinking water sources. In vitro bioassays can be used to detect biological effects of hazardous compounds in water. To this, when studying biological effects and toxicity in vitro, metabolism is important to consider. In this study, ZEN, α-zearalenol (α-ZEL), DON, 3-acetyl DON, and 15-acetyl DON were evaluated in vitro for hormone receptor-mediated effects (estrogen receptor [ER] and androgen receptor [AR]) and genotoxicity (micronucleus assay) in the presence of an exogenous metabolic activation system (MAS). The ER bioassay proved to be a highly sensitive method to detect low concentrations of the ZEN compounds (EC10 values of 31.4 pM for ZEN, 3.59 pM for α-ZEL) in aqueous solutions. In the presence of the MAS, reduced estrogenic effects were observed for both ZEN compounds (EC10 values of 6.47 × 103 pM for ZEN, 1.55 × 102 pM for α-ZEL). Of the DON compounds, only 3-acetyl DON was estrogenic (EC10 of 0.31 µM), and the effect was removed in the presence of the MAS. Anti-androgenic effects of the ZEN compounds and androgenic effects of the DON compounds were detected in the micromolar range. No induction of genotoxicity was detected for ZEN or DON in the presence of the MAS. Our study highlighted that inclusion of exogenous MAS is a useful tool to detect biological effects of metabolites in in vitro bioassays.
Collapse
Affiliation(s)
- Maria Yu
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden.
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Jan Alexander
- Norwegian Scientific Committee for Food and Environment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213, Oslo, Norway
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| |
Collapse
|
56
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
57
|
Bartkowiak-Wieczorek J, Jaros A, Gajdzińska A, Wojtyła-Buciora P, Szymański I, Szymaniak J, Janusz W, Walczak I, Jonaszka G, Bienert A. The Dual Faces of Oestrogen: The Impact of Exogenous Oestrogen on the Physiological and Pathophysiological Functions of Tissues and Organs. Int J Mol Sci 2024; 25:8167. [PMID: 39125736 PMCID: PMC11311417 DOI: 10.3390/ijms25158167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Oestrogen plays a crucial physiological role in both women and men. It regulates reproductive functions and maintains various non-reproductive tissues through its receptors, such as oestrogen receptor 1/oestrogen receptor α (ESR1/Erα), oestrogen receptor 2/oestrogen receptor β (ESR2/Erβ), and G protein-coupled oestrogen receptor 1 (GPER). This hormone is essential for the proper functioning of women's ovaries and uterus. Oestrogen supports testicular function and spermatogenesis in men and contributes to bone density, cardiovascular health, and metabolic processes in both sexes. Nuclear receptors Er-α and Er-β belong to the group of transcription activators that stimulate cell proliferation. In the environment, compounds similar in structure to the oestrogens compete with endogenous hormones for binding sites to receptors and to disrupt homeostasis. The lack of balance in oestrogen levels can lead to infertility, cancer, immunological disorders, and other conditions. Exogenous endocrine-active compounds, such as bisphenol A (BPA), phthalates, and organic phosphoric acid esters, can disrupt signalling pathways responsible for cell division and apoptosis processes. The metabolism of oestrogen and its structurally similar compounds can produce carcinogenic substances. It can also stimulate the growth of cancer cells by regulating genes crucial for cell proliferation and cell cycle progression, with long-term elevated levels linked to hormone-dependent cancers such as breast cancer. Oestrogens can also affect markers of immunological activation and contribute to the development of autoimmune diseases. Hormone replacement therapy, oral contraception, in vitro fertilisation stimulation, and hormonal stimulation of transgender people can increase the risk of breast cancer. Cortisol, similar in structure to oestrogen, can serve as a biomarker associated with the risk of developing breast cancer. The aim of this review is to analyse the sources of oestrogens and their effects on the endogenous and exogenous process of homeostasis.
Collapse
Affiliation(s)
- Joanna Bartkowiak-Wieczorek
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Agnieszka Jaros
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.J.); (A.B.)
| | - Anna Gajdzińska
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Paulina Wojtyła-Buciora
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
- Department of Social Medicine and Public Health, Calisia University, 62-800 Kalisz, Poland
| | - Igor Szymański
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Julian Szymaniak
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Wojciech Janusz
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Iga Walczak
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Gabriela Jonaszka
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Agnieszka Bienert
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.J.); (A.B.)
| |
Collapse
|
58
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
59
|
Márquez-Garbán DC, Yanes CD, Llarena G, Elashoff D, Hamilton N, Hardy M, Wadehra M, McCloskey SA, Pietras RJ. Manuka Honey Inhibits Human Breast Cancer Progression in Preclinical Models. Nutrients 2024; 16:2369. [PMID: 39064812 PMCID: PMC11279598 DOI: 10.3390/nu16142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Manuka honey (MH) exhibits potential antitumor activity in preclinical models of a number of human cancers. Treatment in vitro with MH at concentrations ranging from 0.3 to 5.0% (w/v) led to significant dose-dependent inhibition of proliferation of human breast cancer MCF-7 cells, but anti-proliferative effects of MH were less pronounced in MDA-MB-231 breast cancer cells. Effects of MH were also tested on non-malignant human mammary epithelial cells (HMECs) at 2.5% w/v, and it was found that MH reduced the proliferation of MCF-7 cells but not that of HMECs. Notably, the antitumor activity of MH was in the range of that exerted by treatment of MCF-7 cells with the antiestrogen tamoxifen. Further, MH treatment stimulated apoptosis of MCF-7 cells in vitro, with most cells exhibiting acute and significant levels of apoptosis that correlated with PARP activation. Additionally, the effects of MH induced the activation of AMPK and inhibition of AKT/mTOR downstream signaling. Treatment of MCF7 cells with increased concentrations of MH induced AMPK phosphorylation in a dose-dependent manner that was accompanied by inhibition of phosphorylation of AKT and mTOR downstream effector protein S6. In addition, MH reduced phosphorylated STAT3 levels in vitro, which may correlate with MH and AMPK-mediated anti-inflammatory properties. Further, in vivo, MH administered alone significantly inhibited the growth of established MCF-7 tumors in nude mice by 84%, resulting in an observable reduction in tumor volume. Our findings highlight the need for further research into the use of natural compounds, such as MH, for antitumor efficacy and potential chemoprevention and investigation of molecular pathways underlying these actions.
Collapse
Affiliation(s)
- Diana C. Márquez-Garbán
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - Cristian D. Yanes
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - Gabriela Llarena
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - David Elashoff
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Division of General Internal Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- School of Nursing, UCLA, Los Angeles, CA 90095, USA
| | - Mary Hardy
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Division of General Internal Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Susan A. McCloskey
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Department of Radiation Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J. Pietras
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| |
Collapse
|
60
|
Abbas MA, Al-Kabariti AY, Sutton C. Comprehensive understanding of the role of GPER in estrogen receptor-alpha negative breast cancer. J Steroid Biochem Mol Biol 2024; 241:106523. [PMID: 38636681 DOI: 10.1016/j.jsbmb.2024.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/01/2023] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
G protein-coupled estrogen receptor (GPER) plays a prominent role in facilitating the rapid, non-genomic signaling of estrogens in breast cancer cells. Herein, a comprehensive overview of the role of GPER in ER-ɑ-negative breast cancer is provided. Activation of GPER affected proliferation, metastasis and epithelial mesenchymal transition in ER-ɑ negative breast cancer cells. Clinical studies have demonstrated that GPER positivity was strongly correlated with larger tumor size and advanced clinical stage, suggesting that GPER/ERK signaling may play a role in promoting tumor progression. Strong evidence existed that environmental contaminants like bisphenol A have a carcinogenic potential mediated by GPER activation. The complexity of the cross talk between GPER and other receptors including ER-β, ER-α36, Estrogen-related receptor α (ERRα) and androgen receptor has been discussed. The potential utility of small molecules and phytoestrogens targeting GPER, adds valuable insights into its therapeutic potential. This review holds promises in advancing our understanding of GPER role in ER-ɑ-negative breast cancer. Overall, the consequences of GPER activation are still an area of active research and the implication are not entirely clear.
