51
|
Aoki T, Kogure SY, Kogo H, Hayashi M, Ohno-Iwashita Y, Fujimoto T. Sequestration of Cross-linked Membrane Molecules to Caveolae in Two Different Pathways. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takeo Aoki
- Department of Anatomy and Cell Biology, Gunma University School of Medicine
| | - Shin-ya Kogure
- Department of Anatomy and Cell Biology, Gunma University School of Medicine
| | - Hiroshi Kogo
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
| | - Masami Hayashi
- Biomembrane Research Group, Tokyo Metropolitan Institute of Gerontology
| | | | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
| |
Collapse
|
52
|
Greitz D. On the active vascular absorption of plasma proteins from tissue: rethinking the role of the lymphatic system. Med Hypotheses 2002; 59:696-702. [PMID: 12445511 DOI: 10.1016/s0306-9877(02)00297-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
According to Starling's hypothesis, the osmotic pressure of plasma proteins in the capillary is the principal force for fluid absorption. The leakage of plasma proteins from capillaries to tissue during 24 h accounts for the total amount of plasma proteins in the vascular system. The same amount must therefore be reabsorbed by the lymphatic system, which is considered to be the sole absorber of proteins from tissue. However, it is a well-established routine in all kinds of organ transplantation to not restore the lymphatic system of the transplant. Experience has shown that this reconstruction is unnecessary, which consequently implies that the lymphatics are not of crucial importance for the survival of the organ. Inevitably, we must therefore question the vital role that the lymphatic system has been attributed in maintaining homeostasis as the sole absorber of proteins. Instead, it is proposed that the major part of plasma proteins in tissue is actively absorbed by the capillaries.
Collapse
Affiliation(s)
- Dan Greitz
- Department of Neuroradiology, MR-Research Center, Karolinska Hospital, Stockholm, Sweden.
| |
Collapse
|
53
|
Liang F, Qi RZ, Chang CF. CD157 undergoes ligand-independent dimerization and colocalizes with caveolin in CHO and MCA102 fibroblasts. Cell Signal 2002; 14:933-9. [PMID: 12220619 DOI: 10.1016/s0898-6568(02)00040-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CD157, a glycosylphosphatidylinositol (GPI)-anchored glycoprotein, has recently been shown to induce protein tyrosine phosphorylation in monocytes differentiated from HL-60 cells (mHL-60) in a ligand-dependent manner, but in a ligand-independent manner in stable CD157-transfected CHO (CHO/CD157) and MCA102 (MCA/CD157) fibroblasts [Cell Signal. 11 (1999) 891-897.]. Many GPI-anchored proteins need to be clustered by their ligands or antibodies to induce redistribution to caveolae and a concomitant activation of the associated signal-transducing proteins [Nature 387 (1997) 569-572.]. Here, we demonstrate that CD157, independent of antibody crosslinking, undergoes dimerization with disulfide bond formation and localization in caveolae in CHO/CD157 and MCA/CD157 fibroblasts. However, the native CD157 induced in mHL-60 cells remains a monomer form. The structural integrity of caveolae is required for the association of CD157 with caveolin and CD157-mediated tyrosine kinase signalling in the fibroblasts. We propose that an overexpression of CD157 could lead to its dimerization and relocation to caveolae and to further result in the initiation of signalling processes.
Collapse
Affiliation(s)
- Fubo Liang
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | |
Collapse
|
54
|
Brown G, Rixon HWM, Sugrue RJ. Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J Gen Virol 2002; 83:1841-1850. [PMID: 12124448 DOI: 10.1099/0022-1317-83-8-1841] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that respiratory syncytial virus (RSV) assembly occurs within regions of the host-cell surface membrane that are enriched in the protein caveolin-1 (cav-1). In this report, we have employed immunofluorescence microscopy to further examine the RSV assembly process. Our results show that RSV matures at regions of the cell surface that, in addition to cav-1, are enriched in the lipid-raft ganglioside GM1. Furthermore, a comparison of mock-infected and RSV-infected cells by confocal microscopy revealed a significant change in the cellular distribution of phosphocaveolin-1 (pcav-1). In mock-infected cells, pcav-1 was located at regions of the cell that interact with the extracellular matrix, termed focal adhesions (FA). In contrast, RSV-infected cells showed both a decrease in the levels of pcav-1 associated with FA and the appearance of pcav-1-containing cytoplasmic vesicles, the latter being absent in mock-infected cells. These cytoplasmic vesicles were clearly visible between 9 and 18 h post-infection and coincided with the formation of RSV filaments, although we did not observe a direct association of pcav-1 with mature virus. In addition, we noted a strong colocalization between pcav-1 and growth hormone receptor binding protein-7 (Grb7), within these cytoplasmic vesicles, which was not observed in mock-infected cells. Collectively, these findings show that the RSV assembly process occurs within specialized lipid-raft structures on the host-cell plasma membrane, induces the cellular redistribution of pcav-1 and results in the formation of cytoplasmic vesicles that contain both pcav-1 and Grb7.
Collapse
Affiliation(s)
- Gaie Brown
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK1
| | - Helen W McL Rixon
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK1
| | - Richard J Sugrue
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK1
| |
Collapse
|
55
|
Uemura T, Yoshimura SH, Takeyasu K, Sato MH. Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein. Genes Cells 2002; 7:743-53. [PMID: 12081650 DOI: 10.1046/j.1365-2443.2002.00550.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The plant vacuole is a multifunctional organelle that has various physiological functions. The vacuole dynamically changes its function and shape, dependent on developmental and physiological conditions. Our current understanding of the dynamic processes of vacuolar morphogenesis has suffered from the lack of a marker for observing these processes in living cells. RESULTS We have developed transgenic Arabidopsis thaliana expressing a vacuolar syntaxin-related molecule (AtVam3/SYP22) fused with green fluorescent protein (GFP). Observations using confocal laser scanning microscopy demonstrated that the plant vacuole contained a dynamic membrane system that underwent a complex architectural remodelling. Three-dimensional reconstitution and time-lapse analysis of GFP-fluorescence images revealed that cylindrical and sheet-like structures were present in the vacuolar lumen and were moving dynamically. The movement, but not the structure itself, was abolished by cytochalasin D, an inhibitor of actin polymerization. This moving structure, which sometimes penetrated through the vacuolar lumen, possessed a dynamic membrane architecture similar to the previously recognized "transvacuolar strand." CONCLUSION We propose two possible models for the formation of the vacuolar lumenal structure. Membrane structures including protruding tubules and reticular networks have recently been recognized in many other organelles, and may be actively involved in intra- and/or inter-organelle signalling.
