51
|
Ye Z, Mittag S, Schmidt M, Simm A, Horstkorte R, Huber O. Wnt Glycation Inhibits Canonical Signaling. Cells 2019; 8:cells8111320. [PMID: 31731544 PMCID: PMC6912562 DOI: 10.3390/cells8111320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Glycation occurs as a non-enzymatic reaction between amino and thiol groups of proteins, lipids, and nucleotides with reducing sugars or α-dicarbonyl metabolites. The chemical reaction underlying is the Maillard reaction leading to the formation of a heterogeneous group of compounds named advanced glycation end products (AGEs). Deleterious effects have been observed to accompany glycation such as alterations of protein structure and function resulting in crosslinking and accumulation of insoluble protein aggregates. A substantial body of evidence associates glycation with aging. Wnt signaling plays a fundamental role in stem cell biology as well as in regeneration and repair mechanisms. Emerging evidence implicates that changes in Wnt/β-catenin pathway activity contribute to the aging process. Here, we investigated the effect of glycation of Wnt3a on its signaling activity. Methods: Glycation was induced by treatment of Wnt3a-conditioned medium (CM) with glyoxal (GO). Effects on Wnt3a signaling activity were analyzed by Topflash/Fopflash reporter gene assay, co-immunoprecipitation, and quantitative RT-PCR. Results: Our data show that GO-treatment results in glycation of Wnt3a. Glycated Wnt3a suppresses β-catenin transcriptional activity in reporter gene assays, reduced binding of β-catenin to T-cell factor 4 (TCF-4) and extenuated transcription of Wnt/β-catenin target genes. Conclusions: GO-induced glycation impairs Wnt3a signaling function.
Collapse
Affiliation(s)
- Zhennan Ye
- Department of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (Z.Y.); (S.M.); (M.S.)
| | - Sonnhild Mittag
- Department of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (Z.Y.); (S.M.); (M.S.)
| | - Martin Schmidt
- Department of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (Z.Y.); (S.M.); (M.S.)
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, 06114 Halle/Saale, Germany;
| | - Otmar Huber
- Department of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (Z.Y.); (S.M.); (M.S.)
- Correspondence: ; Tel.: +49-3641-9396400
| |
Collapse
|
52
|
Genetic analysis of hsCRP in American Indians: The Strong Heart Family Study. PLoS One 2019; 14:e0223574. [PMID: 31622379 PMCID: PMC6797125 DOI: 10.1371/journal.pone.0223574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Increased serum levels of C-reactive protein (CRP), an important component of the innate immune response, are associated with increased risk of cardiovascular disease (CVD). Multiple single nucleotide polymorphisms (SNP) have been identified which are associated with CRP levels, and Mendelian randomization studies have shown a positive association between SNPs increasing CRP expression and risk of colon cancer (but thus far not CVD). The effects of individual genetic variants often interact with the genetic background of a population and hence we sought to resolve the genetic determinants of serum CRP in a number of American Indian populations. Methods The Strong Heart Family Study (SHFS) has serum CRP measurements from 2428 tribal members, recruited as large families from three regions of the United States. Microsatellite markers and MetaboChip defined SNP genotypes were incorporated into variance components, decomposition-based linkage and association analyses. Results CRP levels exhibited significant heritability (h2 = 0.33 ± 0.05, p<1.3 X 10−20). A locus on chromosome (chr) 6, near marker D6S281 (approximately at 169.6 Mb, GRCh38/hg38) showed suggestive linkage (LOD = 1.9) to CRP levels. No individual SNPs were found associated with CRP levels after Bonferroni adjustment for multiple testing (threshold <7.77 x 10−7), however, we found nominal associations, many of which replicate previous findings at the CRP, HNF1A and 7 other loci. In addition, we report association of 46 SNPs located at 7 novel loci on chromosomes 2, 5, 6(2 loci), 9, 10 and 17, with an average of 15.3 Kb between SNPs and all with p-values less than 7.2 X 10−4. Conclusion In agreement with evidence from other populations, these data show CRP serum levels are under considerable genetic influence; and include loci, such as near CRP and other genes, that replicate results from other ethnic groups. These findings also suggest possible novel loci on chr 6 and other chromosomes that warrant further investigation.
Collapse
|
53
|
Tian L, Shao W, Ip W, Song Z, Badakhshi Y, Jin T. The developmental Wnt signaling pathway effector β-catenin/TCF mediates hepatic functions of the sex hormone estradiol in regulating lipid metabolism. PLoS Biol 2019; 17:e3000444. [PMID: 31589598 PMCID: PMC6797220 DOI: 10.1371/journal.pbio.3000444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/17/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
The bipartite transcription factor β-catenin (β-cat)/T cell factor (TCF), formed by free β-cat and a given TCF family member, serves as the effector of the developmental Wnt signaling cascade. β-cat/TCFs also serve as effectors of certain peptide hormones or growth factors during adulthood. We reported that liver-specific expression of dominant-negative Transcription factor 7 like 2 (TCF7L2DN) led to impaired glucose disposal. Here we show that, in this LTCFDN transgenic mouse model, serum and hepatic lipid contents were elevated in male but not in female mice. In hepatocytes, TCF7L2DN adenovirus infection led to stimulated expression of genes that encode lipogenic transcription factors and lipogenic enzymes, while estradiol (E2) treatment attenuated the stimulation, associated with Wnt-target gene activation. Mechanistically, this E2-mediated activation can be attributed to elevated β-cat Ser675 phosphorylation and TCF expression. In wild-type female mice, ovariectomy (OVX) plus high-fat diet (HFD) challenge impaired glucose disposal and insulin tolerance, associated with increased hepatic lipogenic transcription factor sterol regulatory element-binding protein 1-c (SREBP-1c) expression. In wild-type mice with OVX, E2 reconstitution attenuated HFD-induced metabolic defects. Some of the attenuation effects, including insulin intolerance, elevated liver-weight gain, and hepatic SREBP-1c expression, were not affected by E2 reconstitution in HFD-fed LTCFDN mice with OVX. Finally, the effects of E2 in hepatocytes on β-cat/TCF activation can be attenuated by the G-protein-coupled estrogen receptor (GPER) antagonist G15. Our study thus expanded the scope of functions of the Wnt pathway effector β-cat/TCF, as it can also mediate hepatic functions of E2 during adulthood. This study also enriches our mechanistic understanding of gender differences in the risk and pathophysiology of metabolic diseases.
Collapse
Affiliation(s)
- Lili Tian
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Wilfred Ip
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Zhuolun Song
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
54
|
Potasso L, Perakakis N, Lamprinou A, Polyzou E, Kassanos D, Peter A, Päth G, Seufert J, Laubner K. Clinical Impact of the TCF7L2 Gene rs7903146 Type 2 Diabetes
Mellitus Risk Polymorphism in Women with Gestational Diabetes Mellitus: Impaired
Glycemic Control and Increased Need of Insulin Therapy. Exp Clin Endocrinol Diabetes 2019; 128:663-666. [DOI: 10.1055/a-1008-9223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Background The single nucleotide polymorphism in TCF7L2 rs7903146 is
associated with an increased risk of type 2 diabetes mellitus and gestational
diabetes mellitus. Mechanisms by which this mutation acts, and its impact on the
clinical course of the diseases remain unclear. Here we investigated the
clinical impact of the T risk allele in women with gestational diabetes
mellitus.
Methods We genotyped the C/T polymorphism in 164 Caucasian women
with GDM (German n=114; Greek n=50). The impact of the T allele
on the results of the 75g oral-glucose-tolerance-test, and on the required
therapy (diet/lifestyle or insulin) was investigated.
