51
|
Dong WW, Xuan FL, Zhong FL, Jiang J, Wu S, Li D, Quan LH. Comparative Analysis of the Rats' Gut Microbiota Composition in Animals with Different Ginsenosides Metabolizing Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:327-337. [PMID: 28025886 DOI: 10.1021/acs.jafc.6b04848] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Following oral intake of Panax ginseng, major ginsenosides are metabolized to deglycosylated ginsenosides by gut microbiota before absorption into the blood. As the composition of gut microbiota varies between individuals, metabolic activities are significantly different. We selected 6 rats with low efficiency metabolism (LEM) and 6 rats with high efficiency metabolism (HEM) from 60 rats following oral administration of Panax ginseng extract, and analyzed their gut microbiota composition using Illumina HiSeq sequencing of the 16S rRNA gene. The components of gut microbiota between the LEM and HEM groups were significantly different. Between the 2 groups, S24-7, Alcaligenaceae, and Erysipelotrichaceae occupied most OTUs of the HEM group, which was notably higher than the LEM group. Furthermore, we isolated Bifidobacterium animalis GM1 that could convert the ginsenoside Rb1 to Rd. The result implies that these specific intestinal bacteria may dominate the metabolism of Panax ginseng.
Collapse
Affiliation(s)
- Wei-Wei Dong
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular ( Yanbian University ), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Fang-Ling Xuan
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular ( Yanbian University ), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Fei-Liang Zhong
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular ( Yanbian University ), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Jun Jiang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular ( Yanbian University ), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Songquan Wu
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular ( Yanbian University ), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Donghao Li
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular ( Yanbian University ), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular ( Yanbian University ), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| |
Collapse
|
52
|
Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety Assessment of Panax spp Root-Derived Ingredients as Used in Cosmetics. Int J Toxicol 2016; 34:5S-42S. [PMID: 26684797 DOI: 10.1177/1091581815610508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of 13 Panax spp root-derived ingredients as used in cosmetics. Panax "spp" indicates that multiple species within the genus are used in cosmetics, but not all species within that genus. Four species are being considered in this safety assessment. These ingredients function mostly as skin-conditioning agents-miscellaneous, fragrance ingredients, skin-conditioning agents-humectant, skin-conditioning agents-emollient, and cosmetic astringents. The Panel reviewed available data related to these ingredients and addressed the issue of pulegone, a constituent of these ingredients and other ingredients, such as peppermint oil. The Panel concluded that these Panax spp root-derived ingredients are safe in the practices of use and concentration as given in this safety assessment.
Collapse
|
53
|
Gao S, Kushida H, Makino T. Ginsenosides, ingredients of the root of Panax ginseng, are not substrates but inhibitors of sodium-glucose transporter 1. J Nat Med 2016; 71:131-138. [DOI: 10.1007/s11418-016-1042-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
|
54
|
Enhanced Absorption Study of Ginsenoside Compound K (20-O-β-(D-Glucopyranosyl)-20(S)-protopanaxadiol) after Oral Administration of Fermented Red Ginseng Extract (HYFRG™) in Healthy Korean Volunteers and Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3908142. [PMID: 27516803 PMCID: PMC4969531 DOI: 10.1155/2016/3908142] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/15/2016] [Indexed: 12/02/2022]
Abstract
To evaluate the pharmacokinetics of compound K after oral administration of HYFRG and RG in humans, an open-label, randomized, single-dose, fasting, and one-period pharmacokinetic study was conducted. After oral administration of a single 3 g dose of HYFRG and RG to 24 healthy Korean males, the mean (±SD) of AUC0–t and Cmax of compound K from HYFRG were 1466.83 ± 295.89 ng·h/mL and 254.45 ± 51.20 ng/mL, being 115.2- and 80-fold higher than those for RG (12.73 ± 7.83 ng·h/mL and 3.18 ± 1.70 ng/mL), respectively; in case of Sprague Dawley rats the mean (±SD) of AUC0–t and Cmax of compound K from HYFRG was 58.03 ± 32.53 ng·h/mL and 15.19 ± 10.69 ng/mL, being 6.3- and 6.0-fold higher than those from RG (9.21 ± 7.52 ng·h/mL and 2.55 ± 0.99 ng/mL), respectively. Tmax of compound K in humans and rats was 2.54 ± 0.92 and 3.33 ± 0.50 h for HYFRG and 9.11 ± 1.45 and 6.75 ± 3.97 hours for RG, respectively. In conclusion, the administration of HYFRG resulted in a higher and faster absorption of compound K in both humans and rats compared to RG.
Collapse
|
55
|
Yang WS, Yi YS, Kim D, Kim MH, Park JG, Kim E, Lee SY, Yoon K, Kim JH, Park J, Cho JY. Nuclear factor kappa-B- and activator protein-1-mediated immunostimulatory activity of compound K in monocytes and macrophages. J Ginseng Res 2016; 41:298-306. [PMID: 28701870 PMCID: PMC5489765 DOI: 10.1016/j.jgr.2016.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
Background Compound K (CK) is a bioactive derivative of ginsenoside Rb1 in Panax ginseng (Korean ginseng). Its biological and pharmacological activities have been studied in various disease conditions, although its immunomodulatory role in innate immunity mediated by monocytes/macrophages has been poorly understood. In this study, we aimed to elucidate the regulatory role of CK on cellular events mediated by monocytes and macrophages in innate immune responses. Methods The immunomodulatory role of CK was explored by various immunoassays including cell-cell adhesion, fibronectin adhesion, cell migration, phagocytic uptake, costimulatory molecules, reactive oxygen species production, luciferase activity, and by the measurement of mRNA levels of proinflammatory genes. Results Compound K induced cell cluster formation through cell-cell adhesion, cell migration, and phagocytic activity, but it suppressed cell-tissue interactions in U937 and RAW264.7 cells. Compound K also upregulated the surface expression of the cell adhesion molecule cluster of differentiation (CD) 43 (CD43) and costimulatory molecules CD69, CD80, and CD86, but it downregulated the expression of monocyte differentiation marker CD82 in RAW264.7 cells. Moreover, CK induced the release of reactive oxygen species and induced messenger RNA expression of proinflammatory genes, inducible nitric oxide synthase, and tumor necrosis factor-alpha by enhancing the nuclear translocation and transcriptional activities of nuclear factor kappa-B and activator protein-1. Conclusion Our results suggest that CK has an immunomodulatory role in innate immune responses through regulating various cellular events mediated by monocytes and macrophages.
Collapse
Affiliation(s)
- Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Donghyun Kim
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Republic of Korea
| | - Min Ho Kim
- R & D Center, Maeil Dairies Co., Ltd, Pyungtaek, Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Yeol Lee
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Keejung Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Junseong Park
- R & D Center, Maeil Dairies Co., Ltd, Pyungtaek, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
56
|
Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5738694. [PMID: 27446225 PMCID: PMC4944051 DOI: 10.1155/2016/5738694] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 01/30/2023]
Abstract
Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer.
Collapse
|
57
|
Kopalli SR, Cha KM, Jeong MS, Lee SH, Sung JH, Seo SK, Kim SK. Pectinase-treated Panax ginseng ameliorates hydrogen peroxide-induced oxidative stress in GC-2 sperm cells and modulates testicular gene expression in aged rats. J Ginseng Res 2016; 40:185-95. [PMID: 27158240 PMCID: PMC4845052 DOI: 10.1016/j.jgr.2015.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022] Open
Abstract
Background To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. Methods Hydrogen peroxide (H2O2)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. Results GINST treatment (50 μg/mL, 100 μg/mL, and 200 μg/mL) significantly (p < 0.05) inhibited the H2O2-induced (200 μM) cytotoxicity in GC-2spd cells. Furthermore, GINST (50 μg/mL and 100 μg/mL) significantly (p < 0.05) ameliorated the H2O2-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-α, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated H2O2-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. Conclusion GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Kyu-Min Cha
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Min-Sik Jeong
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Sang-Ho Lee
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Jong-Hwan Sung
- Il Hwa Co., Ltd., Ginseng Research Institute, Guri, Korea
| | - Seok-Kyo Seo
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
- Corresponding author. Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| |
Collapse
|
58
|
Park SE, Na CS, Yoo SA, Seo SH, Son HS. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J Ginseng Res 2015; 41:36-42. [PMID: 28123320 PMCID: PMC5223066 DOI: 10.1016/j.jgr.2015.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022] Open
Abstract
Background Some differences have been reported in the biotransformation of ginsenosides, probably due to the types of materials used such as ginseng, enzymes, and microorganisms. Moreover, most microorganisms used for transforming ginsenosides do not meet food-grade standards. We investigated the statistical conversion rate of major ginsenosides in ginsenosides model culture during fermentation by lactic acid bacteria (LAB) to estimate possible pathways. Methods Ginsenosides standard mix was used as a model culture to facilitate clear identification of the metabolic changes. Changes in eight ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, and Rg2) during fermentation with six strains of LAB were investigated. Results In most cases, the residual ginsenoside level decreased by 5.9–36.8% compared with the initial ginsenoside level. Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased during fermentation. By contrast, Rd was maintained or slightly increased after 1 d of fermentation. Rg1 and Rg2 reached their lowest values after 1–2 d of fermentation, and then began to increase gradually. The conversion of Rd, Rg1, and Rg2 into smaller deglycosylated forms was more rapid than that of Rd from Rb1, Rb2, and Rc, as well as that of Rg1 and Rg2 from Re during the first 2 d of fermentation with LAB. Conclusion Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased, whereas ginsenosides Rd, Rg1, and Rg2 increased after 1–2 d of fermentation. This study may provide new insights into the metabolism of ginsenosides and can clarify the metabolic changes in ginsenosides biotransformed by LAB.