Collapse
Affiliation(s)
- Tomohiro Uemura
- Graduate School of Biostudies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
56
|
Walker DS, Ly S, Lockwood KC, Baylis HA. A direct interaction between IP(3) receptors and myosin II regulates IP(3) signaling in C. elegans. Curr Biol 2002; 12:951-6. [PMID: 12062062 DOI: 10.1016/s0960-9822(02)00868-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular and physiological studies of cells implicate interactions between the cytoskeleton and the intracellular calcium signalling machinery as an important mechanism for the regulation of calcium signalling. However, little is known about the functions of such mechanisms in animals. A key component of the calcium signalling network is the intracellular release of calcium in response to the production of the second messenger inositol 1,4,5-trisphosphate (IP(3)), mediated by the IP(3) receptor (IP(3)R). We show that C. elegans IP(3)Rs, encoded by the gene itr-1, interact directly with myosin II. The interactions between two myosin proteins, UNC-54 and MYO-1, and ITR-1 were identified in a yeast two-hybrid screen and subsequently confirmed in vivo and in vitro. We defined the interaction sites on both the IP(3)R and MYO-1. To test the effect of disrupting the interaction in vivo we overexpressed interacting fragments of both proteins in C. elegans. This decreased the animal's ability to upregulate pharyngeal pumping in response to food. This is a known IP(3)-mediated process [15]. Other IP(3)-mediated processes, e.g., defecation, were unaffected. Thus it appears that interactions between IP(3)Rs and myosin are required for maintaining the specificity of IP(3) signalling in C. elegans and probably more generally.
Collapse
Affiliation(s)
- Denise S Walker
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | |
Collapse
|
57
|
Landers SC. The fine structure of the gamont of Pterospora floridiensis (Apicomplexa: Eugregarinida). J Eukaryot Microbiol 2002; 49:220-6. [PMID: 12120987 DOI: 10.1111/j.1550-7408.2002.tb00526.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmission electron microscopy of the gamont stage of Pterospora floridiensis has revealed a number of features. The gamont's surface varies from smooth to crenulate, with numerous pockets and folds. The pellicle is composed of an outer membrane, a middle lucent region, and an inner dense layer comprised of two tightly appressed membranes. Short ridges on the pellicle are 200-300+ nm long, 75-100 nm wide, and have a height of approximately 50 nm. The thickness of the pellicle is 100 nm when measured from the inner membrane to the top of a ridge. The ridges are formed by the plasma membrane and an underlying structure that is circular in cross-section. The surface folds and the pellicular ridges are distributed over the soma and the cell's unusual branching arms, though both are reduced near the junction between two gamonts in syzygy, and are absent at the central area of the junctional site. The cell has numerous active Golgi complexes associated with vesicles, as well as scattered dense mitochondria, lipid droplets, and paraglycogen granules. The nucleus has a large (13 microm) endosome, eccentrically located, and peripheral chromatin along the inner nuclear membrane.
Collapse
Affiliation(s)
- Stephen C Landers
- Department of Biological and Environmental Sciences, Troy State University, Alabama 36082, USA.
| |
Collapse
|
58
|
Abstract
OBJECTIVE The endothelium is normally subjected to mechanical deformation resulting from shear stress and from strain associated with stretch of the vessel wall. These stimuli are detected by a mechanosensor that initiates a variety of signaling systems responsible for triggering the functional responses. The identity of the mechanosensor has not been established. This article discusses the different mechanisms of mechanosensing that have been proposed and reviews the literature with respect to signaling systems that are activated in response to stress and strain in endothelium. DATA SOURCES Published literature related to mechanotransduction, signal transduction pathways initiated by strain in endothelium, and pathophysiologic effects of abnormal shear forces in diseases. DATA EXTRACTION AND SYNTHESIS Proposed mechanisms of mechanosensing include stretch-sensitive ion channels, protein kinases associated with the cytoskeleton, integrin-cytoskeletal interactions, cytoskeletal-nuclear interactions, and oxidase systems capable of generating reactive oxygen species. However, the molecular identity of the mechanosensor is not known, nor is it clear whether multiple sensing mechanisms exist. CONCLUSIONS Many responses are initiated in cells subjected to mechanical deformation, including alterations in ion channel conductance, activation of signal transduction pathways, and altered expression of specific genes. Future progress in this field will require a critical distinction between cell systems that become activated during mechanical strain and the identity of the cellular mechanosensor that triggers subsequent responses.
Collapse
Affiliation(s)
- Mir H Ali
- University of Chicago, Pulmonary and Critical Care Medicine, 5841 South Maryland Avenue, Chicago, IL, USA
| | | |
Collapse
|
59
|
Runembert I, Queffeulou G, Federici P, Vrtovsnik F, Colucci-Guyon E, Babinet C, Briand P, Trugnan G, Friedlander G, Terzi F. Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts. J Cell Sci 2002; 115:713-24. [PMID: 11865027 DOI: 10.1242/jcs.115.4.713] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It has been reported that vimentin, a cytoskeleton filament that is expressed only in mesenchymal cells after birth, is re-expressed in epithelial cells in vivo under pathological conditions and in vitro in primary culture. Whether vimentin re-expression is only a marker of cellular dedifferentiation or is instrumental in the maintenance of cell structure and/or function is a matter of debate. To address this issue, we used renal proximal tubular cells in primary culture from vimentin-null mice (Vim-/-) and from wild-type littermates (Vim+/+). The absence of vimentin did not affect cell morphology, proliferation and activity of hydrolases, but dramatically decreased Na-glucose cotransport activity. This phenotype was associated with a specific reduction of SGLT1 protein in the detergent-resistant membrane microdomains (DRM). In Vim+/+cells, disruption of these microdomains by methyl-β-cyclodextrin decreased SGLT1 protein abundance in DRM, a change that was paralleled by a decrease of Na-glucose transport activity. Importantly, we showed that vimentin is located to DRM, but it disappeared after methyl-β-cyclodextrin treatment. In Vim-/- cells,supplementation of cholesterol with cholesterol-methyl-β-cyclodextrin complexes completely restored Na-glucose transport activity. Interestingly,neither cholesterol content nor cholesterol metabolism changed in Vim-/- cells. Our results are consistent with the view that re-expression of vimentin in epithelial cells could be instrumental to maintain the physical state of rafts and, thus, the function of DRM-associated proteins.
Collapse
Affiliation(s)
- Isabelle Runembert
- INSERM U426 and Department Physiology, Faculté de Médecine Xavier Bichat, IFR 02, Université Paris 7, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Laflamme K, Domingue O, Guillemette BI, Guillemette G. Immunohistochemical localization of type 2 inositol 1,4,5-trisphosphate receptor to the nucleus of different mammalian cells. J Cell Biochem 2002. [DOI: 10.1002/jcb.10124] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
61
|
Thomsen P, Roepstorff K, Stahlhut M, van Deurs B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 2002; 13:238-50. [PMID: 11809836 PMCID: PMC65085 DOI: 10.1091/mbc.01-06-0317] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To investigate whether caveolae are involved in constitutive endocytic trafficking, we expressed N- and C- terminally green fluorescent protein (GFP)-tagged caveolin- 1 fusion proteins in HeLa, A431, and Madin-Darby canine kidney cells. The fusion proteins were shown by immunogold labeling to be sorted correctly to caveolae. By using confocal microscopy and photobleaching techniques, it was found that although intracellular structures labeled with GFP-tagged caveolin were dynamic, GFP-labeled caveolae were very immobile. However, after incubation with methyl- beta-cyclodextrin, distinct caveolae disappeared and the mobility of GFP-tagged caveolin in the plasma membrane increased. Treatment of cells with cytochalasin D caused lateral movement and aggregation of GFP-labeled caveolae. Therefore, both cholesterol and an intact actin cytoskeleton are required for the integrity of GFP-labeled caveolae. Moreover, stimulation with okadaic acid caused increased mobility and internalization of the labeled caveolae. Although the calculated mobile fraction (for t = infinity) of intracellular, GFP-tagged caveolin- associated structures was 70-90%, GFP-labeled caveolae in unstimulated cells had a mobile fraction of <20%, a value comparable to that previously reported for E-cadherin in junctional complexes. We therefore conclude that caveolae are not involved in constitutive endocytosis but represent a highly stable plasma membrane compartment anchored by the actin cytoskeleton.
