51
|
Luheshi GN, Rummel C. Is programming of weight regulation immune to neonatal inflammation? Am J Physiol Regul Integr Comp Physiol 2007; 293:R578-80. [PMID: 17537838 DOI: 10.1152/ajpregu.00376.2007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Giamal N Luheshi
- Douglas Mental Health University Institute, Dept. of Psychiatry, McGill University, 6875 Blvd. LaSalle, Verdun, Montreal, Quebec, H4H 1R3, Canada.
| | | |
Collapse
|
52
|
Spencer SJ, Mouihate A, Galic MA, Ellis SL, Pittman QJ. Neonatal immune challenge does not affect body weight regulation in rats. Am J Physiol Regul Integr Comp Physiol 2007; 293:R581-9. [PMID: 17507437 DOI: 10.1152/ajpregu.00262.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The perinatal environment plays a crucial role in programming many aspects of adult physiology. Myriad stressors during pregnancy, from maternal immune challenge to nutritional deficiency, can alter long-term body weight set points of the offspring. In light of the increasing concern over body weight issues, such as obesity and anorexia, in modern societies and accumulating evidence that developmental stressors have long-lasting effects on other aspects of physiology (e.g., fever, pain), we explored the role of immune system activation during neonatal development and its impact on body weight regulation in adulthood. Here we present a thorough evaluation of the effects of immune system activation (LPS, 100 microg/kg ip) at postnatal days 3, 7, or 14 on long-term body weight, adiposity, and body weight regulation after a further LPS injection (50 microg/kg ip) or fasting and basal and LPS-induced circulating levels of the appetite-regulating proinflammatory cytokine leptin. We show that neonatal exposure to LPS at various times during the neonatal period has no long-term effects on growth, body weight, or adiposity. We also observed no effects on body weight regulation in response to a short fasting period or a further exposure to LPS. Despite reductions in circulating leptin levels in response to LPS during the neonatal period, no long-term effects on leptin were seen. These results convincingly demonstrate that adult body weight and weight regulation are, unlike many other aspects of adult physiology, resistant to programming by a febrile-dose neonatal immune challenge.
Collapse
Affiliation(s)
- Sarah J Spencer
- Hotchkiss Brain Institute, Department of Physiology and Biophysiscs, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | |
Collapse
|
53
|
Levin BE. Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci 2006; 361:1107-21. [PMID: 16815795 PMCID: PMC1642705 DOI: 10.1098/rstb.2006.1851] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies in humans suggest that maternal undernutrition, obesity and diabetes during gestation and lactation can all produce obesity in offspring. Animal models have allowed us to investigate the independent consequences of altering the pre- versus post-natal environments on a variety of metabolic, physiological and neuroendocrine functions as they effect the development in the offspring of obesity, diabetes, hypertension and hyperlipidemia (the 'metabolic syndrome'). During gestation, maternal malnutrition, obesity, type 1 and type 2 diabetes and psychological, immunological and pharmacological stressors can all promote offspring obesity. Normal post-natal nutrition can reduce the adverse impact of some of these pre-natal factors but maternal high-fat diets, diabetes and increased neonatal access to food all enhance the development of obesity and the metabolic syndrome in offspring. The outcome of these perturbations of the perinatal environmental is also highly dependent upon the genetic background of the individual. Those with an obesity-prone genotype are more likely to be affected by factors such as maternal obesity and high-fat diets than are obesity-resistant individuals. Many perinatal manipulations appear to promote offspring obesity by permanently altering the development of central neural pathways, which regulate food intake, energy expenditure and storage. Given their strong neurotrophic properties, either excess or an absence of insulin and leptin during the perinatal period are likely to be effectors of these developmental changes. Because obesity is associated with an increased morbidity and mortality and because of its resistance to treatment, prevention is likely to be the best strategy for stemming the tide of the obesity epidemic. Such prevention should begin in the perinatal period with the identification and avoidance of factors which produce permanent, adverse alterations in neural pathways which control energy homeostasis.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service (127C), Veterans Administration Medical Center, East Orange, NJ 07018-1095, USA.