Collapse
Affiliation(s)
| | | | | | | | - Hong-Seok Son
- Corresponding author: School of Oriental Medicine, Dongshin University, 185 Geonjae-ro, Naju, Jeonnam, 58245 Korea.
| |
Collapse
|
59
|
Shin KC, Choi HY, Seo MJ, Oh DK. Compound K Production from Red Ginseng Extract by β-Glycosidase from Sulfolobus solfataricus Supplemented with α-L-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS One 2015; 10:e0145876. [PMID: 26710074 PMCID: PMC4692446 DOI: 10.1371/journal.pone.0145876] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
Ginsenoside compound K (C-K) is attracting a lot of interest because of its biological and pharmaceutical activities, including hepatoprotective, antitumor, anti-wrinkling, and anti-skin aging activities. C-K has been used as the principal ingredient in skin care products. For the effective application of ginseng extracts to the manufacture of cosmetics, the PPD-type ginsenosides in ginseng extracts should be converted to C-K by enzymatic conversion. For increased yield of C-K from the protopanaxadiol (PPD)-type ginsenosides in red-ginseng extract (RGE), the α-L-arabinofuranoside-hydrolyzing α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus (CS-abf) was used along with the β-D-glucopyranoside/α-L-arabinopyranoside-hydrolyzing β-glycosidase from Sulfolobus solfataricus (SS-bgly) because SS-bgly showed very low hydrolytic activity on the α-L-arabinofuranoside linkage in ginsenosides. The optimal reaction conditions for C-K production were as follows: pH 6.0, 80°C, 2 U/mL SS-bgly, 3 U/mL CS-abf, and 7.5 g/L PPD-type ginsenosides in RGE. Under these optimized conditions, SS-bgly supplemented with CS-abf produced 4.2 g/L C-K from 7.5 g/L PPD-type ginsenosides in 12 h without other ginsenosides, with a molar yield of 100% and a productivity of 348 mg/L/h. To the best of our knowledge, this is the highest concentration and productivity of C-K from ginseng extract ever published in literature.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye-Yeon Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- * E-mail:
| |
Collapse
|
60
|
Oh HA, Kim DE, Choi HJ, Kim NJ, Kim DH. Anti-stress effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in immobilized mice. Biol Pharm Bull 2015; 38:331-5. [PMID: 25747994 DOI: 10.1248/bpb.b14-00669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Panax ginseng C.A. MEYER (Araliaceae), which contains ginsenosides as its main components, has been shown to have various biological effects, including anti-inflammatory, anxiolytic, anti-stress, and anti-tumor effects. Orally administered ginsenoside Rb1 and Re are metabolized to 20(S)-protopanaxadiol (PPD) and compound K via ginsenoside Rd and 20(S)-protopanaxatriol (PPT) and ginsenoside Rh1 via ginsenoside Rg1 by gut microbiota, respectively. Therefore, we investigated the anti-stress effects of these metabolites, PPD and PPT, by measuring their anxiolytic and anti-inflammatory effects in immobilized mice. Treatment with PPD and PPT prior to immobilization stress increased the time spent in open arms and open arm entries in the elevated plus-maze (EPM) test. The anxiolytic effects of PPD (10 mg/kg) and PPT (10 mg/kg) were comparable to that of buspirone (1 mg/kg). This observed anxiolytic effect of PPD was significantly blocked by flumazenil or bicuculline, and the effect of PPT was blocked by WAY-100635. Treatment with PPD also potently suppressed immobilization stress-induced serum levels of corticosterone and interleukin (IL)-6 by the enzyme-linked immunosorbent assay. However, PPT treatment did not suppress them. Based on these findings, PPD and PPT may exhibit the anxiolytic effect via γ-aminobutyrateA (GABAA) receptor(s) and serotonergic receptor(s), respectively, and PPD may have an anti-inflammatory effect that is more potent than that of PPT.
Collapse
Affiliation(s)
- Hyun A Oh
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University
| | | | | | | | | |
Collapse
|
61
|
Antidepressant-like effects of ginsenosides: A comparison of ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K, and 20(S)-protopanaxadiol in mice models of despair. Pharmacol Biochem Behav 2015; 140:17-26. [PMID: 26528894 DOI: 10.1016/j.pbb.2015.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/21/2022]
Abstract
Ginsenoside Rb3 has been proved to have antidepressant-like effects, which possesses 1 xylose and 3 glucose moieties with 20(S)-protopanaxadiol (PPD) as the aglycone. However, it is commonly accepted that orally ingested ginsenosides can be deglycosylated or partially deglycosylated into active derivatives by the intestinal bacteria. To identify potential antidepressant drug candidates, we compared the antidepressant-like activities between ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K (C-K), and PPD. Effects of acute (1-day), short chronic (7-days), and longer chronic treatments (14-days) with these ginsenosides (50 and 100mg/kg, p.o.) on the behavioral changes in the forced swim test (FST), tail suspension test (TST) and open field test were investigated. Serum corticosterone and adrenocorticotropic hormone (ACTH) levels and mouse brain monoamine neurotransmitters 5-HT, NA and DA levels were measured using commercially available competitive enzyme-linked immunosorbent assay (ELISA) kits. Interestingly, C-K showed antidepressant-like activities similar to that of Rb3, and Rg3 displayed antidepressant-like effects at lower dosage and faster time, indicating it has better effects than Rb3, whereas Rh2 and PPD failed to show any effect. Our results also showed, unlike the positive control fluoxetine, Rb3, Rg3 and C-K significantly increased the NA levels in the brain regions of mice exposed to FST but did not affect the 5-HT and DA levels. Moreover, treatment with Rg3 could reverse swim stress-induced increased levels of serum ACTH and corticosterone. These results suggest that C-K and Rg3 are the active deglycosylated derivatives, especially the latter compound, which is more potent than Rb3 and exerts antidepressant-like effects by regulating NA, ACTH and corticosterone levels.
Collapse
|
62
|
Yoo DH, Kim DH. Lactobacillus pentosus var. plantarum C29 increases the protective effect of soybean against scopolamine-induced memory impairment in mice. Int J Food Sci Nutr 2015; 66:912-8. [PMID: 26171634 DOI: 10.3109/09637486.2015.1064865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 02/05/2023]
Abstract
Biological activities of soybean saponins are dependent on their metabolism by gut microbiota, which generate absorbable bioactive metabolites. Therefore, to enhance the pharmacological effect of soybean, we fermented defatted soybean powder (SP) with Lactobacillus pentosus var. plantarum C29 and measured its protective effect against scopolamine-induced memory impairment in mice using the passive avoidance, Y-maze and Morris water maze tasks. Fermentation increased soyasapogenol B, genistein and daidzein content of soybean and enhanced the protective effect of soybean against scopolamine-induced memory impairment. Additionally, compared with the exthanol extract of soybean, fermented SP (FSP) increased the expression of brain-derived neurotrophic factor (BDNF) in the hippocampi of scopolamine-treated mice. Furthermore, FSP inhibited acetylcholinesterase (AChE) activity in vitro and ex vivo. These findings suggest that C29 fermentation might increase the ameliorating effect of soybean against memory impairments by inhibiting AChE activity and increasing BDNF expression.
Collapse
Affiliation(s)
- Dae-Hyoung Yoo
- a Department of Life and Nanopharmaceutical Sciences , College of Pharmacy, Kyung Hee University , Seoul , Korea
| | - Dong-Hyun Kim
- a Department of Life and Nanopharmaceutical Sciences , College of Pharmacy, Kyung Hee University , Seoul , Korea
| |
Collapse
|
63
|
Zhang W, Wang Y, Bai X, Zhao B. Based on SERS conformational studies of ginsenoside Rb1 and its metabolites before and after combined with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:116-121. [PMID: 25216462 DOI: 10.1016/j.saa.2014.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/08/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and fluorescence spectroscopy were employed to probe the interaction of the pharmaceutical and natural product molecules, ginsenoside Rb1, Rd, Rg3 and compound K (CK), with human serum albumin (HSA). Normal Raman spectra of these four ginsenosides were obtained from solid powder on glass slide. Based on the unsplit peak at 1445 cm(-1), the stacking modes of ginsenoside Rb1, Rd, Rg3 and CK were quite similar, when the deconvolution of alkyl chain was not occurred. SERS spectra of ginsenoside Rb1, Rd, Rg3 and CK were obtained from a colloidal silver surface on a self-assembled SERS substrate, the most enhanced modes were those with certain motions perpendicular to the metal surface, such as C24C25 stretch and CH out-of-plane bending from alkyl chain. The SERS spectra were used to predict similar perpendicular orientation of flexible alkyl chain and parallel orientation of carbocyclic rings on Ag colloid particles. Therefore, when combined with HSA, the transformations of four ginsenosides still exhibit similar, although in different binding cavities in subdomain IIA and IIIA by making the methyls at C26 and C27 perpendicular plugging into the hydrophobic site of HSA, while the aglycone and glucose nearby are perpendicularly exposed outside to fit other suitable active targeting sites.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, PR China
| | - Yingping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, PR China.