Collapse
Affiliation(s)
- Peter Thomsen
- Structural Cell Biology Unit, Department of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
62
|
Abstract
Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of many vasoactive factors, e.g., nitric oxide and PGI(2). In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator. Ion channels are also involved in controlling intercellular permeability, EC proliferation, and angiogenesis. These functions are supported or triggered via ion channels, which either provide Ca(2+)-entry pathways or stabilize the driving force for Ca(2+) influx through these pathways. These Ca(2+)-entry pathways comprise agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry. At least some of these channels appear to be expressed by genes of the trp family. The driving force for Ca(2+) entry is mainly controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels (Kir2.1), and at least two types of Cl( -) channels, i.e., the Ca(2+)-activated Cl(-) channel and the housekeeping, volume-regulated anion channel (VRAC). In addition to their essential function in Ca(2+) signaling, VRAC channels are multifunctional, operate as a transport pathway for amino acids and organic osmolytes, and are possibly involved in endothelial cell proliferation and angiogenesis. Finally, we have also highlighted the role of ion channels as mechanosensors in EC. Plasmalemmal ion channels may signal rapid changes in hemodynamic forces, such as shear stress and biaxial tensile stress, but also changes in cell shape and cell volume to the cytoskeleton and the intracellular machinery for metabolite traffic and gene expression.
Collapse
Affiliation(s)
- B Nilius
- Department of Physiology, KU Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
63
|
Pelligrino DA, Galea E. Estrogen and cerebrovascular physiology and pathophysiology. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:137-58. [PMID: 11459116 DOI: 10.1254/jjp.86.137] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Numerous studies have uncovered a wide variety of estrogen effects with apparent cardiovascular benefits, the most recognized ones being vasodilation, anti-atherogenesis, diminished post-ischemic inflammation and anti-oxidant effects. This article provides an overview of the influence of estrogen on the cerebral vasculature, under physiologic and pathophysiologic conditions, and covers both acute and chronic effects. The discussion is primarily focused on the vasodilatory and anti-inflammatory actions of estrogen, since those particular estrogen influences have received the greatest attention in studies published to date. With respect to vasodilation, although some consideration is given to the role of other vasodilating mechanisms and factors, the emphasis is mostly placed on the endothelial isoform of nitric oxide synthase, eNOS, which has emerged as a clear target of estrogen. Some consideration is given to recent findings that suggest that estrogen can stimulate eNOS activity by decreasing the expression of the eNOS inhibitor caveolin-1. With regard to the ability of estrogen to counteract inflammation, potential mechanisms by which estrogen limits the post-ischemic leukocyte adhesion, and the expression of the inducible NOS, are discussed.
Collapse
Affiliation(s)
- D A Pelligrino
- Neuroanesthesia Research Laboratory, University of Illinois at Chicago, 60607, USA.
| | | |
Collapse
|
64
|
Zharikov SI, Sigova AA, Chen S, Bubb MR, Block ER. Cytoskeletal regulation of the L-arginine/NO pathway in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 280:L465-73. [PMID: 11159030 DOI: 10.1152/ajplung.2001.280.3.l465] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated possible involvement of the actin cytoskeleton in the regulation of the L-arginine/nitric oxide (NO) pathway in pulmonary artery endothelial cells (PAEC). We exposed cultured PAEC to swinholide A (Swinh), which severs actin microfilaments, or jasplakinolide (Jasp), which stabilizes actin filaments and promotes actin polymerization, or both. After treatment, the state of the actin cytoskeleton, L-arginine uptake mediated by the cationic amino acid transporter-1 (CAT-1), Ca(2+)/calmodulin-dependent (endothelial) NO synthase (eNOS) activity and content, and NO production were examined. Jasp (50-100 nM, 2 h treatment) induced a reversible activation of L-[(3)H]arginine uptake by PAEC, whereas Swinh (10-50 nM) decreased L-[(3)H]arginine uptake. The two drugs could abrogate the effect of each other on L-[(3)H]arginine uptake. The effects of both drugs on L-[(3)H]arginine transport were not related to changes in expression of CAT-1 transporters. Swinh (50 nM, 2 h) and Jasp (100 nM, 2 h) did not change eNOS activities and contents in PAEC. Detection of NO in PAEC by the fluorescent probe 4,5-diaminofluorescein diacetate showed that Swinh (50 nM) decreased and Jasp (100 nM) increased NO production by PAEC. The stimulatory effect of Jasp on NO production was dependent on the availability of extracellular L-arginine. Our results indicate that the state of actin microfilaments in PAEC regulates L-arginine transport and that this regulation can affect NO production by PAEC.
Collapse
Affiliation(s)
- S I Zharikov
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32608-1197, USA
| | | | | | | | | |
Collapse
|
65
|
Tamai O, Oka N, Kikuchi T, Koda Y, Soejima M, Wada Y, Fujisawa M, Tamaki K, Kawachi H, Shimizu F, Kimura H, Imaizumi T, Okuda S. Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int 2001; 59:471-80. [PMID: 11168929 DOI: 10.1046/j.1523-1755.2001.059002471.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Caveolae are plasma membrane invaginations that have a diameter of 40 to 60 nm. Recent evidences have demonstrated that caveolae contain a variety of signal transduction molecules. Caveolin is a marker protein of caveolae and has been proposed to play a negative regulatory role in signal transduction. The aim of this study was to investigate the behavior of caveolae and caveolin in experimental glomerulonephritis, the localization of both platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) receptors in the caveolae membrane, and the regulation of caveolin expression in cultured mesangial cells. METHODS The expression of caveolin-1 was examined by immunoblotting and immunohistology using anti-caveolin antibody in anti-Thy-1 nephritis. The caveolae membrane fraction of mesangial cells was isolated by sucrose gradient method and expression of PDGF receptor and TGF-beta receptor were detected by immunoblotting. The effects of mitogens such as phorbol 12-myristate 13-acetate (PMA) and PDGF on the expression of caveolin-1 protein and mRNA were also examined in cultured mesangial cells. RESULTS Caveolin-1 was mainly expressed in glomeruli and was significantly up-regulated in anti-Thy-1 nephritis rat kidney. In cultured mesangial cells, the membrane invaginations of caveolae were revealed by electron microscopy. PDGF receptors abounded in the caveolae membrane and rapidly changed their subcellular distribution after ligand stimulation. In contrast, TGF-beta receptors abounded in the non-caveolae membrane and did not change after ligand stimulation. Decreases in caveolin-1 protein, which were associated with increases in mRNA expression after the exposure of PMA or PDGF-BB, suggested an increased turnover of caveolin-1 in mesangial cells stimulated by mitogens. CONCLUSION To our knowledge, this electron microscopical study is the first to demonstrate the presence of caveolae in cultured mesangial cells. Caveolae integrate PDGF receptors, and caveolin-1 may play a role in the pathogenesis of the mesangial proliferative glomerular diseases through PDGF signaling.