| |
Collapse
|
54
|
Samuelsson AM, Alexanderson C, Mölne J, Haraldsson B, Hansell P, Holmäng A. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin-angiotensin system of the rat. J Physiol 2006; 575:855-67. [PMID: 16825309 PMCID: PMC1995698 DOI: 10.1113/jphysiol.2006.111260] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytokines are emerging as important in developmental processes. They may induce alterations in normal gene expression patterns, activate angiotensinogen transcription, or alter expression of the renin-angiotensin system (RAS). To determine whether prenatal exposure to interleukin-6 (IL-6) influences gene expression of the intrarenal RAS and contributes to renal dysfunction and hypertension in adulthood, we exposed female rats to IL-6 early (EIL-6 females) and late (LIL-6 females) in pregnancy and analysed blood pressure in the offspring at 5-20 weeks of age. Renal fluid and electrolyte excretion was assessed in clearance experiments, mRNA expression by real-time PCR, and protein levels by Western blot. Systolic pressure was increased at 5 weeks in IL-6 females and at 11 weeks in males. Circulatory RAS levels were increased in all IL-6 females, but angiotensin-1-converting enzyme (ACE) activity was increased only in LIL-6 females. LIL-6 males and IL-6 females showed decreased urinary flow rate and urinary sodium and potassium excretion. Dopamine excretion was decreased IL-6 females. In adult renal cortex, renin expression was increased in all IL-6 females, but angiotensinogen mRNA was increased only in LIL-6 females; AT(1) receptor (AT(1)-R) mRNA and protein levels were increased in LIL-6 females, whereas AT(2) receptor (AT(2)-R) levels were decreased in LIL-6 females and EIL-6 males. In adult renal medulla, AT(1)-R protein levels were increased in LIL-6 females, and AT(2)-R mRNA and protein levels were decreased in EIL-6 males and LIL-6 females. Prenatal IL-6 exposure may cause hypertension by altering the renal and circulatory RAS and renal fluid and electrolyte excretion, especially in females.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Institute of Neuroscience and Physiology, Göteborg University, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
55
|
Samuelsson AM, Jennische E, Hansson HA, Holmäng A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1345-56. [PMID: 16357100 DOI: 10.1152/ajpregu.00268.2005] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During pregnancy, infection or immune responses induce cytokine release, which might influence fetal neurodevelopment, leading to neurodegenerative disease in adulthood. Because the hippocampus is a key area for learning and memory, we evaluated 4- and 24-wk-old rats for the effects of early and late prenatal exposure to interleukin-6 (IL-6) on hippocampal morphology, expression of mRNA for IL-6, the γ-aminobutyric acid receptor (GABAAα5), the NR1 subunit of the N-methyl-d-aspartate receptor, and glial fibrillary acidic protein (GFAP), caspase-3 protein and mRNA levels, and learning abilities. Late exposure increased serum IL-6 and hippocampal expression of IL-6 mRNA at 4 and 24 wk. All adult rats showed neuronal loss in the hilus and astrogliosis; males had losses mainly in the CA2 and CA3 regions, and females in CA1. Expression of GABAAα5, NR1, and GFAP mRNA increased in late-exposed males and females at 4 and 24 wk. mRNA and protein levels of the apoptosis marker caspase-3 were increased in all late-exposed rats except males at 4 wk. Evaluation of hippocampus-dependent working memory in the Morris water maze at 20 wk of age showed increases in escape latency and time spent near the pool wall in all IL-6 adult rats, especially females. These findings suggest that fetal IL-6 exposure, especially in late pregnancy, leads to increased IL-6 levels in the circulation and hippocampus, abnormalities of hippocampal structural and morphology, and decreased learning during adulthood.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Cardiovascular Institute and Wallenberg Laboratory, Sahlgrenska Academy, Göteborg Univ., S-413 45 Göteborg, Sweden.
| | | | | | | |
Collapse
|
56
|
Samuelsson AM, Bollano E, Mobini R, Larsson BM, Omerovic E, Fu M, Waagstein F, Holmäng A. Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol Heart Circ Physiol 2006; 291:H787-96. [PMID: 16565309 DOI: 10.1152/ajpheart.00974.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To investigate the association between hyperinsulinemia and cardiac hypertrophy, we treated rats with insulin for 7 wk and assessed effects on myocardial growth, vascularization, and fibrosis in relation to the expression of angiotensin II receptors (AT-R). We also characterized insulin signaling pathways believed to promote myocyte growth and interact with proliferative responses mediated by G protein-coupled receptors, and we assessed myocardial insulin receptor substrate-1 (IRS-1) and p110 alpha catalytic and p85 regulatory subunits of phospatidylinositol 3 kinase (PI3K), Akt, MEK, ERK1/2, and S6 kinase-1 (S6K1). Left ventricular (LV) geometry and performance were evaluated echocardiographically. Insulin decreased AT1a-R mRNA expression but increased protein levels and increased AT2-R mRNA and protein levels and phosphorylation of IRS-1 (Ser374/Tyr989), MEK1/2 (Ser218/Ser222), ERK1/2 (Thr202/Tyr204), S6K1 (Thr421/Ser424/Thr389), Akt (Thr308/Thr308), and PI3K p110 alpha but not of p85 (Tyr508). Insulin increased LV mass and relative wall thickness and reduced stroke volume and cardiac output. Histochemical examination demonstrated myocyte hypertrophy and increases in interstitial fibrosis. Metoprolol plus insulin prevented the increase in relative wall thickness, decreased fibrosis, increased LV mass, and improved function seen with insulin alone. Thus our data demonstrate that chronic hyperinsulinemia decreases AT1a-to-AT2 ratio and increases MEK-ERK1/2 and S6K1 pathway activity related to hypertrophy. These changes might be crucial for increased cardiovascular growth and fibrosis and signs of impaired LV function.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Cardiovascular Institute, The Wallenberg Laboratory, Sahlgrenska Univ. Hospital, Göteborg University, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Wren JD, Garner HR. Data-mining analysis suggests an epigenetic pathogenesis for type 2 diabetes. J Biomed Biotechnol 2006; 2005:104-12. [PMID: 16046815 PMCID: PMC1184044 DOI: 10.1155/jbb.2005.104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiological origin of type 2 diabetes mellitus (T2DM) has long