Results During oral-glucose-tolerance-test, women harboring the T allele
displayed significantly higher glucose values at 60 min (p=0.034) and
were more likely to require insulin therapy even after adjusting for
confounders, such as BMI and age.
Conclusion These results provide evidence that the T risk allele in
TCF7L2 rs7903146 is associated with failure in early postprandial glycemic
control and requirement of insulin therapy in women with gestational diabetes
mellitus, even after adjusting for confounding factors such BMI and age.
Collapse
Affiliation(s)
- Laura Potasso
- Division of Endocrinology and Diabetology, Department of Medicine II,
Medical Center – University of Freiburg, Faculty of Medicine, University
of Freiburg, Freiburg, Germany
| | - Nikolaos Perakakis
- Division of Endocrinology and Diabetology, Department of Medicine II,
Medical Center – University of Freiburg, Faculty of Medicine, University
of Freiburg, Freiburg, Germany
- Current address: Division of Endocrinology, Diabetes and Metabolism,
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
Massachusetts
| | - Apostolia Lamprinou
- Department of Internal Medicine, Division of Endocrinology,
Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital
Tübingen, Tübingen, Freiburg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz
Centre Munich at the University of Tübingen, Tübingen,
Germany
- German Center for Diabetes Research (DZD), Neuherberg, Freiburg,
Germany
| | - Elektra Polyzou
- University Hospital Attikon, 3rd Department of Obstetrics and
Gynecology, Greece
| | - Dimitrios Kassanos
- University Hospital Attikon, 3rd Department of Obstetrics and
Gynecology, Greece
| | - Andreas Peter
- Department of Internal Medicine, Division of Endocrinology,
Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital
Tübingen, Tübingen, Freiburg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz
Centre Munich at the University of Tübingen, Tübingen,
Germany
- German Center for Diabetes Research (DZD), Neuherberg, Freiburg,
Germany
| | - Günter Päth
- Division of Endocrinology and Diabetology, Department of Medicine II,
Medical Center – University of Freiburg, Faculty of Medicine, University
of Freiburg, Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II,
Medical Center – University of Freiburg, Faculty of Medicine, University
of Freiburg, Freiburg, Germany
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II,
Medical Center – University of Freiburg, Faculty of Medicine, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
55
|
Brzozowska MM, Havula E, Allen RB, Cox MP. Genetics, adaptation to environmental changes and archaic admixture in the pathogenesis of diabetes mellitus in Indigenous Australians. Rev Endocr Metab Disord 2019; 20:321-332. [PMID: 31278514 DOI: 10.1007/s11154-019-09505-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indigenous Australians are particularly affected by type 2 diabetes mellitus (T2D) due to both their genetic susceptibility and a range of environmental and lifestyle risk factors. Recent genetic studies link predisposition to some diseases, including T2D, to alleles acquired from archaic hominins, such as Neanderthals and Denisovans, which persist in the genomes of modern humans today. Indo-Pacific human populations, including Indigenous Australians, remain extremely underrepresented in genomic research with a paucity of data examining the impact of Denisovan or Neanderthal lineages on human phenotypes in Oceania. The few genetic studies undertaken emphasize the uniqueness and antiquity of Indigenous Australian genomes, with possibly the largest proportion of Denisovan ancestry of any population in the world. In this review, we focus on the potential contributions of ancient genes/pathways to modern human phenotypes, while also highlighting the evolutionary roles of genetic adaptation to dietary and environmental changes associated with an adopted Western lifestyle. We discuss the role of genetic and epigenetic factors in the pathogenesis of T2D in understudied Indigenous Australians, including the potential impact of archaic gene lineages on this disease. Finally, we propose that greater understanding of the underlying genetic predisposition may contribute to the clinical efficacy of diabetes management in Indigenous Australians. We suggest that improved identification of T2D risk variants in Oceania is needed. Such studies promise to clarify how genetic and phenotypic differences vary between populations and, crucially, provide novel targets for personalised medical therapies in currently marginalized groups.
Collapse
Affiliation(s)
- Malgorzata Monika Brzozowska
- Endocrinology Department, Sutherland Hospital, Sydney, New South Wales, Australia.
- St George & Sutherland Hospital Clinical School, University of New South Wales, Sydney, Australia.
| | - Essi Havula
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Richard Benjamin Allen
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
56
|
Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomed Pharmacother 2019; 117:108990. [DOI: 10.1016/j.biopha.2019.108990] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
|
57
|
Redondo MJ, Evans-Molina C, Steck AK, Atkinson MA, Sosenko J. The Influence of Type 2 Diabetes-Associated Factors on Type 1 Diabetes. Diabetes Care 2019; 42:1357-1364. [PMID: 31167894 PMCID: PMC6647039 DOI: 10.2337/dc19-0102] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/27/2019] [Indexed: 02/03/2023]
Abstract
Current efforts to prevent progression from islet autoimmunity to type 1 diabetes largely focus on immunomodulatory approaches. However, emerging data suggest that the development of diabetes in islet autoantibody-positive individuals may also involve factors such as obesity and genetic variants associated with type 2 diabetes, and the influence of these factors increases with age at diagnosis. Although these factors have been linked with metabolic outcomes, particularly through their impact on β-cell function and insulin sensitivity, growing evidence suggests that they might also interact with the immune system to amplify the autoimmune response. The presence of factors shared by both forms of diabetes contributes to disease heterogeneity and thus has important implications. Characteristics that are typically considered to be nonimmune should be incorporated into predictive algorithms that seek to identify at-risk individuals and into the designs of trials for disease prevention. The heterogeneity of diabetes also poses a challenge in diagnostic classification. Finally, after clinically diagnosing type 1 diabetes, addressing nonimmune elements may help to prevent further deterioration of β-cell function and thus improve clinical outcomes. This Perspectives in Care article highlights the role of type 2 diabetes-associated genetic factors (e.g., gene variants at transcription factor 7-like 2 [TCF7L2]) and obesity (via insulin resistance, inflammation, β-cell stress, or all three) in the pathogenesis of type 1 diabetes and their impacts on age at diagnosis. Recognizing that type 1 diabetes might result from the sum of effects from islet autoimmunity and type 2 diabetes-associated factors, their interactions, or both affects disease prediction, prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN.,Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN.,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | | |
Collapse
|
58
|
Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, Pikarsky E, Karni R. Long Noncoding RNA MALAT1 Regulates Cancer Glucose Metabolism by Enhancing mTOR-Mediated Translation of TCF7L2. Cancer Res 2019; 79:2480-2493. [PMID: 30914432 DOI: 10.1158/0008-5472.can-18-1432] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/10/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022]
Abstract
Reprogrammed glucose metabolism of enhanced aerobic glycolysis (or the Warburg effect) is known as a hallmark of cancer. The roles of long noncoding RNAs (lncRNA) in regulating cancer metabolism at the level of both glycolysis and gluconeogenesis are mostly unknown. We previously showed that lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) acts as a proto-oncogene in hepatocellular carcinoma (HCC). Here, we investigated the role of MALAT1 in regulating cancer glucose metabolism. MALAT1 upregulated the expression of glycolytic genes and downregulated gluconeogenic enzymes by enhancing the translation of the metabolic transcription factor TCF7L2. MALAT1-enhanced TCF7L2 translation was mediated by upregulation of SRSF1 and activation of the mTORC1-4EBP1 axis. Pharmacological or genetic inhibition of mTOR and Raptor or expression of a hypophosphorylated mutant version of eIF4E-binding protein (4EBP1) resulted in decreased expression of TCF7L2. MALAT1 expression regulated TCF7L2 mRNA association with heavy polysomes, probably through the TCF7L2 5'-untranslated region (UTR), as determined by polysome fractionation and 5'UTR-reporter assays. Knockdown of TCF7L2 in MALAT1-overexpressing cells and HCC cell lines affected their metabolism and abolished their tumorigenic potential, suggesting that the effects of MALAT1 on glucose metabolism are essential for its oncogenic activity. Taken together, our findings suggest that MALAT1 contributes to HCC development and tumor progression by reprogramming tumor glucose metabolism. SIGNIFICANCE: These findings show that lncRNA MALAT1 contributes to HCC development by regulating cancer glucose metabolism, enhancing glycolysis, and inhibiting gluconeogenesis via elevated translation of the transcription factor TCF7L2.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilan Stein