Collapse
Affiliation(s)
- O Tamai
- Kasuya Minami Hospital, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Darby PJ, Kwan CY, Daniel EE. Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca(2+) handling. Am J Physiol Lung Cell Mol Physiol 2000; 279:L1226-35. [PMID: 11076813 DOI: 10.1152/ajplung.2000.279.6.l1226] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explain that bronchial smooth muscle undergoes sustained agonist-induced contractions in a Ca(2+)-free medium, we hypothesized that caveolae in the plasma membrane (PM) contain protected Ca(2+). We isolated caveolae from canine tracheal smooth muscle by detergent treatment of PM-derived microsomes. Detergent-resistant membranes were enriched in caveolin-1, a specific marker for caveolae as well as for L-type Ca(2+) channels and Ca(2+) binding proteins (calsequestrin and calreticulin) as determined by Western blotting. Also, the PM Ca(2+) pump was present but not connexin 43 (a noncaveolae PM protein), the sarcoplasmic reticulum (SR) Ca(2+) pump, or the type 1 inositol 1,4, 5-trisphosphate receptor, supporting the idea that SR-derived membranes were not present. Antibodies to caveolin coimmunoprecipitated caveolin with calsequestrin or calreticulin. Thus some of the cellular calsequestrin and calreticulin associated with caveolin on the cytoplasmic face of each caveola. Immunohistochemistry of tracheal smooth muscle crysosections confirmed the localization of caveolin and the PM Ca(2+) pump to the cell periphery, whereas the SR Ca(2+) pump was located deeper in the cell. The presence of L-type Ca(2+) channels, the PM Ca(2+) pump, and the Ca(2+) bindng proteins calsequestrin and calreticulin in caveolin-enriched membranes supports caveola involvement in airway smooth muscle Ca(2+) handling.
Collapse
Affiliation(s)
- P J Darby
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
67
|
Stahlhut M, Sandvig K, van Deurs B. Caveolae: uniform structures with multiple functions in signaling, cell growth, and cancer. Exp Cell Res 2000; 261:111-8. [PMID: 11082281 DOI: 10.1006/excr.2000.4960] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M Stahlhut
- Structural Cell Biology Unit, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | |
Collapse
|
68
|
Fagan KA, Smith KE, Cooper DM. Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J Biol Chem 2000; 275:26530-7. [PMID: 10843990 DOI: 10.1074/jbc.m001369200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endogenous Ca(2+)-inhibitable adenylyl cyclase type VI of C6-2B glioma cells is regulated only by capacitative Ca(2+) entry and not by a substantial elevation of [Ca(2+)](i) from either intracellular stores or via ionophore-mediated Ca(2+) entry (Chiono, M., Mahey, R., Tate, G., and Cooper, D. M. F. (1995) J. Biol. Chem. 270, 1149-1155; Fagan, K. A., Mons, N., and Cooper, D. M. F. (1998) J. Biol. Chem. 273, 9297-9305). The present studies explored the role of cholesterol-rich domains in maintaining this functional association. The cholesterol-binding agent, filipin, profoundly inhibited adenylyl cyclase activity. Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin did not affect forskolin-stimulated adenylyl cyclase activity and did not affect capacitative Ca(2+) entry. However, cholesterol depletion completely ablated the regulation of adenylyl cyclase by capacitative Ca(2+) entry. Repletion of cholesterol restored the sensitivity of adenylyl cyclase to capacitative Ca(2+) entry. Adenylyl cyclase catalytic activity and immunoreactivity were extracted into buoyant caveolar fractions with Triton X-100. The presence of adenylyl cyclase in such structures was eliminated by depletion of plasma membrane cholesterol. Altogether, these data lead us to conclude that adenylyl cyclase must occur in cholesterol-rich domains to be susceptible to regulation by capacitative Ca(2+) entry. These findings are the first indication of regulatory significance for the localization of adenylyl cyclase in caveolae.
Collapse
Affiliation(s)
- K A Fagan
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
69
|
Giocondi MC, Vié V, Lesniewska E, Goudonnet JP, Le Grimellec C. In situ imaging of detergent-resistant membranes by atomic force microscopy. J Struct Biol 2000; 131:38-43. [PMID: 10945968 DOI: 10.1006/jsbi.2000.4266] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purified detergent-resistant membranes (DRMs) are powerful tools for the biochemical study of plasma membrane domains. To what extent these isolated DRMs correspond to native membrane domains remains, however, a matter of debate. The most immediate question to be answered concerns the in situ size range of DRMs, a determination that escapes classical microscopy techniques. In this study we show that in situ three-dimensional images of a material as fragile as Triton X-100-treated cells can be obtained, in buffer, by tapping mode atomic force microscopy. These images establish that, prior to the isolation procedure, the detergent plasma membrane fragments form domains whose size frequently exceeds 15-20 microm(2). This DRMs size range is about 1 order of magnitude higher than that estimated for the larger microdomains of living cells, which strongly suggests that membrane microdomains rearrange into larger DRMs during Triton X-100 treatment. Concomitantly, the images also reveal the presence of the cytoskeleton, which is resistant to detergent extraction, and suggest that, in situ, DRMs are associated with the membrane cytoskeleton.
Collapse
Affiliation(s)
- M C Giocondi
- Centre de Biochimie Structurale, INSERM U414, 29 rue de Navacelles, Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
70
|
Muto A, Mikoshiba K. Activation of inositol 1,4,5-trisphosphate receptors induces transient changes in cell shape of fertilized Xenopus eggs. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:201-8. [PMID: 9519901 DOI: 10.1002/(sici)1097-0169(1998)39:3<201::aid-cm3>3.0.co;2-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Injection of inositol 1,4,5-trisphosphate (InsP3) into fertilized Xenopus eggs induced transient changes in cell shape. The region around the injected site contracted during the first 2 min, followed by swelling. These changes which initiated at the injected site extended toward the opposite side. Injection of adenophostin B, a potent InsP3 receptor agonist, also induced similar morphological changes, which suggested that InsP3 receptor activation, and not the action of InsP3 metabolites, is responsible for these changes. To determine whether these changes correlate to InsP3 receptor-mediated calcium release, we examined the morphological changes and those in intracellular free calcium concentrations ([Ca2+]i). A calcium wave was observed to precede the propagation of changes in cell shape by about 2 min. The extent of propagation of cell shape changes varied with the eggs but consistently depended on the extent of the calcium wave propagation. Changes in cell shape were inhibited in eggs injected with the calcium chelator, BAPTA, indicating that calcium released from the InsP3-sensitive calcium store is required for cell shape changes. During the cell shape changes, the contracted region was strongly stained with rhodamine-phalloidin, which suggests that structural changes of actin filaments are involved in the cortical changes. We propose that spatiotemporally controlled elevation of intracellular calcium induces successive cortical cytoskeletal changes that are responsible for changes in cell shape. These observations provide insight into the potency of InsP3/calcium signaling in the regulation of cortical cytoskeleton.