been controversial. The body of literature related to T2DM is vast
and varied in focus, making a broad epidemiological perspective
difficult, if not impossible. A data-mining approach was used to
analyze all electronically available scientific literature, over
12 million Medline records, for “objects” such as genes,
diseases, phenotypes, and chemical compounds linked to other
objects within the T2DM literature but were not themselves within
the T2DM literature. The goal of this analysis was to conduct a
comprehensive survey to identify novel factors implicated in the
pathology of T2DM by statistically evaluating mutually shared
associations. Surprisingly, epigenetic factors were among the
highest statistical scores in this analysis, strongly implicating
epigenetic changes within the body as causal factors in the
pathogenesis of T2DM. Further analysis implicates adipocytes as
the potential tissue of origin, and cytokines or cytokine-like
genes as the dysregulated factor(s) responsible for the T2DM
phenotype. The analysis provides a wealth of literature supporting
this hypothesis, which—if true—represents an important
paradigm shift for researchers studying the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Jonathan D Wren
- Advanced Center for Genome Technology, Department of Botany and Microbiology, The University of Oklahoma, 101 David L Boren Blvd, Rm 2025, Norman, OK 73019, USA.
| | | |
Collapse
|
58
|
Bakos J, Duncko R, Makatsori A, Pirnik Z, Kiss A, Jezova D. Prenatal immune challenge affects growth, behavior, and brain dopamine in offspring. Ann N Y Acad Sci 2004; 1018:281-7. [PMID: 15240379 DOI: 10.1196/annals.1296.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is known that the development and plasticity of the neuroendocrine system can be affected by many factors, and that adverse events during the prenatal period can result in long-lasting changes in adulthood. This study was aimed at evaluating the possible consequences for offspring from chronic inflammation during pregnancy. Chronic inflammation was simulated by treatment with increasing doses of lipopolysaccharide (LPS) to dams on days 15 through 19 of pregnancy. Attempts were made to prevent possible negative alterations by keeping animals in an enriched environment (EE). Maternal exposure to LPS resulted in a significant reduction of body weight of male offspring during the weaning period. This difference remained until the age of 63 days in controls (C), but not in animals reared in EE. The content of dopamine in the nucleus accumbens was found to be lower in prenatally stressed (PS) adult males. Furthermore, prenatal exposure to maternal immune challenge was associated with lower locomotor activity in elevated plus maze and increased number of skips in the beam-walking test, as observed in female offspring. No differences in ACTH and corticosterone concentrations with regard to prenatal treatment were found; however, both groups kept in EE showed increased levels of corticosterone as well as enlarged adrenal glands. Thus, immune activation during pregnancy may induce long-term changes in brain catecholamines and behavior, but it is not harmful to basal hormone secretion in the offspring.
Collapse
Affiliation(s)
- Jan Bakos
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
59
|
Chen L, Nyomba BLG. Glucose intolerance and resistin expression in rat offspring exposed to ethanol in utero: modulation by postnatal high-fat diet. Endocrinology 2003; 144:500-8. [PMID: 12538610 DOI: 10.1210/en.2002-220623] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High-fat diet and intrauterine growth retardation may predispose to obesity, insulin resistance, and type 2 diabetes. Because prenatal ethanol (ETOH) exposure causes intrauterine growth retardation, we investigated its interactions with postnatal high-fat diet on glucose tolerance and adipocyte-derived hormones in the rat offspring. High-fat-fed offspring had increased adiposity, serum leptin, and muscle uncoupling protein-3, but decreased adiponectin mRNA, compared with corresponding chow-fed groups. ETOH-exposed offspring had normal adiponectin, but increased resistin mRNA and protein, compared with controls, regardless of postnatal diet. Skeletal muscle glucose transporter-4 content was decreased after both ETOH exposure and high-fat feeding. Glycemic and insulin responses to an ip glucose challenge were equally increased in non-ETOH-exposed high-fat-fed offspring and in ETOH-exposed chow-fed offspring, with additive effects of ETOH and high-fat diet. Pancreatic insulin content was elevated only in non-ETOH-exposed high-fat-fed offspring. The data suggest that high-fat diet worsens glucose intolerance in offspring of rats exposed to ETOH. Prenatal ETOH exposure and postnatal high-fat diet might cause insulin resistance through separate mechanisms, involving resistin and adiponectin, respectively.