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amijai Saragovi
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Roni Winkler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Berger
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
59
|
Mechanisms underlying the metabolic beneficial effect of curcumin intervention: Beyond anti-inflammation and anti-oxidative stress. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.obmed.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
60
|
Zhao Y, Xia Q, Liu Y, Bai W, Yao Y, Ding J, Lin L, Xu Z, Cai Z, Wang S, Li E, Xu H, Wu B, Xu L, Du Z. TCF7L2 and EGR1 synergistic activation of transcription of LCN2 via an ERK1/2-dependent pathway in esophageal squamous cell carcinoma cells. Cell Signal 2019; 55:8-16. [PMID: 30557604 DOI: 10.1016/j.cellsig.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
High level expression of lipocalin 2 (LCN2) usually indicates poor prognosis in esophageal squamous cell carcinoma (ESCC) and many other cancers. Our previous study showed LCN2 promotes migration and invasion of ESCC cells through a novel positive feedback loop. However, the key transcription activation protein (KTAP) in the loop had not yet been identified. In this study, we first predicted the most probable KTAPs by bioinformatic analysis. We then assessed the transcription regulatory regions in the human LCN2 gene by fusing deletions of its 5'-flanking region to a dual-luciferase reporter. We found that the region -720/-200 containing transcription factor 7-like 2 (TCF7L2) (-273/-209) and early growth response 1 (EGR1) (-710/-616) binding sites is crucial for LCN2 promoter activity. Chromatin immunoprecipitation (ChIP) experiments demonstrated that TCF7L2 and EGR1 bound directly to their binding sites within the LCN2 promoter as KTAPs. Mechanistically, overexpression of TCF7L2 and EGR1 increased endogenous LCN2 expression via the ERK signaling pathway. Treatment with recombinant human LCN2 protein enhanced activation of the ERK pathway to facilitate endogenous LCN2 expression, as well as increase the expression level of TCF7L2 and EGR1. Treatment with the MEK inhibitor U0126 inhibited the activation by TCF7L2 or EGR1 overexpression. Moreover, overexpression of TCF7L2 or EGR1 accelerated the migration and invasion of ESCC cells. A synergistic effect was observed between TCF7L2 and EGR1 in amplifying the induction of LCN2 and enhancing migration and invasion. Taken together, our study indicates that TCF7L2 and EGR1 are the KTAPs of LCN2, within a positive "LCN2 → MEK/ERK → LCN2" path, to promote the migration and invasion of ESCC cells. Based on their clinicopathological significance, LCN2 and its two expression regulators TCF7L2 and ERG1 might be therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Qiaoxi Xia
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yan Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Wenjing Bai
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yubin Yao
- Department of Radiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Jiyu Ding
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Ling Lin
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Enmin Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Bingli Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China.
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
61
|
Genotypes of HLA, TCF7L2, and FTO as potential modifiers of the association between sweetened beverage consumption and risk of LADA and type 2 diabetes. Eur J Nutr 2019; 59:127-135. [PMID: 30656477 PMCID: PMC7000500 DOI: 10.1007/s00394-019-01893-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
Purpose Sweetened beverage consumption is associated with type 2 diabetes (T2D) and LADA. We investigated to what extent this association is mediated by BMI and whether it is modified by genotypes of HLA, TCF7L2 rs7903146, or FTO rs9939609. Methods Swedish case–control data including incident cases of LADA (n = 386) and T2D (n = 1253) with matched population-based controls (n = 1545) was used. We estimated adjusted ORs of diabetes (95% CI) in relation to sweetened beverage intake (per daily 200 mL serving) and genotypes. The impact of BMI was estimated using causal mediation methodology. Associations with HOMA-IR and HOMA-B were explored through linear regression. Results Sweetened beverage intake was associated with increased risk of LADA (OR 1.15, 95% CI 1.03–1.29) and T2D (OR 1.21, 1.11–1.32). BMI was estimated to mediate 17% (LADA) and 56% (T2D) of the total risk. LADA was associated with risk variants of HLA (3.44, 2.63–4.50) and TCF7L2 (1.27, 1.00–1.61) but not FTO. Only among non-carriers of high-risk HLA genotypes was sweetened beverage intake associated with risk of LADA (OR 1.32, 1.06–1.56) and HOMA-IR (beta = 0.162, p = 0.0047). T2D was associated with TCF7L2 and FTO but not HLA, and the risk conferred by sweetened beverages appeared modified by FTO (OR 1.45, 95% CI 1.21–1.73 in non-carriers). Conclusions Our findings suggest that sweetened beverages are associated with LADA and T2D partly through mediation by excess weight, but possibly also through other mechanisms including adverse effects on insulin sensitivity. These effects seem more pronounced in individuals without genetic susceptibility. Electronic supplementary material The online version of this article (10.1007/s00394-019-01893-x) contains supplementary material, which is available to authorized users.
Collapse
|
62
|
Taneera J, Mohammed AK, Dhaiban S, Hamad M, Prasad RB, Sulaiman N, Salehi A. RORB and RORC associate with human islet dysfunction and inhibit insulin secretion in INS-1 cells. Islets 2019; 11:10-20. [PMID: 30762474 PMCID: PMC6389281 DOI: 10.1080/19382014.2019.1566684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Little is known about the expression and function of Retinoic acid-related orphan receptors (RORA, B, and C) in pancreatic β cells. Here in, we utilized cDNA microarray and RNA sequencing approaches to investigate the expression pattern of ROR receptors in normal and diabetic human pancreatic islets. Possible correlations between RORs expression and HbA1c levels as well as insulin secretory capacity in isolated human islets were evaluated. The impact of RORB and RORC expression on insulin secretion in INS-1 (832/13) cells was validated as well. While RORA was the highest expressed gene among the three RORs in human islet cells, RORC was the highest expressed in INS-1 cells (832/13) and while RORB was the lowest expressed gene in human islet cells, RORA was the highest expressed in INS-1 cells (832/13). The expression of RORB and RORC was significantly lower in diabetic/hyperglycemic donors as compared with non-diabetic counterparts. Furthermore, while the expression of RORB correlated positively with insulin secretion and negatively with HbA1c, that of RORC correlated negatively with HbA1c. The expression pattern of RORA did not correlate with either of the two parameters. siRNA silencing of RORB or RORC in INS-1 (832/13) cells resulted in a significant downregulation of insulin mRNA expression and insulin secretion. These findings suggest that RORB and RORC are part of the molecular cascade that regulates insulin secretion in pancreatic β cells; and insight that provides for further work on the potential therapeutic utility of RORB and RORC genes in β cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
- CONTACT Jalal Taneera Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | | | - Sarah Dhaiban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Rashmi B. Prasad
- Department of Clinical Science, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| | - Nabil Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Albert Salehi
- Department of Clinical Science, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| |
Collapse
|
63
|
He F, Shu Y, Wang X, Liu X, Liu G, Chen Z, Wang Z, Li L, Liu R, Zhou H, Xu H, Zhang W, Zhou G. Intensive Glucose Control Reduces the Risk Effect of TRIB3, SMARCD3, and ATF6 Genetic Variation on Diabetic Vascular Complications. Front Pharmacol 2018; 9:1422. [PMID: 30618737 PMCID: PMC6297143 DOI: 10.3389/fphar.2018.01422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus is a complex disease. Our previous study revealed that TRIB3 genetic variations were strongly associated with diabetic vascular complications, although TRIB3 regulation pathways remain poorly understood. We used two extreme treatment groups from a 2 × 2 factorial randomized controlled trial to identify a positive association, which was further validated in patients receiving cross treatment to test the effect of genetic polymorphisms among the different treatment groups. A gene-centric score (GS)-weighted model including the three associated genetic variations TRIB3 rs2295490, ATF6 rs12086247, and SMARCD3 rs58125572 was used. The results of the GS model indicated a 46% reduction in the risk of primary vascular complications in patients bearing more than two risk alleles [hazard ratio (HR) 0.54, 95% confidence interval (CI) 0.38-0.76, p < 0.001], following intensive glucose control treatment when compared with patients who received standard glucose control treatment. Furthermore, these patients benefited from active blood pressure-lowering treatment (HR 0.39, 95% CI 0.24-0.64, p < 0.001). However, no significant difference was observed between the two interventions in patients with fewer than two risk alleles (HR 1.09, 95% CI 0.86-1.39, p = 0.47). These results indicate that genetic variants in these three genes may be useful biomarkers for individualized drug therapy in diabetic patients.