Collapse
Affiliation(s)
- A Muto
- Calciosignal Net Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Tokyo.
| | | |
Collapse
|
71
|
Carozzi AJ, Ikonen E, Lindsay MR, Parton RG. Role of cholesterol in developing T-tubules: analogous mechanisms for T-tubule and caveolae biogenesis. Traffic 2000; 1:326-41. [PMID: 11208118 DOI: 10.1034/j.1600-0854.2000.010406.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent work has suggested that caveolae biogenesis and transverse-tubule (T-tubule) formation in muscle cells share similar underlying features. We compared the properties of caveolin-1 (cav-1)-positive caveolae, in epithelial cells, with caveolin-3 (cav-3)-positive precursor T-tubules, in differentiating C2C12 muscle cells, using the cholesterol-binding drug, Amphotericin B (AmphB). Treatment of MDCK epithelial cells with acute high doses or chronic low doses of AmphB caused a loss of surface caveolae and the rapid redistribution of cav-1, and exogenously expressed cav-3, from the cell surface into modified endosomes. This effect was reversible and specific, as the GPI-anchored protein, alkaline phosphatase, was largely unaffected by the treatment unless it had been previously partitioned into caveolar domains. In differentiating C2C12 mouse myotubes, AmphB also caused a complete redistribution of cav-3 from precursor T-tubule elements into enlarged endosomes, morphologically very similar to those seen in MDCK cells. This was accompanied by redistribution of a T-tubule marker and a dramatic reduction in the extent of surface-connected tubular elements. We propose that cholesterol-enriched glycolipid 'raft' domains are involved in the formation and maintenance of diverse membrane systems including caveolae and the T-tubule system of muscle.
Collapse
Affiliation(s)
- A J Carozzi
- Centre for Microscopy and Microanalysis, Department of Physiology and Pharmacology and Centre for Molecular and Cellular Biology, University of Queensland, Queensland, 4072, Australia
| | | | | | | |
Collapse
|
72
|
Sugiyama T, Matsuda Y, Mikoshiba K. Inositol 1,4,5-trisphosphate receptor associated with focal contact cytoskeletal proteins. FEBS Lett 2000; 466:29-34. [PMID: 10648806 DOI: 10.1016/s0014-5793(99)01732-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The linkage between inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and cytoskeletal proteins is considered to be important in cell function. In the present study, the association of IP(3)R subtypes with cytoskeletal proteins was examined using monoclonal antibodies specific to each IP(3)R subtype. We found that IP(3)R type 2 colocalized with talin, a focal contact cytoskeletal protein. IP(3)R type 2 exhibited a patchy distribution in the peripheral cytoplasm differently from type 1 and type 3 IP(3)R. Furthermore, IP(3)R subtypes co-immunoprecipitated with talin, vinculin and alpha-actin, but not alpha-actinin or paxillin.
Collapse
MESH Headings
- Actinin/metabolism
- Actins/metabolism
- Animals
- Antibodies, Monoclonal
- Calcium Channels/classification
- Calcium Channels/immunology
- Calcium Channels/metabolism
- Cells, Cultured
- Cytoskeletal Proteins/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Microscopy, Confocal
- Microscopy, Fluorescence
- Muscle, Smooth/metabolism
- Paxillin
- Phosphoproteins/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/classification
- Receptors, Cytoplasmic and Nuclear/immunology
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- Subcellular Fractions/metabolism
- Talin/metabolism
- Vinculin/metabolism
Collapse
Affiliation(s)
- T Sugiyama
- Vessel Research Laboratory Co., Ltd., 3-6-6 Asahimachi, Machida-shi, Tokyo, Japan.
| | | | | |
Collapse
|
73
|
Zharikov SI, Block ER. Association of L-arginine transporters with fodrin: implications for hypoxic inhibition of arginine uptake. Am J Physiol Lung Cell Mol Physiol 2000; 278:L111-7. [PMID: 10645898 DOI: 10.1152/ajplung.2000.278.1.l111] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we investigated the possible interaction between the cationic amino acid transporter (CAT)-1 arginine transporter and ankyrin or fodrin. Because ankyrin and fodrin are substrates for calpain and because hypoxia increases calpain expression and activity in pulmonary artery endothelial cells (PAEC), we also studied the effect of hypoxia on ankyrin, fodrin, and CAT-1 contents in PAEC. Exposure to long-term hypoxia (24 h) inhibited L-arginine uptake by PAEC, and this inhibition was prevented by calpain inhibitor 1. The effects of hypoxia and calpain inhibitor 1 were not associated with changes in CAT-1 transporter content in PAEC plasma membranes. However, hypoxia stimulated the hydrolysis of ankyrin and fodrin in PAEC, and this could be prevented by calpain inhibitor 1. Incubation of solubilized plasma membrane proteins with anti-fodrin antibodies resulted in a 70% depletion of CAT-1 immunoreactivity and in a 60% decrease in L-arginine transport activity in reconstituted proteoliposomes (3,291 +/- 117 vs. 8,101 +/- 481 pmol. mg protein(-1). 3 min(-1) in control). Incubation with anti-ankyrin antibodies had no effect on CAT-1 content or L-arginine transport in reconstituted proteoliposomes. These results demonstrate that CAT-1 arginine transporters in PAEC are associated with fodrin, but not with ankyrin, and that long-term hypoxia decreases L-arginine transport by a calpain-mediated mechanism that may involve fodrin proteolysis.
Collapse
Affiliation(s)
- S I Zharikov
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, and Department of Medicine, University of Florida, Gainesville, Florida 32608-1197, USA
| | | |
Collapse
|
74
|
Stahlhut M, van Deurs B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell 2000; 11:325-37. [PMID: 10637311 PMCID: PMC14777 DOI: 10.1091/mbc.11.1.325] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reports on the ultrastructure of cells as well as biochemical data have, for several years, been indicating a connection between caveolae and the actin cytoskeleton. Here, using a yeast two-hybrid approach, we have identified the F-actin cross-linking protein filamin as a ligand for the caveolae-associated protein caveolin-1. Binding of caveolin-1 to filamin involved the N-terminal region of caveolin-1 and the C terminus of filamin close to the filamin-dimerization domain. In in vitro binding assays, recombinant caveolin-1 bound to both nonmuscle and muscle filamin, indicating that the interaction might not be cell type specific. With the use of confocal microscopy, colocalization of caveolin-1 and filamin was observed in elongated patches at the plasma membrane. Remarkably, when stress fiber formation was induced with Rho-stimulating Escherichia coli cytotoxic necrotizing factor 1, the caveolin-1-positive structures became coaligned with stress fibers, indicating that there was a physical link connecting them. Immunogold double-labeling electron microscopy confirmed that caveolin-1-labeled racemose caveolae clusters were positive for filamin. The actin network, therefore, seems to be directly involved in the spatial organization of caveolin-1-associated membrane domains.