Collapse
Affiliation(s)
- Li Chen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3A1R9
| | | |
Collapse
|
60
|
Martins JPC, Monteiro JC, Paixão ADO. Renal function in adult rats subjected to prenatal dexamethasone. Clin Exp Pharmacol Physiol 2003; 30:32-7. [PMID: 12542450 DOI: 10.1046/j.1440-1681.2003.03787.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Prenatal dexamethasone leads to low birth weight and compromises organogenesis, but its effects on nephrogenesis in male and female rats have not yet been investigated extensively. Reduced renal mass may be responsible for hypertension and renal haemodynamic and morphological adjustments to maintain the glomerular filtration rate (GFR). Subsequently, these compensatory mechanisms determine glomerular sclerosis and irreversible reduction in GFR. When a high-protein diet is associated with reduced renal mass, it accelerates glomerular sclerosis and the decline in renal function. The aim of the present study was to evaluate whether rats subjected to prenatal dexamethasone and a high-protein diet during growth present a premature decline in renal function. 2. The number of nephrons and renal haemodynamics were estimated in Wistar rats fed a high-protein diet (40% protein) after weaning in offspring of dams treated with either dexamethasone (0.1 mg/kg per day) or its vehicle (control; physiological solution, 0.1 mL/kg per day) during gestation. 3. At 70 days of age, rat offspring were anaesthetized and prepared surgically for renal haemodynamic measurements. 4. Mean arterial pressure (MAP), renal blood flow (RBF) and GFR were measured using a blood pressure transducer, a flow probe and inulin clearance, respectively. 5. The number of nephrons was counted using the acid-maceration technique. 6. Dexamethasone during pregnancy induced a lower weight gain in the dams (65%; P < 0.0001) and a lower birth weight in both male and female offspring (14 and 13%, respectively; P < 0.01). 7. Compared with control, the number of nephrons in male rats was reduced by 13% (30 703 +/- 1262 vs 26 308 +/- 1305, respectively; P < 0.05), but was unaltered in female rats (23 197 +/- 553 vs 24 231 +/- 1009, respectively). 8. Male and female rats did not show any alteration in MAP. In addition, they did not show any alteration in renal vascular resistance, RBF, filtration fraction or GFR. 9. In conclusion, prenatally administered dexamethasone (0.1 mg/kg during the entire pregnancy) induced a low birth weight. The magnitude of the reduction in nephrogenesis in male offspring from mothers treated with dexamethasone was not sufficient to alter renal function (measured at 70 days), even when rats had been fed a high-protein diet.
Collapse
Affiliation(s)
- João P C Martins
- Department of Physiology and Pharmacology, Biological Science Center, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | |
Collapse
|
61
|
Abstract
Early life environmental factors have been associated with altered predisposition to a variety of pathologies. A considerable literature examines pre- and postnatal factors associated with increased risk of cardiovascular, metabolic (i.e. insulin resistance, hyperlipidemia) and psychiatric disease, and the importance of hormonal programming. The brain is exquisitely sensitive to environmental inputs during development and the stress responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to be both up- and down-regulated by early life exposure to limited nutrition, stress, altered maternal behaviors, synthetic steroids and inflammation. It has been suggested that peri-natal programming of HPA axis regulation might therefore contribute to metabolic and psychiatric disease etiology. In addition, glucocorticoids play modulatory roles regulating many aspects of immune function, notably controlling both acute and chronic inflammatory responses. Neuroendocrine-immune communication is bidirectional, and therefore it is expected that environmental factors altering HPA regulation have implications for stress effects on immune function and predisposition to inflammation. The impact of pre- and postnatal factors altering immune function, stress responsivity and predisposition to inflammatory disease are reviewed. It is also examined whether the early 'immune environment' might similarly influence predisposition to disease and alter neuroendocrine function. Evidence indicating a role for early life inflammation and infection as an important factor programming the neuroendocrine-immune axis and altering predisposition to disease is considered.
Collapse
Affiliation(s)
- Nola Shanks
- 1University Research Center for Neuroendocrinology, University of Bristol, Dorothy Hodgkins Laboratories, Bristol,UK
| |
Collapse
|