51
|
Reduction of NOTCH1 expression pertains to maturation abnormalities of keratinocytes in squamous neoplasms. J Transl Med 2012; 92:688-702. [PMID: 22330335 DOI: 10.1038/labinvest.2012.9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Notch is a transmembrane receptor functioning in the determination of cell fate. Abnormal Notch signaling promotes tumor development, showing either oncogenic or tumor suppressive activity. The uncertainty about the exact role of Notch signaling, partially, stems from inconsistencies in descriptions of Notch expression in human cancers. Here, we clarified basal-cell dominant expression of NOTCH1 in squamous epithelium. NOTCH1 was downregulated in squamous neoplasms of oral mucosa, esophagus and uterine cervix, compared with the normal basal cells, although the expression tended to be retained in cervical lesions. NOTCH1 downregulation was observed even in precancers, and there was little difference between cancers and high-grade precancerous lesions, suggesting its minor contribution to cancer-specific events such as invasion. In culture experiments, reduction of NOTCH1 expression resulted in downregulation of keratin 13 and keratin 15, and upregulation of keratin 17, and NOTCH1 knockdown cells formed a dysplastic stratified epithelium mimicking a precancerous lesion. The NOTCH1 downregulation and the concomitant alterations of those keratin expressions were confirmed in the squamous neoplasms both by immunohistochemical and cDNA microarray analyses. Our data indicate that reduction of NOTCH1 expression directs the basal cells to cease terminal differentiation and to form an immature epithelium, thereby playing a major role in the histopathogenesis of epithelial dysplasia. Furthermore, downregulation of NOTCH1 expression seems to be an inherent mechanism for switching the epithelium from a normal and mature state to an activated and immature state, suggesting its essential role in maintaining the epithelial integrity.
Collapse
|
52
|
The expression changes of Numblike in rat brain cortex after traumatic brain injury. J Mol Histol 2012; 43:195-201. [PMID: 22476811 DOI: 10.1007/s10735-011-9383-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 12/17/2011] [Indexed: 10/28/2022]
Abstract
Numblike (Numbl) plays an important role in ependymal wall integrity and subventricular zone neuroblast survival. And Numbl is specifically expressed in the brain. However, its expression and function in the central nervous system lesion are still unclear. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the dynamic changes of Numbl expression in the brain cortex. Western blot and immunohistochemistry analysis revealed that Numbl was present in normal brain. It gradually decreased, reached the lowest point at day 3 after TBI, and then increased during the following days. Double immunofluorescence staining showed that Numbl immunoreactivity was found in neurons, but not astrocytes and microglia. Moreover, the 3rd day post injury was the apoptotic peak implied by the alteration of caspase-3. All these results suggested that Numbl may be involved in the pathophysiology of TBI and further research is needed to have a good understanding of its function and mechanism.
Collapse
|
53
|
Simonis N, Rual JF, Lemmens I, Boxus M, Hirozane-Kishikawa T, Gatot JS, Dricot A, Hao T, Vertommen D, Legros S, Daakour S, Klitgord N, Martin M, Willaert JF, Dequiedt F, Navratil V, Cusick ME, Burny A, Van Lint C, Hill DE, Tavernier J, Kettmann R, Vidal M, Twizere JC. Host-pathogen interactome mapping for HTLV-1 and -2 retroviruses. Retrovirology 2012; 9:26. [PMID: 22458338 PMCID: PMC3351729 DOI: 10.1186/1742-4690-9-26] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/29/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression. RESULTS We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway. CONCLUSIONS This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.
Collapse
Affiliation(s)
- Nicolas Simonis
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave,, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Xie Z, Dong Y, Maeda U, Xia W, Tanzi RE. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing. Transl Neurodegener 2012; 1:8. [PMID: 23211096 PMCID: PMC3514095 DOI: 10.1186/2047-9158-1-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 03/22/2012] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided.
Collapse
Affiliation(s)
- Zhongcong Xie
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060, USA.
| | | | | | | | | |
Collapse
|
55
|
Zhu L, Yan Y, Ke K, Wu X, Gao Y, Shen A, Li J, Kang L, Zhang G, Wu Q, Yang H. Dynamic change of Numbl expression after sciatic nerve crush and its role in Schwann cell differentiation. J Neurosci Res 2012; 90:1557-65. [PMID: 22437994 DOI: 10.1002/jnr.23039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/15/2012] [Accepted: 01/20/2012] [Indexed: 02/01/2023]
Abstract
Numbl, as a conserved homolog of Drosophila Numb, has been implicated in early development of the nervous system, but its expression and roles in nervous system lesion and repair remained unknown. Here, we performed an acute sciatic nerve injury model in adult rats and studied the dynamic changes of Numbl expression in the sciatic nerve. Temporally, Numbl expression was sharply decreased after sciatic nerve crush and reached a valley at day 7. Spatially, Numbl was widely expressed in the normal sciatic nerve, including axons and Schwann cells, whereas, after injury, Numbl expression was decreased predominantly in Schwann cells. In vitro, we induced Schwann cell differentiation with cAMP and found that Numbl expression was decreased in the differentiated process. Depletion of Numbl could promote Schwann cell differentiation. In addition, we demonstrated that in vitro myelination was suppressed by overexpression of Numbl in Schwann cells. Collectively, we hypothesized peripheral nerve injury induced a downregulation of Numbl in the sciatic nerve, which was associated with Schwann cell differentiation.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Osteology, Affiliated Jiangyin Hospital, Nantong University, Wuxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Haenfler JM, Kuang C, Lee CY. Cortical aPKC kinase activity distinguishes neural stem cells from progenitor cells by ensuring asymmetric segregation of Numb. Dev Biol 2012; 365:219-28. [PMID: 22394487 DOI: 10.1016/j.ydbio.2012.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
Abstract
During asymmetric stem cell division, polarization of the cell cortex targets fate determinants unequally into the sibling daughters, leading to regeneration of a stem cell and production of a progenitor cell with restricted developmental potential. In mitotic neural stem cells (neuroblasts) in fly larval brains, the antagonistic interaction between the polarity proteins Lethal (2) giant larvae (Lgl) and atypical Protein Kinase C (aPKC) ensures self-renewal of a daughter neuroblast and generation of a progenitor cell by regulating asymmetric segregation of fate determinants. In the absence of lgl function, elevated cortical aPKC kinase activity perturbs unequal partitioning of the fate determinants including Numb and induces supernumerary neuroblasts in larval brains. However, whether increased aPKC function triggers formation of excess neuroblasts by inactivating Numb remains controversial. To investigate how increased cortical aPKC function induces formation of excess neuroblasts, we analyzed the fate of cells in neuroblast lineage clones in lgl mutant brains. Surprisingly, our analyses revealed that neuroblasts in lgl mutant brains undergo asymmetric division to produce progenitor cells, which then revert back into neuroblasts. In lgl mutant brains, Numb remained localized in the cortex of mitotic neuroblasts and failed to segregate exclusively into the progenitor cell following completion of asymmetric division. These results led us to propose that elevated aPKC function in the cortex of mitotic neuroblasts reduces the function of Numb in the future progenitor cells. We identified that the acyl-CoA binding domain containing 3 protein (ACBD3) binding region is essential for asymmetric segregation of Numb in mitotic neuroblasts and suppression of the supernumerary neuroblast phenotype induced by increased aPKC function. The ACBD3 binding region of Numb harbors two aPKC phosphorylation sites, serines 48 and 52. Surprisingly, while the phosphorylation status at these two sites directly impinged on asymmetric segregation of Numb in mitotic neuroblasts, both the phosphomimetic and non-phosphorylatable forms of Numb suppressed formation of excess neuroblasts triggered by increased cortical aPKC function. Thus, we propose that precise regulation of cortical aPKC kinase activity distinguishes the sibling cell identity in part by ensuring asymmetric partitioning of Numb into the future progenitor cell where Numb maintains restricted potential independently of regulation by aPKC.