Collapse
Affiliation(s)
- M Stahlhut
- Structural Cell Biology Unit, Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | |
Collapse
|
75
|
Abstract
Caveolae are specialized membrane microdomains that are found on the plasma membrane of most cells. Recent studies indicate that a variety of signaling molecules are highly organized in caveolae, where their interactions initiate specific signaling cascades. Molecules enriched in this membrane include G protein-coupled receptors, heterotrimeric GTP binding proteins, IP3 receptor-like protein, Ca2+ ATPase, eNOS, and several PKC isoforms. Direct measurements of calcium changes in endothelial cells suggest that caveolae may be sites that regulate intracellular Ca2+ concentration and Ca2+ dependent signal transduction. This review will focus on the role of caveolae in controlling the spatial and temporal pattern of intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- M Isshiki
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75235-9039, USA
| | | |
Collapse
|
76
|
Lupu C, Poulsen E, Roquefeuil S, Westmuckett AD, Kakkar VV, Lupu F. Cellular effects of heparin on the production and release of tissue factor pathway inhibitor in human endothelial cells in culture. Arterioscler Thromb Vasc Biol 1999; 19:2251-62. [PMID: 10479670 DOI: 10.1161/01.atv.19.9.2251] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue factor pathway inhibitor (TFPI), the major downregulator of procoagulant activity of the tissue factor-factor VIIa complex (TF. FVIIa), is synthesized and constitutively secreted by endothelial cells (ECs). Here we describe the in vitro effects of heparin on the cellular localization, gene expression, and release of TFPI in human ECs in culture. Both unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH; Fragmin) time-dependently induced a significant enhanced secretion of TFPI, paralleled by a redistribution and increase of TFPI on the cell surface and a decrease of intracellular TFPI. Immunogold electron microscopy showed the presence of clusters of TFPI, both on the plasmalemma proper and within cell-surface opened caveolae/enlarged caveolar profiles. Activation of FX by TF. FVIIa on ECs treated with endotoxin was inhibited by both heparins but to a higher extent by LMWH. Inhibition of protein synthesis by cycloheximide did not reduce the release of TFPI induced by heparin. Long-term incubation (48 hours) resulted in a time-dependent enhanced production of TFPI. After the first 4 to 8 hours, depletion of intracellular TFPI was observed, more significantly with UFH. Northern blot analysis of TFPI mRNA also showed a decrease of the 1.4-kb transcript after 4 hours of incubation with UFH, followed by recovery and an increase over the control level after 24 hours. Incubation of ECs with phorbol ester (PMA) significantly enhanced the secretion of TFPI and increased its activity on the cell surface, probably by preventing invagination of caveolae. Heparin-stimulated release of TFPI decreased significantly in the presence of PMA to a level that was 2. 4 times lower than the expected additive value for PMA and UFH separately. Pretreatment of ECs with PMA suppressed a subsequent response to heparin. Altogether, our results suggest that the heparin-induced release of TFPI might involve a more specific mechanism(s) than the previously hypothesized simple displacement of TFPI from the cell surface glycocalyx. We assume that the increased secretion and redistribution of cellular TFPI induced by heparins in ECs in culture can play an important role in the modulation of the anticoagulant properties of the endothelium.
Collapse
Affiliation(s)
- C Lupu
- Vascular Biology Laboratory, Weston Centre for Experimental Research, Thrombosis Research Institute, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
77
|
Hagiwara H, Kogure SY, Nakamura M, Shimada Y, Ohno-Iwashita Y, Fujimoto T. Cross-linking of plasmalemmal cholesterol in lymphocytes induces capping, membrane shedding, and endocytosis through coated pits. Biochem Biophys Res Commun 1999; 260:516-21. [PMID: 10403799 DOI: 10.1006/bbrc.1999.0879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By use of a nicked and biotinylated perfringolysin O (BCtheta), which binds to cholesterol specifically, we studied consequences of cross-linking cholesterol in lymphocytes. When bound with BCtheta and then with labeled avidin or streptavidin, capping occurred in most cells within 30 min at 37 degrees C. It was inhibited by cytochalasin D or NaN3, but not by nocodazole. When BCtheta-cholesterol was capped, Thy-1 and transferrin receptor, a GPI-anchored protein and a transmembrane protein, respectively, remained evenly distributed. By fluorescence and electron microscopy, a cluster of small vesicles bound with BCtheta were observed in the cap. They were then shed in the medium or internalized through coated pits. The result indicates that cross-linking of cholesterol in lymphocytes induces capping, but does not affect distribution of membrane proteins, and that the capped cholesterol molecules are either shed as vesicles or endocytosed.
Collapse
Affiliation(s)
- H Hagiwara
- Department of Anatomy and Cell Biology, Gunma University School of Medicine, Maebashi, 371-8511, Japan
| | | | | | | | | | | |
Collapse
|
78
|
Stan RV, Ghitescu L, Jacobson BS, Palade GE. Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J Biophys Biochem Cytol 1999; 145:1189-98. [PMID: 10366592 PMCID: PMC2133139 DOI: 10.1083/jcb.145.6.1189] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By using an immunoisolation procedure (Stan, R.-V., W.G. Roberts, K. Ihida, D. Predescu, L. Saucan, L. Ghitescu, and G.E. Palade. 1997. Mol. Biol. Cell. 8:595-605) developed in our laboratory, we have isolated a caveolar subfraction from rat lung endothelium and we have partially characterized the proteins of this subfraction which include an apparently caveolae-specific glycoprotein we propose to call PV-1 (formerly known as gp68). The isolation and partial sequencing of PV-1, combined with the cloning of the full length PV-1 cDNA led to the following conclusions: (a) PV-1 is a novel single span type II integral membrane protein (438 amino acids long) which forms homodimers in situ; (b) the transmembrane domain of PV-1 is near the NH2 terminus defining a short cytoplasmic endodomain and a large COOH-terminal ectodomain exposed to the blood plasma; (c) PV-1 is N-glycosylated and its glycan antennae bear terminal nonreducing galactosyl residues in alpha1-3 linkage. PV-1 is expressed mostly in the lung but both the messenger RNA and the protein can be detected at lower levels also in kidney, spleen, liver, heart, muscle, and brain. No signal could be detected in testis and two lower molecular weight forms were detected in brain. Immunocytochemical studies carried out by immunodiffusion on rat lung with an anti-PV-1 polyclonal antibody directed against a COOH-terminal epitope reveal a specific localization of PV-1 to the stomatal diaphragms of rat lung endothelial caveolae and confirm the extracellular orientation of the PV-1 COOH terminus.