Collapse
Affiliation(s)
- Fazhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Pharmacogenetics Research Institute – Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States
| | - Xingyu Wang
- Beijing Hypertension League Institute, Beijing, China
| | - Xin Liu
- Beijing Hypertension League Institute, Beijing, China
| | - Guojing Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Pharmacogenetics Research Institute – Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangren Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Pharmacogenetics Research Institute – Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenmin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Pharmacogenetics Research Institute – Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Pharmacogenetics Research Institute – Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Pharmacogenetics Research Institute – Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Pharmacogenetics Research Institute – Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Heng Xu
- Department of Laboratory Medicine, Precision Medicine Center, and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Sichuan and Collaborative Innovation Center, Chengdu, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Pharmacogenetics Research Institute – Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
64
|
Tu CF, Hsu CY, Lee MH, Jiang BH, Guo SF, Lin CC, Yang TS. Growing pigs developed different types of diabetes induced by streptozotocin depending on their transcription factor 7-like 2 gene polymorphisms. Lab Anim Res 2018; 34:185-194. [PMID: 30671104 PMCID: PMC6333605 DOI: 10.5625/lar.2018.34.4.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/25/2022] Open
Abstract
The different polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene promote variances in diabetes susceptibility in humans. We investigated whether these genotypes also promote differences in diabetic susceptibility in commercial pigs. Growing pigs (Landrace, both sex, 50-60 kg) with the C/C (n=4) and T/T (n=5) TCF7L2 genotypes were identified and intravenously injected with streptozotocin (STZ, 40 mg/kg) twice in weekly intervals, then a high-energy diet was offered. Oral glucose tolerance tests, blood analyses and the homeostasis model assessment-insulin resistance (HOMA-IR) index calculations were performed. The animals were sacrificed at the end of 12 weeks of treatment to reveal the pancreas histomorphometry. The results showed that all of the treated pigs grew normally despite exhibiting hyperglycemia at two weeks after the induction. The glycemic level of the fasting or postprandial pigs gradually returned to normal. The fasting insulin concentration was significantly decreased for the T/T carriers but not for the C/C carriers, and the resulting HOMA-IR index was significantly increased for the C/C genotype, indicating that the models of insulin dependence and resistance were respectively developed by T/T and C/C carriers. The histopathological results illustrated a significant reduction in the pancreas mass and insulin active sites, which suggested increased damage. The results obtained here could not be compared with previous studies because the TCF7L2 background has not been reported. Growing pigs may be an excellent model for diabetic in children if the animals are genetically pre-selected.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
| | - Chi-Yun Hsu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County, Taiwan, R.O.C
| | - Meng-Hwan Lee
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
| | - Bo-Hui Jiang
- Division of Animal Industry, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
| | - Shyh-Forng Guo
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County, Taiwan, R.O.C
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County, Taiwan, R.O.C
| |
Collapse
|
65
|
Zhang H, Nie X, Shi X, Zhao J, Chen Y, Yao Q, Sun C, Yang J. Regulatory Mechanisms of the Wnt/β-Catenin Pathway in Diabetic Cutaneous Ulcers. Front Pharmacol 2018; 9:1114. [PMID: 30386236 PMCID: PMC6199358 DOI: 10.3389/fphar.2018.01114] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Skin ulcers are a serious complication of diabetes. Diabetic patients suffer from vascular lesions and complications such as peripheral neuritis, peripheral vascular lesions, and collagen abnormalities, which result in skin wounds that are refractory and often develop into chronic ulcers. The healing of skin ulcers requires an inflammatory reaction, wound proliferation, remodeling regulation, and control of stem cells. Studies investigating diabetic cutaneous ulcers have focused on cellular and molecular levels. Diabetes can cause nerve and blood vessel damage, and persistent high blood sugar levels can cause systemic multisite nerve damage based on peripheral neuropathy. The long-term hyperglycemia state enables the polyol glucose metabolism pathway to be activated, increasing the accumulation of toxic substances in the vascular injured nerve tissue cells. Sustained hyperglycemia leads to dysfunction of epithelial cells, leading to a decrease in pro-angiogenic signaling and nitric oxide production. In addition, due to impaired leukocyte function in hyperglycemia, immune function is impaired and the immune response at relevant sites is insufficient, making diabetic foot more difficult to heal. The Wnt/β-catenin pathway is a highly conserved signal transduction pathway involved in a variety of biological processes, such as cell proliferation, apoptosis, and differentiation. It is considered an important pathway involved in the healing of skin wounds. This article summarizes the mechanism of action of the Wnt/β-catenin pathway involved in the inflammatory responses to diabetic ulcers, wound proliferation, wound remodeling, and stem cells. The interactions between the Wnt signal pathway and other metabolic pathways are also discussed.
Collapse
Affiliation(s)
- Han Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China.,College of Pharmacy, Institute of Materia Medica, Army Medical University, Chongqing, China
| | - Xiujun Shi
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiufeng Zhao
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qiuyang Yao
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Chengxin Sun
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianwen Yang
- Pharmacy Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
66
|
Fernández-Rhodes L, Howard AG, Graff M, Isasi CR, Highland HM, Young KL, Parra E, Below JE, Qi Q, Kaplan RC, Justice AE, Papanicolaou G, Laurie CC, Grant SFA, Haiman C, Loos RJF, North KE. Complex patterns of direct and indirect association between the transcription Factor-7 like 2 gene, body mass index and type 2 diabetes diagnosis in adulthood in the Hispanic Community Health Study/Study of Latinos. BMC OBESITY 2018; 5:26. [PMID: 30305909 PMCID: PMC6167893 DOI: 10.1186/s40608-018-0200-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/23/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genome-wide association studies have implicated the transcription factor 7-like 2 (TCF7L2) gene in type 2 diabetes risk, and more recently, in decreased body mass index. Given the contrary direction of genetic effects on these two traits, it has been suggested that the observed association with body mass index may reflect either selection bias or a complex underlying biology at TCF7L2. METHODS Using 9031 Hispanic/Latino adults (21-76 years) with complete weight history and genetic data from the community-based Hispanic Community Health Study/Study of Latinos (HCHS/SOL, Baseline 2008-2011), we estimated the multivariable association between the additive number of type 2 diabetes increasing-alleles at TCF7L2 (rs7903146-T) and body mass index. We then used structural equation models to simultaneously model the genetic association on changes in body mass index across the life course and estimate the odds of type 2 diabetes per TCF7L2 risk allele. RESULTS We observed both significant increases in type 2 diabetes prevalence at examination (independent of body mass index) and decreases in mean body mass index and waist circumference across genotypes at rs7903146. We observed a significant multivariable association between the additive number of type 2 diabetes-risk alleles and lower body mass index at examination. In our structured modeling, we observed non-significant inverse direct associations between rs7903146-T and body mass index at ages 21 and 45 years, and a significant positive association between rs7903146-T and type 2 diabetes onset in both middle and late adulthood. CONCLUSIONS Herein, we replicated the protective effect of rs7930146-T on body mass index at multiple time points in the life course, and observed that these effects were not explained by past type 2 diabetes status in our structured modeling. The robust replication of the negative effects of TCF7L2 on body mass index in multiple samples, including in our diverse Hispanic/Latino community-based sample, supports a growing body of literature on the complex biologic mechanism underlying the functional consequences of TCF7L2 on obesity and type 2 diabetes across the life course.