Collapse
Affiliation(s)
- Jill M Haenfler
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
57
|
Shah DK, Zúñiga-Pflücker JC. Notch receptor-ligand interactions during T cell development, a ligand endocytosis-driven mechanism. Curr Top Microbiol Immunol 2012; 360:19-46. [PMID: 22581027 DOI: 10.1007/82_2012_225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Notch signaling plays an important role during the development of different cell types and tissues. The role of Notch signaling in lymphocyte development, in particular in the development and commitment to the T cell lineage, has been the focus of research for many years. Notch signaling is absolutely required during the commitment and early stages of T cell development. Activation of the Notch signaling pathway is initiated by ligand-receptor interactions and appears to require active endocytosis of Notch ligands. Studies addressing the mechanism underlying endocytosis of Notch ligands have helped to identify the main players important and necessary for this process. Here, we review the Notch ligands, and the proposed models of Notch activation by Notch ligand endocytosis, highlighting key molecules involved. In particular, we discuss recent studies on Notch ligands involved in T cell development, current studies aimed at elucidating the relevance of Notch ligand endocytosis during T cell development and the identification of key players necessary for ligand endocytosis in the thymus and during T cell development.
Collapse
Affiliation(s)
- Divya K Shah
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4 N 3M5, Canada.
| | | |
Collapse
|
58
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 712] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
59
|
Liu L, Lanner F, Lendahl U, Das D. Numblike and Numb differentially affect p53 and Sonic Hedgehog signaling. Biochem Biophys Res Commun 2011; 413:426-31. [DOI: 10.1016/j.bbrc.2011.08.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 01/28/2023]
|
60
|
Kwon C, Cheng P, King IN, Andersen P, Shenje L, Nigam V, Srivastava D. Notch post-translationally regulates β-catenin protein in stem and progenitor cells. Nat Cell Biol 2011; 13:1244-51. [PMID: 21841793 PMCID: PMC3187850 DOI: 10.1038/ncb2313] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 07/05/2011] [Indexed: 02/07/2023]
Abstract
Cellular decisions of self-renewal or differentiation arise from integration and reciprocal titration of numerous regulatory networks. Notch and Wnt/β-catenin signalling often intersect in stem and progenitor cells and regulate each other transcriptionally. The biological outcome of signalling through each pathway often depends on the context and timing as cells progress through stages of differentiation. Here, we show that membrane-bound Notch physically associates with unphosphorylated (active) β-catenin in stem and colon cancer cells and negatively regulates post-translational accumulation of active β-catenin protein. Notch-dependent regulation of β-catenin protein did not require ligand-dependent membrane cleavage of Notch or the glycogen synthase kinase-3β-dependent activity of the β-catenin destruction complex. It did, however, require the endocytic adaptor protein Numb and lysosomal activity. This study reveals a previously unrecognized function of Notch in negatively titrating active β-catenin protein levels in stem and progenitor cells.
Collapse
Affiliation(s)
- Chulan Kwon
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205 USA
| | - Paul Cheng
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Isabelle N. King
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205 USA
| | - Lincoln Shenje
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205 USA
| | - Vishal Nigam
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| |
Collapse
|
61
|
Abstract
The Notch pathway is prominent among those known to regulate neural development in vertebrates. Notch receptor activation can inhibit neurogenesis, maintain neural progenitor character, and in some contexts promote gliogenesis and drive binary fate choices. Recently, a wave of exciting studies has emerged, which has both solidified previously held assertions and expanded our understanding of Notch function during neurogenesis and in the adult brain. These studies have examined pathway regulators and interactions, as well as pathway dynamics, with respect to both gene expression and cell-cell signaling. Here, focusing primarily on vertebrates, we review the current literature on Notch signaling in the nervous system, and highlight numerous recent studies that have generated interesting and unexpected advances.
Collapse
|
62
|
Beres BJ, George R, Lougher EJ, Barton M, Verrelli BC, McGlade CJ, Rawls JA, Wilson-Rawls J. Numb regulates Notch1, but not Notch3, during myogenesis. Mech Dev 2011; 128:247-57. [DOI: 10.1016/j.mod.2011.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 12/18/2022]
|
63
|
Germain N, Banda E, Grabel L. Embryonic stem cell neurogenesis and neural specification. J Cell Biochem 2011; 111:535-42. [PMID: 20589755 DOI: 10.1002/jcb.22747] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The prospect of using embryonic stem cell (ESC)-derived neural progenitors and neurons to treat neurological disorders has led to great interest in defining the conditions that guide the differentiation of ESCs, and more recently induced pluripotent stem cells (iPSCs), into neural stem cells (NSCs) and a variety of neuronal and glial subtypes. Over the past decade, researchers have looked to the embryo to guide these studies, applying what we know about the signaling events that direct neural specification during development. This has led to the design of a number of protocols that successfully promote ESC neurogenesis, terminating with the production of neurons and glia with diverse regional addresses and functional properties. These protocols demonstrate that ESCs undergo neural specification in two, three, and four dimensions, mimicking the cell-cell interactions, patterning, and timing that characterizes the in vivo process. We therefore propose that these in vitro systems can be used to examine the molecular regulation of neural specification.
Collapse
Affiliation(s)
- Noélle Germain
- Biology Department, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459-0170., USA
| | | | | |
Collapse
|
64
|
Pece S, Confalonieri S, R Romano P, Di Fiore PP. NUMB-ing down cancer by more than just a NOTCH. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1815:26-43. [PMID: 20940030 DOI: 10.1016/j.bbcan.2010.10.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 02/07/2023]
Abstract
The protein Numb does not live up to its name. This passive-sounding protein is anything but spent. Originally identified as a cell-fate determinant in Drosophila development, Numb received a good deal of attention as an inhibitor of the Notch receptor signaling pathway. It turns out, however, that Numb does a lot more than simply regulate Notch. It has been implicated in a variety of biochemical pathways connected with signaling (it regulates Notch-, Hedgehog- and TP53-activated pathways), endocytosis (it is involved in cargo internalization and recycling), determination of polarity (it interacts with the PAR complex, and regulates adherens and tight junctions), and ubiquitination (it exploits this mechanism to regulate protein function and stability). This complex biochemical network lies at the heart of Numb's involvement in diverse cellular phenotypes, including cell fate developmental decisions, maintenance of stem cell compartments, regulation of cell polarity and adhesion, and migration. Considering its multifaceted role in cellular homeostasis, it is not surprising that Numb has been implicated in cancer as a tumor suppressor. Our major goal here is to explain the cancer-related role of Numb based on our understanding of its role in cell physiology. We will attempt to do this by reviewing the present knowledge of Numb at the biochemical and functional level, and by integrating its apparently heterogeneous functions into a unifying scenario, based on our recently proposed concept of the "endocytic matrix". Finally, we will discuss the role of Numb in the maintenance of the normal stem cell compartment, as a starting point to interpret the tumor suppressor function of Numb in the context of the cancer stem cell hypothesis.