Collapse
Affiliation(s)
- R V Stan
- Division of Cellular and Molecular Medicine, University of California, San Diego, San Diego, California 92093, USA
| | | | | | | |
Collapse
|
79
|
Nomura R, Fujimoto T. Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell 1999; 10:975-86. [PMID: 10198051 PMCID: PMC25222 DOI: 10.1091/mbc.10.4.975] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caveolin-1 was discovered as a major substrate for v-Src, but the effect of its tyrosine phosphorylation has not been known. We generated a specific antibody (PY14) to caveolin-1 phosphorylated at tyrosine 14 and studied the significance of the modification. By Western blotting of lysates of v-Src-expressing cells, PY14 recognized not only a 22-kDa band (the position of nonphosphorylated caveolin-1) but bands at 23-24 and 25 kDa. Bands of slower mobility were diminished by dephosphorylation and were also observed for mutant caveolin-1 lacking tyrosine 14. By immunofluorescence microscopy, PY14 did not label normal cells but detected large dots in v-Src-expressing cells. Immunoelectron microscopy revealed that the dots corresponded to aggregated caveolae and/or vesicles of various sizes; besides, the label was observed in intramembrane particle-free areas in the plasma membrane, which appeared to have been formed by fusion of flattened caveolae. A positive reaction with PY14 was found in normal cells after vanadate or pervanadate treatment; it occurred mainly at 22 kDa by Western blotting and was not seen as large dots by immunofluorescence microscopy. Detergent solubility, oligomerization, and association with caveolin-2 were observed similarly for caveolin-1 in normal and v-Src-expressing cells. The results indicate that phosphorylation of caveolin-1 in v-Src-expressing cells occurs at multiple residues and induces flattening, aggregation, and fusion of caveolae and/or caveolae-derived vesicles.
Collapse
Affiliation(s)
- R Nomura
- Department of Anatomy and Cell Biology, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | |
Collapse
|
80
|
Valentijn KM, Gumkowski FD, Jamieson JD. The subapical actin cytoskeleton regulates secretion and membrane retrieval in pancreatic acinar cells. J Cell Sci 1999; 112 ( Pt 1):81-96. [PMID: 9841906 DOI: 10.1242/jcs.112.1.81] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the effects of disruption of the actin cytoskeleton by cytochalasin D (cytoD) on basal and carbamylcholine-stimulated exocytosis and on compensatory membrane retrieval in pancreatic acinar cells. Although the involvement of actin in exocytosis is reasonably well established, its role in these coupled processes is not understood. Our findings suggested that cytoD inhibited stimulated secretion of amylase. However, morphometry revealed that exocytosis had occurred: the number of zymogen granules decreased, the size of the lumen increased, and large vacuolar structures continuous with the lumen formed into which amylase accumulated. Large amounts of amylase were released to the medium on removal of secretagogue and cytoD, suggesting that the subapical actin network provides contractile forces that expel the lumenal contents. Strikingly, we observed that at the apical pole of the cells where exocytosis occurred, cytoD induced an accumulation of membrane invaginations into a vastly enlarged apical membrane. These pits were often surrounded by a clathrin-like coat. Concomitantly, AP-2-, clathrin-, dynamin- and caveolin-like immunoreactivity concentrated around the enlarged lumina, suggesting that incorporation of zymogen granule membrane into the apical plasma membrane triggered the recruitment of these proteins. After wash out of cytoD and carbamylcholine and reformation of the subapical actin cytoskeleton, the coated invaginations largely disappeared in association with a reduction in lumenal size, and relocation of clathrin, AP-2, dynamin and caveolin into the cell. We suggest that the actin terminal web also controls compensatory membrane retrieval following exocytosis.
Collapse
Affiliation(s)
- K M Valentijn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
81
|
Mak DO, Foskett JK. Effects of divalent cations on single-channel conduction properties of Xenopus IP3 receptor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C179-88. [PMID: 9688849 DOI: 10.1152/ajpcell.1998.275.1.c179] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of Mg2+ and Ba2+ on single-channel properties of the inositol 1,4,5-trisphosphate receptor (IP3R) were studied by patch clamp of isolated nuclei from Xenopus oocytes. In 140 mM K+ the IP3R channel kinetics and presence of conductance substates were similar over a range (0-9.5 mM) of free Mg2+. In 0 mM Mg2+ the channel current-voltage (I-V) relation was linear with conductance of approximately 320 pS. Conductance varied slowly and continuously over a wide range (SD approximately 60 pS) and sometimes fluctuated during single openings. The presence of Mg2+ on either or both sides of the channel reduced the current (blocking constant approximately 0.6 mM in symmetrical Mg2+), as well as the range of conductances observed, and made the I-V relation nonlinear (slope conductance approximately 120 pS near 0 mV and approximately 360 pS at +/-70 mV in symmetrical 2.5 mM Mg2+). Ba2+ exhibited similar effects on channel conductance. Mg2+ and Ba2+ permeated the channel with a ratio of permeability of Ba2+ to Mg2+ to K+ of 3.5:2.6:1. These results indicate that divalent cations induce nonlinearity in the I-V relation and reduce current by a mechanism involving permeation block of the IP3R due to strong binding to site(s) in the conduction pathway. Furthermore, stabilization of conductance by divalent cations reveals a novel interaction between the cations and the IP3R.
Collapse
Affiliation(s)
- D O Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA
| | | |
Collapse
|
82
|
Lupu VD, Kaznacheyeva E, Krishna UM, Falck JR, Bezprozvanny I. Functional coupling of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate receptor. J Biol Chem 1998; 273:14067-70. [PMID: 9603901 DOI: 10.1074/jbc.273.23.14067] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) plays a key role in intracellular Ca2+ signaling. InsP3R is activated by InsP3 produced from phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C cleavage. Using planar lipid bilayer reconstitution technique, we demonstrate here that rat cerebellar InsP3R forms a stable inhibitory complex with endogenous PIP2. Disruption of InsP3R-PIP2 interaction by specific anti-PIP2 monoclonal antibody resulted in 3-4-fold increase in InsP3R activity and 10-fold shift in apparent affinity for InsP3. Exogenously added PIP2 blocks InsP3 binding to InsP3R and inhibits InsP3R activity. Similar results were obtained with a newly synthesized water soluble analog of PIP2, dioctanoyl-(4,5)PIP2, indicating that insertion of PIP2 into membrane is not required to exert its inhibitory effects on the InsP3R. We hypothesize that the functional link between InsP3R and PIP2 described in the present report provides a basis for a local, rapid, and efficient coupling between phospholipase C activation, PIP2 hydrolysis, and intracellular Ca2+ wave initiation in neuronal and non-neuronal cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Brain/metabolism
- Calcium/physiology
- Calcium Channels/chemistry
- Calcium Channels/metabolism
- Electrophysiology
- Enzyme Activation/physiology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Microsomes/metabolism
- Molecular Structure
- Phosphatidylinositol 4,5-Diphosphate/analogs & derivatives
- Phosphatidylinositol 4,5-Diphosphate/pharmacology
- Protein Binding/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- V D Lupu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
83
|
Haasemann M, Cartaud J, Muller-Esterl W, Dunia I. Agonist-induced redistribution of bradykinin B2 receptor in caveolae. J Cell Sci 1998; 111 ( Pt 7):917-28. [PMID: 9490636 DOI: 10.1242/jcs.111.7.917] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Redistribution of receptors within the plasma membrane as well as between the plasma membrane and various cell compartments presents an important way of regulating the cellular responsiveness to their cognate agonists. We have applied immunocytochemical methods to localize the bradykinin B2 receptor and to examine its agonist induced redistribution in A431 cells. In situ labeling with antibodies to ectodomain-2 of the receptor which do not interfere with bradykinin binding of the receptor showed a random distribution of the B2 receptor on the plasma membrane. Stimulation of cells with 20 nM bradykinin markedly reduced the accessibility of the antibody to its corresponding epitope in non-permeabilized cells. Immuno-electron microscopy revealed the presence of receptors in membrane-near vesicles that are surrounded by an electron-transparent halo. Fluorescence microscopic double labeling co-localized the B2 receptor protein with caveolin-1 by a convergent pattern of punctate staining. At the ultrastructural level the B2 receptor protein was found in vesicles that bear the immunolabel of caveolin-1 and display the morphological characteristics of caveolae. We conclude that stimulation of B2 receptors results in their redistribution and sequestration in caveolae, an event that is likely to be implicated in receptor signaling and/or desensitization. The localization of B2 receptors in endosome-like structures after prolonged exposure to bradykinin might indicate that the internalization through caveolae may communicate with other endocytotic pathways of A431 cells.