Collapse
Affiliation(s)
- Lindsay Fernández-Rhodes
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| | - Annie Green Howard
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| | - Carmen R. Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY USA
| | - Heather M. Highland
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| | - Kristin L. Young
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| | - Esteban Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON Canada
| | - Jennifer E. Below
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY USA
| | - Anne E. Justice
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA USA
| | - George Papanicolaou
- Epidemiology Branch, National Heart Lung and Blood Institute, Bethesda, MD USA
| | - Cathy C. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA USA
| | - Struan F. A. Grant
- Divisions of Human Genetics and Endocrinology, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA USA
| | - Christopher Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Ruth J. F. Loos
- Charles R. Bronfman Instituted for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Kari E. North
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA
| |
Collapse
|
67
|
Moorer MC, Riddle RC. Regulation of Osteoblast Metabolism by Wnt Signaling. Endocrinol Metab (Seoul) 2018; 33:318-330. [PMID: 30112869 PMCID: PMC6145954 DOI: 10.3803/enm.2018.33.3.318] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/01/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022] Open
Abstract
Wnt/β-catenin signaling plays a critical role in the achievement of peak bone mass, affecting the commitment of mesenchymal progenitors to the osteoblast lineage and the anabolic capacity of osteoblasts depositing bone matrix. Recent studies suggest that this evolutionarily-conserved, developmental pathway exerts its anabolic effects in part by coordinating osteoblast activity with intermediary metabolism. These findings are compatible with the cloning of the gene encoding the low-density lipoprotein related receptor-5 (LRP5) Wnt co-receptor from a diabetes-susceptibility locus and the now well-established linkage between Wnt signaling and metabolism. In this article, we provide an overview of the role of Wnt signaling in whole-body metabolism and review the literature regarding the impact of Wnt signaling on the osteoblast's utilization of three different energy sources: fatty acids, glucose, and glutamine. Special attention is devoted to the net effect of nutrient utilization and the mode of regulation by Wnt signaling. Mechanistic studies indicate that the utilization of each substrate is governed by a unique mechanism of control with β-catenin-dependent signaling regulating fatty acid β-oxidation, while glucose and glutamine utilization are β-catenin-independent and downstream of mammalian target of rapamycin complex 2 (mTORC2) and mammalian target of rapamycin complex 1 (mTORC1) activation, respectively. The emergence of these data has provided a new context for the mechanisms by which Wnt signaling influences bone development.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| |
Collapse
|
68
|
Adams JD, Vella A. What Can Diabetes-Associated Genetic Variation in TCF7L2 Teach Us About the Pathogenesis of Type 2 Diabetes? Metab Syndr Relat Disord 2018; 16:383-389. [PMID: 29993315 DOI: 10.1089/met.2018.0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a polygenic metabolic disorder characterized by hyperglycemia occurring as a result of impaired insulin secretion and/or insulin resistance. Among the various genetic factors associated with T2DM, a common genetic variant within the transcription factor 7-like 2 locus (TCF7L2) confers the greatest genetic risk for development of the disease. However, the mechanism(s) by which TCF7L2 predisposes to diabetes remain uncertain. Here we review the current literature pertaining to the potential mechanisms by which TCF7L2 confers risk of T2DM, using genetic variation as a probe to understand the pathogenesis of the disease.
Collapse
Affiliation(s)
- J D Adams
- Endocrine Research Unit, Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Adrian Vella
- Endocrine Research Unit, Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
69
|
Shao W, Szeto V, Song Z, Tian L, Feng ZP, Nostro MC, Jin T. The LIM homeodomain protein ISL1 mediates the function of TCF7L2 in pancreatic beta cells. J Mol Endocrinol 2018; 61:1-12. [PMID: 29678908 DOI: 10.1530/jme-17-0181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 11/08/2022]
Abstract
Pancreatic β-cell Tcf7l2 deletion or its functional knockdown suggested the essential role of this Wnt pathway effector in controlling insulin secretion, glucose homeostasis and β-cell gene expression. As the LIM homeodomain protein ISL1 is a suggested Wnt pathway downstream target, we hypothesize that it mediates metabolic functions of TCF7L2. We aimed to determine the role of ISL1 in mediating the function of TCF7L2 and the incretin hormone GLP-1 in pancreatic β-cells. The effect of dominant negative TCF7L2 (TCF7L2DN) mediated Wnt pathway functional knockdown on Isl1 expression was determined in βTCFDN mouse islets and in the rat insulinoma cell line INS-1 832/13. Luciferase reporter assay and chromatin immunoprecipitation were utilized to determine whether Isl1 is a direct downstream target of Tcf7l2 TCF7L2DN adenovirus infection and siRNA-mediated Isl1 knockdown on β-cell gene expression were compared. Furthermore, Isl1 knockdown on GLP-1 stimulated β-catenin S675 phosphorylation and insulin secretion was determined. We found that TCF7L2DN repressed ISL1 levels in βTCFDN islets and the INS-1 832/13 cell line. Wnt stimulators enhanced Isl1 promoter activity and binding of TCF7L2 on Isl1 promoter. TCF7L2DN adenovirus infection and Isl1 knockdown generated similar repression on expression of β-cell genes, including the ones that encode GLUT2 and GLP-1 receptor. Either TCF7L2DN adenovirus infection or Isl1 knockdown attenuated GLP-1-stimulated β-catenin S675 phosphorylation in INS-1 832/13 cells or mouse islets and GLP-1 stimulated insulin secretion in INS-1 832/13 or MIN6 cells. Our observations support the existence of TCF7L2-ISL1 transcriptional network, and we suggest that this network also mediates β-cell function of GLP-1.