| | - Xueyuan Bai
- Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| |
Collapse
|
64
|
Choi KH, Min JY, Ganesan P, Bae IH, Kwak HS. Physicochemical and Sensory Properties of Red Ginseng Extracts or Red Ginseng Hydrolyzates-added Asiago Cheese during Ripening. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:120-6. [PMID: 25557683 PMCID: PMC4283180 DOI: 10.5713/ajas.14.0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 11/27/2022]
Abstract
This study was carried out to investigate physicochemical properties of different concentrations (0.1%, 0.3%, and 0.5%) of red ginseng hydrolyzates (RGH)- or red ginseng extract (RGE)-added Asiago cheeses (AC) during ripening at 14°C for 4 months. The moisture content significantly increased with increasing concentrations of both RGH- and RGE- added AC (p<0.05). While RGHAC and RGEAC were more yellow and darker with increasing concentrations than that of control (p<0.05), the color was not influenced from the hydrolysis. In texture analysis, hardness, cohesiveness, and chewiness of RGHAC and RGEAC significantly decreased compared to the control during the ripening (p<0.05). In sensory analysis, bitterness and ginseng flavor and taste scores increased significantly with increasing the concentrations of RGH and RGE during ripening (p<0.05). In conclusion, the addition of RGH and RGE into cheese slightly influenced the properties of Asiago cheese, and similarities were observed between RGHAC and RGEAC. Thus, the lower concentrations (0.1% to 0.3%) of RGH and RGE added to AC were preferred for color, texture, and sensory during the ripening, therefore, these cheeses would be worth developing commercially.
Collapse
Affiliation(s)
- Kyung-Hoon Choi
- Department of Food Technology, Universiti Putra Malaysia, Serdang43400, Malaysia
| | - Ji-Young Min
- Department of Food Technology, Universiti Putra Malaysia, Serdang43400, Malaysia
| | - Palanivel Ganesan
- Department of Food Technology, Universiti Putra Malaysia, Serdang43400, Malaysia
| | - In-Hyu Bae
- Department of Animal Science and Technology, Sunchon National University, Sunchon 540-950, Korea
| | - Hae-Soo Kwak
- Department of Food Technology, Universiti Putra Malaysia, Serdang43400, Malaysia
| |
Collapse
|
65
|
Oh HA, Kim DE, Choi HJ, Kim NJ, Kim DH. Anti-fatigue Effects of 20( S)-Protopanaxadiol and 20( S)-Protopanaxatriol in Mice. Biol Pharm Bull 2015; 38:1415-9. [PMID: 26328499 DOI: 10.1248/bpb.b15-00230] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyun A Oh
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University
| | | | - Hyuck Jai Choi
- East-West Medical Research Institute, Kyung Hee University Medical Center
| | - Nam Jae Kim
- East-West Medical Research Institute, Kyung Hee University Medical Center
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University
- East-West Medical Research Institute, Kyung Hee University Medical Center
| |
Collapse
|
66
|
Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015; 100:208-20. [DOI: 10.1016/j.fitote.2014.11.019] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022]
|
67
|
Xu R, Peng Y, Wang M, Fan L, Li X. Effects of broad-spectrum antibiotics on the metabolism and pharmacokinetics of ginsenoside Rb1: a study on rats׳ gut microflora influenced by lincomycin. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:338-344. [PMID: 25446586 DOI: 10.1016/j.jep.2014.10.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Ginsenoside Rb1 is a biologically active compound that is abundant in ginseng (Panax ginseng). It has been reported that ginsenosides could be metabolized by enzymes and bacteria in the large intestine. In this study, the effects of intestinal bacteria on the metabolism and pharmacokinetics of ginsenoside Rb1 were investigated using lincomycin-treated rat models (4.8g/kg and 0.12g/kg). Specifically, ginsenoside Rb1 was incubated anaerobically with rat fecal suspensions obtained from the control and two model groups at 0, 6, 12, 24, and 48h. Ginsenoside Rb1 and its metabolites were determined by HPLC analysis. Compared with the normal rats case where Rd and compound K were detected in the incubation mixture, ginsenoside Rd and F2 were found in the 0.12g/kg group, but only Rd was found in the 4.8g/kg group. Moreover, fecal β-glucosidase activity was significantly lower in lincomycin-treated (0.12g/kg and 4.8g/kg) model rats. After administration of Rb1 to rats, ginsenoside Rb1 and its metabolites Rd, Rg3, and Rh2 were detectable in normal rat urine, whereas none was detected in the two model groups. The plasma concentration-time Rb1 were compared between model groups and normal rats. The systemic exposure as evidenced by the AUC and T1/2 values was significantly higher in model groups than in normal rats. Our findings demonstrated that consumption of lincomycin could lead to the formation of specific metabolites and pharmacokinetic changes of ginsenoside Rb1 in the gut, attributed to alterations in metabolic activities of intestinal bacteria. Our results also suggested that patients who want to use intestinal bacteria-metabolized drugs such as ginseng (Panax ginseng) should pay attention to the profile of intestinal bacteria or potential drug interactions to ensure therapeutic efficacy.
Collapse
Affiliation(s)
- Renjie Xu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Lirong Fan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
68
|
Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, Yuan K, Guerin-Deremaux L, Kim DH. A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats. J Ginseng Res 2014; 39:183-7. [PMID: 26045693 PMCID: PMC4452535 DOI: 10.1016/j.jgr.2014.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022] Open
Abstract
Background Gut microflora play a crucial role in the biotransformation of ginsenosides to compound K (CK), which may affect the pharmacological effects of ginseng. Prebiotics, such as NUTRIOSE, could enhance the formation and consequent absorption of CK through the modulation of gut microbial metabolic activities. In this study, the effect of a prebiotic fiber (NUTRIOSE) on the pharmacokinetics of ginsenoside CK, a bioactive metabolite of ginsenosides, and its mechanism of action were investigated. Methods Male Sprague–Dawley rats were given control or NUTRIOSE-containing diets (control diet + NUTRIOSE) for 2 wk, and ginseng extract or vehicle was then orally administered. Blood samples were collected to investigate the pharmacokinetics of CK using liquid chromatography–tandem mass spectrometry. Fecal activities that metabolize ginsenoside Rb1 to CK were assayed with fecal specimens or bacteria cultures. Results When ginseng extract was orally administered to rats fed with 2.5%, 5%, or 10% NUTRIOSE containing diets, the maximum plasma concentration (Cmax) and area under the plasma concentration–time curve values of CK significantly increased in a NUTRIOSE content-dependent manner. NUTRIOSE intake increased glycosidase activity and CK formation in rat intestinal contents. The CK-forming activities of intestinal microbiota cultured in vitro were significantly induced by NUTRIOSE. Conclusion These results show that prebiotic diets, such as NUTRIOSE, may promote the metabolic conversion of ginsenosides to CK and the subsequent absorption of CK in the gastrointestinal tract and may potentiate the pharmacological effects of ginseng.
Collapse
Affiliation(s)
- Kyung-Ah Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea ; Department of Food Science and Nutrition, College of Natural Science, Songwon University, 73, Songamro, Nam-gu, Gwangju 503-742, Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - Wan Gu
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea
| | - Dae-Hyung Yu
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea
| | - Ming Ji Jin
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - Hae-Lim Choi
- Roquette Korea Ltd, 12th, FL. SamHeungYeokSam Bldg. Teheran-ro 14-gil 5, Gangnam-gu, Seoul 135-923, Korea
| | - Kathy Yuan
- Roquette Management (Shanghai) Co., Ltd, Room 501 K. Wah Centre, 1010 HuaiHaiZhong Road, Shanghai 200031, China
| | | | - Dong-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea
| |
Collapse
|
69
|
Choi HJ, Kim EA, Kim DH, Shin KS. The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014. MYCOBIOLOGY 2014; 42:256-261. [PMID: 25346602 PMCID: PMC4206791 DOI: 10.5941/myco.2014.42.3.256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/19/2014] [Indexed: 06/04/2023]
Abstract
A β-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, F2, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside F2 and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract→Rd→F2→compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.