Collapse
Affiliation(s)
- M Haasemann
- Département de Biologie Supramoléculaire et Cellulaire, Institut Jacques Monod, Université Paris, Paris, France.
| | | | | | | |
Collapse
|
84
|
Lupu C, Goodwin CA, Westmuckett AD, Emeis JJ, Scully MF, Kakkar VV, Lupu F. Tissue factor pathway inhibitor in endothelial cells colocalizes with glycolipid microdomains/caveolae. Regulatory mechanism(s) of the anticoagulant properties of the endothelium. Arterioscler Thromb Vasc Biol 1997; 17:2964-74. [PMID: 9409283 DOI: 10.1161/01.atv.17.11.2964] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue factor pathway inhibitor (TFPI), the main downregulator of the procoagulant activity of tissue factor.factor VIIa complex, locates in human endothelial cells (EC) in culture as well-defined clusters uniformly distributed both on the cell surface and intracellularly. We here demonstrate by immunofluorescence that TFPI colocalizes in EC with caveolin, urokinase-type plasminogen activator receptor, and glycosphingolipids. The localization of TFPI in caveolae in resting endothelium is proved by double immunogold electron microscopy for TFPI and caveolin. After ultracentrifugation of rat lung or EC homogenates through density gradients of Nycodenz, TFPI was highly enriched at densities of 1.05 to 1.08 g/mL, together with caveolin and alkaline phosphatase. By ELISA, more than half of the cellular TFPI was detected in Triton X-100-insoluble extracts of EC. TFPI incorporates [1-3H]ethanolamine and is cleaved from the cell surface by phosphatidylinositol-phospholipase C, indicating a specific glycosylphosphatidylinositol-anchorage mechanism for TFPI in the plasma membrane. Clustering of TFPI and its localization in caveolae are dependent on the presence of cholesterol in the membrane. Agonist-induced stimulation of EC caused marked changes of distribution for both TFPI and caveolin at subcellular level, with subsequent increase of the cell surface-associated inhibitory activity toward tissue factor.factor VIIa. Our findings suggest that, beside their function in transcytosis, potocytosis, cell surface proteolysis, and regulation of signal transduction, caveolae also play a direct role in the regulation of EC anticoagulant properties.
Collapse
Affiliation(s)
- C Lupu
- Thrombosis Research Institute, London, UK.
| | | | | | | | | | | | | |
Collapse
|
85
|
Fujimoto T, Hayashi M, Iwamoto M, Ohno-Iwashita Y. Crosslinked plasmalemmal cholesterol is sequestered to caveolae: analysis with a new cytochemical probe. J Histochem Cytochem 1997; 45:1197-205. [PMID: 9283607 DOI: 10.1177/002215549704500903] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
[symbol: see text]-Toxin (perfringolysin O), a cholesterol-binding toxin, was partially proteolyzed and biotinylated (BC theta) to eliminate hemolyzing activity and was used as a cytochemical probe. In fixed cells, binding of BC theta was intense in the plasma membrane, especially at the base of apical microvilli and in lateral processes. The labeling was abolished by pretreatment with filipin, digitonin, or tomatin. When living cultured cells were treated with BC theta and then with either fluorescein-avidin D or colloidal gold-streptavidin, the labeling in fine dots was distributed on the cell surface without local concentration as long as cells were kept on ice. When the temperature was raised to 37 C after treatment, the probe formed discrete large patches and became sequestered to caveolae. Binding of BC theta alone without the secondary reagents did not cause redistribution even at 37 C. Because the plasma membrane maintains integrity even after binding of BC theta, the probe can be used not only for cytochemical labelling of fixed cells but for pursuing the behavior of crosslinked cholesterol molecules in living cells. By use of this new probe, the present study revealed that crosslinked cholesterol in the plasma membrane is sequestered to caveolae.
Collapse
Affiliation(s)
- T Fujimoto
- Department of Anatomy and Cell Biology, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | |
Collapse
|
86
|
Cooper DM, Karpen JW, Fagan KA, Mons NE. 2 Ca2+-sensitive adenylyl cyclases. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997. [DOI: 10.1016/s1040-7952(98)80004-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
87
|
van Deurs B, von Bũlow F, Vilhardt F, Holm PK, Sandvig K. Destabilization of plasma membrane structure by prevention of actin polymerization. Microtubule-dependent tubulation of the plasma membrane. J Cell Sci 1996; 109 ( Pt 7):1655-65. [PMID: 8832388 DOI: 10.1242/jcs.109.7.1655] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electron microscopy of thick (0.2-1.0 micron) sections of cytochalasin D-treated cells fixed in the presence of Ruthenium red revealed an extensive, surface-connected tubular compartment in HEp-2 cells. The tubules measured 120–220 nm in diameter and at least up to 6 microns in length. Morphometric analysis showed that in control cells about 0.2% of the total plasma membrane area (defined as all Ruthenium red-labeled membrane) appeared as vesicular or tubular profiles beneath the cell surface. However, after 15–30 minutes of cytochalasin D incubation about 4% of the total plasma membrane area is tubulated, and after 60–105 minutes as much as about 15% of the total plasma membrane appears as tubules. Clathrin-coated pits and caveolae-like structures were occasionally associated with the tubular membrane. Moreover, immunogold labeling showed that the tubular membrane contained transferrin receptors at about the same density as the nontubulated plasma membrane. Examination of cells in which endosomes and lysosomes were labeled with horseradish peroxidase before or after exposure to cytochalasin D showed that these organelles remained spherical, and that no horseradish peroxidase was present in the tubules. Moreover, the surface to volume ratio remained constant with increasing time of cytochalasin D incubation. Accordingly, the surface-connected tubules were not derived from endocytic structures but were formed by invagination of the plasma membrane. The tubule formation is reversible. When microtubules are depolymerized by nocodazole or colchicine treatment before the cells are exposed to cytochalasine D, tubule formation is strongly inhibited. Hence, the cytochalasin D-induced plasma membrane tubulation depends on intact microtubules.
Collapse
Affiliation(s)
- B van Deurs
- Department of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|