Collapse
Affiliation(s)
- Weijuan Shao
- Division of Advanced DiagnosticsToronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Vivian Szeto
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Zhuolun Song
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Advanced DiagnosticsToronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zhong-Ping Feng
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - M Cristina Nostro
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
- Division of Experimental TherapeuticsToronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- McEwen Centre for Regenerative MedicineUniversity Health Network, Toronto, Ontario, Canada
| | - Tianru Jin
- Division of Advanced DiagnosticsToronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
- McEwen Centre for Regenerative MedicineUniversity Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes CenterUniversity of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
70
|
Mandour I, Darwish R, Fayez R, Naguib M, El-Sayegh S. TCF7L2 Gene Polymorphisms and Susceptibility to Type 2 Diabetes Mellitus, A Pilot Study. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2) variants are known risk factors of type 2 diabetes (T2DM).However, this association is not consistent among different populations. The current study aimed at investigating the relationship between rs 7903146, rs 12255372 variants of TCF7L2 and susceptibility to T2DM and different metabolic parameters in a cohort of Egyptian type 2 diabetic patients. This case control study included 60 diabetic patients and 60 matched unrelated healthy controls. Genotyping was performed by using Real Time-PCR. The frequency of genotypes, alleles, anthropometric measures, glycemic indices, HOMA-IR and lipid profile were evaluated in patients and control. Regarding rs 7903146, TT genotype was more frequent in healthy controls (43.3%) than diabetic patients (20%) (OR = 0.291, 95% CI = 0.108-0.788, P = 0.015). T allele was more frequent in healthy control (61.7%) than diabetic patients (44.2%) and it was associated with lower risk of diabetes (OR = 0.492, 95% CI = 0.294-0.823, P = 0.007).However, there was no significant difference between patients with CC, CT and TT genotypes of rs7903146 regarding HbA1C (p=0.549), HOMA-IR (p=0.359), total cholesterol (p=0.482). In contrast, T allele of rs12255372 had no significant relation to diabetes risk (OR = 0.602, 95% CI = 0.361-1.005, P = 0.052). There was no statistically significant difference of frequency of any rs12255372 genotypes between cases and controls In addition, patients with GG,GT, TT genotypes of rs12255372 had no significant difference regarding HbA1C (p=0.393), HOMA-IR (p=0.985), total cholesterol (p=0.368). The study confirmed the association of TCF7L2 (rs 7903146) and T2DM, while failed to detect any association between TCF7L2 (rs 12255372) and susceptibility to T2DM. No significant difference in respect to metabolic parameters between different genotypes of rs7930146 and rs12255372.
Collapse
Affiliation(s)
- Iman Mandour
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| | - Rania Darwish
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| | - Randa Fayez
- Department of Internal Medicine, Kasr Al-Ainy, Cairo University, Egypt
| | - Mervat Naguib
- Department of Internal Medicine, Kasr Al-Ainy, Cairo University, Egypt
| | - Sarah El-Sayegh
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| |
Collapse
|
71
|
Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, Heikkinen S, Norton L. The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function. Diabetes 2018; 67:554-568. [PMID: 29317436 PMCID: PMC5860863 DOI: 10.2337/db17-0318] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
The gene encoding for transcription factor 7-like 2 (TCF7L2) is the strongest type 2 diabetes mellitus (T2DM) candidate gene discovered to date. The TCF7L2 protein is a key transcriptional effector of the Wnt/β-catenin signaling pathway, which is an important developmental pathway that negatively regulates adipogenesis. However, the precise role that TCF7L2 plays in the development and function of adipocytes remains largely unknown. Using a combination of in vitro approaches, we first show that TCF7L2 protein is increased during adipogenesis in 3T3-L1 cells and primary adipocyte stem cells and that TCF7L2 expression is required for the regulation of Wnt signaling during adipogenesis. Inactivation of TCF7L2 protein by removing the high-mobility group (HMG)-box DNA binding domain in mature adipocytes in vivo leads to whole-body glucose intolerance and hepatic insulin resistance. This phenotype is associated with increased subcutaneous adipose tissue mass, adipocyte hypertrophy, and inflammation. Finally, we demonstrate that TCF7L2 mRNA expression is downregulated in humans with impaired glucose tolerance and adipocyte insulin resistance, highlighting the translational potential of these findings. In summary, our data indicate that TCF7L2 has key roles in adipose tissue development and function that may reveal, at least in part, how TCF7L2 contributes to the pathophysiology of T2DM.
Collapse
Affiliation(s)
- Xi Chen
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Iriscilla Ayala
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Chris Shannon
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Marcel Fourcaudot
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Nikhil K Acharya
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Christopher P Jenkinson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Harlingen, TX
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Luke Norton
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
72
|
Workman A, Zhu L, Keel BN, Smith TPL, Jones C. The Wnt Signaling Pathway Is Differentially Expressed during the Bovine Herpesvirus 1 Latency-Reactivation Cycle: Evidence That Two Protein Kinases Associated with Neuronal Survival, Akt3 and BMPR2, Are Expressed at Higher Levels during Latency. J Virol 2018; 92:e01937-17. [PMID: 29321317 PMCID: PMC5972910 DOI: 10.1128/jvi.01937-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory neurons in trigeminal ganglia (TG) of calves latently infected with bovine herpesvirus 1 (BoHV-1) abundantly express latency-related (LR) gene products, including a protein (ORF2) and two micro-RNAs. Recent studies in mouse neuroblastoma cells (Neuro-2A) demonstrated ORF2 interacts with β-catenin and a β-catenin coactivator, high-mobility group AT-hook 1 (HMGA1) protein, which correlates with increased β-catenin-dependent transcription and cell survival. β-Catenin and HMGA1 are readily detected in a subset of latently infected TG neurons but not TG neurons from uninfected calves or reactivation from latency. Consequently, we hypothesized that the Wnt/β-catenin signaling pathway is differentially expressed during the latency and reactivation cycle and an active Wnt pathway promotes latency. RNA-sequencing studies revealed that 102 genes associated with the Wnt/β-catenin signaling pathway were differentially expressed in TG during the latency-reactivation cycle in calves. Wnt agonists were generally expressed at higher levels during latency, but these levels decreased during dexamethasone-induced reactivation. The Wnt agonist bone morphogenetic protein receptor 2 (BMPR2) was intriguing because it encodes a serine/threonine receptor kinase that promotes neuronal differentiation and inhibits cell death. Another differentially expressed gene encodes a protein kinase (Akt3), which is significant because Akt activity enhances cell survival and is linked to herpes simplex virus 1 latency and neuronal survival. Additional studies demonstrated ORF2 increased Akt3 steady-state protein levels and interacted with Akt3 in transfected Neuro-2A cells, which correlated with Akt3 activation. Conversely, expression of Wnt antagonists increased during reactivation from latency. Collectively, these studies suggest Wnt signaling cooperates with LR gene products, in particular ORF2, to promote latency.IMPORTANCE Lifelong BoHV-1 latency primarily occurs in sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. RNA sequencing studies revealed 102 genes associated with the Wnt/β-catenin signaling pathway are differentially regulated during the latency-reactivation cycle. Two protein kinases associated with the Wnt pathway, Akt3 and BMPR2, were expressed at higher levels during latency but were repressed during reactivation. Furthermore, five genes encoding soluble Wnt antagonists and β-catenin-dependent transcription inhibitors were induced during reactivation from latency. These findings are important because Wnt, BMPR2, and Akt3 promote neurogenesis and cell survival, processes crucial for lifelong viral latency. In transfected neuroblastoma cells, a viral protein expressed during latency (ORF2) interacts with and enhances Akt3 protein kinase activity. These findings provide insight into how cellular factors associated with the Wnt signaling pathway cooperate with LR gene products to regulate the BoHV-1 latency-reactivation cycle.
Collapse
Affiliation(s)
- Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Liqian Zhu
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Brittney N Keel
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Timothy P L Smith
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Clinton Jones
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
73
|
Romero M, Sabaté-Pérez A, Francis VA, Castrillón-Rodriguez I, Díaz-Ramos Á, Sánchez-Feutrie M, Durán X, Palacín M, Moreno-Navarrete JM, Gustafson B, Hammarstedt A, Fernández-Real JM, Vendrell J, Smith U, Zorzano A. TP53INP2 regulates adiposity by activating β-catenin through autophagy-dependent sequestration of GSK3β. Nat Cell Biol 2018; 20:443-454. [PMID: 29593329 DOI: 10.1038/s41556-018-0072-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/23/2018] [Indexed: 12/14/2022]
Abstract
Excessive fat accumulation is a major risk factor for the development of type 2 diabetes mellitus and other common conditions, including cardiovascular disease and certain types of cancer. Here, we identify a mechanism that regulates adiposity based on the activator of autophagy TP53INP2. We report that TP53INP2 is a negative regulator of adipogenesis in human and mouse preadipocytes. In keeping with this, TP53INP2 ablation in mice caused enhanced adiposity, which was characterized by greater cellularity of subcutaneous adipose tissue and increased expression of master adipogenic genes. TP53INP2 modulates adipogenesis through autophagy-dependent sequestration of GSK3β into late endosomes. GSK3β sequestration was also dependent on ESCRT activity. As a result, TP53INP2 promotes greater β-catenin levels and induces the transcriptional activity of TCF/LEF transcription factors. These results demonstrate a link between autophagy, sequestration of GSK3β into late endosomes and inhibition of adipogenesis in vivo.
Collapse
Affiliation(s)
- Montserrat Romero
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alba Sabaté-Pérez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Víctor A Francis
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ignacio Castrillón-Rodriguez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángels Díaz-Ramos
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuela Sánchez-Feutrie
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Xavier Durán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology, Hospital Joan XXIII, Rovira i Virgili University, Tarragona, Spain.,Institut d'Investigació Sanitaria Pere Virgili (IISPV), Tarragona, Spain
| | - Manuel Palacín
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Girona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Birgit Gustafson
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ann Hammarstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Girona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology, Hospital Joan XXIII, Rovira i Virgili University, Tarragona, Spain.,Institut d'Investigació Sanitaria Pere Virgili (IISPV), Tarragona, Spain
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain. .,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
74
|
Fenwick PH, Jeejeebhoy K, Dhaliwal R, Royall D, Brauer P, Tremblay A, Klein D, Mutch DM. Lifestyle genomics and the metabolic syndrome: A review of genetic variants that influence response to diet and exercise interventions. Crit Rev Food Sci Nutr 2018; 59:2028-2039. [PMID: 29400991 DOI: 10.1080/10408398.2018.1437022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome (MetS) comprises a cluster of risk factors that includes central obesity, dyslipidemia, impaired glucose homeostasis and hypertension. Individuals with MetS have elevated risk of type 2 diabetes and cardiovascular disease; thus placing significant burdens on social and healthcare systems. Lifestyle interventions (comprised of diet, exercise or a combination of both) are routinely recommended as the first line of treatment for MetS. Only a proportion of people respond, and it has been assumed that psychological and social aspects primarily account for these differences. However, the etiology of MetS is multifactorial and stems, in part, on a person's genetic make-up. Numerous single nucleotide polymorphisms (SNPs) are associated with the various components of MetS, and several of these SNPs have been shown to modify a person's response to lifestyle interventions. Consequently, genetic variants can influence the extent to which a person responds to changes in diet and/or exercise. The goal of this review is to highlight SNPs reported to influence the magnitude of change in body weight, dyslipidemia, glucose homeostasis and blood pressure during lifestyle interventions aimed at improving MetS components. Knowledge regarding these genetic variants and their ability to modulate a person's response will provide additional context for improving the effectiveness of personalized lifestyle interventions that aim to reduce the risks associated with MetS.
Collapse
Affiliation(s)
- Peri H Fenwick
- a Department of Human Health and Nutritional Sciences , University of Guelph , Guelph , Ontario , Canada
| | - Khursheed Jeejeebhoy
- b Emeritus Professor of Medicine and Physician , St. Michael's Hospital , Toronto , Ontario , Canada
| | | | - Dawna Royall
- d Department of Family Relations and Applied Nutrition , University of Guelph , Guelph , Ontario , Canada
| | - Paula Brauer
- d Department of Family Relations and Applied Nutrition , University of Guelph , Guelph , Ontario , Canada
| | - Angelo Tremblay
- e Department of Kinesiology , Faculty of Medicine, Université Laval , Québec City , Québec , Canada
| | - Doug Klein
- f Department of Family Medicine , University of Alberta , Edmonton , Alberta , Canada
| | - David M Mutch
- a Department of Human Health and Nutritional Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
75
|
Min W, Liu X, Lu Y, Gong Z, Wang M, Lin S, Kang H, Jin T, Wang X, Ma X, Liu K, Dai C, Zheng Y, Li S, Ma Q, Dai Z. Association of transcription factor 7-like 2 gene polymorphisms with breast cancer risk in northwest Chinese women. Oncotarget 2018; 7:77175-77182. [PMID: 27738320 PMCID: PMC5363578 DOI: 10.18632/oncotarget.12591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Genetic variations in transcription factor 7-like 2 (TCF7L2) are associated with cancer risk. This study was conducted to establish the relationship between TCF7L2 polymorphisms (rs1225404, rs7003146, and rs7903146) and clinical features and risk of breast cancer in Northwest Chinese Han women. In this study, three polymorphisms of TCF7L2 (rs1225404, rs7003146, and rs7903146) were genotyped in 458 patients with breast cancer and 500 healthy controls using the Sequenom MassARRAY-iPLEX system. We evaluated the associations between the polymorphisms and breast cancer using odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs). The C allele of rs1225404 was associated with increased breast cancer risk (OR = 1.58, P = 0.0004, PC= 0.0012), whereas the G allele of rs7003146 was associated with decreased breast cancer risk (OR = 0.71, P = 0.01, PC= 0.03). Furthermore, the rs1225404 polymorphism positively correlated with negative progesterone receptor status. A positive correlation with positive estrogen receptor (ER) status was observed for the rs7003146 polymorphism. Our results suggest that TCF7L2 polymorphisms rs1225404 and rs7003146, but not rs7903146, may affect breast cancer risk in Northwest Chinese women. Additionally, the tag polymorphisms in TCF7L2 are associated with the clinical features of breast cancer, which may provide us novel insight into the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Weili Min
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xinghan Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ye Lu
- Department of Student Affairs, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhuoqing Gong
- Department of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuai Lin
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huafeng Kang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Tianbo Jin
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xijing Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaobin Ma
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Kang Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Cong Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yi Zheng
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shanli Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
76
|
Noordam R, Zwetsloot CPA, de Mutsert R, Mook-Kanamori DO, Lamb HJ, de Roos A, de Koning EJP, Rosendaal FR, Willems van Dijk K, van Heemst D. Interrelationship of the rs7903146 TCF7L2 gene variant with measures of glucose metabolism and adiposity: The NEO study. Nutr Metab Cardiovasc Dis 2018; 28:150-157. [PMID: 29174029 DOI: 10.1016/j.numecd.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS We investigated the interrelationship of rs7903146-T in TCF7L2 with measures of glucose metabolism and measures of adiposity. METHODS AND RESULTS This cross-sectional analysis was conducted in 5744 middle-aged participants (mean (standard deviation [SD]) age is 55.9 (6.0) years) from the Netherlands Epidemiology of Obesity (NEO) Study. Associations between rs7903146-T and Type 2 diabetes mellitus (T2D) were assessed with logistic regression. Additive (per-allele) associations with measures of glucose metabolism (e.g., fasting insulin) and adiposity (e.g., body mass index [BMI]) were examined with multivariable linear regression. In the total study population, rs7903146-T was associated with a higher risk of T2D (additive odds ratio: 1.42; 95% confidence interval: 1.17; 1.72), and specifically with T2D treated with insulin analogs (2.31 [1.19; 4.46]). After exclusion of participants treated with glucose-lowering medication, rs7903146-T was associated with lower mean insulin concentration (additive mean difference: -0.07 SD [-0.14; 0.00]), but not with higher mean glucose concentration (0.03 SD [-0.01; 0.07]). Furthermore, rs7903146-T was associated with, among other measures of adiposity, a lower mean BMI (-0.04 SD [-0.09; -0.00]), and a lower mean total body fat (-0.04 SD [-0.08; -0.00]). The association between rs7903146-T and T2D increased after adjustment for BMI (odds ratio: 1.51 [1.24; 1.86]); the association between rs7903146-T and fasting insulin diminished after adjustment (-0.05 SD [-0.11; 0.02]). CONCLUSION rs7903146-T is associated with a decreased insulin concentration and increased risk of T2D with opposing effects of adjustment for adiposity.