Collapse
Affiliation(s)
- Hak Joo Choi
- Traditional and Biomedical Research Center, Daejeon University, Daejeon 300-716, Korea
| | - Eun A Kim
- Traditional and Biomedical Research Center, Daejeon University, Daejeon 300-716, Korea
| | - Dong Hee Kim
- Traditional and Biomedical Research Center, Daejeon University, Daejeon 300-716, Korea. ; Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 300-716, Korea
| | - Kwang-Soo Shin
- Division of Life Sciences, College of Natural Science, Daejeon University, Daejeon 300-716, Korea
| |
Collapse
|
70
|
Misra BB, Dey S. Immunolocalization of α-santalol in sandalwood. JOURNAL OF ESSENTIAL OIL RESEARCH 2014. [DOI: 10.1080/10412905.2014.910709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
71
|
Zheng ZZ, Ming YL, Chen LH, Zheng GH, Liu SS, Chen QX. Compound K-induced apoptosis of human hepatocellular carcinoma MHCC97-H cells in vitro. Oncol Rep 2014; 32:325-31. [PMID: 24804620 DOI: 10.3892/or.2014.3171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/17/2014] [Indexed: 11/05/2022] Open
Abstract
An intestinal bacterial metabolite of ginseng protopanaxadiol saponin, 20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol (compound K), has been reported to induce apoptosis in a variety of cancer cells. However, the precise mechanisms induced by compound K in human hepatocellular carcinoma (HCC) cells remain unclear. In order to examine possible apoptotic mechanisms, we investigated the anticancer effect of compound K in MHCC97-H. MTT assay showed that compound K inhibited the proliferation of MHCC97-H cells with a relatively low toxicity in normal hepatoma cells. Cell cycle progression and cell staining showed an increase in apoptotic sub-G1 fraction. Treatment of MHCC97-H with compound K also induced a reduction in mitochondrial membrane potential (Δψm) and DNA damage. Further study showed that compound K upregulated Fas, FasL, Bax/Bcl-2 ratio and downregulated pro-caspase-9, pro-caspase-3 in a dose-dependent manner, and it also inhibited Akt phosphorylation. These results suggest that compound K significantly inhibits cell proliferation and induces apoptosis in MHCC97-H cells through Fas- and mitochondria-mediated caspase-dependent pathways in human HCC cells.
Collapse
Affiliation(s)
- Zhi-Zhong Zheng
- The Research and Development Center for Medicine Plant and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, P.R. China
| | - Yan-Lin Ming
- The Research and Development Center for Medicine Plant and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, P.R. China
| | - Liang-Hua Chen
- The Research and Development Center for Medicine Plant and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, P.R. China
| | - Guo-Hua Zheng
- The Research and Development Center for Medicine Plant and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, P.R. China
| | - Shao-Song Liu
- The Research and Development Center for Medicine Plant and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, P.R. China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
72
|
Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, Yuan K, Guerin-Deremaux L, Kim DH. Effect of a soluble prebiotic fiber, NUTRIOSE, on the absorption of ginsenoside Rd in rats orally administered ginseng. J Ginseng Res 2014; 38:203-7. [PMID: 25378995 PMCID: PMC4213839 DOI: 10.1016/j.jgr.2014.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 12/03/2022] Open
Abstract
Background There is limited understanding of the effect of dietary components on the absorption of ginsenosides and their metabolites into the blood. Methods This study investigated the pharmacokinetics of the ginseng extract and its main constituent ginsenoside Rb1 in rats with or without pretreatment with a prebiotic fiber, NUTRIOSE, by liquid chromatography tandem mass spectrometry. When ginsenoside Rb1 was incubated with rat feces, its main metabolite was ginsenoside Rd. Results When the intestinal microbiota of rat feces were cultured in vitro, their ginsenoside Rd-forming activities were significantly induced by NUTRIOSE. When ginsenoside Rb1 was orally administered to rats, the maximum plasma concentration (Cmax) and area under the plasma drug concentration–time curve (AUC) for the main metabolite, ginsenoside Rd, were 72.4 ± 31.6 ng/mL and 663.9 ± 285.3 μg·h/mL, respectively. When the ginseng extract (2,000 mg/kg) was orally administered, Cmax and AUC for ginsenoside Rd were 906.5 ± 330.2 ng/mL and 11,377.3 ± 4,470.2 μg·h/mL, respectively. When ginseng extract was orally administered to rats fed NUTRIOSE containing diets (2.5%, 5%, or 10%), Cmax and AUC were increased in the NUTRIOSE receiving groups in a dose-dependent manner. Conclusion These findings reveal that intestinal microflora promote metabolic conversion of ginsenoside Rb1 and ginseng extract to ginsenoside Rd and promote its absorption into the blood in rats. Its conversion may be induced by prebiotic diets such as NUTRIOSE.
Collapse
Affiliation(s)
- Kyung-Ah Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Hye Hyun Yoo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Wan Gu
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Dae-Hyung Yu
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Ming Ji Jin
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Hae-Lim Choi
- Roquette Korea Ltd, Teheran-ro, Gangnam-gu, Seoul, Korea
| | - Kathy Yuan
- Roquette Management (Shanghai) Co., Ltd, K. Wah Centre, Shanghai, China
| | | | - Dong-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
73
|
Law CKM, Kwok HH, Poon PY, Lau CC, Jiang ZH, Tai WCS, Hsiao WWL, Mak NK, Yue PYK, Wong RNS. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor. Chin Med 2014; 9:11. [PMID: 24690317 PMCID: PMC4021625 DOI: 10.1186/1749-8546-9-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/31/2014] [Indexed: 01/08/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) has a high incidence rate in Southern China. Although there are conventional therapies, the side effects and toxicities are not always tolerable for patients. Recently, the tumoricidal effect of ginsenosides on different cancer cells has been studied. This study aims to investigate the anti-cancer effect of ginsenosides on NPC cells and their underlying mechanism. Methods The cytotoxicity of ginsenosides on NPC cell line HK-1 was measured by MTT assay. Apoptosis was detected by propidium iodide staining followed by flow cytometry. A xenograft tumor model was established by injecting nude mice with HK-1 cells. The activation of caspases and apoptosis-inducing factor (AIF) were evaluated by Western blot analysis. Nuclear translocation of AIF was also studied by immunofluorescence staining. Mitochondrial membrane potential was measured by JC-1 dye using flow cytometry. Results Four ginsenosides, 20 (S)-Rh2, compound K (CK), panaxadiol (PD) and protopanaxadiol (PPD), induced apoptotic cell death in HK-1 cells in a concentration-dependent manner. CK inhibited HK-1 xenograft tumor growth most extensively and depleted mitochondrial membrane potential depolarization and induced translocation of AIF from cytoplasm to nucleus in HK-1 cells. In addition, depletion of AIF by siRNA abolished CK-induced HK-1 cell death. Conclusion Ginsenoside CK-induced apoptosis of HK-1 cells was mediated by the mitochondrial pathway and could significantly inhibit tumor growth in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Patrick Ying-Kit Yue
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China.
| | | |
Collapse
|
74
|
Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells. Arch Pharm Res 2014; 37:1183-92. [PMID: 24687256 DOI: 10.1007/s12272-014-0340-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
Ginsenoside compound K (CK) is a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer (Araliaceae), has long been used to treat against the development of cancer, inflammation, allergies, and diabetes. This study examined the anti-angiogenic properties of CK against sphingosine 1-phosphate (S1P)-induced cell migration via regulation of sphingosine kinase 1 (SPHK1) in human umbilical vein endothelial cells (HUVEC). Studies on S1P-induced cell migration, expression of SPHK1 and MMPs and analysis of sphingolipid metabolites by LC-MS/MS were examined after the treatment of CK (2.5, 5, 10 μg/mL) in HUVEC. S1P produced by SPHK1 is also involved in cell growth, migration, and protection of apoptosis; therefore, we sought to investigate whether ginsenosides are able to regulate SPHK1. For this purpose, we developed an inhibitory assay of SPHK1 activity and an analytical method for detection of S1P and other sphingolipid metabolites in HUVEC. Ginsenoside CK inhibited 100 nM S1P-induced cell migrations in a dose-dependent manner. Among tested ginsenosides, CK exclusively inhibited S1P production, SPHK1 activity and SPHK1 expression in HUVEC, whereas expression of the pro-apoptotic sphingolipids, sphingosine and ceramide, was increased in response to CK. The major subspecies of the increased ceramide was C24:0-ceramide. CK also disrupted the sphingolipid rheostat, which ultimately influences cell fate, and dose-dependently inhibited HUVEC migration by reducing expression of metalloproteinases (MMPs). Ginsenoside CK acts as a unique HUVEC migration inhibitor by regulating MMP expression, as well as the activity of SPHK1 and its related sphingolipid metabolites.
Collapse
|
75
|
Chang KH, Jo MN, Kim KT, Paik HD. Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3. J Ginseng Res 2013; 38:47-51. [PMID: 24558310 PMCID: PMC3915331 DOI: 10.1016/j.jgr.2013.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 11/23/2022] Open
Abstract
The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (β-glucosidase) from A. niger KCCM 11239 hydrolyzed the β-(1→6)-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing β-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.