Collapse
Affiliation(s)
- Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan; Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Chris Sutton
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
61
|
Özden Akkaya Ö, Yağci A, Zik B, Kibria ASMG, Güler S, Çelik S, Altunbaş K. The effect of bisphenol A on the Notch (Notch2 and Jagged2) signaling pathway in the follicular development of the neonatal rat ovary. Biotech Histochem 2024; 99:238-259. [PMID: 39382141 DOI: 10.1080/10520295.2024.2361313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The formation of primordial follicles determines the pool size of follicles in the ovary, and is crucial for female reproductivity. Oocyte nest breakdown, and the formation of primordial follicles, largely depend upon the communication between oocytes and the surrounding pregranulosa cells. The neurogenic locus notch homolog protein (Notch) signaling pathway is the key player for this cell-to-cell communication, and is responsible for primordial folliculogenesis. However, different endocrine disruptors, including bisphenol A (BPA; a plasticizer and a constituent of reusable plastic containers) may affect the Notch signaling pathway, and might induce ovary dysfunction via Notch signaling. Consequently, we investigated the possible influence of BPA treatment on the proportional distribution of the follicular stages, follicle numbers, levels of apoptosis, and on Notch2 and Jagged2 expressions in the ovary. BPA was administered at doses of either 50 µg/kg/day or 50 mg/kg/day, at different time intervals, during neonatal and fetal periods in vivo. After collecting the ovaries from the various experimental groups, follicles were counted, and frequency of apoptosis was determined by TUNEL assay. In addition, Notch2 and Jagged2 expressions were assessed by immunohistochemical staining and qPCR. In summary, BPA treatment affected the follicle numbers and apoptosis level, and Notch2 and Jagged2 expressions varied with follicular stage. It was also observed that these parameters were dose and time dependent with respect to BPA exposure.
Collapse
Affiliation(s)
- Özlem Özden Akkaya
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Artay Yağci
- Department of Histology and Embryology, Milas Veterinary Faculty, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Berrin Zik
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Türkiye
| | - A S M Golam Kibria
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Chattogram, Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sabire Güler
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Türkiye
| | - Sefa Çelik
- Department of Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Türkiye
| | - Korhan Altunbaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| |
Collapse
|
62
|
Kinkade CW, Aleksunes LM, Brinker A, Buckley B, Brunner J, Wang C, Miller RK, O'Connor TG, Rivera-Núñez Z, Barrett ES. Associations between mycoestrogen exposure and sex steroid hormone concentrations in maternal serum and cord blood in the UPSIDE pregnancy cohort. Int J Hyg Environ Health 2024; 260:114405. [PMID: 38878407 PMCID: PMC11441442 DOI: 10.1016/j.ijheh.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Zearalenone (ZEN) is a fungal-derived toxin found in global food supplies including cereal grains and processed foods, impacting populations worldwide through diet. Because the chemical structure of ZEN and metabolites closely resembles 17β-estradiol (E2), they interact with estrogen receptors α/β earning their designation as 'mycoestrogens'. In animal models, gestational exposure to mycoestrogens disrupts estrogen activity and impairs fetal growth. Here, our objective was to evaluate relationships between mycoestrogen exposure and sex steroid hormone concentrations in maternal circulation and cord blood for the first time in humans. In each trimester, pregnant participants in the UPSIDE study (n = 297) provided urine for mycoestrogen analysis and serum for hormone analysis. At birth, placental mycoestrogens and cord steroids were measured. We fitted longitudinal models examining log-transformed mycoestrogen concentrations in relation to log-transformed hormones, adjusting for covariates. Secondarily, multivariable linear models examined associations at each time point (1st, 2nd, 3rd trimesters, delivery). We additionally considered effect modification by fetal sex. ZEN and its metabolite, α-zearalenol (α-ZOL), were detected in >93% and >75% of urine samples; >80% of placentas had detectable mycoestrogens. Longitudinal models from the full cohort exhibited few significant associations. In sex-stratified analyses, in pregnancies with male fetuses, estrone (E1) and free testosterone (fT) were inversely associated with ZEN (E1 %Δ: -6.68 95%CI: -12.34, -0.65; fT %Δ: -3.22 95%CI: -5.68, -0.70); while α-ZOL was positively associated with E2 (%Δ: 5.61 95%CI: -1.54, 9.85) in pregnancies with female fetuses. In analysis with cord hormones, urinary mycoestrogens were inversely associated with androstenedione (%Δ: 9.15 95%CI: 14.64, -3.30) in both sexes, and placental mycoestrogens were positively associated with cord fT (%Δ: 37.13, 95%CI: 4.86, 79.34) amongst male offspring. Findings support the hypothesis that mycoestrogens act as endocrine disruptors in humans, as in animal models and livestock. Additional work is needed to understand impacts on maternal and child health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor - UCLA Medical Center, Torrance, CA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, Pediatrics and Pathology, University of Rochester, New York, NY, 14642, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychiatry, University of Rochester, NY, USA; Wynne Center for Family Research, University of Rochester, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
63
|
Varma S, Molangiri A, Mudavath S, Ananthan R, Rajanna A, Duttaroy AK, Basak S. Exposure to BPA and BPS during pregnancy disrupts the bone mineralization in the offspring. Food Chem Toxicol 2024; 189:114772. [PMID: 38821392 DOI: 10.1016/j.fct.2024.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Exposure to plastic-derived estrogen-mimicking endocrine-disrupting bisphenols can have a long-lasting effect on bone health. However, gestational exposure to bisphenol A (BPA) and its analogue, bisphenol S (BPS), on offspring's bone mineralization is unclear. The effects of in-utero bisphenol exposure were examined on the offspring's bone parameters. BPA and BPS (0.0, 0.4 μg/kg bw) were administered to pregnant Wistar rats via oral gavage from gestational day 4-21. Maternal exposure to BPA and BPS increased bone mineral content and density in the offspring aged 30 and 90 days (P < 0.05). Plasma analysis revealed that alkaline phosphatase, and Gla-type osteocalcin were significantly elevated in the BPS-exposed offspring (P < 0.05). The expression of BMP1, BMP4, and their signaling mediators SMAD1 mRNAs were decreased in BPS-exposed osteoblast SaOS-2 cells (P < 0.05). The expression of extracellular matrix proteins such as ALPL, COL1A1, DMP1, and FN1 were downregulated (P < 0.05). Bisphenol co-incubation with noggin decreased TGF-β1 expression, indicating its involvement in bone mineralization. Altered mineralization could be due to dysregulated expression of bone morphogenetic proteins and signalling mediators in the osteoblast cells. Thus, bisphenol exposure during gestation altered growth and bone mineralization in the offspring, possibly by modulating the expression of Smad-dependent BMP/TGF-β1 signalling mediators.
Collapse
Affiliation(s)
- Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Archana Molangiri
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Sreedhar Mudavath
- Food Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Rajendran Ananthan
- Food Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ajumeera Rajanna
- Cell Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
64
|
Goldberg M, Adgent MA, Stevens DR, Chin HB, Ferguson KK, Calafat AM, Travlos G, Ford EG, Stallings VA, Rogan WJ, Umbach DM, Baird DD, Sandler DP. Environmental phenol exposures in 6- to 12-week-old infants: The Infant Feeding and Early Development (IFED) study. ENVIRONMENTAL RESEARCH 2024; 252:119075. [PMID: 38719065 PMCID: PMC11178257 DOI: 10.1016/j.envres.2024.119075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Exposure to phenols, endocrine-disrupting chemicals used in personal care and consumer products, is widespread. Data on infant exposures are limited despite heightened sensitivity to endocrine disruption during this developmental period. We aimed to describe distributions and predictors of urinary phenol concentrations among U.S. infants ages 6-12 weeks. METHODS The Infant Feeding and Early Development (IFED) study is a prospective cohort study of healthy term infants enrolled during 2010-2013 in the Philadelphia region. We measured concentrations of seven phenols in 352 urine samples collected during the 6- or 8- and/or 12-week study visits from 199 infants. We used linear mixed models to estimate associations of maternal, sociodemographic, infant, and sample characteristics with natural-log transformed, creatinine-standardized phenol concentrations and present results as mean percent change from the reference level. RESULTS Median concentrations (μg/L) were 311 for methylparaben, 10.3 for propylparaben, 3.6 for benzophenone-3, 2.1 for triclosan, 1.0 for 2,5-dichlorophenol, 0.7 for BPA, and 0.3 for 2,4-dichlorophenol. Geometric mean methylparaben concentrations were approximately 10 times higher than published estimates for U.S. children ages 3-5 and 6-11 years, while propylparaben concentrations were 3-4 times higher. Infants of Black mothers had higher concentrations of BPA (83%), methylparaben (121%), propylparaben (218%), and 2,5-dichorophenol (287%) and lower concentrations of benzophenone-3 (-77%) and triclosan (-53%) than infants of White mothers. Triclosan concentrations were higher in breastfed infants (176%) and lower in infants whose mothers had a high school education or less (-62%). Phenol concentrations were generally higher in summer samples. CONCLUSIONS Widespread exposure to select environmental phenols among this cohort of healthy U.S. infants, including much higher paraben concentrations compared to those reported for U.S. children, supports the importance of expanding population-based biomonitoring programs to infants and toddlers. Future investigation of exposure sources is warranted to identify opportunities to minimize exposures during these sensitive periods of development.
Collapse
Affiliation(s)
- Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| | - Margaret A Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Helen B Chin
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gregory Travlos
- Comparative & Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eileen G Ford
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Virginia A Stallings
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Walter J Rogan
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
65
|
Najjar A, Kühnl J, Lange D, Géniès C, Jacques C, Fabian E, Zifle A, Hewitt NJ, Schepky A. Next-generation risk assessment read-across case study: application of a 10-step framework to derive a safe concentration of daidzein in a body lotion. Front Pharmacol 2024; 15:1421601. [PMID: 38962304 PMCID: PMC11220827 DOI: 10.3389/fphar.2024.1421601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: We performed an exposure-based Next Generation Risk Assessment case read-across study using New Approach Methodologies (NAMs) to determine the highest safe concentration of daidzein in a body lotion, based on its similarities with its structural analogue, genistein. Two assumptions were: (1) daidzein is a new chemical and its dietary intake omitted; (2) only in vitro data were used for daidzein, while in vitro and legacy in vivo data for genistein were considered. Methods: The 10-step tiered approach evaluating systemic toxicity included toxicokinetics NAMs: PBPK models and in vitro biokinetics measurements in cells used for toxicogenomics and toxicodynamic NAMs: pharmacology profiling (i.e., interaction with molecular targets), toxicogenomics and EATS assays (endocrine disruption endpoints). Whole body rat and human PBPK models were used to convert external doses of genistein to plasma concentrations and in vitro Points of Departure (PoD) to external doses. The PBPK human dermal module was refined using in vitro human skin metabolism and penetration data. Results: The most relevant endpoint for daidzein was from the ERα assay (Lowest Observed Effective Concentration was 100 ± 0.0 nM), which was converted to an in vitro PoD of 33 nM. After application of a safety factor of 3.3 for intra-individual variability, the safe concentration of daidzein was estimated to be 10 nM. This was extrapolated to an external dose of 0.5 μg/cm2 for a body lotion and face cream, equating to a concentration of 0.1%. Discussion: When in vitro PoD of 33 nM for daidzein was converted to an external oral dose in rats, the value correlated with the in vivo NOAEL. This increased confidence that the rat oral PBPK model provided accurate estimates of internal and external exposure and that the in vitro PoD was relevant in the safety assessment of both chemicals. When plasma concentrations estimated from applications of 0.1% and 0.02% daidzein were used to calculate bioactivity exposure ratios, values were >1, indicating a good margin between exposure and concentrations causing adverse effects. In conclusion, this case study highlights the use of NAMs in a 10-step tiered workflow to conclude that the highest safe concentration of daidzein in a body lotion is 0.1%.
Collapse
Affiliation(s)
| | | | | | - Camille Géniès
- Pierre Fabre Dermo-Cosmétique and Personal CareToulouse, Toulouse, France
| | - Carine Jacques
- Pierre Fabre Dermo-Cosmétique and Personal CareToulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
66
|
Zheng J, Baimoukhametova D, Lebel C, Bains JS, Kurrasch DM. Hypothalamic vasopressin sex differentiation is observed by embryonic day 15 in mice and is disrupted by the xenoestrogen bisphenol A. Proc Natl Acad Sci U S A 2024; 121:e2313207121. [PMID: 38753512 PMCID: PMC11126957 DOI: 10.1073/pnas.2313207121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
| | - Dinara Baimoukhametova
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Physiology and Pharmacology, University of Calgary, CalgaryT2N 1N4, Canada
| | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
| | - Jaideep S. Bains
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Physiology and Pharmacology, University of Calgary, CalgaryT2N 1N4, Canada
| | - Deborah M. Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
| |
Collapse
|
67
|
Konstantinou EK, Gioxari A, Dimitriou M, Panoutsopoulos GI, Panagiotopoulos AA. Molecular Pathways of Genistein Activity in Breast Cancer Cells. Int J Mol Sci 2024; 25:5556. [PMID: 38791595 PMCID: PMC11122029 DOI: 10.3390/ijms25105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The most common malignancy in women is breast cancer. During the development of cancer, oncogenic transcription factors facilitate the overproduction of inflammatory cytokines and cell adhesion molecules. Antiapoptotic proteins are markedly upregulated in cancer cells, which promotes tumor development, metastasis, and cell survival. Promising findings have been found in studies on the cell cycle-mediated apoptosis pathway for medication development and treatment. Dietary phytoconstituents have been studied in great detail for their potential to prevent cancer by triggering the body's defense mechanisms. The underlying mechanisms of action may be clarified by considering the role of polyphenols in important cancer signaling pathways. Phenolic acids, flavonoids, tannins, coumarins, lignans, lignins, naphthoquinones, anthraquinones, xanthones, and stilbenes are examples of natural chemicals that are being studied for potential anticancer drugs. These substances are also vital for signaling pathways. This review focuses on innovations in the study of polyphenol genistein's effects on breast cancer cells and presents integrated chemical biology methods to harness mechanisms of action for important therapeutic advances.
Collapse
Affiliation(s)
| | | | | | | | - Athanasios A. Panagiotopoulos
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.G.); (M.D.); (G.I.P.)
| |
Collapse
|
68
|
Deng Z, Kim SW. Opportunities and Challenges of Soy Proteins with Different Processing Applications. Antioxidants (Basel) 2024; 13:569. [PMID: 38790674 PMCID: PMC11117726 DOI: 10.3390/antiox13050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Soybean meal (SBM) is a prevailing plant protein supplement in animal diets because of its nutritional value and availability. This review paper explores the significance of SBM and processed soy products, emphasizing their nutritional and bioactive components, such as isoflavones and soyasaponins. These compounds are known for their antioxidant and anti-inflammatory properties and are associated with a reduced prevalence of chronic diseases. However, the presence of antinutritional compounds in SBM presents a significant challenge. The paper evaluates various processing methods, including ethanol/acid wash, enzyme treatment, and fermentation, which are aimed at enhancing the nutritional value of soy products. It highlights the significance to maintain a balance between nutritional enhancement and the preservation of beneficial bioactive compounds, emphasizing the importance of different processing techniques to fully exploit the health benefits of soy-based products. Therefore, this review illuminates the complex balance between nutritional improvement, bioactive compound preservation, and the overall health implications of soy products.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
69
|
Lee J, Zee S, Kim HI, Cho SH, Park CB. Effects of crosstalk between steroid hormones mediated thyroid hormone in zebrafish exposed to 4-tert-octylphenol: Estrogenic and anti-androgenic effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116348. [PMID: 38669872 DOI: 10.1016/j.ecoenv.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 μg/L), based on the lowest effective concentration (EC10 = 0.48 μg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17β-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.
Collapse
Affiliation(s)
- Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea; Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| |
Collapse
|
70
|
Ensley S, Mostrom M. Equine Mycotoxins. Vet Clin North Am Equine Pract 2024; 40:83-94. [PMID: 38061965 DOI: 10.1016/j.cveq.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
The main mycotoxins involved in adverse equine health issues are aflatoxins, fumonisins, trichothecenes, and probably ergovaline (fescue grass endophyte toxicosis). Most exposures are through contaminated grains and grain byproducts, although grasses and hays can contain mycotoxins. Clinical signs are often nonspecific and include feed refusal, colic, diarrhea, and liver damage but can be dramatic with neurologic signs associated with equine leukoencephalomalacia and tremorgens. Specific antidotes for mycotoxicosis are rare, and treatment involves stopping the use of contaminated feed, switching to a "clean" feed source, and providing supportive care.
Collapse
Affiliation(s)
- Steve Ensley
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, P217 Mosier Hall, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Michelle Mostrom
- North Dakota State University, Veterinary Diagnostic Laboratory, 4035 19th Avenue North, Department 7691 P.O. Box 6050, Fargo, North Dakota 58108-6050, USA.
| |
Collapse
|
71
|
Kumari N, Kumari R, Dua A, Singh M, Kumar R, Singh P, Duyar-Ayerdi S, Pradeep S, Ojesina AI, Kumar R. From Gut to Hormones: Unraveling the Role of Gut Microbiota in (Phyto)Estrogen Modulation in Health and Disease. Mol Nutr Food Res 2024; 68:e2300688. [PMID: 38342595 DOI: 10.1002/mnfr.202300688] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like β-glucuronidases and β-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.
Collapse
Affiliation(s)
- Nikki Kumari
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Rashmi Kumari
- Department of Zoology, College of Commerce, Arts & Science, Patliputra University, Patna, Bihar, 800020, India
| | - Ankita Dua
- Department of Zoology, Shivaji College, University of Delhi, New Delhi, 110027, India
| | - Mona Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roushan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Poonam Singh
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Susan Duyar-Ayerdi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Akinyemi I Ojesina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
72
|
Sashide Y, Toyota R, Takeda M. Local Administration of the Phytochemical, Quercetin, Attenuates the Hyperexcitability of Rat Nociceptive Primary Sensory Neurons Following Inflammation Comparable to lidocaine. THE JOURNAL OF PAIN 2024; 25:755-765. [PMID: 37832900 DOI: 10.1016/j.jpain.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Although in vivo local injection of quercetin into the peripheral receptive field suppresses the excitability of rat nociceptive trigeminal ganglion (TG) neurons, under inflammatory conditions, the acute effects of quercetin in vivo, particularly on nociceptive TG neurons, remain to be determined. The aim of this study was to examine whether acute local administration of quercetin into inflamed tissue attenuates the excitability of nociceptive TG neurons in response to mechanical stimulation. The mechanical escape threshold was significantly lower in complete Freund's adjuvant (CFA)-inflamed rats compared to before CFA injection. Extracellular single-unit recordings were made from TG neurons of CFA-induced inflammation in anesthetized rats in response to orofacial mechanical stimulation. The mean firing frequency of TG neurons in response to both non-noxious and noxious mechanical stimuli was reversibly inhibited by quercetin in a dose-dependent manner (1-10 mM). The mean firing frequency of inflamed TG neurons in response to mechanical stimuli was reversibly inhibited by the local anesthetic, 1% lidocaine (37 mM). The mean magnitude of inhibition on TG neuronal discharge frequency with 1 mM quercetin was significantly greater than that of 1% lidocaine. These results suggest that local injection of quercetin into inflamed tissue suppresses the excitability of nociceptive primary sensory TG neurons. PERSPECTIVE: Local administration of the phytochemical, quercetin, into inflamed tissues is a more potent local analgesic than voltage-gated sodium channel blockers as it inhibits the generation of both generator potentials and action potentials in nociceptive primary nerve terminals. As such, it contributes to the area of complementary and alternative medicines.
Collapse
Affiliation(s)
- Yukito Sashide
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryou Toyota
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
73
|
Oh MR, Park JH, Park SK, Park SH. Efficacy of plant-derived dietary supplements in improving overall menopausal symptoms in women: An updated systematic review and meta-analysis. Phytother Res 2024; 38:1294-1309. [PMID: 38189863 DOI: 10.1002/ptr.8112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
This updated systematic review and meta-analysis aims to confirm the effectiveness of plant-based supplements in improving overall menopausal symptoms and vasomotor symptoms. A systematic review of the literature was conducted by searching the PubMed/MEDLINE, Web of Science, EMBASE, and CENTRAL databases up to June 2022. Randomized placebo-controlled clinical trials that evaluated the effects of dietary supplements on menopausal symptoms were included. Outcome measures included daily hot flash frequency, Kupperman's index, Menopause Rating Scale, and Greene Climacteric Scale. Pooled data were analyzed using a fixed-effects model and expressed as a weighted mean difference with a 95% confidence interval for continuous outcomes. For qualitative assessment, 67 studies were selected. For quantitative assessment, 54 reports were obtained from 61 studies. The study participants were peri- or postmenopausal women aged 38-85, most of whom experienced hot flashes as a menopausal symptom. The investigational products included 28 soy-derived, 6 red clover-derived, and 28 other plant-derived supplements. Qualitative assessment revealed that approximately 76% of the studies were generally of fair or good quality, whereas 24% were of low quality. Meta-analysis results indicated significant improvements in all questionnaire scores, including hot flash frequency, in the dietary supplement group compared with the placebo group. Comprehensive evaluation using different questionnaire tools showed that the various plant-derived dietary supplements can significantly alleviate menopausal symptoms. However, further rigorous studies are needed to determine the association of plant-derived dietary supplements with menopausal health because of the general suboptimal quality and heterogeneous nature of current evidence.
Collapse
Affiliation(s)
- Mi Ra Oh
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jae Ho Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju, Republic of Korea
| | - Seon Kyeong Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju, Republic of Korea
| | - Soo Hyun Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju, Republic of Korea
| |
Collapse
|
74
|
Kehmeier MN, Khurana A, Bedell BR, Cullen AE, Cannon AT, Henson GD, Walker AE. Effects of dietary soy content on cerebral artery function and behavior in ovariectomized female mice. Am J Physiol Heart Circ Physiol 2024; 326:H636-H647. [PMID: 38156886 PMCID: PMC11221805 DOI: 10.1152/ajpheart.00618.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
As females age, they transition through menopause, experiencing a decrease in estrogen and an increase in cardiovascular and neurodegenerative disease risk. Most standard rodent chows contain phytoestrogen-rich soybean meal, which can mimic the effects of estrogen. Understanding the impact of this soybean meal on vascular outcomes is crucial to proper experimental design. Thus, this study aimed to compare the effects of standard and soy-free chows on cerebral artery endothelial function and cognitive function in ovariectomized mice. Young female C57Bl/6J mice (n = 43; ∼6 mo) were randomly assigned to three groups: sham, ovariectomy (OVX), or ovariectomy on a diet containing soy (OVX + Soy). In posterior cerebral arteries, the OVX mice had a 27% lower maximal response to insulin compared with the sham mice. The OVX + Soy mice had a 27% greater maximal vasodilation to insulin compared with the OVX mice and there were no differences in vasodilation between the OVX + Soy and sham groups. The group differences in vasodilation were mediated by differences in nitric oxide bioavailability. The OVX + Soy mice also had greater insulin receptor gene expression in cerebral arteries compared with the OVX mice. However, no differences in aortic or cerebral artery stiffness were observed between groups. Interestingly, the OVX + Soy group scored better on nesting behavior compared with both sham and OVX groups. In summary, we found that ovariectomy impairs insulin-mediated vasodilation in cerebral arteries, but a diet containing soy mitigates these effects. These findings highlight the importance of considering dietary soy when performing vascular and behavioral tests in mice, particularly in females.NEW & NOTEWORTHY To properly design experiments, we must consider how variables like diet impact our outcomes, particularly the effects of soy on females. We found that cerebral artery vasodilation in response to insulin was impaired in ovariectomized female mice compared with intact shams. However, ovariectomized mice fed a soy diet had a preserved cerebral artery insulin-mediated vasodilation. These results highlight that the effects of diet on vascular function may explain inconsistencies found between studies.
Collapse
Affiliation(s)
- Mackenzie N Kehmeier
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Aleena Khurana
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Bradley R Bedell
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Abigail E Cullen
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Audrey T Cannon
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
75
|
Okrit F, Chayanupatkul M, Wanpiyarat N, Siriviriyakul P, Werawatganon D. Genistein and sex hormone treatment alleviated hepatic fat accumulation and inflammation in orchidectomized rats with nonalcoholic steatohepatitis. Heliyon 2024; 10:e26055. [PMID: 38380011 PMCID: PMC10877361 DOI: 10.1016/j.heliyon.2024.e26055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Testosterone deficiency has been reported to accelerate nonalcoholic fatty liver disease (NAFLD). However, there are minimal data on the risk of NAFLD in transgender women and the treatment of NAFLD in this population. This study aimed to investigate the treatment effects and the mechanisms of action of genistein and sex hormones in orchiectomized (ORX) rats with nonalcoholic steatohepatitis (NASH) induced by a high fat high fructose diet (HFHF). Seven-week old male Sprague-Dawley rats were randomly divided into 7 groups (n = 6 each group); 1) control group, 2) ORX + standard diet group, 3) HFHF group, 4) ORX + HFHF group, 5) ORX + HFHF diet + testosterone group (50 mg/kg body weight (BW) once weekly), 6) ORX + HFHF diet + estradiol group (1.6 mg/kg BW daily), and 7) ORX + HFHF diet + genistein group (16 mg/kg BW daily). The duration of treatment was 6 weeks. Liver tissue was used for histological examination by hematoxylin and eosin staining and hepatic fat measurement by Oil Red O staining. Protein expression levels of histone deacetylase3 (HDAC3) and peroxisome proliferator-activated receptor delta (PPARδ) were analyzed by immunoblotting. Hepatic nuclear factor (NF)-ĸB expression was evaluated by immunohistochemistry. Rats in the ORX + HFHF group had the highest degree of hepatic steatosis, lobular inflammation, hepatocyte ballooning and the highest percentage of positive Oil Red O staining area among all groups. The expression of HDAC3 and PPARδ was downregulated, while NF-ĸB expression was upregulated in the ORX + HFHF group when compared with control and ORX + standard diet groups. Testosterone, estradiol and genistein treatment improved histological features of NASH together with the reversal of HDAC3, PPARδ and NF-ĸB protein expression comparing with the ORX + HFHF group. In summary, genistein and sex hormone treatment could alleviate NASH through the up-regulation of HDAC3 and PPARδ, and the suppression of NF-ĸB expression.
Collapse
Affiliation(s)
- Fatist Okrit
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natcha Wanpiyarat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
76
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
77
|
Baker R, Dell'Acqua G, Richards A, Thornton MJ. Nutraceuticals known to promote hair growth do not interfere with the inhibitory action of tamoxifen in MCF7, T47D and BT483 breast cancer cell lines. PLoS One 2024; 19:e0297080. [PMID: 38408073 PMCID: PMC10896530 DOI: 10.1371/journal.pone.0297080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Hair loss/thinning is a common side effect of tamoxifen in estrogen receptor (ER) positive breast cancer therapy. Some nutraceuticals known to promote hair growth are avoided during breast cancer therapy for fear of phytoestrogenic activity. However, not all botanical ingredients have similarities to estrogens, and in fact, no information exists as to the true interaction of these ingredients with tamoxifen. Therefore, this study sought to ascertain the effect of nutraceuticals (+/- estrogen/tamoxifen), on proliferation of breast cancer cells and the relative expression of ERα/β. METHODS Kelp, Astaxanthin, Saw Palmetto, Tocotrienols, Maca, Horsetail, Resveratrol, Curcumin and Ashwagandha were assessed on proliferation of MCF7, T47D and BT483 breast cancer cell lines +/- 17β-estradiol and tamoxifen. Each extract was analysed by high performance liquid chromatography (HPLC) prior to use. Cellular ERα and ERβ expression was assessed by qRT-PCR and western blot. Changes in the cellular localisation of ERα:ERβ and their ratio following incubation with the nutraceuticals was confirmed by immunocytochemistry. RESULTS Estradiol stimulated DNA synthesis in three different breast cancer cell lines: MCF7, T47D and BT483, which was inhibited by tamoxifen; this was mirrored by a specific ERa agonist in T47D and BT483 cells. Overall, nutraceuticals did not interfere with tamoxifen inhibition of estrogen; some even induced further inhibition when combined with tamoxifen. The ERα:ERβ ratio was higher at mRNA and protein level in all cell lines. However, incubation with nutraceuticals induced a shift to higher ERβ expression and a localization of ERs around the nuclear periphery. CONCLUSIONS As ERα is the key driver of estrogen-dependent breast cancer, if nutraceuticals have a higher affinity for ERβ they may offer a protective effect, particularly if they synergize and augment the actions of tamoxifen. Since ERβ is the predominant ER in the hair follicle, further studies confirming whether nutraceuticals can shift the ratio towards ERβ in hair follicle cells would support a role for them in hair growth. Although more research is needed to assess safety and efficacy, this promising data suggests the potential of nutraceuticals as adjuvant therapy for hair loss in breast cancer patients receiving endocrine therapy.
Collapse
Affiliation(s)
- Richard Baker
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | | | | | - M Julie Thornton
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
78
|
Li H, Seada H, Madnick S, Zhao H, Chen Z, Li F, Zhu F, Hall S, Boekelheide K. Machine learning-assisted high-content imaging analysis of 3D MCF7 microtissues for estrogenic effect prediction. Sci Rep 2024; 14:2999. [PMID: 38316851 PMCID: PMC10844358 DOI: 10.1038/s41598-024-53323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.
Collapse
Affiliation(s)
- Hui Li
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA.
| | - Haitham Seada
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - Samantha Madnick
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - He Zhao
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Zhaozeng Chen
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Susan Hall
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA.
| |
Collapse
|
79
|
Abbott DA, Mancini MG, Bolt MJ, Szafran AT, Neugebauer KA, Stossi F, Gorelick DA, Mancini MA. A novel ERβ high throughput microscopy platform for testing endocrine disrupting chemicals. Heliyon 2024; 10:e23119. [PMID: 38169792 PMCID: PMC10758781 DOI: 10.1016/j.heliyon.2023.e23119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
In this study we present an inducible biosensor model for the Estrogen Receptor Beta (ERβ), GFP-ERβ:PRL-HeLa, a single-cell-based high throughput (HT) in vitro assay that allows direct visualization and measurement of GFP-tagged ERβ binding to ER-specific DNA response elements (EREs), ERβ-induced chromatin remodeling, and monitor transcriptional alterations via mRNA fluorescence in situ hybridization for a prolactin (PRL)-dsRED2 reporter gene. The model was used to accurately (Z' = 0.58-0.8) differentiate ERβ-selective ligands from ERα ligands when treated with a panel of selective agonists and antagonists. Next, we tested an Environmental Protection Agency (EPA)-provided set of 45 estrogenic reference chemicals with known ERα in vivo activity and identified several that activated ERβ as well, with varying sensitivity, including a subset that is completely novel. We then used an orthogonal ERE-containing transgenic zebrafish (ZF) model to cross validate ERβ and ERα selective activities at the organism level. Using this environmentally relevant ZF assay, some compounds were confirmed to have ERβ activity, validating the GFP-ERβ:PRL-HeLa assay as a screening tool for potential ERβ active endocrine disruptors (EDCs). These data demonstrate the value of sensitive multiplex mechanistic data gathered by the GFP-ERβ:PRL-HeLa assay coupled with an orthogonal zebrafish model to rapidly identify environmentally relevant ERβ EDCs and improve upon currently available screening tools for this understudied nuclear receptor.
Collapse
Affiliation(s)
- Derek A. Abbott
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Michael J. Bolt
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Kaley A. Neugebauer
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Daniel A. Gorelick
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
80
|
Jayakumar R, Dash MK, Kumar P, Sharma S, Gulati S, Pandey A, Cholke K, Fatima Z, Trigun SK, Joshi N. Pharmaceutical characterization and exploration of Arkeshwara rasa in MDA-MB-231 cells. J Ayurveda Integr Med 2024; 15:100823. [PMID: 38160612 PMCID: PMC10792653 DOI: 10.1016/j.jaim.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The diverse specificity mode of cancer treatment targets and chemo resistance demands the necessity of drug entities which can address the devastating dynamicity of the disease. OBJECTIVES To check the anti-tumour potential of traditional medicine rich in polyherbal components and metal nanoparticle namely Arkeshwara rasa (AR). MATERIAL METHODS The AR was prepared in a modified version with reference from Rasaratna Samuchaya and characterized using sophisticated instrumental analysis including XRD, SEM-EDAX, TEM, TGA-DSC, and LC-MS and tested against the MDA-MB-231 cell line to screen cell viability and the cytotoxicity with MTT, SRB and the AO assay. RESULTS XRD pattern shows cubic tetrahedrite structure with Sb, Cu, S peaks and trace elements like Fe, Mg, etc. The particle size of AR ranges between 20 and 30 nm. The TGA points thermal decomposition at 210 °C and the metal sulphide peaks in DSC. LC-MS analysis reveals the components of the formulation more on the flavonoid portion. The IC50 value of MTT and SRB are 25.28 μg/mL and 31.7 μg/mL respectively. The AO colorimeter substantiated the cell viability and the apoptosis figures of the same cell line. The AR exhibits cytotoxicity and reaffirms the apoptosis fraction with SRB assay. CONCLUSIONS The Hesperidine, Neohesperidin, Rutin components in the phytochemical pool can synergize the anti-tumour potential with either influencing cellular pathways or decreasing chemo resistance to conventional treatment. AR need to be further experimented with reverse transcription, flow cytometry, western blotting, etc.
Collapse
Affiliation(s)
- Remya Jayakumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Kumar Dash
- Department of Rasashastra and Bhaishajya Kalpana, Government Ayurveda College, Raipur, India.
| | - Pankaj Kumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Shiwakshi Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Gulati
- Dept of Rasashastra and Bhaishjya Kalpana, Babu Yugraj Singh Ayurvedic Medical College and Hospital, Gomtinagar Extension, Sector 6 Lucknow, Uttar Pradesh, 226010, India
| | - Akanksha Pandey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kaushavi Cholke
- Amity Lipidomics Research Facility (ALRF), Amity University, Haryana, Manesar, Gurugram, 122413, India; Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Switzerland
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia; Amity Institute of Biotechnology, Amity University, Haryana, Manesar, Gurugram, 122413, India
| | - S K Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Namrata Joshi
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
81
|
Torres-Rojas MF, Mandujano-Lazaro G, Lopez-Camarillo C, Ramirez-Moreno E, Mendez-Alvarez D, Rivera G, Marchat LA. S-Dihydrodaidzein and 3-(1,3-benzoxazol-2-yl)-benzamide, Two New Potential β-estrogen Receptor Ligands with Anti-adipogenic Activity. Med Chem 2024; 20:434-442. [PMID: 38192145 DOI: 10.2174/0115734064285786231230185457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The elucidation of molecular pathways associated with adipogenesis has evidenced the relevance of estrogen and estrogen receptor beta (ERβ). The positive effects of ERβ ligands on adipogenesis, energy expenditure, lipolysis, food intake, and weight loss, make ERβ an attractive target for obesity control. From ligand-based virtual screening, molecular docking, and molecular dynamic simulations, six new likely ERβ ligands (C1 to C6) have been reported with potential for pharmacological obesity treatment. OBJECTIVE In this study, the effect of molecules C1-C6 on adipogenesis using the murine 3T3-L1 cell line was evaluated. METHODS Cell viability was assessed by MTT assays. Lipid accumulation and gene expression were investigated by ORO staining and real-time quantitative RT-PCR experiments, respectively. RESULTS Cell viability was not significantly affected by C1-C6 at concentrations up to 10 μM. Interestingly, treatment with 10 μM of C1 (S-Dihydrodaidzein) and C2 (3-(1,3-benzoxazol-2-yl)- benzamide) for 72 h inhibited adipocyte differentiation; moreover, ORO staining evidenced a reduced intracellular lipid accumulation (40% at day 7). Consistently, mRNA expression of the adipogenic markers, PPARγ and C/EBPα, was reduced by 50% and 82%, respectively, in the case of C1, and by 83% and 59%, in the case of C2. CONCLUSION Altogether, these results show the two new potential β-estrogen receptor ligands, C1 and C2, to exhibit anti-adipogenic activity. They could further be used as lead structures for the development of more efficient drugs for obesity control.