Collapse
Affiliation(s)
- Salvatore Pece
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | | | | | | |
Collapse
|
65
|
Kaltezioti V, Kouroupi G, Oikonomaki M, Mantouvalou E, Stergiopoulos A, Charonis A, Rohrer H, Matsas R, Politis PK. Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biol 2010; 8:e1000565. [PMID: 21203589 PMCID: PMC3006385 DOI: 10.1371/journal.pbio.1000565] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022] Open
Abstract
During development of the spinal cord, Prox1 controls the balance between proliferation and differentiation of neural progenitor cells via suppression of Notch1 gene expression. Activation of Notch1 signaling in neural progenitor cells (NPCs) induces self-renewal and inhibits neurogenesis. Upon neuronal differentiation, NPCs overcome this inhibition, express proneural genes to induce Notch ligands, and activate Notch1 in neighboring NPCs. The molecular mechanism that coordinates Notch1 inactivation with initiation of neurogenesis remains elusive. Here, we provide evidence that Prox1, a transcription repressor and downstream target of proneural genes, counteracts Notch1 signaling via direct suppression of Notch1 gene expression. By expression studies in the developing spinal cord of chick and mouse embryo, we showed that Prox1 is limited to neuronal precursors residing between the Notch1+ NPCs and post-mitotic neurons. Physiological levels of Prox1 in this tissue are sufficient to allow binding at Notch1 promoter and they are critical for proper Notch1 transcriptional regulation in vivo. Gain-of-function studies in the chick neural tube and mouse NPCs suggest that Prox1-mediated suppression of Notch1 relieves its inhibition on neurogenesis and allows NPCs to exit the cell cycle and differentiate. Moreover, loss-of-function in the chick neural tube shows that Prox1 is necessary for suppression of Notch1 outside the ventricular zone, inhibition of active Notch signaling, down-regulation of NPC markers, and completion of neuronal differentiation program. Together these data suggest that Prox1 inhibits Notch1 gene expression to control the balance between NPC self-renewal and neuronal differentiation. Early during development, neural progenitor cells (NPCs) can either proliferate or differentiate into neurons. Thus, generation of the correct number of neurons is governed by a tightly regulated balance between proliferation and differentiation, and disruption of this balance can result in severe developmental deficits, malformations, or cancers. Notch1 is a member of the Notch family of receptors, which make up a highly conserved cell signaling system. Notch1 signaling has been shown to inhibit NPC differentiation and to promote self-renewal, thereby allowing NPCs to divide and progressively generate the enormous number of neurons present in the central nervous system. The molecular mechanism by which NPCs overcome Notch1-mediated inhibition in order to differentiate into neurons, however, is not completely understood. In this study, we show that Prox1, a homeobox transcriptional repressor, plays a fundamental role in the switch to differentiation by suppressing the expression of Notch1 receptor, thereby preventing newly produced neuronal precursors from receiving inhibitory signals from Notch ligands present in neighboring cells. This transcriptional repression may regulate cell cycle exit and differentiation of NPCs as they migrate towards different regions and adopt their final cell fates. We suggest that Prox1 may exert its known influence on embryonic development, organ morphogenesis, and cancer through its ability to counteract Notch1 signaling.
Collapse
Affiliation(s)
- Valeria Kaltezioti
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Oikonomaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Mantouvalou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athanasios Stergiopoulos
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aristidis Charonis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Hermann Rohrer
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Frankfurt/Main, Germany
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
66
|
Bresciani E, Confalonieri S, Cermenati S, Cimbro S, Foglia E, Beltrame M, Di Fiore PP, Cotelli F. Zebrafish numb and numblike are involved in primitive erythrocyte differentiation. PLoS One 2010; 5:e14296. [PMID: 21179188 PMCID: PMC3001437 DOI: 10.1371/journal.pone.0014296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 11/11/2010] [Indexed: 11/29/2022] Open
Abstract
Background Notch signaling is an evolutionarily conserved regulatory circuitry implicated in cell fate determination in various developmental processes including hematopoietic stem cell self-renewal and differentiation of blood lineages. Known endogenous inhibitors of Notch activity are Numb-Nb and Numblike-Nbl, which play partially redundant functions in specifying and maintaining neuronal differentiation. Nb and Nbl are expressed in most tissues including embryonic and adult hematopoietic tissues in mice and humans, suggesting possible roles for these proteins in hematopoiesis. Methodology and Principal Findings We employed zebrafish to investigate the possible functional role of Numb and Numblike during hematopoiesis, as this system allows a detailed analysis even in embryos with severe defects that would be lethal in other organisms. Here we describe that nb/nbl knockdown results in severe reduction or absence of embryonic erythrocytes in zebrafish. Interestingly, nb/nbl knocked-down embryos present severe downregulation of the erythroid transcription factor gata1. This results in erythroblasts which fail to mature and undergo apoptosis. Our results indicate that Notch activity is increased in embryos injected with nb/nbl morpholino, and we show that inhibition of Notch activation can partially rescue the hematopoietic phenotype. Conclusions and Significance Our results provide the first in vivo evidence of an involvement of Numb and Numblike in zebrafish erythroid differentiation during primitive hematopoiesis. Furthermore, we found that, at least in part, the nb/nbl morphant phenotype is due to enhanced Notch activation within hematopoietic districts, which in turn results in primitive erythroid differentiation defects.
Collapse
Affiliation(s)
- Erica Bresciani
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
| | - Stefano Confalonieri
- The FIRC Institute for Molecular Oncology Foundation (IFOM) at the IFOM-IEO Campus, Milano, Italy
| | - Solei Cermenati
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Simona Cimbro
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
| | - Efrem Foglia
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
| | - Monica Beltrame
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology Foundation (IFOM) at the IFOM-IEO Campus, Milano, Italy
- European Institute of Oncology (IEO), Milano, Italy
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Milano, Milano, Italy
- * E-mail: (FC); (PPDF)
| | - Franco Cotelli
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
- * E-mail: (FC); (PPDF)
| |
Collapse
|
67
|
Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 2010; 6:433-44. [PMID: 20452318 DOI: 10.1016/j.stem.2010.02.017] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/18/2010] [Accepted: 02/26/2010] [Indexed: 12/16/2022]
Abstract
Methyl-CpG binding protein 1 (MBD1) regulates gene expression via a DNA methylation-mediated epigenetic mechanism. We have previously demonstrated that MBD1 deficiency impairs adult neural stem/progenitor cell (aNSC) differentiation and neurogenesis, but the underlying mechanism was unclear. Here, we show that MBD1 regulates the expression of several microRNAs in aNSCs and, specifically, that miR-184 is directly repressed by MBD1. High levels of miR-184 promoted proliferation but inhibited differentiation of aNSCs, whereas inhibition of miR-184 rescued the phenotypes associated with MBD1 deficiency. We further found that miR-184 regulates the expression of Numblike (Numbl), a known regulator of brain development, by binding to the 3'-UTR of Numbl mRNA and affecting its translation. Expression of exogenous Numbl could rescue the aNSC defects that result from either miR-184 overexpression or MBD1 deficiency. Therefore, MBD1, miR-184, and Numbl form a regulatory network that helps control the balance between proliferation and differentiation of aNSCs.
Collapse
Affiliation(s)
- Changmei Liu
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Soluble components of Notch signalling can be applied to manipulate a central pathway essential for the development of metazoans and often deregulated in illnesses such as stroke, cancer or cardiovascular diseases. Commonly, the Notch cascade is inhibited by small compound inhibitors, which either block the proteolysis of Notch receptors by gamma-secretases or interfere with the transcriptional activity of the Notch intracellular domain. Specific antibodies can also be used to inhibit ligand-induced activation of Notch receptors. Alternatively, naturally occurring endogenous inhibitors of Notch signalling might offer a specific way to block receptor activation. Examples are the soluble variants of the canonical Notch ligand Jagged1 and the non-canonical Notch ligand Dlk1, both deprived of their transmembrane regions upon ectodomain shedding, or the bona fide secreted molecule EGFL7. We present frequently used methods to decrease Notch signalling, and we discuss how soluble Notch inhibitors may be used to treat diseases.