Collapse
Affiliation(s)
- Kyung Hoon Chang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Mi Na Jo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea ; Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|
76
|
Kim JR, Choi J, Kim J, Kim H, Kang H, Kim EH, Chang JH, Kim YE, Choi YJ, Lee KW, Lee HJ. 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol-fortified ginseng extract attenuates the development of atopic dermatitis-like symptoms in NC/Nga mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:365-371. [PMID: 24269244 DOI: 10.1016/j.jep.2013.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng and ginsenosides are frequently used in the treatment of chronic inflammatory diseases. Recently, 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol (GPD), the main metabolite of ginsenosides, was reported to have both anti-allergic and anti-pruritic effects. The immunomodulatory effects of GPD-fortified ginseng extract (GFGE) on atopic dermatitis (AD)-like symptoms in mice were investigated. This study was designed to investigate the preventive effect of GFGE on AD-like symptoms. MATERIALS AND METHODS The effects of orally administered GFGE on Dermatophagoides farinae body extract (DFE)-induced AD-like symptoms in NC/Nga mice were assessed by analyzing dermatitis score, ear thickness, scratching time, skin histological changes, and serum level of macrophage-derived chemokine (MDC). In addition, splenocytes were isolated from the mice and stimulated with anti-CD3 and anti-CD28 monoclonal antibodies to produce cytokines. RESULTS Oral administration of GFGE significantly attenuated DFE-induced increases in dermatitis score, ear thickness, scratching time, and severity of skin lesions in NC/Nga mice. GFGE treatment also reduced level of MDC in serum, infiltration of eosinophils and mast cells in skin, and production of cytokines in splenocytes. CONCLUSIONS These results suggest that GFGE might ameliorate DFE-induced AD-like symptoms and be an alternative therapeutic agent for the prevention of AD.
Collapse
Affiliation(s)
- Jong Rhan Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Jinhwan Choi
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jiyoung Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Heejeung Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Heerim Kang
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Eun Hye Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jeong-Hwa Chang
- CJ Foods R&D, CJ CheilJedang Corporation, Seoul 152-051, Republic of Korea
| | - Yeong-Eun Kim
- CJ Foods R&D, CJ CheilJedang Corporation, Seoul 152-051, Republic of Korea
| | - Young Jin Choi
- Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea; Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 232-916, Republic of Korea.
| | - Hyong Joo Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea.
| |
Collapse
|
77
|
Kim HK. Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract. J Ginseng Res 2013; 37:451-6. [PMID: 24235859 PMCID: PMC3825860 DOI: 10.5142/jgr.2013.37.451] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022] Open
Abstract
Compound K is a major metabolite of ginsenoside Rb1, which has various pharmacological activities in vivo and in vitro. However, previous studies have focused on the pharmacokinetics of a single metabolite or the parent compound and have not described the pharmacokinetics of both compounds in humans. To investigate the pharmacokinetics of ginsenoside Rb1 and compound K, we performed an open-label, single-oral dose pharmacokinetic study using Korean Red Ginseng extract. We enrolled 10 healthy Korean male volunteers in this study. Serial blood samples were collected during 36 h after Korean Red Ginseng extract administration to determine plasma concentrations of ginsenoside Rb1 and compound K. The mean maximum plasma concentration of compound K was 8.35±3.19 ng/mL, which was significantly higher than that of ginsenoside Rb1 (3.94±1.97 ng/mL). The half-life of compound K was 7 times shorter than that of ginsenoside Rb1. These results suggest that the pharmacokinetics, especially absorption, of compound K are not influenced by the pharmacokinetics of its parent compound, except the time to reach the maximum plasma concentration The delayed absorption of compound K support the evidence that the intestinal microflora play an important role in the transformation of ginsenoside Rb1 to compound K.
Collapse
Affiliation(s)
- Hyung-Ki Kim
- Department of Clinical Pharmacology, Soonchunhyang University College of Medicine, Cheonan 331-090, Korea
| |
Collapse
|
78
|
Choi SH, Lee BH, Kim HJ, Jung SW, Hwang SH, Nah SY. Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K(+) and KCNQ1 K(+) channel currents. J Ginseng Res 2013; 37:324-31. [PMID: 24198658 PMCID: PMC3818959 DOI: 10.5142/jgr.2013.37.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
Channels formed by the co-assembly of the KCNQ1 subunit and the mink (KCNE1) subunit underline the slowly activating delayed rectifier K+ channels (IKs) in the heart. This K+ channel is one of the main pharmacological targets for the development of drugs against cardiovascular disease. Panax ginseng has been shown to exhibit beneficial cardiovascular effects. In a previous study, we showed that ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interactions with the K318 and V319 residues. However, little is known about the effects of ginsenoside metabolites on KCNQ1 K+ alone or the KCNQ1 + KCNE1 K+ (IKs) channels. In the present study, we examined the effect of protopanaxatriol (PPT) and compound K (CK) on KCNQ1 K+ and IKs channel activity expressed in Xenopus oocytes. PPT more strongly inhibited the IKs channel currents than the currents of KCNQ1 K+ alone in concentration- and voltage-dependent manners. The IC50 values on IKs and KCNQ1 alone currents for PPT were 5.18±0.13 and 10.04±0.17 μM, respectively. PPT caused a leftward shift in the activation curve of IKs channel activity, but minimally affected KCNQ1 alone. CK exhibited slight inhibition on IKs and KCNQ1 alone K+ channel currents. These results indicate that ginsenoside metabolites show limited effects on IKs channel activity, depending on the structure of the ginsenoside metabolites.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
79
|
He C, Zhou D, Li J, Han H, Ji G, Yang L, Wang Z. Identification of 20(S)-protopanaxatriol metabolites in rats by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry and nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 2013; 88:497-508. [PMID: 24184656 DOI: 10.1016/j.jpba.2013.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/19/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022]
Abstract
20(S)-Protopanaxatriol (PPT), one of the aglycones of ginsenosides, has been shown to exert cardioprotective effects against myocardial ischemic injury. However, studies on PPT metabolism have rarely been reported. This study is the first to investigate the in vivo metabolism of PPT following oral administration by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) and nuclear magnetic resonance (NMR) spectroscopy. The structures of the metabolites were identified based on the characteristics of their MS data, MS(2) data, and chromatographic retention times. A total of 22 metabolites, including 17 phase I and 5 phase II metabolites, were found and tentatively identified by comparing their mass spectrometry profiles with those of PPT. Two new monooxygenation metabolites, (20S,24S)-epoxy-dammarane-3,6,12,25-tetraol and (20S,24R)-epoxy-dammarane-3,6,12,25-tetraol, were chemicallly synthesized and unambiguously characterized according to the NMR spectroscopic data. The metabolic pathways of PPT were proposed accordingly for the first time. Results revealed that oxidation of (1) double bonds at Δ((24,25)) to form 24,25-epoxides, followed by rearrangement to yield 20,24-oxide forms; and (2) vinyl-methyl at C-26/27 to form corresponding carboxylic acid were the predominant metabolic pathways. Phase II metabolic pathways were proven for the first time to consist of glucuronidation and cysteine conjugation. This study provides valuable and new information on the metabolism of PPT, which is indispensable for understanding the safety and efficacy of PPT, as well as its corresponding ginsenosides.
Collapse
Affiliation(s)
- Chunyong He
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing 210038, China
| | | | | | | | | | | | | |
Collapse
|
80
|
Jung MA, Jang SE, Hong SW, Hana MJ, Kim DH. The role of intestinal microflora in anti-inflammatory effect of baicalin in mice. Biomol Ther (Seoul) 2013; 20:36-42. [PMID: 24116272 PMCID: PMC3792199 DOI: 10.4062/biomolther.2012.20.1.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/13/2011] [Accepted: 11/02/2011] [Indexed: 12/22/2022] Open
Abstract
Baicalin, a main constituent of the rhizome of Scutellaria baicalensis, is metabolized to baicalein and oroxylin A in the intestine before its absorption. To understand the role of intestinal microflora in the pharmacological activities of baicalin, we investigated its anti-inflammatory effect in mice treated with and without antibiotics. Orally administered baicalin showed the anti-inflammatory effect in mice than intraperitoneally treated one, apart from intraperitoneally administered its metabolites, baicalein and oroxylin A, which potently inhibited LPS-induced inflammation. Of these metabolites, oroxylin A showed more potent anti-inflammatory effect. However, treatment with the mixture of cefadroxil, oxytetracycline and erythromycin (COE) significantly attenuated the anti-inflammatory effect of orally administered baicalin in mice. Treatment with COE also reduced intestinal bacterial fecal β-glucuronidase activity. The metabolic activity of human stools is significantly different between individuals, but neither between ages nor between male and female. Baicalin was metabolized to baicalein and oroxylin A, with metabolic activities of 1.427 ± 0.818 and 1.025 ± 0.603 pmol/min/mg wet weight, respectively. Baicalin and its metabolites also inhibited the expression of pro-inflammatory cytokines, TNF-α and IL-1β, and the activation of NF-κB in LPS-stimulated peritoneal macrophages. Of them, oroxylin A showed the most potent inhibition. Based on these findings, baicalin may be metabolized to baicalein and oroxylin A by intestinal microflora, which enhance its anti-inflammatory effect by inhibiting NF-κB activation.