Collapse
Affiliation(s)
- María F Torres-Rojas
- Laboratorio de Biomedicina Molecular 2, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, Ciudad de México, México
| | - Gilberto Mandujano-Lazaro
- Laboratorio de Biomedicina Molecular 2, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, Ciudad de México, México
| | - Cesar Lopez-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Calle San Lorenzo 290, Col. del Valle Sur, Benito Juárez, 03100, Ciudad de México, México
| | - Esther Ramirez-Moreno
- Laboratorio de Biomedicina Molecular 2, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, Ciudad de México, México
| | - Domingo Mendez-Alvarez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Bulevard del Maestro S/N Esquina Elías Piña. Col. Narciso Mendoza, 88710, Reynosa, Tamaulipas, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Bulevard del Maestro S/N Esquina Elías Piña. Col. Narciso Mendoza, 88710, Reynosa, Tamaulipas, México
| | - Laurence A Marchat
- Laboratorio de Biomedicina Molecular 2, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, Ciudad de México, México
| |
Collapse
|
82
|
Nisa KU, Tarfeen N, Mir SA, Waza AA, Ahmad MB, Ganai BA. Molecular Mechanisms in the Etiology of Polycystic Ovary Syndrome (PCOS): A Multifaceted Hypothesis Towards the Disease with Potential Therapeutics. Indian J Clin Biochem 2024; 39:18-36. [PMID: 38223007 PMCID: PMC10784448 DOI: 10.1007/s12291-023-01130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023]
Abstract
Among the premenopausal women, Polycystic Ovary Syndrome (PCOS) is the most prevalent endocrinopathy affecting the reproductive system and metabolic rhythms leading to disrupted menstrual cycle. Being heterogeneous in nature it is characterized by complex symptomology of oligomennorhoea, excess of androgens triggering masculine phenotypic appearance and/or multiple follicular ovaries. The etiology of this complex disorder remains somewhat doubtful and the researchers hypothesize multisystem links in the pathogenesis of this disease. In this review, we attempt to present several hypotheses that tend to contribute to the etiology of PCOS. Metabolic inflexibility, aberrant pattern of gonadotropin signaling along with the evolutionary, genetic and environmental factors have been discussed. Considered a lifelong endocrinological implication, no universal treatment is available for PCOS so far however; multiple drug therapy is often advised along with simple life style intervention is mainly advised to manage its cardinal symptoms. Here we aimed to present a summarized view of pathophysiological links of PCOS with potential therapeutic strategies.
Collapse
Affiliation(s)
- Khair Ul Nisa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006 India
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Najeebul Tarfeen
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Shahnaz Ahmad Mir
- Department of Endocrinology, Government Medical College, Shireen Bagh, Srinagar, 190010 India
| | - Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical Collage (GMC), Srinagar, 190010 India
| | - Mir Bilal Ahmad
- Department of Biochemistry, University of Kashmir, Srinagar, 190006 India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| |
Collapse
|
83
|
Li J, Yu J, Zou H, Zhang J, Ren L. Estrogen receptor-mediated health benefits of phytochemicals: a review. Food Funct 2023; 14:10681-10699. [PMID: 38047630 DOI: 10.1039/d3fo04702d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Junfeng Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
84
|
Mínguez-Alarcón L, Gaskins AJ, Meeker JD, Braun JM, Chavarro JE. Endocrine-disrupting chemicals and male reproductive health. Fertil Steril 2023; 120:1138-1149. [PMID: 37827483 PMCID: PMC10841502 DOI: 10.1016/j.fertnstert.2023.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Modifiable factors, such as environmental exposures, can impact human fertility. The objective of this review is to summarize the potential effects of exposure to important endocrine-disrupting chemicals on male reproductive health. Most experimental and animal data demonstrate strong evidence for the negative effects of exposure to phenols, phthalates, pesticides, and perfluoroalkyl and polyfluoroalkyl substances on male reproductive health. Although evidence of negative associations in humans was overall strong for phthalates and pesticides, limited and inconclusive relationships were found for the other examined chemical biomarkers. Reasons for the discrepancies in results include but are not limited to, differences in study populations, exposure concentrations, number of samples collected, sample sizes, study design, and residual confounding. Additional studies are needed, particularly for newer phenols and perfluoroalkyl and polyfluoroalkyl substances, given the scarce literature on the topic and increasing exposures over time.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Jorge E Chavarro
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
85
|
Davis D, Dovey J, Sagoshi S, Thaweepanyaporn K, Ogawa S, Vasudevan N. Steroid hormone-mediated regulation of sexual and aggressive behaviour by non-genomic signalling. Steroids 2023; 200:109324. [PMID: 37820890 DOI: 10.1016/j.steroids.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Sex and aggression are well studied examples of social behaviours that are common to most animals and are mediated by an evolutionary conserved group of interconnected nuclei in the brain called the social behaviour network. Though glucocorticoids and in particular estrogen regulate these social behaviours, their effects in the brain are generally thought to be mediated by genomic signalling, a slow transcriptional regulation mediated by nuclear hormone receptors. In the last decade or so, there has been renewed interest in understanding the physiological significance of rapid, non-genomic signalling mediated by steroids. Though the identity of the membrane hormone receptors that mediate this signalling is not clearly understood and appears to be different in different cell types, such signalling contributes to physiologically relevant behaviours such as sex and aggression. In this short review, we summarise the evidence for this phenomenon in the rodent, by focusing on estrogen and to some extent, glucocorticoid signalling. The use of these signals, in relation to genomic signalling is manifold and ranges from potentiation of transcription to the possible transduction of environmental signals.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, United Kingdom
| | - Janine Dovey
- School of Biological Sciences, University of Reading, United Kingdom
| | - Shoko Sagoshi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States; Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, United Kingdom.
| |
Collapse
|
86
|
Van der Eecken H, Joniau S, Berghen C, Rans K, De Meerleer G. The Use of Soy Isoflavones in the Treatment of Prostate Cancer: A Focus on the Cellular Effects. Nutrients 2023; 15:4856. [PMID: 38068715 PMCID: PMC10708402 DOI: 10.3390/nu15234856] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
A possible link between diet and cancer has long been considered, with growing interest in phytochemicals. Soy isoflavones have been associated with a reduced risk of prostate cancer in Asian populations. Of the soy isoflavones, genistein and daidzein, in particular, have been studied, but recently, equol as a derivative has gained interest because it is more biologically potent. Different mechanisms of action have already been studied for the different isoflavones in multiple conditions, such as breast, gastrointestinal, and urogenital cancers. Many of these mechanisms of action could also be demonstrated in the prostate, both in vitro and in vivo. This review focuses on the known mechanisms of action at the cellular level and compares them between genistein, daidzein, and equol. These include androgen- and estrogen-mediated pathways, regulation of the cell cycle and cell proliferation, apoptosis, angiogenesis, and metastasis. In addition, antioxidant and anti-inflammatory effects and epigenetics are addressed.
Collapse
Affiliation(s)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Charlien Berghen
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| | - Kato Rans
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| |
Collapse
|
87
|
Liu Z, Xu J, Tan J, Li X, Zhang F, Ouyang W, Wang S, Huang Y, Li S, Pan X. Genetic overlap for ten cardiovascular diseases: A comprehensive gene-centric pleiotropic association analysis and Mendelian randomization study. iScience 2023; 26:108150. [PMID: 37908310 PMCID: PMC10613921 DOI: 10.1016/j.isci.2023.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Recent studies suggest that pleiotropic effects may explain the genetic architecture of cardiovascular diseases (CVDs). We conducted a comprehensive gene-centric pleiotropic association analysis for ten CVDs using genome-wide association study (GWAS) summary statistics to identify pleiotropic genes and pathways that may underlie multiple CVDs. We found shared genetic mechanisms underlying the pathophysiology of CVDs, with over two-thirds of the diseases exhibiting common genes and single-nucleotide polymorphisms (SNPs). Significant positive genetic correlations were observed in more than half of paired CVDs. Additionally, we investigated the pleiotropic genes shared between different CVDs, as well as their functional pathways and distribution in different tissues. Moreover, six hub genes, including ALDH2, XPO1, HSPA1L, ESR2, WDR12, and RAB1A, as well as 26 targeted potential drugs, were identified. Our study provides further evidence for the pleiotropic effects of genetic variants on CVDs and highlights the importance of considering pleiotropy in genetic association studies.