Collapse
Affiliation(s)
- Ivan Dikic
- Frankfurt Institute for Molecular Life Sciences (FMLS) and Institute of Biochemistry II, Johann Wolfgang Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Mirko H H Schmidt
- Molecular Signal Transduction, Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University School of Medicine, Frankfurt am Main, Germany
| |
Collapse
|
69
|
Kerns D, Vong GS, Barley K, Dracheva S, Katsel P, Casaccia P, Haroutunian V, Byne W. Gene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia. Schizophr Res 2010; 120:150-8. [PMID: 20580881 DOI: 10.1016/j.schres.2010.04.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/19/2010] [Accepted: 04/22/2010] [Indexed: 12/15/2022]
Abstract
Deficits in the expression of oligodendrocyte (Ol) and myelin genes have been described in numerous brain regions in schizophrenia (SZ) in association with abnormalities of cell cycle markers. We have previously reported a SZ-associated decrease in the expression of genes expressed after, but not prior to, the terminal differentiation of Ols in the posterior limb of the internal capsule (ICp). This pattern of deficits could reflect a failure of Ol precursors to exit the cell cycle and differentiate to meet the demands imposed by the high rate of apoptosis among myelinating Ols. Here we explore this hypothesis using quantitative real time PCR to examine the mRNA expression of additional genes in the ICp of the previously examined sample of 14 subjects with SZ and 15 normal controls (NCs). The genes examined in the present study were chosen because they are associated with particular phases of the cell cycle (CCND1, CCND2, p21(Cip1), p27(Kip1), and p57(Kip2)), with DNA replication and repair (PCNA), apoptosis (CASP3), or the Notch signaling pathway (JAG1, HES1, HES5, andDTX1). The Notch pathway influences whether Ol precursors continue to proliferate or exit the cell cycle. We also determined the densities of Ols in the ICp. Genes associated with maintenance of the cell cycle tended to exhibit increased expression levels in SZ relative to NCs and to be negatively correlated with the expression levels of the previously assessed mature Ol genes. In contrast, genes associated with cell cycle arrest tended to show the opposite pattern (decreased expression in SZ and positive correlations with mature Ol genes). CASP3 and PCNA expression levels were significantly decreased in SZ and positively correlated with mature Ol genes, suggesting that myelinating Ols may turnover more rapidly in normal controls than in subjects with SZ. JAG1 expression was significantly increased in SZ and exhibited positive correlations with mediators of the canonical Notch pathway but negative correlations with mature Ol genes. Ol densities were significantly decreased in SZ. These data are consistent with the hypothesis that Ol and myelin deficits in SZ involve a failure of Ol precursors to appropriately exit the cell cycle in order to differentiate and mature into myelinating Ols.
Collapse
Affiliation(s)
- David Kerns
- J.J. Peters VA Medical Center, 130 West Kingsbridge Ave., Bronx, New York, NY 10468, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Numb carries the distinction of being the first molecule discovered to influence cell fate by being asymmetrically segregated during cell division. Originally identified from studies in Drosophila, further work has since demonstrated the importance of Numb in mammalian and, in particular, human systems, from diverse fields such as developmental neurobiology to cancer biology and neurodegenerative disease. This review surveys the body of knowledge concerning Numb, and discusses the relevance of Numb to human biology and disease.
Collapse
Affiliation(s)
- Benedict Yan
- Department of Pathology, National University Hospital and Yong Loo Lin's School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Republic of Singapore.
| |
Collapse
|
71
|
Choi YS, Lee MC, Kim HS, Lee KH, Park YG, Kim HK, Jeong HS, Kim MK, Woo YJ, Kim SU, Ryu JK, Choi HB. Neurotoxicity screening in a multipotent neural stem cell line established from the mouse brain. J Korean Med Sci 2010; 25:440-8. [PMID: 20191045 PMCID: PMC2826742 DOI: 10.3346/jkms.2010.25.3.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 05/04/2009] [Indexed: 12/16/2022] Open
Abstract
Neural stem cells (NSCs) have mainly been applied to neurodegeneration in some medically intractable neurologic diseases. In this study, we established a novel NSC line and investigated the cytotoxic responses of NSCs to exogenous neurotoxicants, glutamates and reactive oxygen species (ROS). A multipotent NSC line, B2A1 cells, was established from long-term primary cultures of oligodendrocyte-enriched cells from an adult BALB/c mouse brain. B2A1 cells could be differentiated into neuronal, astrocytic and oligodendroglial lineages. The cells also expressed genotypic mRNA messages for both neural progenitor cells and differentiated neuronoglial cells. B2A1 cells treated with hydrogen peroxide and L-buthionine-(S,R)-sulfoximine underwent 30-40% cell death, while B2A1 cells treated with glutamate and kainate showed 25-35% cell death. Cytopathologic changes consisting of swollen cell bodies, loss of cytoplasmic processes, and nuclear chromatin disintegration, developed after exposure to both ROS and excitotoxic chemicals. These results suggest that B2A1 cells may be useful in the study of NSC biology and may constitute an effective neurotoxicity screening system for ROS and excitotoxic chemicals.
Collapse
Affiliation(s)
- Yong-Soo Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
- Center for Biomedical Human Resources (BK 21), Chonnam National University Medical School, Gwangju, Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine and Pathology, Chonnam National University Medical School, Gwangju, Korea
- Center for Biomedical Human Resources (BK 21), Chonnam National University Medical School, Gwangju, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Seonam University College of Medicine, Namwon, Korea
| | - Yeoung-Geol Park
- Department of Ophthalmology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun-Kyung Kim
- Department of Ophthalmology, Chonnam National University Medical School, Gwangju, Korea
| | - Han-Seong Jeong
- Center for Biomedical Human Resources (BK 21), Chonnam National University Medical School, Gwangju, Korea
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Jong Woo
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Up Kim
- Department of Neurobiology, Chung-Ang University Medical Center, Seoul, Korea
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jae-Kyu Ryu
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hyun-Beom Choi
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
72
|
Zhou L, Ma Q, Shi H, Huo K. NUMBL interacts with TRAF6 and promotes the degradation of TRAF6. Biochem Biophys Res Commun 2010; 392:409-14. [PMID: 20079715 DOI: 10.1016/j.bbrc.2010.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 01/09/2010] [Indexed: 01/09/2023]
Abstract
Tumor necrosis factor-associated factor 6 (TRAF6) is an essential adaptor protein for IL-1R or TLR-mediated NF-kappaB signaling pathway activation. In previous work we have found NUMBL interacts with TAB2 and negatively regulates NF-kappaB signaling pathway. Here, we report that NUMBL directly binds to TRAF6 in vivo and in vitro. NUMBL down-regulates TRAF6 protein level and shortens its half-life. Furthermore, knockdown of NUMBL significantly increases endogenous TRAF6 protein level in the cultured cortical neurons. In vivo ubiquitination assays indicate that NUMBL promotes the assembly of K48-linked polyubiquitination chains on TRAF6, but has no significant effect on its K63-linked polyubiquitination. Our results collectively reveal that NUMBL interacts with TRAF6 and promotes the degradation of TRAF6 in vivo, leading to the inhibition of NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Li Zhou
- School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | |
Collapse
|
73
|
Abstract
The regulation of self-renewal, cell diversity, and differentiation can occur by modulating symmetric and asymmetric cell divisions. Remarkably, asymmetric cell divisions can arise through multiple processes in which molecules in the cytoplasm and nucleus, as well as template "immortal" DNA strands, can segregate to one daughter cell during cell division. Explaining how these events direct distinct daughter cell fates is a major challenge to understanding how the organism is assembled and maintained for a lifetime. Numerous technical issues that are associated with assessing how distinct cell fates are executed in vivo have resulted in divergent interpretations of experimental findings. This review addresses some of these points and considers different developmental model systems that attempt to investigate how cell fate decisions are determined, as well as the molecules that guide these choices.
Collapse
Affiliation(s)
- Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental Biology, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
74
|
Abstract
Numb is an evolutionary conserved protein that plays critical roles in cell fate determination. Mammalian Numb displays a higher degree of structural complexity compared to the Drosophila homolog based on the number of encoding genes (Numb and Numb-like) and of alternative spliced isoforms. Accordingly, Numb proteins display a complex pattern of functions such as the control of asymmetric cell division and cell fate choice, endocytosis, cell adhesion, cell migration, ubiquitination of specific substrates and a number of signaling pathways (i.e. Notch, Hedgehog, p53). Recent findings indicate that, besides controlling such physiologic developmental processes, subversion of the above Numb-dependent events plays a critical role in disease (e.g. cancer). We will review here the multiple functions of mNumb and their underlying molecular mechanisms in development and disease.
Collapse
|
75
|
Jory A, Le Roux I, Gayraud-Morel B, Rocheteau P, Cohen-Tannoudji M, Cumano A, Tajbakhsh S. Numb Promotes an Increase in Skeletal Muscle Progenitor Cells in the Embryonic Somite. Stem Cells 2009; 27:2769-80. [DOI: 10.1002/stem.220] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
76
|
Abstract
Neural stem cells exist in the mammalian developing and adult nervous system. Recently, tremendous interest in the potential of neural stem cells for the treatment of neurodegenerative diseases and brain injuries has substantially promoted research on neural stem cell self-renewal and differentiation. Multiple cell-intrinsic regulators coordinate with the microenvironment through various signaling pathways to regulate neural stem cell maintenance, self-renewal, and fate determination. This review focuses on essential intracellular regulators that control neural stem cell maintenance and self-renewal in both embryonic brains and adult nervous system. These factors include the orphan nuclear receptor TLX, the high-mobility-group DNA binding protein Sox2, the basic helix-loop-helix transcription factor Hes, the tumor suppressor gene Pten, the membrane-associated protein Numb, and its cytoplasmic homolog Numblike. The aim of this review is to summarize our current understanding of neural stem cell regulation through these important stem cell regulators.
Collapse
Affiliation(s)
- Qiuhao Qu
- Department of Neurosciences, Center for Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
77
|
Ostrakhovitch EA. Interplay between Numb and Notch in epithelial cancers: role for dual oxidase maturation factor. Eur J Cancer 2009; 45:2071-6. [PMID: 19523816 DOI: 10.1016/j.ejca.2009.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Abstract
Numb and Notch signalling pathways are vitally important in cell fate and differentiation. The outcome of these signalling processes is determined by a delicate balance between opposing effects of Notch and Numb. Imbalance in Numb/Notch regulation was implicated in aberrant differentiation programme and epithelial cancer progression and metastasis. Recent identification of Numb-interacting protein (NIP), which is also known as dual oxidase maturation factor, and was shown to associate with Numb and DUOX and promote their translocation, sheds a new light on how Numb/Notch network may be coordinated in epithelial cancers. Here, a possible link between Numb, Notch and Dual oxidase maturation factor is examined.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
78
|
McGill MA, Dho SE, Weinmaster G, McGlade CJ. Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem 2009; 284:26427-38. [PMID: 19567869 DOI: 10.1074/jbc.m109.014845] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Notch is a transmembrane receptor that controls cell fate decisions during development and tissue homeostasis. Both activation and attenuation of the Notch signal are tightly regulated by endocytosis. The adaptor protein Numb acts as an inhibitor of Notch and is known to function within the intracellular trafficking pathways. However, a role for Numb in regulating Notch trafficking has not been defined. Here we show that mammalian Notch1 is constitutively internalized and trafficked to both recycling and late endosomal compartments, and we demonstrate that changes in Numb expression alter the dynamics of Notch1 trafficking. Overexpression of Numb promotes sorting of Notch1 through late endosomes for degradation, whereas depletion of Numb facilitates Notch1 recycling. Numb mutants that do not interact with the ubiquitin-protein isopeptide ligase, Itch, or that lack motifs important for interaction with endocytic proteins fail to promote Notch1 degradation. Our data suggest that Numb inhibits Notch1 activity by regulating post-endocytic sorting events that lead to Notch1 degradation.
Collapse
Affiliation(s)
- Melanie A McGill
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
79
|
Abstract
Notch is an integral membrane protein that functions as receptor for ligands such as jagged and delta that are associated with the surface of neighboring cells. Upon ligand binding, notch is proteolytically cleaved within its transmembrane domain by presenilin-1 (the enzymatic component of the gamma-secretase complex) resulting in the release of a notch intracellular domain which translocates to the nucleus where it regulates gene expression. Notch signaling plays multiple roles in the development of the CNS including regulating neural stem cell (NSC) proliferation, survival, self-renewal and differentiation. Notch is also present in post-mitotic neurons in the adult CNS wherein its activation influences structural and functional plasticity including processes involved in learning and memory. Recent findings suggest that notch signaling in neurons, glia, and NSCs may be involved in pathological changes that occur in disorders such as stroke, Alzheimer's disease and CNS tumors. Studies of animal models suggest the potential of agents that target notch signaling as therapeutic interventions for several different CNS disorders.
Collapse
Affiliation(s)
- Justin D Lathia
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
80
|
Schlüter T, Knauth P, Wald S, Boland S, Bohnensack R. Numb3 is an endocytosis adaptor for the inflammatory marker P-selectin. Biochem Biophys Res Commun 2009; 379:909-13. [PMID: 19138666 DOI: 10.1016/j.bbrc.2008.12.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/25/2008] [Indexed: 11/30/2022]
Abstract
The endocytic protein Numb3 was found to bind to the cytosolic tail of the leukocyte adhesion receptor P-selectin. The N-terminal phosphotyrosine-binding (PTB) domain of Numb3 is responsible for this activity. An alanine scan revealed the FTNAAFD sequence as recognition region in P-selectin. Structural modeling of the interaction between the Numb PTB domain and the P-selectin tail suggests that both phenylalanines within the recognition sequence fit into hydrophobic cavities of the PTB surface. Their exchange for alanine gave Numb-negative mutants detaining the inhibition of P-selectin endocytosis by Numb PTB overexpression. Cells stable expressing P-selectins internalized the negative mutants markedly slower than the wild type. Consistent with other reports on the phosphorylation of Numb, we found that only the dephospho-Numb is able to bind P-selectin. Our observations demonstrate that Numb3 is an endocytic receptor for P-selectin and may be responsible for the rapid internalization of P-selectin when endothelial activation ends.
Collapse
Affiliation(s)
- Thomas Schlüter
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
81
|
Kuang W, Tan J, Duan Y, Duan J, Wang W, Jin F, Jin Z, Yuan X, Liu Y. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun 2009; 378:259-63. [DOI: 10.1016/j.bbrc.2008.11.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
|
82
|
Zhong W. Timing cell-fate determination during asymmetric cell divisions. Curr Opin Neurobiol 2008; 18:472-8. [PMID: 18983918 DOI: 10.1016/j.conb.2008.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 10/19/2008] [Accepted: 10/22/2008] [Indexed: 01/05/2023]
Abstract
From invertebrates to mammals, cell-cycle progression during an asymmetric cell division is accompanied by precisely timed redistribution of cell-fate determinants so that they segregate asymmetrically to enable the two daughter cells to choose different fates. Interestingly, studies on how cell fates are specified in such divisions reveal that the same fate determinants can be reiteratively used to specify a variety of cell types through multiple rounds of cell divisions or to exert seemingly contradictory effects on cell proliferation and differentiation. Here I summarize the molecular mechanisms governing asymmetric cell division and review recent findings pointing to a novel mechanism for coupling intracellular signaling and cell-cycle progression. This mechanism uses changes in the morphology, subcellular distribution, and molecular composition of cellular organelles like the Golgi apparatus and centrosomes, which not only accompany the progression of cell cycle to activate but also temporally constrain the activity of fate determinants during asymmetric cell divisions.
Collapse
Affiliation(s)
- Weimin Zhong
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
83
|
Corbin JG, Gaiano N, Juliano SL, Poluch S, Stancik E, Haydar TF. Regulation of neural progenitor cell development in the nervous system. J Neurochem 2008; 106:2272-87. [PMID: 18819190 DOI: 10.1111/j.1471-4159.2008.05522.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian telencephalon, which comprises the cerebral cortex, olfactory bulb, hippocampus, basal ganglia, and amygdala, is the most complex and intricate region of the CNS. It is the seat of all higher brain functions including the storage and retrieval of memories, the integration and processing of sensory and motor information, and the regulation of emotion and drive states. In higher mammals such as humans, the telencephalon also governs our creative impulses, ability to make rational decisions, and plan for the future. Despite its massive complexity, exciting work from a number of groups has begun to unravel the developmental mechanisms for the generation of the diverse neural cell types that form the circuitry of the mature telencephalon. Here, we review our current understanding of four aspects of neural development. We first begin by providing a general overview of the broad developmental mechanisms underlying the generation of neuronal and glial cell diversity in the telencephalon during embryonic development. We then focus on development of the cerebral cortex, the most complex and evolved region of the brain. We review the current state of understanding of progenitor cell diversity within the cortical ventricular zone and then describe how lateral signaling via the Notch-Delta pathway generates specific aspects of neural cell diversity in cortical progenitor pools. Finally, we review the signaling mechanisms required for development, and response to injury, of a specialized group of cortical stem cells, the radial glia, which act both as precursors and as migratory scaffolds for newly generated neurons.
Collapse
Affiliation(s)
- Joshua G Corbin
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Blom T, Roselli A, Tanner M, Nupponen NN. Mutation and copy number analysis of LNX1 and Numbl in nervous system tumors. ACTA ACUST UNITED AC 2008; 186:103-9. [DOI: 10.1016/j.cancergencyto.2008.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 07/10/2008] [Indexed: 01/08/2023]
|
85
|
Signaling networks during development: the case of asymmetric cell division in the Drosophila nervous system. Dev Biol 2008; 321:1-17. [PMID: 18586022 DOI: 10.1016/j.ydbio.2008.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
Abstract
Remarkable progress in genetics and molecular biology has made possible the sequencing of the genomes from numerous species. In the post-genomic era, technical developments in the fields of proteomics and bioinformatics are poised to further catapult our understanding of protein structure, function and organization into complex signaling networks. One of the greatest challenges in the field now is to unravel the functional signaling networks and their spatio-temporal regulation in living cells. Here, the need for such in vivo system-wide level approach is illustrated in relation to the mechanisms that underlie the biological process of asymmetric cell division. Genomic, post-genomic and live imaging techniques are reviewed in light of the huge impact they are having on this field for the discovering of new proteins and for the in vivo analysis of asymmetric cell division. The proteins, signals and the emerging networking of functional connections that is arising between them during this process in the Drosophila nervous system will be also discussed.
Collapse
|
86
|
Zhong W, Chia W. Neurogenesis and asymmetric cell division. Curr Opin Neurobiol 2008; 18:4-11. [PMID: 18513950 DOI: 10.1016/j.conb.2008.05.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/25/2008] [Accepted: 05/08/2008] [Indexed: 12/27/2022]
Abstract
The astonishing cellular diversity in the central nervous system (CNS) arises from neural progenitors which can undergo different modes of symmetric and asymmetric divisions to self-renew as well as produce differentiated neuronal and glial progeny. Drosophila CNS neural progenitor cells, neuroblasts, have been utilised as a model to stimulate the understanding of the processes of asymmetric division, generation of neuronal lineages and, more recently, stem cell biology in vertebrates. Here we review some recent developments involving Drosophila and mammalian neural progenitor cells, highlighting some similarities and differences in the mechanisms that regulate their divisions during neurogenesis.
Collapse
Affiliation(s)
- Weimin Zhong
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
87
|
Gönczy P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 2008; 9:355-66. [PMID: 18431399 DOI: 10.1038/nrm2388] [Citation(s) in RCA: 390] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Asymmetric cell division is fundamental for generating diversity in multicellular organisms. The mechanisms that govern asymmetric cell division are increasingly well understood, owing notably to studies that were conducted in Drosophila melanogaster and Caenorhabditis elegans. Lessons learned from these two model organisms also apply to cells that divide asymmetrically in other metazoans, such as self-renewing stem cells in mammals.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), School of Life Sciences, Lausanne, Switzerland.
| |
Collapse
|
88
|
Ma Q, Zhou L, Shi H, Huo K. NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation. Cell Signal 2008; 20:1044-51. [PMID: 18299187 DOI: 10.1016/j.cellsig.2008.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
The cytokines TNFalpha and IL-1beta induce inflammation through activation of transcription factors NF-kappaB. TAB2 is an adapter protein that facilitates TNFalpha and IL-1beta-mediated NF-kappaB activation. In this work, using yeast two-hybrid system TAB2 was identified to interact with NUMBL. The interaction was further confirmed in vitro and in vivo. PTB domain of NUMBL and C-terminal region are required for their interaction. Overexpression of NUMBL inhibited TNFalpha, IL-1beta-induced activation of NF-kappaB signaling pathway. NUMBL also inhibited TAB2, TAK1, TRAF6 and RIP-induced activation of NF-kappaB in a dose-dependent manner. We found that NUMBL can impair TAB2 binding to TRAF6 or RIP and inhibit ubiquitination of TRAF6 enhanced by TAB2. Taken together, our data suggest that NUMBL is involved in negative regulation of NF-kappaB signaling through its interaction with TAB2. These findings also reveal the new functions of NUMBL and implicate that NUMBL potentially links Notch pathway to NF-kappaB pathway.
Collapse
Affiliation(s)
- Qi Ma
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai 200433, PR China
| | | | | | | |
Collapse
|
89
|
Carson C, Murdoch B, Roskams AJ. Notch 2 and Notch 1/3 segregate to neuronal and glial lineages of the developing olfactory epithelium. Dev Dyn 2007; 235:1678-88. [PMID: 16518823 DOI: 10.1002/dvdy.20733] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The murine olfactory epithelium (OE) generates olfactory receptor neurons (ORNs) throughout development and into adulthood, but only a few of the factors regulating olfactory neuro- and glio-genesis have been delineated. Notch receptors maintain CNS neuronal progenitors and drive glial differentiation, and the Notch effectors Hes 1 and 5 are expressed in the OE, but the Notch receptors that stimulate Hes gene activation in defined lineages during OE development have not been determined. Here, we first use RT-PCR to reveal which Notch receptors and ligands are expressed in the developing and adult OE. This is followed by immunofluorescent detection, combined with lineage-specific markers to define the stage-specific developmental expression of different Notch family members. We show that throughout development, Notch 1 and 3 are expressed in cells retained within the lamina propria, where Notch 3 is expressed in olfactory ensheathing cells (OECs). In contrast, Notch 2 is expressed in apical embryonic and early postnatal OE neuronal progenitors. In postnatal and adult OE, Notch 1 is expressed predominantly in Bowman's glands, and Notch 2 in sustentacular cells. Notch 2 and Notch 1/3 may, therefore, have different roles in the commitment and differentiation of neuronal and glial lineages of the OE during development, and the maintenance of non-neuronal phenotypes postnatally.
Collapse
Affiliation(s)
- Christine Carson
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
90
|
Wilson A, Ardiet DL, Saner C, Vilain N, Beermann F, Aguet M, Macdonald HR, Zilian O. Normal Hemopoiesis and Lymphopoiesis in the Combined Absence of Numb and Numblike. THE JOURNAL OF IMMUNOLOGY 2007; 178:6746-51. [PMID: 17513721 DOI: 10.4049/jimmunol.178.11.6746] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mammalian ortholog of the conserved Drosophila adaptor protein Numb (Nb) and its homolog Numblike (Nbl) modulate neuronal cell fate determination at least in part by antagonizing Notch signaling. Because the Notch pathway has been implicated in regulating hemopoietic stem cell self-renewal and T cell fate specification in mammals, we investigated the role of Nb and Nbl in hemopoiesis using conditional gene targeting. Surprisingly simultaneous deletion of both Nb and Nbl in murine bone marrow precursors did not affect the ability of stem cells to self-renew or to give rise to differentiated myeloid or lymphoid progeny, even under competitive conditions in mixed chimeras. Furthermore, T cell fate specification and intrathymic T cell development were unaffected in the combined absence of Nb and Nbl. Collectively our data indicate that the Nb family of adaptor proteins is dispensable for hemopoiesis and lymphopoiesis in mice, despite their proposed role in neuronal stem cell development.
Collapse
Affiliation(s)
- Anne Wilson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Noles SR, Chenn A. Cadherin inhibition of beta-catenin signaling regulates the proliferation and differentiation of neural precursor cells. Mol Cell Neurosci 2007; 35:549-58. [PMID: 17553695 DOI: 10.1016/j.mcn.2007.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/24/2007] [Accepted: 04/30/2007] [Indexed: 12/26/2022] Open
Abstract
The generation and differentiation of neurons during development requires coordination of intercellular interactions with spatio-temporal changes in gene expression. To examine the role of adhesion in cerebral cortical development, we overexpressed full-length cadherin and dominant-negative truncated cadherin in mouse cortical precursors. Full-length cadherin allowed for the maintenance of cell contact between daughter cells following cell division while dominant-negative cadherin decreased cell contact. Paradoxically, both cadherin isoforms inhibited precursor proliferation, induced premature neuronal differentiation, and inhibited beta-catenin dependent signaling. Furthermore, alteration of cadherin or beta-catenin function led to additional changes in precursor identity and division symmetry as demonstrated by altered expression of the radial glial marker, Pax6, and the intermediate precursor marker, Tbr2. Moreover, clonal analysis demonstrated asymmetric distribution of Tbr2 following precursor mitosis. Together, these results show that cadherins affect neural precursor fate determination through a cell-autonomous regulation of catenin signaling distinct from cadherin adhesive function.
Collapse
Affiliation(s)
- Stephanie R Noles
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
92
|
Zhou Y, Atkins JB, Rompani SB, Bancescu DL, Petersen PH, Tang H, Zou K, Stewart SB, Zhong W. The Mammalian Golgi Regulates Numb Signaling in Asymmetric Cell Division by Releasing ACBD3 during Mitosis. Cell 2007; 129:163-78. [PMID: 17418793 DOI: 10.1016/j.cell.2007.02.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 11/27/2006] [Accepted: 02/16/2007] [Indexed: 01/04/2023]
Abstract
Mammalian neural progenitor cells divide asymmetrically to self-renew and produce a neuron by segregating cytosolic Numb proteins primarily to one daughter cell. Numb signaling specifies progenitor over neuronal fates but, paradoxically, also promotes neuronal differentiation. Here we report that ACBD3 is a Numb partner in cell-fate specification. ACBD3 and Numb proteins interact through an essential Numb domain, and the respective loss- and gain-of-function mutant mice share phenotypic similarities. Interestingly, ACBD3 associates with the Golgi apparatus in neurons and interphase progenitor cells but becomes cytosolic after Golgi fragmentation during mitosis, when Numb activity is needed to distinguish the two daughter cells. Accordingly, cytosolic ACBD3 can act synergistically with Numb to specify cell fates, and its continuing presence during the progenitor cell cycle inhibits neuron production. We propose that Golgi fragmentation and reconstitution during cell cycle differentially regulate Numb signaling through changes in ACBD3 subcellular distribution and represent a mechanism for coupling cell-fate specification and cell-cycle progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Cheng A, Coksaygan T, Tang H, Khatri R, Balice-Gordon RJ, Rao MS, Mattson MP. Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism. J Neurochem 2006; 100:1515-30. [PMID: 17286628 DOI: 10.1111/j.1471-4159.2006.04337.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
94
|
Corallini S, Fera S, Grisanti L, Falciatori I, Muciaccia B, Stefanini M, Vicini E. Expression of the adaptor protein m-Numb in mouse male germ cells. Reproduction 2006; 132:887-97. [PMID: 17127749 DOI: 10.1530/rep-06-0062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numb is an adaptor protein that is asymmetrically inherited at mitosis and controls the fate of sibling cells in different species. The role of m-Numb (mammalian Numb) as an important cell fate-determining factor has extensively been described mostly in neural tissues, particularly in progenitor cells, in the mouse. Biochemical and genetic analyses have shown that Numb acts as an inhibitor of the Notch signaling pathway, an evolutionarily conserved pathway involved in the control of cell proliferation, differentiation, and apoptosis. In the present study, we sought to determine m-Numb distribution in germ cells in the postnatal mouse testis. We show that all four m-Numb isoforms are widely expressed during postnatal testis development. By reverse transcriptase-PCR and western blot analyses, we further identify p71 as the predominantly expressed isoform in germ cells. Moreover, we demonstrate through co-immunoprecipitation studies that m-Numb physically associates with Ap2a1, a component of the endocytotic clathrin-coated vesicles. Finally, we employed confocal immunofluorescence microscopy of whole mount seminiferous tubules and isolated germ cells to gain more insight into the subcellular localization of m-Numb. These morphological analyses confirmed m-Numb and Ap2a1 co-localization. However, we did not observe asymmetric localization of m-Numb neither in mitotic spermatogonial stem cells nor in more differentiated spermatogonial cells, suggesting that spermatogonial stem cell fate in the mouse does not rely on asymmetric partitioning of m-Numb.
Collapse
Affiliation(s)
- Serena Corallini
- Dipartimento di Istologia ed Embriologia Medica, Università di Roma La Sapienza, Via Antonio Scarpa 14, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
95
|
Carotenuto P, Marino N, Bello AM, D'Angelo A, Di Porzio U, Lombardi D, Zollo M. PRUNE and NM23-M1 expression in embryonic and adult mouse brain. J Bioenerg Biomembr 2006; 38:233-46. [PMID: 17033939 DOI: 10.1007/s10863-006-9044-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/04/2006] [Indexed: 11/28/2022]
Abstract
A genetic interaction between PRUNE and NM23/NDPK has been postulated in Drosophila melanogaster. Many have focused on Drosophila for the genetic combination between PRUNE "knock down" and AWD/NM23 fly mutants bearing the P97S mutation (K-pn, Killer of PRUNE mutation). We postulated a role for PRUNE-NM23 interactions in vertebrate development, demonstrating a physical interaction between the human PRUNE and NM23-H1 proteins, and partially characterizing their functional significance in cancer progression. Here, we present an initial analysis towards the functional characterization of the PRUNE-NM23 interaction during mammalian embryogenesis. Our working hypothesis is that PRUNE, NM23-H1 and their protein-protein interaction partners have important roles in mammalian brain development and adult brain function. Detailed expression analyses from early mouse brain development to adulthood show significant co-expression of these two genes during embryonic stages of brain development, especially focusing on the cortex, hippocampus, midbrain and cerebellum. We hypothesize that their abnormal expression results in an altered pathway of activation, influencing protein complex formation and its protein partner interactions in early embryogenesis. In the adult brain, their function appears concentrated towards their enzyme activities, wherein biochemical variations can result in brain dysfunction.
Collapse
Affiliation(s)
- Pietro Carotenuto
- CEINGE, Biotecnologie Avanzate Scarl, Via Comunale Margherita 482, 80145, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
96
|
Tokumitsu H, Hatano N, Yokokura S, Sueyoshi Y, Nozaki N, Kobayashi R. Phosphorylation of Numb regulates its interaction with the clathrin-associated adaptor AP-2. FEBS Lett 2006; 580:5797-801. [PMID: 17022975 DOI: 10.1016/j.febslet.2006.09.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 11/18/2022]
Abstract
Numb is thought to participate in clathrin-dependent endocytosis by directly interacting with the clathrin-associated adaptor complex AP-2, although the underlying mechanisms are unknown. Numb is also known to be phosphorylated at Ser(264)in vitro and in vivo. Here, we found that Numb is phosphorylated in vitro by Ca(2+)/calmodulin-dependent protein kinase I on Ser(283). This phosphorylation was also observed in transfected COS-7 cells, indicating its physiological relevance. Pull-down experiments showed that the phosphorylation of Numb impaired its binding to the AP-2 complex and simultaneously recruited 14-3-3 proteins in vitro. Based on experiments using Numb mutants, both the initial phosphorylation of Ser(264) and the subsequent phosphorylation of Ser(283) are sufficient to abolish the binding of Numb to AP-2 and to promote the interaction with 14-3-3 protein. These findings suggest a novel mechanism for the regulation of Numb-mediated endocytosis, namely through direct phosphorylation.
Collapse
Affiliation(s)
- Hiroshi Tokumitsu
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | |
Collapse
|
97
|
Luo D, Renault VM, Rando TA. The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 2006; 16:612-22. [PMID: 16087370 DOI: 10.1016/j.semcdb.2005.07.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that is critical for tissue morphogenesis during development, but is also involved in tissue maintenance and repair in the adult. In skeletal muscle, regulation of Notch signaling is involved in somitogenesis, muscle development, and the proliferation and cell fate determination of muscle stems cells during regeneration. During each of these processes, the spatial and temporal control of Notch signaling is essential for proper tissue formation. That control is mediated by a series of regulatory proteins and protein complexes that enhance or inhibit Notch signaling by regulating protein processing, localization, activity, and stability. In this review, we focus on the regulation of Notch signaling during postnatal muscle regeneration when muscle stem cells ("satellite cells") must activate, proliferate, progress along a myogenic lineage pathway, and ultimately differentiate to form new muscle. We review the regulators of Notch signaling, such as Numb and Deltex, that have documented roles in myogenesis as well as other regulators that may play a role in modulating Notch signaling during satellite cell activation and postnatal myogenesis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5235, USA
| | | | | |
Collapse
|
98
|
Abe Y, Chen W, Huang W, Nishino M, Li YP. CNBP regulates forebrain formation at organogenesis stage in chick embryos. Dev Biol 2006; 295:116-27. [PMID: 16626683 DOI: 10.1016/j.ydbio.2006.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 01/15/2006] [Accepted: 03/13/2006] [Indexed: 11/17/2022]
Abstract
We recently demonstrated that Cellular Nucleic acid Binding Protein (CNBP)(-/-) mouse embryos exhibit forebrain truncation due to a lack of proper morphogenetic movements of the anterior visceral endoderm (AVE) during pre-gastrulation stage (Chen, W., Liang, Y., Deng, W., Shimizu, K., Ashique, A.M., Li, E., Li, Y.P., 2003. The zinc-finger protein CNBP is required for forebrain formation in the mouse, Development 130, 1367-1379). However, CNBP expression pattern in the mouse forebrain suggests that CNBP may have more direct effects during forebrain development. Our data show that CNBP is expressed in tissues of early chick embryo that are the equivalent to the mouse embryo. Using a combination of RNAi-silencing and Retrovirus-misexpression approaches, we investigated the temporal function of CNBP in the specification/development of the chick forebrain during organogenesis. The silencing of CNBP expression resulted in forebrain truncation and the absence of BF-1, Six3 and Hesx1 expression, but not Otx2 in chick embryos. Misexpression of CNBP induced the expression of BF-1, Six3 and Hesx1 in the hindbrain, but not the expression of Otx2. These results offer novel insights into the function of CNBP during organogenesis as the regulator of forebrain formation and a number of rostral head transcription factors. Moreover, CNBP and Otx2 may play roles as regulators of forebrain formation in two parallel pathways. These new insights into CNBP functions underscore the essential role of CNBP in forebrain formation during chick embryo organogenesis.
Collapse
Affiliation(s)
- Yoko Abe
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
99
|
Abstract
Much has been made of the idea that asymmetric cell division is a defining characteristic of stem cells that enables them to simultaneously perpetuate themselves (self-renew) and generate differentiated progeny. Yet many stem cells can divide symmetrically, particularly when they are expanding in number during development or after injury. Thus, asymmetric division is not necessary for stem-cell identity but rather is a tool that stem cells can use to maintain appropriate numbers of progeny. The facultative use of symmetric or asymmetric divisions by stem cells may be a key adaptation that is crucial for adult regenerative capacity.
Collapse
Affiliation(s)
- Sean J Morrison
- Howard Hughes Medical Institute and Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA.
| | | |
Collapse
|
100
|
Holowacz T, Zeng L, Lassar AB. Asymmetric localization of numb in the chick somite and the influence of myogenic signals. Dev Dyn 2006; 235:633-45. [PMID: 16425215 PMCID: PMC2561193 DOI: 10.1002/dvdy.20672] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Whereas Notch signaling is known to play an essential role in the formation of somites, its role during later stages of somite maturation is less well understood. Here, we examine the signals and transcription factors that control the expression of the Notch antagonist, Numb, during somite maturation in the chick embryo. Numb mRNA is present in the epithelial somite and is increased in expression in the forming myotome. Numb protein displays a very specific subcellular localization and dynamic expression during somite maturation. Numb protein is asymmetrically localized in a cortical crescent on the basal side of dividing cells in the dorsomedial lip of the dermomyotome and is subsequently uniformly distributed throughout differentiated myotomal cells. Treatment of somites with either the combination of Wnt-3a and Shh, or ectodermal signals plus noggin, both of which induce somitic myogenesis, did not significantly affect Numb transcript levels but did lead to a dramatic increase in the levels of Numb protein, which was uniformly distributed throughout the cytoplasm of the resultant myotubes. Forced expression of MyoD in somites similarly induced high levels of Numb protein throughout the cytoplasm, without affecting Numb mRNA levels. We also found that signals that promote somitic myogenesis or forced MyoD expression induced expression of the Notch ligand, Serrate-2. Our findings suggest that Notch signals are specifically repressed in the myotome and that asymmetric expression of Numb in dividing cells of the dorsomedial lip of the dermomyotome may modulate whether these cells continue to divide or differentiate into myotomal cells.
Collapse
Affiliation(s)
- Tamara Holowacz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|