Collapse
|
81
|
Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, Cha JW, Kim HS, Kim DH, Bae SC, Hyun JW. Compound K, a metabolite of ginseng saponin, inhibits colorectal cancer cell growth and induces apoptosis through inhibition of histone deacetylase activity. Int J Oncol 2013; 43:1907-14. [PMID: 24100442 DOI: 10.3892/ijo.2013.2129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/13/2013] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the molecular mechanisms underlying the anti-proliferative effects of Compound K, with specific reference to histone modification. Exposure of HT-29 human colon cancer cells to Compound K resulted in time-dependent inhibition of histone deacetylase (HDAC) activity, mRNA and protein expression. Compound K treatment induced unmethylation of the RUNX3 promoter region such as TSA treatment and an accumulation of acetylated histones H3 and H4 within the total cellular chromatin, resulting in an enhanced ability of these histones to bind to the promoter sequences of the tumor suppressor gene Runt-related transcription factor 3 (RUNX3). Treatment of cells with Compound K increased the mRNA and protein expression of RUNX3, as well as p21, a downstream target of RUNX3. These alterations were consistent with cell cycle arrest at the G0/G1 phases and induction of apoptosis. Our results provide new insights into the mechanisms of Compound K action in human colorectal cancer cells and suggest that HDAC inhibition presents a novel approach to prevent or treat colorectal cancer.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Choi JR, Hong SW, Kim Y, Jang SE, Kim NJ, Han MJ, Kim DH. Metabolic activities of ginseng and its constituents, ginsenoside rb1 and rg1, by human intestinal microflora. J Ginseng Res 2013; 35:301-7. [PMID: 23717073 PMCID: PMC3659535 DOI: 10.5142/jgr.2011.35.3.301] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/29/2022] Open
Abstract
To evaluate the difference in expressing pharmacological effects of ginseng by intestinal microflora between Koreans, metabolic activities of ginseng, ginsenoside Rb1 and Rg1 by 100 fecal specimens were measured. The β-glucosidase activity for p-nitrophenyl- β-D-glucopyranoside was 0 to 0.42 μmol/min/mg and its average activity (mean±SD) was 0.10±0.07 μmol/min/mg. The metabolic activities of ginsenosides Rb1 and Rg1 were 0.01 to 0.42 and 0.01 to 0.38 pmol/min/mg, respectively. Their average activities were 0.25±0.08 and 0.15±0.09 pmol/min/mg, respectively. The compound K-forming activities from ginsenoside Rb1 and ginseng extract were 0 to 0.11 and 0 to 0.02 pmol/min/mg, respectively. Their average compound K-forming activities were 0.24±0.09 pmol/min/ mg and 2.14±3.66 fmol/min/mg, respectively. These activities all were not different between males and females, or between ages. Although compound K-forming activity from the aqueous extract of ginseng was low compared to that from ginenoside Rb1, their profiles were similar to those of isolated compounds. Based on these findings, we believe that the intestinal bacterial metabolic activities of ginseng components are variable in individuals and may be used as selection markers for responders to ginseng.
Collapse
Affiliation(s)
- Jong-Ryul Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | | | |
Collapse
|
83
|
Kim DH. Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 2013; 36:1-15. [PMID: 23717099 PMCID: PMC3659563 DOI: 10.5142/jgr.2012.36.1.1] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022] Open
Abstract
The major commercial ginsengs are Panax ginseng Meyer (Korean ginseng), P. quinquifolium L. (American ginseng), and P. notoginseng (Burk.) FH Chen (Notoginseng). P. ginseng is the most commonly used as an adaptogenic agent and has been shown to enhance physical performance, promote vitality, increase resistance to stress and aging, and have immunomodulatory activity. These ginsengs contain saponins, which can be classified as dammarane-type, ocotillol-type and oleanane-type oligoglycosides, and polysaccharides as main constituents. Dammarane ginsenosides are transformed into compounds such as the ginsenosides Rg3, Rg5, and Rk1 by steaming and heating and are metabolized into metabolites such as compound K, ginsenoside Rh1, protoand panaxatriol by intestinal microflora. These metabolites are nonpolar, pharmacologically active and easily absorbed from the gastrointestinal tract. However, the activities metabolizing these constituents into bioactive compounds differ significantly among individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. To overcome this difference, ginsengs fermented with enzymes or microbes have been developed.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
84
|
Quan LH, Piao JY, Min JW, Kim HB, Kim SR, Yang DU, Yang DC. Biotransformation of Ginsenoside Rb1 to Prosapogenins, Gypenoside XVII, Ginsenoside Rd, Ginsenoside F2, and Compound K by Leuconostoc mesenteroides DC102. J Ginseng Res 2013; 35:344-51. [PMID: 23717079 PMCID: PMC3659545 DOI: 10.5142/jgr.2011.35.3.344] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 12/02/2022] Open
Abstract
Ginsenoside Rb1is the main component in ginsenosides. It is a protopanaxadiol-type ginsenoside that has a dammarane-type triterpenoid as an aglycone. In this study, ginsenoside Rb1 was transformed into gypenoside XVII, ginsenoside Rd, ginsenoside F2 and compound K by glycosidase from Leuconostoc mesenteroides DC102. The optimum time for the conversion was about 72 h at a constant pH of 6.0 to 8.0 and the optimum temperature was about 30℃. Under optimal conditions, ginsenoside Rb1 was decomposed and converted into compound K by 72 h post-reaction (99%). The enzymatic reaction was analyzed by highperformance liquid chromatography, suggesting the transformation pathway: ginsenoside Rb1→ gypenoside XVII and ginsenoside Rd→ginsenoside F2→compound K.
Collapse
Affiliation(s)
- Lin-Hu Quan
- Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | |
Collapse
|
85
|
Kim JS, Kim Y, Han SH, Jeon JY, Hwang M, Im YJ, Kim JH, Lee SY, Chae SW, Kim MG. Development and validation of an LC-MS/MS method for determination of compound K in human plasma and clinical application. J Ginseng Res 2013; 37:135-41. [PMID: 23717167 PMCID: PMC3659617 DOI: 10.5142/jgr.2013.37.135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/25/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
A rapid, sensitive and selective analytical method was developed and validated for the determination of compound K, a major intestinal bacterial metabolite of ginsenosides in human plasma. Liquid-liquid extraction was used for sample preparation and analysis, followed by liquid chromatography tandem spectrometric analysis and an electrospray-ionization interface. Compound K was analyzed on a Phenomenex Luna C18 column (100×2.00 mm, 3 μm) with the mobile phase run isocratically with 10 mM ammonium acetate-methanol-acetonitrile (5:47.5:47.5, v/v/v) at a flow rate of 0.5 mL/min. The method was validated for accuracy (relative error <12.63%), precision (coefficient of variation <9.14%), linearity, and recovery. The assay was linear over the entire range of calibration standards i.e., a concentration range of 1 ng/mL to 1,000 ng/ mL (r2 >0.9968). The recoveries of compound K after liquid-liquid extraction at 1, 2, 400, and 800 ng/mL were 106.00±0.08%, 103.50±0.19%, 111.45±5.21%, and 89.62±34.46% for intra-day and 85.40±0.08%, 94.50±0.09%, 112.50±5.21%, and 95.87±34.46% for inter-day, respectively. The lower limit of quantification of the analytical method of compound K was 1 ng/ mL in human plasma. The developed method was successfully applied to a pharmacokinetic study of compound K after oral administration in ten of healthy human subjects.
Collapse
Affiliation(s)
- Jung Soo Kim
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 561-712, Korea ; Department of Pediatrics, Chonbuk National University Medical School, Jeonju 561-180, Korea ; Research Institute of Clinical Medicine, Chonbuk National University, Jeonju 561-712, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Optimization of enzymatic treatment for compound K production from white ginseng extract by response surface methodology. Biosci Biotechnol Biochem 2013; 77:1138-40. [PMID: 23649233 DOI: 10.1271/bbb.120823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ginsenoside 20-O-β-D glucopyranosyl-20(S)-protopanaxadiol (compound K), a minor ginsenoside, is not found in white raw ginseng, but has better bioavailability than the major ginsenosides in ginseng. Employing commercial enzyme packages for industrial applications, the optimum conditions for enzymatic transformation for the highest content of compound K was explored to enhance the health benefits of ginseng extract. Cytolase PCL 5 was selected from commercial enzyme packages nominated for high β-glucosidase activity. By response surface methodology, the optimal conditions were identified as 78 h of treatment at pH 4.3 at 55.4 °C for 2.068 mg/mL of compound K, showing good agreement with the experimental value.
Collapse
|
87
|
KANG KYOUNGAH, KIM HEESUN, KIM DONGHYUN, HYUN JINWON. The role of a ginseng saponin metabolite as a DNA methyltransferase inhibitor in colorectal cancer cells. Int J Oncol 2013; 43:228-36. [DOI: 10.3892/ijo.2013.1931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/15/2013] [Indexed: 11/06/2022] Open
|
88
|
Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS One 2013; 8:e62409. [PMID: 23638073 PMCID: PMC3639287 DOI: 10.1371/journal.pone.0062409] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/21/2013] [Indexed: 12/25/2022] Open
Abstract
Panax ginseng (family Araliaceae) which contains ginsenoside Rb1 as a main constituent is traditionally used as a remedy for cancer, inflammation, stress, and ageing. The ginsenoside Rb1 in orally administered ginseng is metabolized to bioactive compounds by gut microbiota before their absorptions to the blood. However, its metabolizing activities in individuals are significantly different as we previously demonstrated. Here, we selected 5 samples with fecal activity potently metabolizing ginsenoside Rb1 to compound K (FPG; metabolic activity, 0.058±0.029 pmol/min/mg) and 5 samples with fecal activity non-metabolizing ginsenoside Rb1 to compound K (FNG) from a pool of 100 subjects investigated in a previous study and analyzed fecal microbiota by 16S rRNA gene pyrosequencing. Taxonomy-based analysis showed that the population levels of Firmicutes and Proteobacteria in FPG were lower than in FNG, but those of Bacteroidetes and Tenericutes in FPG were higher than in FNG. At the genus level, the population levels of Clostridiales_uc_g, Oscillibacter, Ruminococcus, Holdemania, and Sutterella in FPG were significantly higher than in FNG, but that of Leuconostoc in FPG was lower than in FNG. The population levels of Bacteroides and Bifidobacterium, which potently metabolizes ginsenoside Rb1 to compound K were dramatically increased in FPG. The gut microbiota compositions of FPG and FNG were segregated on PCO2 by Principal Coordinate Analysis. Intestinal bacterial metabolism of ginseng, particularly ginsenoside Rb1, may be dependent on the composition of gut microbiota, such as Ruminococcus spp., Bacteroides spp. and Bifidobacterium spp.
