51
|
Li S, Zhou W, Li D, Pan T, Guo J, