51
|
Colucci P, Yue CS, Ducharme M, Benvenga S. A Review of the Pharmacokinetics of Levothyroxine for the Treatment of Hypothyroidism. EUROPEAN ENDOCRINOLOGY 2013; 9:40-47. [PMID: 30349610 DOI: 10.17925/ee.2013.09.01.40] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/17/2013] [Indexed: 12/24/2022]
Abstract
Thyroxine hormone has been recognised since the early part of the nineteenth century and levothyroxine has been available since the mid-nineteenth century as a replacement for deficient thyroid hormones. While levothyroxine remains the staple treatment for hypothyroidism even to this day, its optimal use can be challenging. As is often the case with older drugs, the pharmacokinetics of levothyroxine is often under-appreciated or misunderstood and many factors influence the optimal dosing of levothyroxine. This article will review the pharmacokinetics of levothyroxine in the treatment of hypothyroidism and highlight major concepts that should aid both clinicians and researchers.
Collapse
Affiliation(s)
| | - Corinne Seng Yue
- Principal Scientist, Learn and Confirm Inc. and PhD Candidate, Faculty of Pharmacy, University of Montreal
| | - Murray Ducharme
- President and CEO, Learn and Confirm Inc., St Laurent, Canada and Associate Professor, Faculty of Pharmacy, University of Montreal, Montreal, Canada
| | - Salvatore Benvenga
- Professor of Medicine, Director, Master Program on Childhood, Adolescent and Women's Endocrine Health, and Chief, Interdepartmental Program of Molecular & Clinical Endocrinology and Women's Endocrine Healt, University of Messina, Messina, Italy
| |
Collapse
|
52
|
Abstract
Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion-transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
53
|
Segawa M, Ogura J, Seki S, Itagaki S, Takahashi N, Kobayashi M, Hirano T, Yamaguchi H, Iseki K. Rapid stimulating effect of the antiarrhythmic agent amiodarone on absorption of organic anion compounds. Drug Metab Pharmacokinet 2012; 28:178-86. [PMID: 22986710 DOI: 10.2133/dmpk.dmpk-12-rg-010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a clinical setting, changes in pharmacokinetics due to drug-drug interactions can often directly affect the therapeutic safety and efficacy of drugs. Recently, interest has been shown in drug-drug interactions in the intestine. It is now recognized that changes in the functions of drug transporters substantially influence the absorption of administered drugs from the intestine. Amiodarone (AMD) is a potent drug used in the treatment of serious supraventricular and ventricular tachyarrhythmias. Despite its potent pharmacological effects, its wide clinical use is precluded by drug-drug interactions. In this study, we characterized the transporter function between AMD and various compounds in human intestinal model Caco-2 cells. AMD significantly and rapidly increased the uptake of [(3)H]estrone-3-sulfate (E-3-S) for 5 min. The apical-to-basal transport of [(3)H]E-3-S was significantly increased by AMD. The AMD-stimulated [(3)H]E-3-S uptake was inhibited by organic anion transporting polypeptide (OATP) substrates. Caco-2 cells treated with AMD showed increased OATP2B1 expression on the cell surface. AMD also increased the absorption of sulfobromophthalein (BSP), which is a typical organic anion compound, and the expression level of Oatp2b1 at the membrane in in vivo experiments. The results indicate that AMD induces OATP2B1/Oatp2b1 expression at the membrane in the intestine and enhances absorption of organic anion compounds.
Collapse
Affiliation(s)
- Masahiro Segawa
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 2012; 165:1260-87. [PMID: 22013971 DOI: 10.1111/j.1476-5381.2011.01724.x] [Citation(s) in RCA: 574] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption, distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of 12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined, combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A superfamilies.
Collapse
Affiliation(s)
- Megan Roth
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
55
|
Schweizer U, Köhrle J. Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta Gen Subj 2012; 1830:3965-73. [PMID: 22890106 DOI: 10.1016/j.bbagen.2012.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Iodothyronines are charged amino acid derivatives that cannot passively cross a phospholipid bilayer. Transport of thyroid hormones across plasma membranes is mediated by integral membrane proteins belonging to several gene families. These transporters therefore allow or limit access of thyroid hormones into brain. Since thyroid hormones are essential for brain development and cell differentiation, it is expected that genetic deficiency of such transporters would result in neurodevelopmental derangements. SCOPE OF REVIEW We introduce concepts of thyroid hormone transport into the brain and into brain cells. Important thyroid hormone transmembrane transporters are presented along with their expression patterns in different brain cell types. A focus is placed on monocarboxylate transporter 8 (MCT8) which has been identified as an essential thyroid hormone transporter in humans. Mutations in MCT8 underlie one of the first described X-linked mental retardation syndromes, the Allan-Herndon-Dudley syndrome. MAJOR CONCLUSIONS Thyroid hormone transporter molecules are expressed in a developmental and cell type-specific pattern. Any thyroid hormone molecule has to cross consecutively the luminal and abluminal membranes of the capillary endothelium, enter astrocytic foot processes, and leave the astrocyte through the plasma membrane to finally cross another plasma membrane on its way towards its target nucleus. GENERAL SIGNIFICANCE We can expect more transporters being involved in or contributing to in neurodevelopmental or neuropsychiatric disease. Due to their expression in cellular components regulating the hypothalamus-pituitary-thyroid axis, mutations and polymorphisms are expected to impact on negative feedback regulation and hormonal setpoints. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | |
Collapse
|
56
|
Grandvuinet AS, Vestergaard HT, Rapin N, Steffansen B. Intestinal transporters for endogenic and pharmaceutical organic anions: the challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug-drug interactions. ACTA ACUST UNITED AC 2012; 64:1523-48. [PMID: 23058041 DOI: 10.1111/j.2042-7158.2012.01505.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations. KEY FINDINGS Current knowledge on the intestinal expression of the apical sodium-dependent bile acid transporter (ASBT), the breast cancer resistance protein (BCRP), the monocarboxylate transporters (MCT) 1, MCT3-5, the multidrug resistance associated proteins (MRP) 1-6, the organic anion transporting polypetides (OATP) 2B1, 1A2, 3A1 and 4A1, and the organic solute transporter α/β (OSTα/β) has been covered along with an overview of their substrates and inhibitors. Furthermore, the many challenges in predicting clinically relevant DDIs from in-vitro studies have been discussed with focus on intestinal transporters and the various methods for deducting in-vitro parameters for transporters (K(m) /K(i) /IC50, efflux ratio). The applicability of using a cut-off value (estimated based on the intestinal drug concentration divided by the K(i) or IC50) has also been considered. SUMMARY A re-evaluation of the current approaches for the prediction of DDIs is necessary when considering the involvement of other transporters than P-glycoprotein. Moreover, the interplay between various processes that a drug is subject to in-vivo such as translocation by several transporters and dissolution should be considered.
Collapse
Affiliation(s)
- Anne Sophie Grandvuinet
- Drug Transporters in ADME, Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
57
|
Martin LA, Wilson DT, Reuhl KR, Gallo MA, Klaassen CD. Polychlorinated biphenyl congeners that increase the glucuronidation and biliary excretion of thyroxine are distinct from the congeners that enhance the serum disappearance of thyroxine. Drug Metab Dispos 2012; 40:588-95. [PMID: 22187485 PMCID: PMC3286271 DOI: 10.1124/dmd.111.042796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022] Open
Abstract
Polychlorinated biphenyl (PCB) congeners differentially reduce serum thyroxine (T(4)) in rats, but little is known about their ability to affect biliary excretion of T(4). Thus, male Sprague-Dawley rats were orally administered Aroclor-1254, Aroclor-1242 (32 mg/kg per day), PCB-95, PCB-99, PCB-118 (16 mg/kg per day), PCB-126 (40 μg/kg per day), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (3.9 μg/kg per day), or corn oil for 7 days. Twenty-four hours after the last dose, [(125)I]T(4) was administered intravenously, and blood, bile, and urine samples were collected for quantifying [(125)I]T(4) and in bile [(125)I]T(4) metabolites. Serum T(4) concentrations were reduced by all treatments, but dramatic reductions occurred in response to Aroclor-1254, PCB-99 [phenobarbital (PB)-type congener], and PCB-118 (mixed-type congener). None of the treatments increased urinary excretion of [(125)I]T(4). Aroclor-1254, PCB-118, TCDD, and PCB-126 (TCDD-type congener) increased biliary excretion of T(4)-glucuronide by 850, 756, 710, and 573%, respectively, corresponding to marked induction of hepatic UDP-glucuronosyltransferase (UGT) activity toward T(4). PCB-95 and PCB-99 did not induce UGT activity; therefore, the increased biliary excretion of T(4)-glucuronide was related to the affinity of congeners for the aryl hydrocarbon receptor. The disappearance of [(125)I]T(4) from serum was rapid (within 15-min) and was increased by Aroclor-1254, PCB-99 and PCB-118. Thus, reductions in serum T(4) in response to PCBs did not always correspond with UGT activity toward T(4) or with increased biliary excretion of T(4)-glucuronide. The rapid disappearance of [(125)I]T(4) from the serum of rats treated with PB-like PCBs suggests that increased tissue uptake of T(4) is an additional mechanism by which PCBs may reduce serum T(4).
Collapse
Affiliation(s)
- L A Martin
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
58
|
Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 2011. [PMID: 21854228 DOI: 10.1146/annurev‐pharmtox‐010510‐100556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organic anion transporting polypeptides (OATPs) are members of the SLCO gene superfamily of proteins. The 11 human OATPs are classified into 6 families and subfamilies on the basis of their amino acid sequence similarities. OATPs are expressed in several epithelial tissues throughout the body and transport mainly amphipathic molecules with molecular weights of more than 300 kDa. Members of the OATP1 and OATP2 families are functionally the best-characterized OATPs. Among these are the multispecific OATP1A2, OATP1B1, OATP1B3, and OATP2B1. They transport various endo- and xenobiotics, including hormones and their conjugates as well as numerous drugs such as several anticancer agents. Recent reports demonstrate that some OATPs are up- or downregulated in several cancers and that OATP expression might affect cancer development. On the basis of the findings summarized in this review, we propose that OATPs could be valuable targets for anticancer therapy.
Collapse
Affiliation(s)
- Amanda Obaidat
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
59
|
Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 2011; 52:135-51. [PMID: 21854228 DOI: 10.1146/annurev-pharmtox-010510-100556] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Organic anion transporting polypeptides (OATPs) are members of the SLCO gene superfamily of proteins. The 11 human OATPs are classified into 6 families and subfamilies on the basis of their amino acid sequence similarities. OATPs are expressed in several epithelial tissues throughout the body and transport mainly amphipathic molecules with molecular weights of more than 300 kDa. Members of the OATP1 and OATP2 families are functionally the best-characterized OATPs. Among these are the multispecific OATP1A2, OATP1B1, OATP1B3, and OATP2B1. They transport various endo- and xenobiotics, including hormones and their conjugates as well as numerous drugs such as several anticancer agents. Recent reports demonstrate that some OATPs are up- or downregulated in several cancers and that OATP expression might affect cancer development. On the basis of the findings summarized in this review, we propose that OATPs could be valuable targets for anticancer therapy.
Collapse
Affiliation(s)
- Amanda Obaidat
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
60
|
Abstract
Thyroid hormones (TH) are essential for the development of the human brain, growth and cellular metabolism. Investigation of TH transporters became one of the emerging fields in thyroid research after the discovery of inactivating mutations in the Monocarboxylate transporter 8 (MCT8), which was found to be highly specific for TH transport. However, additional transmembrane transporters are also very important for TH uptake and efflux in different cell types. They transport TH as secondary substrates and include the aromatic amino acid transporting MCT10, the organic anion transporting polypeptides (e.g. OATP1C1, OATP1A2, OPTP1A4) and the large neutral amino acid transporters (LAT1 and LAT2). These TH transporters characteristically possess 12 transmembrane spanners but due to the strong differing sequences between the three transporter families we assume an identical conformation is not very likely. In contrast to the others, the LAT family members form a heterodimer with the escort protein 4F2hc/CD98. A comparison of sequence proportions, locations and types of functional sensitive features for TH transport discovered by mutations, revealed that transport sensitive charged residues occur as conserved amino acids only within each family of the transporter types but not in all putative TH transporters. Based on the lack of highly conserved sensitive charged residues throughout the three transporter families as a common counterpart for the amino acid moiety of the substrates, we conclude that the molecular transport mechanism is likely organized either a) by different molecular determinants in the divergent transporter types or b) the counterparts for the substrates` amino acid moiety at the transporter are not any charged side chains but other proton acceptors or donators. However, positions of transport sensitive residues coincide at transmembrane helix 8 in the TH transporter MCT8, OATP1C1 and another amino acid transporter, the L-cystine and L-glutamate exchanger xCT, which is highly homologous to LAT1 and LAT2. Here we review the data available and compare similarities and differences between these primary and secondary TH transporters regarding sequences, topology, potential structures, trafficking to the plasma membrane, molecular features and locations of transport sensitive functionalities. Thereby, we focus on TH transporters occurring in the blood-brain barrier.
Collapse
Affiliation(s)
- Anita Kinne
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str, 10, 13125 Berlin, Germany.
| | | | | |
Collapse
|
61
|
Chan SY, Martín-Santos A, Loubière LS, González AM, Stieger B, Logan A, McCabe CJ, Franklyn JA, Kilby MD. The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation. J Physiol 2011; 589:2827-45. [PMID: 21486766 PMCID: PMC3112558 DOI: 10.1113/jphysiol.2011.207290] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/21/2011] [Indexed: 11/08/2022] Open
Abstract
Associations of neurological impairment with mutations in the thyroid hormone (TH) transporter, MCT8, and with maternal hypothyroxinaemia, suggest that THs are crucial for human fetal brain development. It has been postulated that TH transporters regulate the cellular supply of THs within the fetal brain during development. This study describes the expression of TH transporters in the human fetal cerebral cortex (7–20 weeks gestation) and during retinoic acid induced neurodifferentiation of the human N-Tera-2 (NT2) cell line, in triiodothyronine (T3) replete and T3-depleted media. Compared with adult cortex, mRNAs encoding OATP1A2, OATP1C1, OATP3A1 variant 2, OATP4A1, LAT2 and CD98 were reduced in fetal cortex at different gestational ages, whilst mRNAs encoding MCT8, MCT10, OATP3A1 variant 1 and LAT1 were similar. From the early first trimester, immunohistochemistry localised MCT8 and MCT10 to the microvasculature and to undifferentiated CNS cells. With neurodifferentiation, NT2 cells demonstrated declining T3 uptake, accompanied by reduced expressions of MCT8, LAT1, CD98 and OATP4A1. T3 depletion significantly reduced MCT10 and LAT2 mRNA expression at specific time points during neurodifferentiation but there were no effects upon T3 uptake, neurodifferentiation marker expression or neurite lengths and branching. MCT8 repression also did not affect NT2 neurodifferentiation. In conclusion, many TH transporters are expressed in the human fetal cerebral cortex from the first trimester, which could regulate cellular TH supply during early development. However, human NT2 neurodifferentiation is not dependent upon T3 or MCT8 and there were no compensatory changes to promote T3 uptake in a T3-depleted environment.
Collapse
Affiliation(s)
- S-Y Chan
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Floor 3, Birmingham Women's Hospital, Edgbaston, Birmingham B15 2TG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Grapefruit juice and grapefruit product consumption have potential health benefits; however, their intake is also associated with interactions with certain drugs, including calcium channel blockers, immunosuppressants and antihistamines. The primary mechanism through which interactions are mediated is mechanism-based intestinal cytochrome P450 3A4 inhibition by furanocoumarins resulting in increased bioavailability of administered medications that are substrates. Grapefruit products have also been associated with interactions with P-glycoprotein (P-gp) and uptake transporters (e.g. organic anion-transporting polypeptides [OATPs]). Polyphenolic compounds such as flavonoids have been proposed as the causative agents of the P-gp and OATP interactions. The mechanisms and magnitudes of the interactions can be influenced by the concentrations of furanocoumarins and flavonoids in the grapefruit product, the volume of juice consumed, and the inherent variability of specific enzymes and transporter components in humans. It is therefore challenging to predict the extent of grapefruit product-drug interactions and to compare available in vitro and in vivo data. The clinical significance of such interactions also depends on the disposition and toxicity profile of the drug being administered. The aim of this review is to outline the mechanisms of grapefruit-drug interactions and present a comprehensive summary of those agents affected and whether they are likely to be of clinical relevance.
Collapse
Affiliation(s)
- Kay Seden
- NIHR Biomedical Research Centre, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, UK.
| | | | | | | |
Collapse
|
63
|
Bailey DG. Fruit juice inhibition of uptake transport: a new type of food-drug interaction. Br J Clin Pharmacol 2011; 70:645-55. [PMID: 21039758 DOI: 10.1111/j.1365-2125.2010.03722.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A new type of interaction in which fruit juices diminish oral drug bioavailability through inhibition of uptake transport is the focus of this review. The discovery was based on an opposite to anticipated finding when assessing the possibility of grapefruit juice increasing oral fexofenadine bioavailability in humans through inhibition of intestinal MDR1-mediated efflux transport. In follow-up investigations, grapefruit or orange juice at low concentrations potentially and selectively inhibited in vitro OATP1A2-mediated uptake compared with MDR1-caused efflux substrate transport. These juices at high volume dramatically depressed oral fexofenadine bioavailability. Grapefruit was the representative juice to characterize the interaction subsequently. A volume-effect relationship study using a normal juice amount halved average fexofenadine absorption. Individual variability and reproducibility data indicated the clinical interaction involved direct inhibition of intestinal OATP1A2. Naringin was a major causal component suggesting that other flavonoids in fruits and vegetables might also produce the effect. Duration of juice clinical inhibition of fexofenadine absorption lasted more than 2 h but less than 4 h indicating the interaction was avoidable with appropriate interval of time between juice and drug consumption. Grapefruit juice lowered the oral bioavailability of several medications transported by OATP1A2 (acebutolol, celiprolol, fexofenadine, talinolol, L-thyroxine) while orange juice did the same for others (atenolol, celiprolol, ciprofloxacin, fexofenadine). Juice clinical inhibition of OATP2B1 was unresolved while that of OATP1B1 seemed unlikely. The interaction between grapefruit juice and etoposide also seemed relevant. Knowledge of both affected uptake transporter and drug hydrophilicity assisted prediction of the clinical interaction with grapefruit or orange juice.
Collapse
Affiliation(s)
- David G Bailey
- Department of Medicine and Lawson Health Research Institute, London Health Sciences Centre Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
64
|
Mruk DD, Su L, Cheng CY. Emerging role for drug transporters at the blood-testis barrier. Trends Pharmacol Sci 2011; 32:99-106. [PMID: 21168226 PMCID: PMC3052295 DOI: 10.1016/j.tips.2010.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/26/2010] [Accepted: 11/16/2010] [Indexed: 12/22/2022]
Abstract
Drug transporters are integral membrane proteins that transport a broad range of substrates into and out of cells, usually against a concentration gradient. Studies have shown that efflux pumps such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) localize at the blood-testis barrier (BTB), where they protect the testis from drugs and xenobiotics that are detrimental to spermatogenesis. At the same time, efflux pumps might also preclude entry of non-hormonal contraceptives to the testis. In more recent studies, P-gp function was correlated with BTB integrity. In this review, we discuss findings that have made a significant impact on our understanding of efflux pumps in the testis. Modulation of efflux pump function via specific inhibitors could help to deliver contraceptives to the testis in the future.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
65
|
Laitinen A, Niemi M. Frequencies of single-nucleotide polymorphisms of SLCO1A2, SLCO1B3 and SLCO2B1 genes in a Finnish population. Basic Clin Pharmacol Toxicol 2011; 108:9-13. [PMID: 20560925 DOI: 10.1111/j.1742-7843.2010.00605.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Organic anion transporting polypeptides 1A2, 1B3 and 2B1 (OATP1A2, OATP1B3 and OATP2B1) are expressed in tissues important for pharmacokinetics, and mediate the cellular influx of various endogenous and exogenous compounds, including drugs. The aim of the study was to investigate the frequencies of single-nucleotide polymorphisms (SNP) of SLCO1A2, SLCO1B3 and SLCO2B1 in a Finnish population. The distribution of nine non-synonymous SLCO1A2, SLCO1B3 and SLCO2B1 SNPs was determined in 552 healthy Finnish Caucasian participants by using allelic discrimination with TaqMan 5'nuclease assays. The SLCO1A2 c.38T>C (p.Ile13Thr) and c.516C>T (p.Glu172Asp) SNPs were found with variant allele frequencies of 12.9% (95% confidence interval: 11.0-15.0) and 7.2% (5.8-8.8). The variant allele frequencies of SLCO1B3 c.334T>G (p.Ser112Ala), c.699G>A (p.Met233Ile) and c.767G>C (p.Gly256Ala) were 77.0% (74.4-79.4), 76.9% (74.3-79.3) and 12.8% (10.9-14.9), respectively. None of the participants carried the SLCO1B3 c.1309G>A (p.Gly437Ser) SNP. The SLCO2B1 c.601G>A (p.Val201Met), c.935G>A (p.Arg312Gln) and c.1457C>T (p.Ser486Phe) variant allele frequencies were 2.1% (1.4-3.1), 13.6% (11.7-15.7) and 2.8% (2.0-4.0), respectively. The SLCO1B3 c.334T>G and c.699G>A SNPs were in a nearly complete linkage disequilibrium (r² = 0.99, D' = 1.00), all other SNP pairs showed only a weak correlation. In conclusion, non-synonymous sequence variations of SLCO1A2, SLCO1B3 and SLCO2B1 occur at high frequencies in the Finnish population.
Collapse
Affiliation(s)
- Alli Laitinen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | |
Collapse
|
66
|
Shitara Y. Clinical Importance of OATP1B1 and OATP1B3 in DrugDrug Interactions. Drug Metab Pharmacokinet 2011; 26:220-7. [DOI: 10.2133/dmpk.dmpk-10-rv-094] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
67
|
Visser WE, Friesema ECH, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 2010; 25:1-14. [PMID: 20660303 DOI: 10.1210/me.2010-0095] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effects of thyroid hormone (TH) on development and metabolism are exerted at the cellular level. Metabolism and action of TH take place intracellularly, which require transport of the hormone across the plasma membrane. This process is mediated by TH transporter proteins. Many TH transporters have been identified at the molecular level, although a few are classified as specific TH transporters, including monocarboxylate transporter (MCT)8, MCT10, and organic anion-transporting polypeptide 1C1. The importance of TH transporters for physiology has been illustrated dramatically by the causative role of MCT8 mutations in males with psychomotor retardation and abnormal serum TH concentrations. Although Mct8 knockout animals have provided insight in the mechanisms underlying parts of the endocrine phenotype, they lack obvious neurological abnormalities. Thus, the pathogenesis of the neurological abnormalities in males with MCT8 mutations is not fully understood. The prospects of identifying other transporters and transporter-based syndromes promise an exciting future in the TH transporter field.
Collapse
Affiliation(s)
- W Edward Visser
- Erasmus University Medical Center, Molewaterplein 50, Rotterdam, The Netherlands
| | | | | |
Collapse
|
68
|
Bosquillon C. Drug transporters in the lung--do they play a role in the biopharmaceutics of inhaled drugs? J Pharm Sci 2010; 99:2240-55. [PMID: 19950388 DOI: 10.1002/jps.21995] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of transporters in drug absorption, distribution and elimination processes as well as in drug-drug interactions is increasingly being recognised. Although the lungs express high levels of both efflux and uptake drug transporters, little is known of the implications for the biopharmaceutics of inhaled drugs. The current knowledge of the expression, localisation and functionality of drug transporters in the pulmonary tissue and the few studies that have looked at their impact on pulmonary drug absorption is extensively reviewed. The emphasis is on transporters most likely to affect the disposition of inhaled drugs: (1) the ATP-binding cassette (ABC) superfamily which includes the efflux pumps P-glycoprotein (P-gp), multidrug resistance associated proteins (MRPs), breast cancer resistance protein (BCRP) and (2) the solute-linked carrier (SLC and SLCO) superfamily to which belong the organic cation transporter (OCT) family, the peptide transporter (PEPT) family, the organic anion transporter (OAT) family and the organic anion transporting polypeptide (OATP) family. Whenever available, expression and localisation in the intact human tissue are compared with those in animal lungs and respiratory epithelial cell models in vitro. The influence of lung diseases or exogenous agents on transporter expression is also mentioned.
Collapse
Affiliation(s)
- Cynthia Bosquillon
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom.
| |
Collapse
|
69
|
Richardson TA, Klaassen CD. Role of UDP-glucuronosyltransferase (UGT) 2B2 in metabolism of triiodothyronine: effect of microsomal enzyme inducers in Sprague Dawley and UGT2B2-deficient Fischer 344 rats. Toxicol Sci 2010; 116:413-21. [PMID: 20421340 DOI: 10.1093/toxsci/kfq125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) can impact thyroid hormone homeostasis in rodents. Increased glucuronidation can result in reduction of serum thyroid hormone and a concomitant increase in thyroid-stimulating hormone (TSH). UGT2B2 is thought to glucuronidate triiodothyronine (T(3)). The purposes of this study were to determine the role of UGT2B2 in T(3) glucuronidation and whether increased T(3) glucuronidation mediates the increased TSH observed after MEI treatment. Sprague Dawley (SD) and UGT2B2-deficient Fischer 344 (F344) rats were fed a control diet or diet containing pregnenolone-16alpha-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum thyroxine (T(4)), T(3), and TSH concentrations, hepatic androsterone/T(4)/T(3) glucuronidation, and thyroid follicular cell proliferation were determined. In both SD and F344 rats, MEI treatments decreased serum T(4), whereas serum T(3) was maintained (except with PCB treatment). Hepatic T(4) glucuronidation increased significantly after MEI in both rat strains. Compared with the other MEI, only PCN treatment significantly increased T(3) glucuronidation (281 and 497%) in both SD and UGT2B2-deficient F344 rats, respectively, and increased both serum TSH and thyroid follicular cell proliferation. These data demonstrate an association among increases in T(3) glucuronidation, TSH, and follicular cell proliferation after PCN treatment, suggesting that T(3) is glucuronidated by other PCN-inducible UGTs in addition to UGT2B2. These data also suggest that PCN (rather than 3-MC or PCB) promotes thyroid tumors through excessive TSH stimulation of the thyroid gland.
Collapse
Affiliation(s)
- Terrilyn A Richardson
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
70
|
Expression of thyroid hormone transporters in the human placenta and changes associated with intrauterine growth restriction. Placenta 2010; 31:295-304. [DOI: 10.1016/j.placenta.2010.01.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 11/24/2022]
|
71
|
Sun H, Frassetto LA, Huang Y, Benet LZ. Hepatic clearance, but not gut availability, of erythromycin is altered in patients with end-stage renal disease. Clin Pharmacol Ther 2010; 87:465-72. [PMID: 20090676 DOI: 10.1038/clpt.2009.247] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nonrenal clearance of drugs can be significantly lower in patients with end-stage renal disease (ESRD) than in those with normal renal function. Using erythromycin (ER) as a probe compound, we investigated whether this decrease in nonrenal clearance is due to reduced hepatic clearance (CL(H)) and/or gut metabolism. We also examined the potential effects of the uremic toxins 3-carboxy-4-methyl-5-propyl-2-furan propanoic acid (CMPF) and indoxyl sulfate (Indox) on ER disposition. Route-randomized, two-way crossover pharmacokinetic studies of ER were conducted in 12 ESRD patients and 12 healthy controls after oral (250 mg) and intravenous (125 mg) dosing with ER. In patients with ESRD, CL(H) decreased 31% relative to baseline values (0.35 +/- 0.14 l/h/kg vs. 0.51 +/- 0.13 l/h/kg, P = 0.01), with no change in steady-state volume of distribution. With oral dosing, the bioavailability of ER increased 36% in patients with ESRD, and this increase was not related to changes in gut availability. As expected, plasma levels of CMPF and Indox were significantly higher in the patients than in the healthy controls. However, no correlation was observed between CL(H) of ER and the levels of uremic toxins.
Collapse
Affiliation(s)
- H Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | | | | | | |
Collapse
|
72
|
Wagner MS, Wajner SM, Maia AL. Is there a role for thyroid hormone on spermatogenesis? Microsc Res Tech 2009; 72:796-808. [DOI: 10.1002/jemt.20759] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
73
|
Abstract
Membrane transporters are now recognized as important determinants of the transmembrane passage of drugs. Organic anion transporting polypeptides (OATP) form a family of influx transporters expressed in various tissues important for pharmacokinetics. Of the 11 human OATP transporters, OATP1B1, OATP1B3 and OATP2B1 are expressed on the sinusoidal membrane of hepatocytes and can facilitate the liver uptake of their substrate drugs. OATP1A2 is expressed on the luminal membrane of small intestinal enterocytes and at the blood-brain barrier, potentially mediating drug transport at these sites. Several clinically used drugs have been identified as substrates of OATP transporters (e.g. many statins are substrates of OATP1B1). Some drugs may inhibit OATP transporters (e.g. cyclosporine) causing pharmacokinetic drug-drug interactions. Moreover, genetic variability in genes encoding OATP transporters can result in marked inter-individual differences in pharmacokinetics. For example, a single nucleotide polymorphism (c.521T > C, p.Val174Ala) in the SLCO1B1 gene encoding OATP1B1 decreases the ability of OATP1B1 to transport active simvastatin acid from portal circulation into the liver, resulting in markedly increased plasma concentrations of simvastatin acid and an enhanced risk of simvastatin-induced myopathy. SLCO1B1 polymorphism also affects the pharmacokinetics of many other, but not all (fluvastatin), statins and that of the antidiabetic drug repaglinide, the antihistamine fexofenadine and the endothelin A receptor antagonist atrasentan. This review compiles the current knowledge about the expression and function of human OATP transporters, their substrate and inhibitor specificities, as well as pharmacogenetics.
Collapse
Affiliation(s)
- A Kalliokoski
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
74
|
Gui C, Wahlgren B, Lushington GH, Hagenbuch B. Identification, Ki determination and CoMFA analysis of nuclear receptor ligands as competitive inhibitors of OATP1B1-mediated estradiol-17beta-glucuronide transport. Pharmacol Res 2009; 60:50-6. [PMID: 19427586 PMCID: PMC2748668 DOI: 10.1016/j.phrs.2009.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 02/08/2023]
Abstract
Evidence shows that drug-drug interactions can occur at the level of drug transporters such as the organic anion transporting polypeptides (OATPs), a group of membrane solute carriers that mediate the sodium-independent transport of a wide range of amphipathic organic compounds. The polyspecific OATP1B1 is exclusively expressed at the basolateral membrane of hepatocytes and mediates uptake of amphipathic organic compounds from blood into hepatocytes. Nuclear receptors are ligand-activated transcription factors that play an important role in xenobiotic disposition and human diseases. Quite a few nuclear receptor ligands interact with transport proteins. A high-resolution three-dimensional structure is critical to understand the polyspecificity of OATP1B1 to predict and prevent adverse drug-drug interactions. Unfortunately there are no crystal structures of OATPs/Oatps available to date. Therefore, in this study we attempted to elucidate the characteristics of the substrate binding site of OATP1B1 based on small molecules interacting with it. First, we identified inhibitors of the OATP1B1 model substrate estradiol-17beta-glucuronide from about 40 nuclear receptor ligands. Among them, GW1929, paclitaxel and troglitazone were strong inhibitors, while 5 alpha-androstane, 5 alpha-androstane-3beta, 17beta-diol-17-hexahydrobenzoate and estradiol-3-benzoate were weak inhibitors. Then, we selected 25 compounds and performed inhibition kinetic studies to identify competitive inhibitors and determine their K(i) values which ranged from submicromolar to submillimolar. Finally, we performed CoMFA analysis on the identified competitive inhibitors. The CoMFA results indicate that the substrate binding site of OATP1B1 consists of a large hydrophobic middle part with basic residues at both ends that could be very important for substrate binding.
Collapse
Affiliation(s)
- Chunshan Gui
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Brett Wahlgren
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Gerald H. Lushington
- Molecular Graphics and Modeling Laboratory, The University of Kansas, Lawrence, Kansas 66045
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
- Kansas Masonic Cancer Research Institute, The University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
75
|
Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 2009; 26:2039-54. [PMID: 19568696 PMCID: PMC2719753 DOI: 10.1007/s11095-009-9924-0] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 06/09/2009] [Indexed: 01/12/2023]
Abstract
Drug transporters are recognized as key players in the processes of drug absorption, distribution, metabolism, and elimination. The localization of uptake and efflux transporters in organs responsible for drug biotransformation and excretion gives transporter proteins a unique gatekeeper function in controlling drug access to metabolizing enzymes and excretory pathways. This review seeks to discuss the influence intestinal and hepatic drug transporters have on pharmacokinetic parameters, including bioavailability, exposure, clearance, volume of distribution, and half-life, for orally dosed drugs. This review also describes in detail the Biopharmaceutics Drug Disposition Classification System (BDDCS) and explains how many of the effects drug transporters exert on oral drug pharmacokinetic parameters can be predicted by this classification scheme.
Collapse
Affiliation(s)
- Sarah Shugarts
- Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-0912, USA
| | | |
Collapse
|
76
|
Abstract
Thyroid hormone plays an essential role in proper mammalian development of the central nervous system and peripheral tissues. Lack of sufficient thyroid hormone results in abnormal development of virtually all organ systems, a syndrome termed cretinism. In particular, hypothyroidism in the neonatal period causes serious damage to neural cells and leads to mental retardation. Although thyroxine is the major product secreted by the thyroid follicular cells, the action of thyroid hormone is mediated mainly through the deiodination of T(4) to the biologically active form 3,3', 5-triiodo-L-thyronine, followed by the binding of T(3) to a specific nuclear receptor. Before reaching the intracellular targets, thyroid hormone must cross the plasma membrane. Because of the lipophilic nature of thyroid hormone, it was thought that they traversed the plasma membrane by simple diffusion. However, in the past decade, a membrane transport system for thyroid hormone has been postulated to exist in various tissues. Several classes of transporters, organic anion transporter polypeptide (oatp) family, Na(+)/Taurocholate cotransporting polypeptide (ntcp) and amino acid transporters have been reported to transport thyroid hormones. Monocarboxylate transporter8 (MCT8) has recently been identified as an active and specific thyroid hormone transporter. Mutations in MCT8 are associated with severe X-linked psycomotor retardation and strongly elevated serum T3 levels in young male patients. Several other molecules should be contributed to exert the role of thyroid hormone in the central nervous system.
Collapse
Affiliation(s)
- Takehiro Suzuki
- Division Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574, Japan
| | | |
Collapse
|
77
|
Franke RM, Scherkenbach LA, Sparreboom A. Pharmacogenetics of the organic anion transporting polypeptide 1A2. Pharmacogenomics 2009; 10:339-44. [PMID: 19290786 DOI: 10.2217/14622416.10.3.339] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The solute carrier, human organic anion transporting polypeptide 1A2 (OATP1A2, OATP-A, OATP1 and OATP) is highly expressed in the intestine, kidney, cholangiocytes and the blood-brain barrier. This localization suggests that OATP1A2 may be vitally important in the absorption, distribution and excretion of a broad array of clinically important drugs. Several nonsynonymous polymorphisms have been identified in the gene encoding OATP1A2, SLCO1A2 (SLC21A3), with some of these variants demonstrating functional changes in the transport of OATP1A2 substrates.
Collapse
Affiliation(s)
- Ryan M Franke
- Department of Pharmaceutical Sciences, St Jude Children's Hospital, 332 North Lauderdale, DTRC, Mail Stop 313, Room I5308, Memphis, TN 38105, USA
| | | | | |
Collapse
|
78
|
Abstract
In adults, the hepatobiliary system, together with the kidney, constitute the main routes for the elimination of several endogenous and xenobiotic compounds into bile and urine, respectively. However, during intrauterine life the biliary route of excretion for cholephilic compounds, such as bile acids and biliary pigments, is very poor. Although very early in pregnancy the fetal liver produces bile acids, bilirubin and biliverdin, these compounds cannot be efficiently eliminated by the fetal hepatobiliary system, owing to the immaturity of the excretory machinery in the fetal liver. Therefore, the potentially harmful accumulation of cholephilic compounds in the fetus is prevented by their elimination across the placenta. Owing to the presence of detoxifying enzymes and specific transport systems at different locations of the placental barrier, such as the endothelial cells of chorionic vessels and trophoblast cells, this organ plays an important role in the hepatobiliary-like function during intrauterine life. The relevance of this excretory function in normal fetal physiology is evident in situations where high concentrations of biliary compounds are accumulated in the mother. This may result in oxidative stress and apoptosis, mainly in the placenta and fetal liver, which might affect normal fetal development and challenge the fate of the pregnancy. The present article reviews current knowledge of the mechanisms underlying the hepatobiliary function of the fetal-placental unit and the repercussions of several pathological conditions on this tandem.
Collapse
|
79
|
Leuthold S, Hagenbuch B, Mohebbi N, Wagner CA, Meier PJ, Stieger B. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol 2009; 296:C570-82. [PMID: 19129463 DOI: 10.1152/ajpcell.00436.2008] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organic anion transporting polypeptides (humans OATPs, rodents Oatps) are expressed in most mammalian tissues and mediate cellular uptake of a wide variety of amphipathic organic compounds such as bile salts, steroid conjugates, oligopeptides, and a large list of drugs, probably by acting as anion exchangers. In the present study we aimed to investigate the role of the extracellular pH on the transport activity of nine human and four rat OATPs/Oatps. Furthermore, we aimed to test the concept that OATP/Oatp transport activity is accompanied by extrusion of bicarbonate. By using amphibian Xenopus laevis oocytes expressing OATPs/Oatps and mammalian cell lines stably transfected with OATPs/Oatps, we could demonstrate that in all OATPs/Oatps investigated, with the exception of OATP1C1, a low extracellular pH stimulated transport activity. This stimulation was accompanied by an increased substrate affinity as evidenced by lower apparent Michaelis-Menten constant values. OATP1C1 is lacking a highly conserved histidine in the third transmembrane domain, which was shown by site-directed mutagenesis to be critically involved in the pH dependency of OATPs/Oatps. Using online intracellular pH measurements in OATP/Oatp-transfected Chinese Hamster Ovary (CHO)-K1 cells, we could demonstrate the presence of a 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-sensitive chloride/bicarbonate exchanger in CHO-K1 cells and that OATP/Oatp-mediated substrate transport is paralleled by bicarbonate efflux. We conclude that the pH dependency of OATPs/Oatps may lead to a stimulation of substrate transport in an acidic microenvironment and that the OATP/Oatp-mediated substrate transport into cells is generally compensated or accompanied by bicarbonate efflux.
Collapse
Affiliation(s)
- Simone Leuthold
- Univ. Hospital, Dept. of Medicine, Division of Clinical Pharmacology and Toxicology, 8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
Thyroid hormone is a critical regulator of growth, development, and metabolism in virtually all tissues, and altered thyroid status affects many organs and systems. Although for many years testis has been regarded as a thyroid hormone unresponsive organ, it is now evident that thyroid hormone plays an important role in testicular development and function. A considerable amount of data show that thyroid hormone influences steroidogenesis as well as spermatogenesis. The involvement of tri-iodothyronine (T(3)) in the control of Sertoli cell proliferation and functional maturation is widely accepted, as well as its role in postnatal Leydig cell differentiation and steroidogenesis. The presence of thyroid hormone receptors in testicular cells throughout development and in adulthood implies that T(3) may act directly on these cells to bring about its effects. Several recent studies have employed different methodologies and techniques in an attempt to understand the mechanisms underlying thyroid hormone effects on testicular cells. The current review aims at presenting an updated picture of the recent advances made regarding the role of thyroid hormones in male gonadal function.
Collapse
Affiliation(s)
- Márcia Santos Wagner
- Endocrine Division, Thyroid Section, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 90035-033, Porto Alegre, RS, Brasil
| | | | | |
Collapse
|
81
|
Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 2008; 38:778-801. [PMID: 18668430 DOI: 10.1080/00498250801986951] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. The organic anion transporting polypeptides (humans OATP; other species Oatp) belong to the SLCO gene superfamily of transporters and are twelve transmembrane domain glycoproteins expressed in various epithelial cells. Some OATPs/Oatps are expressed in a single organ, while others are expressed ubiquitously. 2. The functionally characterized members mediate sodium-independent transport of a variety of structurally independent, mainly amphipathic organic compounds, including bile salts, hormones and their conjugates, toxins, and various drugs. 3. This review summarizes the general features and the substrates of the eleven human OATPs. Furthermore, it reviews what is known about the mechanism of their multispecificity, their predicted structure, their role in drug-food interactions, and their role in cancer. 4. Finally, some open questions are raised that need to be addressed to advance OATP research in the near future.
Collapse
Affiliation(s)
- B Hagenbuch
- The University of Kansas Medical Center, Pharmacology, Toxicology and Therapeutics, Kansas City, KS 66160, USA.
| | | |
Collapse
|
82
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease is characterized by multiple abnormalities in the thyroid hormone physiology. In the present review, we will briefly discuss the effects of uremia on thyroid hormone synthesis, metabolism, transport, and action. RECENT FINDINGS Uremic toxins have been shown to interfere at various levels of the thyroid hormone action, including thyroid hormone transport across plasma membrane and thyroid hormone receptor activity. These abnormalities could explain the resistance to thyroid hormone action in uremia, at least in some tissues. SUMMARY The pathogenesis of thyroid axis abnormalities in uremia is incompletely understood, and its clinical significance remains unclear. The increasing prevalence of chronic kidney disease underscores the need for further efforts to understand the metabolic consequences of uremia and address questions such as the impact of thyroid hormone therapy.
Collapse
Affiliation(s)
- Angélica Amorim Amato
- Molecular Pharmacology Laboratory, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | | | | |
Collapse
|
83
|
van der Deure WM, Hansen PS, Peeters RP, Kyvik KO, Friesema ECH, Hegedüs L, Visser TJ. Thyroid hormone transport and metabolism by organic anion transporter 1C1 and consequences of genetic variation. Endocrinology 2008; 149:5307-14. [PMID: 18566113 DOI: 10.1210/en.2008-0430] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Organic anion transporting polypeptide (OATP) 1C1 has been characterized as a specific thyroid hormone transporter. Based on its expression in capillaries in different brain regions, OATP1C1 is thought to play a key role in transporting thyroid hormone across the blood-brain barrier. For this reason, we studied the specificity of iodothyronine transport by OATP1C1 in detail by analysis of thyroid hormone uptake in OATP1C1-transfected COS1 cells. Furthermore, we examined whether OATP1C1 is rate limiting in subsequent thyroid hormone metabolism in cells cotransfected with deiodinases. We also studied the effect of genetic variation in the OATP1C1 gene: polymorphisms were determined in 155 blood donors and 1192 Danish twins and related to serum thyroid hormone levels. In vitro effects of the polymorphisms were analyzed in cells transfected with the variants. Cells transfected with OATP1C1 showed increased transport of T4 and T4 sulfate (T4S), little transport of rT3, and no transport of T3 or T3 sulphate, compared with mock transfected cells. Metabolism of T4, T4S, and rT3 by cotransfected deiodinases was greatly augmented in the presence of OATP1C1. The OATP1C1-intron3C>T, Pro143Thr, and C3035T polymorphisms were not consistently associated with thyroid hormone levels, nor did they affect transport function in vitro. In conclusion, OATP1C1 mediates transport of T4, T4S, and rT3 and increases the access of these substrates to the intracellular active sites of the deiodinases. No effect of genetic variation on the function of OATP1C1 was observed.
Collapse
Affiliation(s)
- Wendy M van der Deure
- Department of Internal Medicine, Erasmus University Medical Center, Room Ee 502, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
During recent years, it has become increasingly recognized that drug transporters play important roles in drug absorption and disposition. Organic anion transporting polypeptides (OATPs) are membrane transporters critically involved in the cellular uptake of drugs in tissues important for pharmacokinetics, such as the intestine, liver and kidneys. Recent advances in the pharmacogenomics of OATP1B1 have revealed that OATP transporters can play important roles in explaining interindividual variability in drug pharmacokinetics, and thus contribute to interindividual as well as interethnic variability in drug response. This article will provide an up-to-date review of human OATPs and their substrates, and a current compilation of their DNA sequence variations.
Collapse
Affiliation(s)
- Mikko Niemi
- University of Helsinki, Department of Clinical Pharmacology, Helsinki University Central Hospital, PO Box 340, Helsinki, FIN-00029 HUS, Finland.
| |
Collapse
|
85
|
Huber RD, Gao B, Sidler Pfändler MA, Zhang-Fu W, Leuthold S, Hagenbuch B, Folkers G, Meier PJ, Stieger B. Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 2006; 292:C795-806. [PMID: 16971491 DOI: 10.1152/ajpcell.00597.2005] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present study we isolated two splice variants of organic anion transporting polypeptide 3A1 (OATP3A1_v1 and OATP3A1_v2) from human brain. OATP3A1_v2 lacks 18 amino acids (aa) at the COOH-terminal end (692 aa) but is otherwise similar in sequence to OATP3A1_v1 (710 aa). OATP3A1_v1 exhibits a wide tissue distribution, with expression in testis, various brain regions, heart, lung, spleen, peripheral blood leukocytes, and thyroid gland, whereas OATP3A1_v2 is predominantly expressed in testis and brain. On the cellular and subcellular levels OATP3A1_v1 could be immunolocalized in testicular germ cells, the basolateral plasma membrane of choroid plexus epithelial cells, and neuroglial cells of the gray matter of human frontal cortex. Immunolocalization of OATP3A1_v2 included Sertoli cells in testis, apical and/or subapical membranes in choroid plexus epithelial cells, and neurons (cell bodies and axons) of the gray and white matter of human frontal cortex. The rodent ortholog Oatp3a1 was also widely distributed in rat brain, and its localization included somatoneurons as well as astroglial cells. Transport studies in cRNA-injected Xenopus laevis oocytes and in stably transfected Chinese hamster ovary FlpIn cells revealed a similar broad substrate specificity for both splice variants. Transported substrates include prostaglandin (PG)E(1) and PGE(2), thyroxine, and the cyclic oligopeptides BQ-123 (endothelin receptor antagonist) and vasopressin. These studies provide further evidence for the involvement of OATPs in oligopeptide transport. They specifically suggest that OATP3A1 variants might be involved in the regulation of extracellular vasopressin concentration in human brain and thus might influence the neuromodulation of neurotransmission by cerebral neuropeptides such as vasopressin.
Collapse
Affiliation(s)
- Robert D Huber
- Univ. Hospital, Dept. of Internal Medicine, Institute of Clinical Pharmacology and Toxicology, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Gorelik J, Patel P, Ng'andwe C, Vodyanoy I, Diakonov I, Lab M, Korchev Y, Williamson C. Genes encoding bile acid, phospholipid and anion transporters are expressed in a human fetal cardiomyocyte culture. BJOG 2006; 113:552-8. [PMID: 16637898 DOI: 10.1111/j.1471-0528.2006.00918.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To establish a human fetal cardiomyocyte culture and to investigate whether the genes that encode transporters that may influence influx or efflux of bile acids are expressed in human fetal cardiomyocytes. DESIGN Laboratory study. SETTING Imperial College London. SAMPLE Six fetal hearts were obtained at the time of termination of pregnancy at 12-13 weeks of gestation and used to generate primary human cardiomyocyte cultures. METHODS To confirm the presence of cardiomyocytes, the cells were incubated with monoclonal antibodies to sarcomeric alpha-actinin and anticardiac myosin heavy chain. Real-time reverse transcription polymerase chain reaction was used to establish whether transcripts of genes that may influence bile acid transport are present in the culture (NTCP, BSEP, MDR3, FIC1, MRP2, MRP3, OATP-A, OATP-C, OATP-D, OATP-E) and whether taurocholate administration alters messenger RNA (mRNA) expression. MAIN OUTCOME MEASURES Relative mRNA expression of genes of interest. RESULTS Real-time polymerase chain reaction demonstrated the presence of mRNA for BSEP, MDR3, FIC1, OATP-C, OATP-D and OATP-E in fetal heart. Four transcripts remained in the cardiomyocyte culture (BSEP, MDR3, FIC1 and OATP-D), and we demonstrated the influence of taurocholate on gene expression. CONCLUSIONS We have developed an in vitro model of the fetal heart that may be used for studies of the cardiac effect of endobiotics, e.g. bile acids, or of specific agents that may be used to treat the mother or fetus in pregnancy.
Collapse
Affiliation(s)
- J Gorelik
- Division of Medicine, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
87
|
König J, Seithel A, Gradhand U, Fromm MF. Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch Pharmacol 2006; 372:432-43. [PMID: 16525793 DOI: 10.1007/s00210-006-0040-y] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/23/2006] [Indexed: 01/27/2023]
Abstract
Organic anion transporting polypeptides (OATPs) mediate the uptake of a broad range of compounds into cells. Substrates for members of the OATP family include bile salts, hormones, and steroid conjugates as well as drugs like the HMG-CoA-reductase inhibitors (statins), cardiac glycosides, anticancer agents like methotrexate, and antibiotics like rifampicin. OATPs are expressed in a variety of different tissues, including intestine, liver, kidney, and brain, suggesting that they play a critical role in drug absorption, distribution, and excretion. The identification and functional characterisation of naturally occurring variations in genes encoding human OATP (SLCO) family members is in the focus of transporter research. As a result of their broad substrate spectrum and their wide tissue distribution, altered transport characteristics or protein localisation can contribute significantly to interindividual variations of drug effects. The analysis of the consequences of genetic variations in genes encoding transport proteins may, therefore, contribute to a better understanding of interindividual differences in drug effects and to individualise treatment regimens with drugs that are substrates for human OATP proteins. In this review, we summarise the current knowledge on genetic variations in transporter genes encoding human OATP family members and their functional consequences analysed by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jörg König
- Institute for Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstr. 17, 91054, Erlangen, Germany.
| | | | | | | |
Collapse
|
88
|
Lilja JJ, Laitinen K, Neuvonen PJ. Effects of grapefruit juice on the absorption of levothyroxine. Br J Clin Pharmacol 2006; 60:337-41. [PMID: 16120075 PMCID: PMC1884777 DOI: 10.1111/j.1365-2125.2005.02433.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS Our aim was to study the effect of grapefruit juice on the pharmacokinetics of levothyroxine. METHODS In a randomized cross-over study with two phases, 10 healthy subjects ingested 200 ml grapefruit juice or water (control) three times daily for 2 days. On day 3, a single 600 microg dose of levothyroxine was administered with 200 ml grapefruit juice or water, which was also ingested 1 h before and 1 h after levothyroxine. Serum concentrations of total thyroxine (T4) and thyroid-stimulating hormone (TSH) were measured up to 24 h. RESULTS Grapefruit juice decreased slightly (11%; P < 0.01) the maximal increase of T4 concentration after ingestion of levothyroxine from 66.4 nmol l(-1) to 59.4 nmol l(-1) (95% CI on the difference -11.3, -2.7). The incremental areas under the serum T4 concentration-time curve (dAUC) during the first 4 and 6 h were also decreased slightly: dAUC(0,4 h) by 13% (P < 0.05), from 195 nmol l(-1) h to 169 nmol l(-1) h (95% CI -51, -1) and dAUC(0,6 h) by 9% (P = 0.085), from 298 nmol l(-1) h to 271 nmol l(-1) h (95% CI -58, 4). The decrease in the serum concentration of TSH (1.25 mU l(-1)) measured 24 h after ingestion of levothyroxine, was not altered by grapefruit juice. CONCLUSIONS Grapefruit juice may slightly delay the absorption of levothyroxine, but it seems to have only a minor effect on its bioavailability. Accordingly, the clinical relevance of the grapefruit juice-levothyroxine interaction is likely to be small.
Collapse
Affiliation(s)
- Jari J Lilja
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Cental Hospital, Helsinki, Finland.
| | | | | |
Collapse
|
89
|
|
90
|
|
91
|
Abstract
Cellular entry is required for conversion of thyroid hormone by the intracellular deiodinases and for binding of 3,3',5-triiodothyronine (T(3)) to its nuclear receptors. Recently, several transporters capable of thyroid hormone transport have been identified. Functional expression studies using Xenopus laevis oocytes have demonstrated that organic anion transporters (e.g., OATPs), and L-type amino acid transporters (LATs) facilitate thyroid hormone uptake. Among these, OATP1C1 has a high affinity and specificity for thyroxine (T(4)). OATP1C1 is expressed in capillaries throughout the brain, suggesting it is critical for transport of T(4) over the blood-brain barrier. We have also characterized a member of the monocarboxylate transporter family, MCT8, as a very active and specific thyroid hormone transporter. Human MCT8 shows preference for T(3) as the ligand. MCT8 is highly expressed in liver and brain but is also widely distributed in other tissues. The MCT8 gene is located on the X chromosome. Recently, mutations in MCT8 have been found to be associated with severe X-linked psychomotor retardation and strongly elevated serum T(3) levels.
Collapse
Affiliation(s)
- Jurgen Jansen
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
92
|
Abstract
Thyroid hormone is important for development of various tissues, in particular brain, and for regulation of metabolic processes throughout life. The follicular cells of the thyroid gland produce predominantly T4 (thyroxine), but the biological activity of thyroid hormone is largely exerted by T3 (3,3′,5-tri-iodothyronine). The deiodinases involved in T4-to-T3 conversion or T4 and T3 degradation, as well as the T3 receptors, are located intracellularly. Therefore the action and metabolism of thyroid hormone require transport of iodothyronines across the cell membrane via specific transporters. Recently, a number of transporters capable of cellular uptake of iodothyronines have been identified. The most specific transporters identified so far are OATP1C1 and MCT8, which appear to be involved in T4 transport across the blood–brain barrier, and in T3 transport into brain neurons, respectively. The MCT8 gene is located on human chromosome Xq13, and mutations in MCT8 are associated with X-linked severe psychomotor retardation and elevated serum T3 levels.
Collapse
Affiliation(s)
- E C H Friesema
- Department of Internal Medicine, Erasmus University Medical Center, Room Ee502, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | |
Collapse
|
93
|
|
94
|
Mikkaichi T, Suzuki T, Tanemoto M, Ito S, Abe T. The organic anion transporter (OATP) family. Drug Metab Pharmacokinet 2004; 19:171-9. [PMID: 15499184 DOI: 10.2133/dmpk.19.171] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the last decade, many organic anion transporters have been isolated, characterized their distribution and substrates. The recently identified organic anion transporter family OATP (organic anion transporting polypeptide)/LST (liver-specific transporter) family, transport bile acids, hormones as well as eicosanoids, various compounds (BSP, HMG-CoA reductase inhibitor, angiotensin converting enzyme inhibitor, etc.). The isolation of the family revealed that not only hydrophilic compounds, drugs and hormones of lipophilic nature need a membrane transport system to penetrate cell membrane. In this family, the nomenclature becomes very complicated and the physiological role of this family is still unclear except about few organs such as the brain, liver and kidney. Even in such organs, the co-existence of the OATP/LST family and similar substrate specificity hamper the progress and clear characterization identifying the real role of the transporter family. Here, recent progress and an insight of this field are reviewed.
Collapse
Affiliation(s)
- Tsuyoshi Mikkaichi
- Department of Clinical Pharmacy, Tohoku University Graduate School of Pharmaceutical Sciences, Japan
| | | | | | | | | |
Collapse
|
95
|
St-Pierre MV, Stallmach T, Freimoser Grundschober A, Dufour JF, Serrano MA, Marin JJG, Sugiyama Y, Meier PJ. Temporal expression profiles of organic anion transport proteins in placenta and fetal liver of the rat. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1505-16. [PMID: 15345472 DOI: 10.1152/ajpregu.00279.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological cholestasis linked to immature hepatobiliary transport systems for organic anions occurs in rat and human neonates. In utero, the placenta facilitates vectorial transfer of certain fetal-derived solutes to the maternal circulation for elimination. We compared the ontogenesis of organic anion transporters in the placenta and the fetal liver of the rat to assess their relative abundance throughout gestation and to determine whether the placenta compensates for the late maturation of transporters in the developing liver. The mRNA of members of the organic anion transporting polypeptide (Oatp) superfamily, the multidrug resistance protein (Mrp) family, one organic anion transporter (OAT), and the bile acid carriers Na(+)-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) was quantified by real-time PCR. The most abundant placental transporters were Oatp4a1, whose mRNA increased 10-fold during gestation, and Mrp1. Mrp1 immunolocalized predominantly to epithelial cells of the endoplacental yolk sac, suggesting an excretory role that sequesters fetal-derived solutes in the yolk sac cavity, and faintly to the basal syncytiotrophoblast surface. The mRNA levels of Oatp2b1, Mrp3, and Bsep in the placenta exceeded those in the fetal liver until day 20 of gestation, suggesting that the fetus relies on placental clearance of substrates when expression in the developing liver is low. Mrp3 immunolocalized to the epithelium of the endoplacental yolk sac and less abundantly in the labyrinth zone and endothelium of the maternal arteries. The placental expression of Oatp1a1, Oatp1a4, Oatp1a5, Oatp1b2, Oat, Ntcp, Mrp2, and Mrp6 was low.