Collapse
|
89
|
Zhang R, Chung Y, Kim HS, Kim DH, Kim HS, Chang WY, Hyun JW. 20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol induces apoptosis via induction of endoplasmic reticulum stress in human colon cancer cells. Oncol Rep 2013; 29:1365-70. [PMID: 23381572 DOI: 10.3892/or.2013.2270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/14/2012] [Indexed: 11/05/2022] Open
Abstract
Previously, we reported that 20-O-(β-D-gluco-pyranosyl)-20(S)-protopanaxadiol (Compound K, a meta-bolite of ginseng saponin) induces mitochondria-dependent and caspase-dependent apoptosis in HT-29 human colon cancer cells via the generation of reactive oxygen species. The aim of the present study was to elucidate the mechanism underlying apoptosis induced by Compound K with respect to endoplasmic reticulum (ER) stress in HT-29 cells. In the present study, Compound K induced apoptotic cell death as confirmed by DNA fragmentation and apoptotic sub-G1 cell population. Compound K also induced ER stress as indicated by staining with ER tracker, cytosolic and mitochondrial Ca2+ overloading, phosphorylation of protein-kinase-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor-2α (eIF-2α), phosphorylation of IRE-1, splicing of ER stress-specific X-box transcription factor-1 (XBP-1), cleavage of activating transcription factor-6 (ATF-6), upregulation of glucose-regulated protein-78 (GRP-78/BiP) and CCAAT/enhancer-binding protein-homologous protein (CHOP), and cleavage of caspase-12. Furthermore, downregulation of CHOP expression using siCHOP RNA attenuated Compound K-induced apoptosis. Taken together, these results support the important role of ER stress response in mediating Compound K-induced apoptosis in human colon cancer cells.
Collapse
Affiliation(s)
- Rui Zhang
- School of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
90
|
Zhang Z, Du GJ, Wang CZ, Wen XD, Calway T, Li Z, He TC, Du W, Bissonnette M, Musch MW, Chang EB, Yuan CS. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions. Int J Mol Sci 2013; 14:2980-95. [PMID: 23434653 PMCID: PMC3588026 DOI: 10.3390/ijms14022980] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 01/15/2023] Open
Abstract
Compound K (20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC). A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Guang-Jian Du
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Xiao-Dong Wen
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Tyler Calway
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Zejuan Li
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Tong-Chuan He
- Department of Orthopaedic Surgery, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 3079, Chicago, IL 60637, USA; E-Mail:
| | - Wei Du
- Ben May Department for Cancer Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Marc Bissonnette
- Department of Medicine, University of Chicago, 900 E. 57th street, MB 9, Chicago, IL 60637, USA; E-Mails: (M.B.); (M.W.M.); (E.B.C.)
| | - Mark W. Musch
- Department of Medicine, University of Chicago, 900 E. 57th street, MB 9, Chicago, IL 60637, USA; E-Mails: (M.B.); (M.W.M.); (E.B.C.)
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, 900 E. 57th street, MB 9, Chicago, IL 60637, USA; E-Mails: (M.B.); (M.W.M.); (E.B.C.)
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
- Committee on Clinical Pharmacology and Pharmacogenomics, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-702-1916; Fax: +1-773-834-0601
| |
Collapse
|
91
|
Wu W, Qin Q, Guo Y, Sun J, Liu S. Studies on the chemical transformation of 20(S)-protopanaxatriol (PPT)-type ginsenosides R(e), R(g2), and R(f) using rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10007-10014. [PMID: 22991995 DOI: 10.1021/jf302638f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) method was developed for analysis of chemical transformation of 20(S)-protopanaxatriol (PPT)-type ginsenosides Re, Rg2, and Rf in acidic conditions. The transformation products were identified by comparing the retention time of the standard compounds, the accurate mass measurement, and the fragment ions obtained from RRLC-Q-TOF-tandem mass spectrometry (MS/MS) analyses. The specific product ions of aglycone PPT (m/z 475), C-24- and C-25-hydrated PPT (m/z 493), and Δ20(21) or Δ20(22) dehydration PPT (m/z 457) by MS/MS were discussed for structural characterization. Experiments demonstrated that chemical transformation mechanisms of 20(S)-PPT-type ginsenosides in acidic conditions include hydrolysis of saccharide substitution, Δ20(21) or Δ20(22) dehydration, and hydration addition reactions at C-24 and C-25. The chemical transformation pathway for 20(S)-PPT-type ginsenosides was summarized. The developed RRLC-Q-TOF-MS method was also applied for comparative analysis of 20(S)-PPT ginsenoside and related chemical transformation products in ginseng products.
Collapse
Affiliation(s)
- Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine , Changchun 130117, People's Republic of China
| | | | | | | | | |
Collapse
|
92
|
A novel oral dosage formulation of the ginsenoside aglycone protopanaxadiol exhibits therapeutic activity against a hormone-insensitive model of prostate cancer. Anticancer Drugs 2012; 23:543-52. [PMID: 22481061 DOI: 10.1097/cad.0b013e32835006f5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study focuses on determining the pharmacokinetics, biodistribution, and efficacy of the ginsenoside aglycone protopanaxadiol (aPPD) administered as a single agent in a novel oral dosage formulation. To obtain these data and to characterize the stability of aPPD, appropriate analytical assay development was carried out. The solubility and stability of aPPD were determined, and the compound was formulated for oral gavage. aPPD levels in blood and tissues following oral administration to nu/nu nude mice were determined using liquid chromatography-mass spectrometry/mass spectrometry. The efficacy of aPPD was determined upon oral administration to nu/nu nude mice bearing PC-3 human prostate cancer xenograft tumors. Immunohistochemical analysis of tumor tissues was performed to establish apoptotic indices and Ki-67 expression as markers of proliferation. The maximum solubility of aPPD in ethanol was 68.4 mg/ml. aPPD administered at a dose of 70 mg/kg yielded a T(max) of approximately 40 min and a C(max) value of 3.9 ± 1.4 μg/ml, and no toxicity was observed. aPPD accumulated largely in the stomach and small intestine and was also present in the brain. This dose engendered a significant delay in PC-3 tumor growth, an increase in apoptotic index, and a decrease in Ki-67 levels. We have shown that aPPD is a stable compound that can be formulated for oral gavage. Pharmacokinetic studies demonstrate the ability of this compound to be absorbed after oral administration. Future studies will assess the activity and pharmacokinetics of aPPD when administered in combination with standard chemotherapy.
Collapse
|
93
|
Jang SE, Jung IH, Joh EH, Han MJ, Kim DH. Antibiotics attenuate anti-scratching behavioral effect of ginsenoside Re in mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:105-112. [PMID: 22855946 DOI: 10.1016/j.jep.2012.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Panax ginseng CA Meyer (ginseng) has been used for diabetes, cancer, stress and allergic diseases in the traditional Chinese medicine. AIM OF THE STUDY To understand the role of intestinal microflora in the pharmacological effect of ginsenoside Re, which is a main constituent of ginseng, we investigated its anti-scratching behavioral effect in the mice treated with or without antibiotics. MATERIALS AND METHODS Ginsenoside Re was orally administered to the mice treated with antibiotics (cefadroxil, oxytetracycline and erythromycin mixture (COE), streptomycin or/and tetracycline) and then investigated the relationship between ginsenoside Re-metabolizing β-glucosidase and α-rhamnosidase activities of intestinal microflora and its antiscratching behavioral effect. The anti-scratching behavioral effects of ginsenosides were investigated in the increments of 1 h and 6 h after their oral administrations. The scratching behavioral frequency was measured for 1 h after treatment with histamine. RESULTS Ginsenoside Re inhibited histamine-induced scratching behavior in mice. The anti-scratching behavioral effect of ginsenoside Re was more potent 6 h after its oral administration than 1 h after. However, its inhibitory effect was significantly attenuated in mice treated with COE, but it nearly was not affected in mice treated with streptomycin and/or tetracycline. Treatment with COE also significantly lowered fecal ginsenoside Re-metabolizing β-glucosidase and α-rhamnosidase activities in mice, as well as fecal metabolic activity of ginsenoside Re to ginsenoside Rh1. The anti-scratching behavioral effect of ginsenoside Rh1, a metabolite of ginsenoside Re by intestinal microflora, was superior to that of ginsenoside Re. Ginsenoside Rh1 potently inhibited the expression of IL-4 and TNF-α, as well as the activation of NF-κB and c-jun activation in histamine-stimulated scratching behavioral mice. CONCLUSION Ginsenoside Re may be metabolized to ginsenoside Rh1 by intestinal microflora, which enhances its anti-scratching behavioral effect by inhibiting NF-κB and c-jun activations.