Collapse
Affiliation(s)
- Zeye Liu
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jiangshan Tan
- Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiaofei Li
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengwen Zhang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Wenbin Ouyang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Shouzheng Wang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Shoujun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
88
|
Ryu DY, Pang WK, Adegoke EO, Rahman MS, Park YJ, Pang MG. Bisphenol-A disturbs hormonal levels and testis mitochondrial activity, reducing male fertility. Hum Reprod Open 2023; 2023:hoad044. [PMID: 38021376 PMCID: PMC10681812 DOI: 10.1093/hropen/hoad044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
STUDY QUESTION How does bisphenol-A (BPA) influence male fertility, and which mechanisms are activated following BPA exposure? SUMMARY ANSWER BPA exposure causes hormonal disruption and alters mitochondrial dynamics and activity, ultimately leading to decreased male fertility. WHAT IS KNOWN ALREADY As public health concerns following BPA exposure are rising globally, there is a need to understand the exact mechanisms of BPA on various diseases. BPA exposure causes hormonal imbalances and affects male fertility by binding the estrogen receptors (ERs), but the mechanism of how it mediates the hormonal dysregulation is yet to be studied. STUDY DESIGN SIZE DURATION This study consisted of a comparative study using mice that were separated into a control group and a group exposed to the lowest observed adverse effect level (LOAEL) (n = 20 mice/group) after a week of acclimatization to the environment. For this study, the LOAEL established by the US Environmental Protection Agency of 50 mg/kg body weight (BW)/day of BPA was used. The control mice were given corn oil orally. Based on the daily variations in BW, both groups were gavaged every day from 6 to 11 weeks (6-week exposure). Before sampling, mice were stabilized for a week. Then, the testes and spermatozoa of each mouse were collected to investigate the effects of BPA on male fertility. IVF was carried out using the cumulus-oocyte complexes from female hybrid B6D2F1/CrljOri mice (n = 3) between the ages of eight and twelve weeks. PARTICIPANTS/MATERIALS SETTING METHODS Signaling pathways, apoptosis, and mitochondrial activity/dynamics-related proteins were evaluated by western blotting. ELISA was performed to determine the levels of sex hormones (FSH, LH, and testosterone) in serum. Hematoxylin and eosin staining was used to determine the effects of BPA on histological morphology and stage VII/VIII testicular seminiferous epithelium. Blastocyst formation and cleavage development rate were evaluated using IVF. MAIN RESULTS AND THE ROLE OF CHANCE BPA acted by binding to ERs and G protein-coupled receptors and activating the protein kinase A and mitogen-activated protein kinase signaling pathways, leading to aberrant hormone levels and effects on the respiratory chain complex, ATP synthase and protein-related apoptotic pathways in testis mitochondria (P < 0.05). Subsequently, embryo cleavage and blastocyst formation were reduced after the use of affected sperm, and abnormal morphology of seminiferous tubules and stage VII and VIII seminiferous epithelial cells (P < 0.05) was observed. It is noteworthy that histopathological lesions were detected in the testes at the LOAEL dose, even though the mice remained generally healthy and did not exhibit significant changes in BW following BPA exposure. These observations suggest that testicular toxicity is more than a secondary outcome of compromised overall health in the mice due to systemic effects. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION Since the protein expression levels in the testes were validated, in vitro studies in each testicular cell type (Leydig cells, Sertoli cells, and spermatogonial stem cells) would be required to shed further light on the exact mechanism resulting from BPA exposure. Furthermore, the BPA doses employed in this study significantly exceed the typical human exposure levels in real-life scenarios. Consequently, it is imperative to conduct experiments focusing on the effects of BPA concentrations more in line with daily human exposures to comprehensively assess their impact on testicular toxicity and mitochondrial activity. WIDER IMPLICATIONS OF THE FINDINGS These findings demonstrate that BPA exposure impacts male fertility by disrupting mitochondrial dynamics and activities in the testes and provides a solid foundation for subsequent investigations into the effects on male reproductive function and fertility following BPA exposure, and the underlying mechanisms responsible for these effects. In addition, these findings suggest that the LOAEL concentration of BPA demonstrates exceptional toxicity, especially when considering its specific impact on the testes and its adverse consequences for male fertility by impairing mitochondrial activity. Therefore, it is plausible to suggest that BPA elicits distinct toxicological responses and mechanistic endpoints based on the particular concentration levels for each target organ. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025159). No competing interests are declared.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
89
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
90
|
Hall KA, Filardo EJ. The G Protein-Coupled Estrogen Receptor (GPER): A Critical Therapeutic Target for Cancer. Cells 2023; 12:2460. [PMID: 37887304 PMCID: PMC10605794 DOI: 10.3390/cells12202460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancers, with increasing concern regarding the overall rising incidence of disease and exposure to environmental estrogens. Estrogens, both endogenous and environmental, manifest their actions through intracellular and plasma membrane receptors, named ERα, ERβ, and GPER. Collectively, they act to promote a broad transcriptional response that is mediated through multiple regulatory enhancers, including estrogen response elements (EREs), serum response elements (SREs), and cyclic AMP response elements (CREs). Yet, the design and rational assignment of antiestrogen therapy for breast cancer has strictly relied upon an endogenous estrogen-ER binary rubric that does not account for environmental estrogens or GPER. New endocrine therapies have focused on the development of drugs that degrade ER via ER complex destabilization or direct enzymatic ubiquitination. However, these new approaches do not broadly treat all cancer-involved receptors, including GPER. The latter is concerning since GPER is directly associated with tumor size, distant metastases, cancer stem cell activity, and endocrine resistance, indicating the importance of targeting this receptor to achieve a more complete therapeutic response. This review focuses on the critical importance and value of GPER-targeted therapeutics as part of a more holistic approach to the treatment of estrogen-driven malignancies.
Collapse
|
91
|
Lam SSN, Shi Z, Ip CKM, Wong CKC, Wong AST. Environmental-relevant bisphenol A exposure promotes ovarian cancer stemness by regulating microRNA biogenesis. J Cell Mol Med 2023; 27:2792-2803. [PMID: 37610061 PMCID: PMC10494296 DOI: 10.1111/jcmm.17920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental xenobiotic impacting millions of people worldwide. BPA has long been proposed to promote ovarian carcinogenesis, but the detrimental mechanistic target remains unclear. Cancer stem cells (CSCs) are considered as the trigger of tumour initiation and progression. Here, we show for the first time that nanomolar (environmentally relevant) concentration of BPA can markedly increase the formation and expansion of ovarian CSCs concomitant. This effect is observed in both oestrogen receptor (ER)-positive and ER-defective ovarian cancer cells, suggesting that is independent of the classical ERs. Rather, the signal is mediated through alternative ER G-protein-coupled receptor 30 (GPR30), but not oestrogen-related receptor α and γ. Moreover, we report a novel role of BPA in the regulation of Exportin-5 that led to dysregulation of microRNA biogenesis through miR-21. The use of GPR30 siRNA or antagonist to inhibit GPR30 expression or activity, respectively, resulted in significant inhibition of ovarian CSCs. Similarly, the CSCs phenotype can be reversed by expression of Exportin-5 siRNA. These results identify for the first time non-classical ER and microRNA dysregulation as novel mediators of low, physiological levels of BPA function in CSCs that may underlie its significant tumour-promoting properties in ovarian cancer.
Collapse
Affiliation(s)
- Sophia S. N. Lam
- School of Biological SciencesUniversity of Hong KongHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong Science and Technology ParksHong KongChina
| | - Zeyu Shi
- School of Biological SciencesUniversity of Hong KongHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong Science and Technology ParksHong KongChina
| | - Carman K. M. Ip
- Cellular Screening CenterUniversity of ChicagoChicagoIllinoisUSA
| | | | - Alice S. T. Wong
- School of Biological SciencesUniversity of Hong KongHong KongChina
| |
Collapse
|
92
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
93
|
Huang RG, Li XB, Wang YY, Wu H, Li KD, Jin X, Du YJ, Wang H, Qian FY, Li BZ. Endocrine-disrupting chemicals and autoimmune diseases. ENVIRONMENTAL RESEARCH 2023; 231:116222. [PMID: 37224951 DOI: 10.1016/j.envres.2023.116222] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) widely exist in people's production and life which have great potential to damage human and animal health. Over the past few decades, growing attention has been paid to the impact of EDCs on human health, as well as immune system. So far, researchers have proved that EDCs (such as bisphenol A (BPA), phthalate, tetrachlorodibenzodioxin (TCDD), etc.) affect human immune function and promotes the occurrence and development of autoimmune diseases (ADs). Therefore, in order to better understand how EDCs affect ADs, we summarized the current knowledge about the impact of EDCs on ADs, and elaborated the potential mechanism of the impact of EDCs on ADs in this review.