Collapse
Affiliation(s)
- M V St-Pierre
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital Zürich, 100 Rämistrasse, Zürich 8091, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Tohyama K, Kusuhara H, Sugiyama Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology 2004; 145:4384-91. [PMID: 15166123 DOI: 10.1210/en.2004-0058] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study was aimed at investigating the involvement of mouse organic anion transporting polypeptide 14 (mOatp14) in the uptake of T4 across the blood-brain barrier. Functional expression of mOatp14 in HEK293 cells revealed that T4 and rT3 are high affinity substrates of mOatp14 (Michaelis constant, 0.34 and 0.46 microm, respectively), and the specific uptake of T3 was 4-fold less than that of T4 and rT3. Taurocholate, probenecid, and estrone-3-sulfate were moderate inhibitors for mOatp14, whereas digoxin (substrate of Oatp2), benzylpenicillin (substrate of Oat3), and large neutral amino acids had no effect. mOatp14 is widely expressed throughout the brain, except for the cerebellum. The expression of mOatp14 in the isolated brain capillaries and the choroid plexus was shown by Western blot. The uptake clearance of T4 by the cerebral cortex determined using the in situ brain perfusion technique in mice was 580 microl/min.g tissue, 3-fold greater than that by the cerebellum, and a saturable component (Michaelis constant, 1.0 microm) accounts for the major fraction of the total uptake. Taurocholate inhibited the uptake of T4 by the cerebral cortex completely, but the inhibition by estrone-3-sulfate was partial (50%). These results suggest that transporters play a predominant role in the delivery of T4 to the brain, and mOatp14 accounts for estrone-3-sulfate inhibitable fraction, at least partly. The absence of inhibition by digoxin, benzylpenicillin, leucine, and 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid for the uptake of T4 by the cerebral cortex suggests the presence of other unknown transporter for T4 uptake by the brain. Immunohistochemical staining revealed basolateral localization of mOatp14 in the choroid plexus in which it may also play a role in T4 uptake.
Collapse
Affiliation(s)
- Kimio Tohyama
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
97
|
Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, Chaki T, Masuda S, Tokui T, Eto N, Abe M, Satoh F, Unno M, Hishinuma T, Inui KI, Ito S, Goto J, Abe T. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci U S A 2004; 101:3569-74. [PMID: 14993604 PMCID: PMC373503 DOI: 10.1073/pnas.0304987101] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Digoxin, which is one of the most commonly prescribed drugs for the treatment of heart failure, is mainly eliminated from the circulation by the kidney. P-glycoprotein is well characterized as a digoxin pump at the apical membrane of the nephron. However, little is known about the transport mechanism at the basolateral membrane. We have isolated an organic anion transporter (OATP4C1) from human kidney. Human OATP4C1 is the first member of the organic anion transporting polypeptide (OATP) family expressed in human kidney. The isolated cDNA encodes a polypeptide of 724 aa with 12 transmembrane domains. The genomic organization consists of 13 exons located on chromosome 5q21. Its rat counterpart, Oatp4c1, is also isolated from rat kidney. Human OATP4C1 transports cardiac glycosides (digoxin, K(m) = 7.8 microM and ouabain, K(m) = 0.38 microM), thyroid hormone (triiodothyronine, K(m) = 5.9 microM and thyroxine), cAMP, and methotrexate in a sodium-independent manner. Rat Oatp4c1 also transports digoxin (K(m) = 8.0 microM) and triiodothyronine (K(m) = 1.9 microM). Immunohistochemical analysis reveals that rat Oatp4c1 protein is localized at the basolateral membrane of the proximal tubule cell in the kidney. These data suggest that human OATP4C1/rat Oatp4c1 might be a first step of the transport pathway of digoxin and various compounds into urine in the kidney.
Collapse
Affiliation(s)
- Tsuyoshi Mikkaichi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Drug transporters are increasingly recognized as a key determinant of drug disposition. Recent studies have revealed that targeted expression of drug uptake and efflux transporters to specific cell membrane domains allows for the efficient directional movement of many drugs in clinical use. While the role of certain efflux transporters such as MDR1 (P-glycoprotein) in drug disposition has been extensively studied, emerging evidence suggests that uptake transporters may also be important to the intestinal absorption and renal or hepatic elimination of drugs. Members of the organic anion-transporting polypeptide (OATP) family of drug uptake transporters have been found capable of transporting a large array of structurally divergent drugs. Moreover, expression of OATP isoforms in the gastrointestinal tract, liver and kidney, as well as at the level of the blood-brain barrier, has important implications for our understanding of the factors governing drug absorption, elimination and tissue penetration.
Collapse
Affiliation(s)
- R B Kim
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
99
|
Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 2003; 447:653-65. [PMID: 14579113 DOI: 10.1007/s00424-003-1168-y] [Citation(s) in RCA: 725] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 08/09/2003] [Accepted: 08/15/2003] [Indexed: 12/13/2022]
Abstract
The organic anion transporting polypeptides (rodents: Oatps, human: OATPs) form a superfamily of sodium-independent transport systems that mediate the transmembrane transport of a wide range of amphipathic endogenous and exogenous organic compounds. Since the traditional SLC21 gene classification does not permit an unequivocal and species-independent identification of genes and gene products, all Oatps/OATPs are newly classified within the OATP/ SLCO superfamily and subdivided into families (>/=40% amino acid sequence identity), subfamilies (>/=60% amino acid sequence identity) and individual genes and gene products according to their phylogenetic relationships and chronology of identification. Implementation of this new classification and nomenclature system occurs in agreement with the HUGO Gene Nomenclature Committee (HGNC). Among 52 members of the OATP/ SLCO superfamily, 36 members have been identified so far in humans, rat and mouse. The latter are clustered within 6 (out of 12) families (OATP1-OATP6) and 13 subfamilies. Oatps/OATPs represent 12 transmembrane domain proteins and contain the superfamily signature D-X-RW-(I,V)-GAWW-X-G-(F,L)-L. Although species divergence, multispecificity and wide tissue distribution are common characteristics of many Oatps/OATPs, some members of the OATP/ SLCO superfamily are highly conserved during evolution, have a high substrate specificity and exhibit unique cellular expression in distinct organs. Hence, while Oatps/OATPs with broad substrate specificity appear to play an important role in the bioavailability, distribution and excretion of numerous exogenous amphipathic organic anionic compounds, Oatps/OATPs with a narrow spectrum of transport substrates may exhibit more specific physiological functions in distinct organs.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, 8091, Zurich, Switzerland.
| | | |
Collapse
|
100
|
van der Putten HHAGM, Friesema ECH, Abumrad NA, Everts ME, Visser TJ. Thyroid hormone transport by the rat fatty acid translocase. Endocrinology 2003; 144:1315-23. [PMID: 12639914 DOI: 10.1210/en.2002-220520] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the hypothesis that rat fatty acid translocase (rFAT) mediates the cellular uptake of T(3) and other iodothyronines. Uninjected Xenopus laevis oocytes and oocytes injected 4 d previously with rFAT cRNA were incubated for 60 min at 25 C in medium containing 0.01-10 micro M [(125)I]T(3) and 0.1% BSA, or 1-100 micro M [(3)H]oleic acid and 0.5% BSA. Injection of rFAT cRNA resulted in a 1.9-fold increase in uptake of T(3) (10 nM) and a 1.4-fold increase in uptake of oleic acid (100 micro M). Total T(3) uptake was lower in the presence than in the absence of BSA, but relative to the free T(3) concentration, uptake was increased by BSA. The fold induction of T(3) uptake by rFAT was not influenced by BSA. By analyzing uptake as a function of the ligand concentration, we estimated a K(m) value of 3.6 micro M for (total) T(3) and 56 micro M for (total) oleic acid. In addition to T(3), rFAT mediates the uptake of T(4), rT(3), 3,3'-diiodothyronine, and T(3) sulfate. The injection of human type III deiodinase cRNA with or without rFAT cRNA resulted in the complete deiodination of T(3) taken up by the oocytes, indicating that T(3) is indeed transported to the cytoplasm. In conclusion, our results demonstrate transport of T(3) and other iodothyronines by rFAT.
Collapse
|