Collapse
Affiliation(s)
- Se-Eun Jang
- Department of Food and Nutrition, Kyung Hee University, 1 Hoegi, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
94
|
Hu C, Song G, Zhang B, Liu Z, Chen R, Zhang H, Hu T. Intestinal metabolite compound K of panaxoside inhibits the growth of gastric carcinoma by augmenting apoptosis via Bid-mediated mitochondrial pathway. J Cell Mol Med 2012; 16:96-106. [PMID: 21323864 PMCID: PMC3823096 DOI: 10.1111/j.1582-4934.2011.01278.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Compound K (20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of panaxoside, has been shown to inhibit tumour growth in a variety of tumours. However, the mechanisms involved are largely unknown. We use human gastric carcinoma cell lines BGC823, SGC7901 and human gastric carcinoma xenograft in nude mice as models to study the mechanisms of CK in gastric cancers. We found that CK significantly inhibits the viabilities of BGC823 and SGC7901 cells in dose- and time-dependent manners. CK-induced BGC823 and SGC7901 cells apoptosis and cell cycle arrest in G2 phase by up-regulation of p21 and down-regulation of cdc2 and cyclin B1. Further studies show that CK induces apoptosis in BGC823 and SGC7901 cells mainly through mitochondria-mediated internal pathway, and that CK induces the translocation of nuclear Bid to mitochondria. Finally, we found that CK effectively inhibited the tumour formation of SGC7901 cells in nude mice. Our studies show that CK can inhibit the viabilities and induce apoptosis of human gastric carcinoma cells via Bid-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Chun Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
95
|
Li R, Yan H, Wang Z, Gong J. Correlation of Solubility and Prediction of the Mixing Properties of Ginsenoside Compound K in Various Solvents. Ind Eng Chem Res 2012. [DOI: 10.1021/ie300945p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Runyan Li
- School
of Chemical
Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hao Yan
- School
of Chemical
Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhao Wang
- School
of Chemical
Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Junbo Gong
- School
of Chemical
Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin Key Laboratory
of Modern Drug Delivery and High-Efficiency, Tianjin University, Tianjin 300072, People’s
Republic of China
| |
Collapse
|
96
|
Yang Z, Wang JR, Niu T, Gao S, Yin T, You M, Jiang ZH, Hu M. Inhibition of P-glycoprotein leads to improved oral bioavailability of compound K, an anticancer metabolite of red ginseng extract produced by gut microflora. Drug Metab Dispos 2012; 40:1538-44. [PMID: 22584255 DOI: 10.1124/dmd.111.044008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ginsenosides are hydrolyzed extensively by gut microflora after oral administration, and their metabolites are pharmacologically active against lung cancer cells. In this study, we measured the metabolism of various ginsenosides by gut microflora and determined the mechanisms responsible for the observed pharmacokinetic behaviors of its active metabolite, Compound K (C-K). The results showed that biotransformation into C-K is the major metabolic pathway of ginsenosides after the oral administration of the red ginseng extract containing both protopanaxadiol and protopanaxatriol ginsenosides. Pharmacokinetic studies in normal mice showed that C-K exhibited low oral bioavailability. To define the mechanisms responsible for this low bioavailability, two P-glycoprotein (P-gp) inhibitors, verapamil and cyclosporine A, were used, and their presence substantially decreased C-K's efflux ratio in Caco-2 cells (from 26.6 to <3) and significantly increased intracellular concentrations (by as much as 40-fold). Similar results were obtained when transcellular transport of C-K was determined using multidrug resistance 1 (MDR1)-overexpressing Madin-Darby canine kidney II cells. In MDR1a/b(-/-) FVB mice, its plasma C(max) and AUC(0-24h) were increased substantially by 4.0- and 11.7-fold, respectively. These increases appear to be due to slower elimination and faster absorption of C-K in MDR1a/b(-/-) mice. In conclusion, C-K is the major active metabolite of ginsenosides after microflora hydrolysis of primary ginsenosides in the red ginseng extract, and inhibition/deficiency of P-gp can lead to large enhancement of its absorption and bioavailability.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund St., Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Joh EH, Gu W, Kim DH. Echinocystic acid ameliorates lung inflammation in mice and alveolar macrophages by inhibiting the binding of LPS to TLR4 in NF-κB and MAPK pathways. Biochem Pharmacol 2012; 84:331-40. [PMID: 22564908 DOI: 10.1016/j.bcp.2012.04.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 12/30/2022]
Abstract
Orally administered lancemaside A, which is isolated from Codonopsis lanceolata (family Campanulaceae), showed anti-colitic effect in mice. However, its metabolite echinocystic acid was absorbed into the blood. Therefore, its anti-inflammatory effects were investigated in lipopolysaccharide (LPS)-stimulated alveolar macrophages in vitro and acute lung injury in vivo. Alveolar macrophages from mice were stimulated with LPS and were treated with echinocystic acid. Acute lung injury was induced by intratracheal administration of LPS in mice. Mice were treated with echinocystic acid or dexamethasone. Echinocystic acid potently suppressed the production of the pro-inflammatory cytokines, TNF-α and IL-1β, as well as of the activations of NF-κB and MAPKS, in LPS-stimulated alveolar macrophages. Echinocystic acid also down-regulated the production of inflammatory markers, which included inducible nitric oxide synthase and cyclooxygenase-2, as well as the inflammatory mediators, nitric oxide and prostaglandin E(2), in LPS-stimulated alveolar macrophages. Echinocystic acid also inhibited the activation of IL-1 receptor-associated kinases, and the activation of mitogen-activated protein kinases in LPS-stimulated alveolar macrophages. Furthermore, echinocystic acid potently inhibited the interaction between LPS and TLR4 in alveolar macrophages transfected with or without MyD88 siRNA, although it did not inhibit the binding in the macrophages transfected with TLR4 siRNA. Echinocystic acid suppressed LPS-induced acute lung inflammation in mice, as well as the expression of pro-inflammatory cytokines, such as IL-1β and TNF-α, and their transcription factor, NF-κB. On the basis of these findings, echinocystic acid, a metabolite of lancemaside A, may express anti-inflammatory effects by inhibiting the binding of LPS to TLR4 on macrophages.
Collapse
Affiliation(s)
- Eun-Ha Joh
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | |
Collapse
|
98
|
Efficient biotransformation for preparation of pharmaceutically active ginsenoside Compound K by Penicillium oxalicum sp. 68. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0454-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
99
|
Kim AJ, Han MR, Lee SJ. Antioxidative Capacity and Quality Characteristics of Yanggaeng using Fermented Red Ginseng for the Elderly. ACTA ACUST UNITED AC 2012. [DOI: 10.9799/ksfan.2012.25.1.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
100
|
Jin H, Seo JH, Uhm YK, Jung CY, Lee SK, Yim SV. Pharmacokinetic comparison of ginsenoside metabolite IH-901 from fermented and non-fermented ginseng in healthy Korean volunteers. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:664-667. [PMID: 22178175 DOI: 10.1016/j.jep.2011.11.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/17/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE IH-901 (20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol) is a novel ginseng saponin metabolite formed by human intestinal bacteria and is known to have antitumor and antimetastatic effects. However, there has been no pharmacokinetic study of IH-901 in human beings. AIM OF THE STUDY The aim of this study was to investigate the pharmacokinetic differences of IH-901 from fermented and non-fermented ginseng. MATERIALS AND METHODS To investigate whether the pharmacokinetics of IH-901 differ between fermented and non-fermented ginseng, an open label, randomized, single dose, fasting, two-period, cross-over, pharmacokinetic study was conducted. A total of 24 healthy Korean male volunteers participated in this study. All subjects were allocated into two equal groups and administered 3g of fermented or non-fermented Panax ginseng. Serial blood samples for pharmacokinetic analysis were collected in the 24 h after dosing. Plasma IH-901 concentration was measured by a validated high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Pharmacokinetic parameters including AUC(t), C(max), and T(max) were calculated by noncompartmental models in the BA-CALC program (KFDA, 2008, 1.0.0, Korea). RESULTS After oral administration of fermented ginseng, 5 subjects experienced diarrhea. The means of AUC(t) and C(max) were significantly different between the two groups. In the fermented ginseng group, AUC(t) was 2083.09±91.97 ng h/mL, a 15.5-fold increase over that of IH-901 from the non-fermented group (134.50±63.10 ng h/mL), and the mean C(max) was 325.00±91.97 ng/mL in the fermented ginseng group, a 27-fold higher value than that in the non-fermented group (13.88±7.24 ng/mL). T(max) was 3.29±1.00 and 12.04±4.96 h in the fermented and non-fermented group, respectively. CONCLUSIONS The results of this study showed that the pharmacokinetic parameters of IH-901 from fermented Panax ginseng are different from those of non-fermented ginseng, from which IH-901 is formed by intestinal fermentation.
Collapse
Affiliation(s)
- Hui Jin
- Department of Clinical Pharmacology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|