Collapse
Affiliation(s)
- R Noordam
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | - C P A Zwetsloot
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - R de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - D O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - H J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - A de Roos
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - E J P de Koning
- Department of Internal Medicine, Section Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - F R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - K Willems van Dijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Internal Medicine, division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - D van Heemst
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
77
|
Song ZY, Wang F, Cui SX, Qu XJ. Knockdown of CXCR4 Inhibits CXCL12-Induced Angiogenesis in HUVECs through Downregulation of the MAPK/ERK and PI3K/AKT and the Wnt/β-Catenin Pathways. Cancer Invest 2018; 36:10-18. [PMID: 29381400 DOI: 10.1080/07357907.2017.1422512] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CXCL12 is an extracellular chemokine binding to cell surface receptor CXCR4. We found that activation of CXCL12/CXCR4 axis stimulated angiogenesis in endothelial cells. Knockdown of CXCR4 in endothelial cells prevented the branch points of angiogenesis. Endothelial cells exposed to CXCL12 presented high level of epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), and matrix metalloproteinase MMP-2, but not in CXCR4 knockdown cells. Further studies revealed that activation of CXCL12/CXCR4 axis in vascular endothelial cells stimulates the angiogenesis through upregulation of the MAPK/ERK and PI3K/AKT and Wnt/β-catenin pathways. Conclusion, downregulation of CXCR4 could inhibit angiogenesis in cancer tissues.
Collapse
Affiliation(s)
- Zhi-Yu Song
- a Department of Pharmacology, School of Basic Medical Sciences , Capital Medical University , Beijing , China
| | - Feng Wang
- b Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , China
| | - Shu-Xiang Cui
- b Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , China
| | - Xian-Jun Qu
- a Department of Pharmacology, School of Basic Medical Sciences , Capital Medical University , Beijing , China
| |
Collapse
|
78
|
Piao X, Yahagi N, Takeuchi Y, Aita Y, Murayama Y, Sawada Y, Shikama A, Masuda Y, Nishi-Tatsumi M, Kubota M, Izumida Y, Sekiya M, Matsuzaka T, Nakagawa Y, Sugano Y, Iwasaki H, Kobayashi K, Yatoh S, Suzuki H, Yagyu H, Kawakami Y, Shimano H. A candidate functional SNP rs7074440 in TCF7L2 alters gene expression through C-FOS in hepatocytes. FEBS Lett 2018; 592:422-433. [PMID: 29331016 DOI: 10.1002/1873-3468.12975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Abstract
The SNP rs7903146 at the transcription factor 7-like 2 (TCF7L2) locus is established as the strongest known genetic marker for type 2 diabetes via genome-wide association studies. However, the functional SNPs regulating TCF7L2 expression remain unclear. Here, we show that the SNP rs7074440 is a candidate functional SNP highly linked with rs7903146. A reporter plasmid with rs7074440 normal allele sequence exhibited 15-fold higher luciferase activity compared with risk allele sequence in hepatocytes, demonstrating a strong enhancer activity at rs7074440. Additionally, we identified C-FOS as an activator binding to the rs7074440 enhancer using a TFEL genome-wide screen method. Consistently, knockdown of C-FOS significantly reduced TCF7L2 expression in hepatocytes. Collectively, a novel enhancer regulating TCF7L2 expression was revealed through searching for functional SNPs.
Collapse
Affiliation(s)
- Xianying Piao
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshikazu Sawada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Makiko Nishi-Tatsumi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Midori Kubota
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoko Sugano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuto Kobayashi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Yagyu
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
79
|
Cropano C, Santoro N, Groop L, Dalla Man C, Cobelli C, Galderisi A, Kursawe R, Pierpont B, Goffredo M, Caprio S. The rs7903146 Variant in the TCF7L2 Gene Increases the Risk of Prediabetes/Type 2 Diabetes in Obese Adolescents by Impairing β-Cell Function and Hepatic Insulin Sensitivity. Diabetes Care 2017; 40:1082-1089. [PMID: 28611053 PMCID: PMC5521977 DOI: 10.2337/dc17-0290] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/06/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In this study, we aimed to explore the mechanism by which TCF7L2 rs7903146 risk allele confers susceptibility to impaired glucose tolerance (IGT) or type 2 diabetes (T2D) in obese adolescents. RESEARCH DESIGN AND METHODS The rs7903146 variant in the TCF7L2 gene was genotyped in a multiethnic cohort of 955 youths. All subjects underwent an oral glucose tolerance test with the use of the Oral Minimal Model to assess insulin secretion, and 33 subjects underwent a hyperinsulinemic-euglycemic clamp. In 307 subjects, a follow-up oral glucose tolerance test was repeated after 3.11 ± 2.36 years. RESULTS The TCF7L2 rs7903146 risk allele was associated with higher 2-h glucose levels in Caucasians (P = 0.006) and African Americans (P = 0.009), and a trend was seen also in Hispanics (P = 0.072). Also, the T allele was associated with decreased β-cell responsivity and IGT (P < 0.05). Suppression of endogenous hepatic glucose production was lower in subjects with the risk variant (P = 0.006). Finally, the odds of showing IGT/T2D at follow-up were higher in subjects carrying the minor allele (odds ratio 2.224; 95% CI 1.370-3.612; P = 0.0012). CONCLUSIONS The rs7903146 variant in the TCF7L2 gene increases the risk of IGT/T2D in obese adolescents by impairing β-cell function, and hepatic insulin sensitivity predicts the development of IGT/T2D over time.
Collapse
Affiliation(s)
- Catrina Cropano
- Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Nicola Santoro
- Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmo, Sweden.,Lund University Diabetes Center, Lund University, Malmo, Sweden
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Alfonso Galderisi
- Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | | | - Bridget Pierpont
- Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Martina Goffredo
- Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Sonia Caprio
- Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
80
|
Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2. Cell Death Dis 2017; 8:e2559. [PMID: 28102847 PMCID: PMC5386366 DOI: 10.1038/cddis.2016.455] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/27/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Understanding mechanisms underlying adipogenic differentiation may lead to the discovery of novel therapeutic targets for obesity. Wnt signalling pathway activation leads to repressed adipogenic differentiation while certain microRNAs may regulate pre-adipocyte proliferation and differentiation. We show here that in mouse white adipose tissue, miR-17-5p level is elevated after high fat diet consumption. miR-17-5p upregulates adipogenic differentiation, as its over-expression increased while its inhibition repressed 3T3-L1 differentiation. The Tcf7l2 gene encodes a key Wnt signalling pathway effector, and its human homologue TCF7L2 is a highly regarded diabetes risk gene. We found that Tcf7l2 is an miR-17-5p target and confirmed the repressive effect of Tcf7l2 on 3T3-L1 adipogenic differentiation. The natural plant polyphenol compound curcumin possesses the body weight lowering effect. We observed that curcumin attenuated miR-17-5p expression and stimulated Tcf7l2 expression in 3T3-L1 cells. These, along with the elevation of miR-17-5p expression in mouse epididymal fat tissue in response to high fat diet consumption, allowed us to suggest that miR-17-5p is among central switches of adipogenic differentiation. It activates adipogenesis via repressing the Wnt signalling pathway effector Tcf7l2, and its own expression is likely nutritionally regulated in health and disease.
Collapse
|
81
|
Jin T, Weng J. Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives. Am J Physiol Endocrinol Metab 2016; 311:E620-7. [PMID: 27507553 DOI: 10.1152/ajpendo.00069.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed "degradation" products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed "degradation" products of GLP-1 in the liver and elsewhere, including GLP-128-36 and GLP-132-36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| |
Collapse
|