Collapse
Affiliation(s)
- Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | | | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
94
|
Tjeerdsma AM, van Hunsel FPAM, van de Koppel S, Ekhart C, Vitalone A, Woerdenbag HJ. Analysis of Safety Concerns on Herbal Products with Assumed Phytoestrogenic Activity. Pharmaceuticals (Basel) 2023; 16:1137. [PMID: 37631050 PMCID: PMC10459077 DOI: 10.3390/ph16081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Phytoestrogens (PEs) are plant-based compounds that can interact with estrogen receptors and are mainly used to treat menopausal complaints. However, the safety of products with assumed phytoestrogenic activity is not fully understood. This study aimed to identify plant species with assumed phytoestrogenic activity, review existing literature on their use and safety, and critically evaluate adverse reaction (AR) reports of single-herb, multi-herb, and mixed-multiple products, as submitted to the Netherlands Pharmacovigilance Centre Lareb and to VigiBase of the World Health Organization (WHO). In the Lareb database, the most commonly reported plant species to cause ARs (total of 67 reports) were Actaea racemosa L. (black cohosh) (47.8%), Humulus lupulus L. (hops) (32.8%), and Glycine max (L.) Merr. (soybean) (22.4%). In the VigiBase database (total of 21,944 reports), the top three consisted of Glycine max (L.) Merr. (71.4%), Actaea racemosa L. (11.6%), and Vitex agnus-castus L. (chaste tree) (6.4%). In the scoping review (total of 73 articles), Actaea racemosa L. (30.1%), Glycine max (L.) Merr. (28.8%), and Trifolium pratense L. (13.7%) were the most frequently mentioned plant species. ARs were most frequently reported in the system organ classes "gastrointestinal disorders", "skin and subcutaneous tissue disorders", "reproductive system and breast disorders", and "general disorders and administration site conditions". Furthermore, from the scoping review, it appeared that the use of products with assumed phytoestrogenic activity was associated with postmenopausal bleeding. It was concluded that, while the potential benefits of products with assumed phytoestrogenic activity have been extensively pursued, the potential occurrence of ARs after using these products is less well understood. This study highlights the need for further investigation and careful monitoring of these products to better understand their effects and ensure the safety and well-being of individuals using them.
Collapse
Affiliation(s)
- A. Marije Tjeerdsma
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Netherlands Pharmacovigilance Centre Lareb, Goudsbloemvallei 7, 5237 MH ’s-Hertogenbosch, The Netherlands; (F.P.A.M.v.H.); (S.v.d.K.); (C.E.)
| | - Florence P. A. M. van Hunsel
- Netherlands Pharmacovigilance Centre Lareb, Goudsbloemvallei 7, 5237 MH ’s-Hertogenbosch, The Netherlands; (F.P.A.M.v.H.); (S.v.d.K.); (C.E.)
- Department of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sonja van de Koppel
- Netherlands Pharmacovigilance Centre Lareb, Goudsbloemvallei 7, 5237 MH ’s-Hertogenbosch, The Netherlands; (F.P.A.M.v.H.); (S.v.d.K.); (C.E.)
| | - Corine Ekhart
- Netherlands Pharmacovigilance Centre Lareb, Goudsbloemvallei 7, 5237 MH ’s-Hertogenbosch, The Netherlands; (F.P.A.M.v.H.); (S.v.d.K.); (C.E.)
| | - Annabella Vitalone
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
95
|
Rodriguez MT, McLaurin KA, Shtutman M, Kubinak JL, Mactutus CF, Booze RM. Therapeutically targeting the consequences of HIV-1-associated gastrointestinal dysbiosis: Implications for neurocognitive and affective alterations. Pharmacol Biochem Behav 2023; 229:173592. [PMID: 37390973 PMCID: PMC10494709 DOI: 10.1016/j.pbb.2023.173592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.
Collapse
Affiliation(s)
- Mason T Rodriguez
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, 715 Sumter Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Jason L Kubinak
- Pathology, Microbiology & Immunology, School of Medicine Columbia, 6311 Garners Ferry Road, Building 2, Columbia, SC 29209, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
96
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
97
|
Ye X, Liu Z, Han HW, Noh JY, Shen Z, Kim DM, Wang H, Guo H, Ballard J, Golovko A, Morpurgo B, Sun Y. Nutrient-Sensing Ghrelin Receptor in Macrophages Modulates Bisphenol A-Induced Intestinal Inflammation in Mice. Genes (Basel) 2023; 14:1455. [PMID: 37510359 PMCID: PMC10378756 DOI: 10.3390/genes14071455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Bisphenols are environmental toxins with endocrine disruptor activity, yet bisphenol A (BPA) and its analogs are still widely used in manufacturing plastic products. There is evidence showing that BPA elicits inflammation in humans and animals, but the target cell types of BPA are not well understood. In this study, we sought to determine BPA's direct effect on macrophages and BPA immunotoxicity in mouse intestine. Ghrelin is an important nutrient-sensing hormone, acting through its receptor growth hormone secretagogue receptor (GHSR) to regulate metabolism and inflammation. We found that BPA promotes intestinal inflammation, showing increased infiltrating immune cells in colons and enhanced expression of Ghsr and pro-inflammatory cytokines and chemokines, such as Il6 and Ccl2, in colonic mucosa. Moreover, we found that both long- and short-term BPA exposure elevated pro-inflammatory monocytes and macrophages in mouse peripheral blood mononuclear cells (PBMC) and peritoneal macrophages (PM), respectively. To determine the role of GHSR in BPA-mediated inflammation, we generated Ghsr deletion mutation in murine macrophage RAW264.7 using CRISPR gene editing. In wild-type RAW264.7 cells, the BPA exposure promotes macrophage pro-inflammatory polarization and increases Ghsr and cytokine/chemokine Il6 and Ccl2 expression. Interestingly, Ghsr deletion mutants showed a marked reduction in pro-inflammatory cytokine/chemokine expression in response to BPA, suggesting that GHSR is required for the BPA-induced pro-inflammatory response. Further understanding how nutrient-sensing GHSR signaling regulates BPA intestinal immunotoxicity will help design new strategies to mitigate BPA immunotoxicity and provide policy guidance for BPA biosafety.
Collapse
Affiliation(s)
- Xiangcang Ye
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Zeyu Liu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Hye Won Han
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Zheng Shen
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Hongying Wang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Huiping Guo
- Texas Institute for Genomic Medicine, College Station, TX 77843, USA
| | - Johnathan Ballard
- Texas Institute for Genomic Medicine, College Station, TX 77843, USA
| | - Andrei Golovko
- Texas Institute for Genomic Medicine, College Station, TX 77843, USA
| | - Benjamin Morpurgo
- Texas Institute for Genomic Medicine, College Station, TX 77843, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
98
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
99
|
Gościniak A, Szulc P, Zielewicz W, Walkowiak J, Cielecka-Piontek J. Multidirectional Effects of Red Clover ( Trifolium pratense L.) in Support of Menopause Therapy. Molecules 2023; 28:5178. [PMID: 37446841 DOI: 10.3390/molecules28135178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Red clover is a raw material of interest primarily due to its isoflavone content. However, other groups of compounds may affect the pleiotropic biological effects of this raw material. It is used to alleviate menopausal symptoms, but the fact that there are many varieties of this plant that can be grown makes it necessary to compare the biological activity and phytochemical composition of this plant. Also of interest are the differences between the leaves and flowers of the plant. The aim of this study was to evaluate the properties of the leaves and flowers of six clover varieties-'Tenia', 'Atlantis', 'Milena', 'Magellan', 'Lemmon' and 'Lucrum'-with respect to their ability to inhibit α-glucosidase, lipase, collagenase and antioxidant activity. Therefore, the contents of polyphenols and the four main isoflavones-genistein, daidzein, biochanin and formononetin-were assessed. The study was complemented by testing for permeability through a model membrane system (PAMPA). Principal component analysis (PCA) identified a relationship between activity and the content of active compounds. It was concluded that antioxidant activity, inhibition of glucosidase, collagenase and lipase are not correlated with isoflavone content. A higher content of total polyphenols (TPC) was determined in the flowers of red clover while a higher content of isoflavones was determined in the leaves of almost every variety. The exception is the 'Lemmon' variety, characterized by high isoflavone content and high activity in the tests conducted.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Waldemar Zielewicz
- Department of Grassland and Natural Landscape Sciences, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
100
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|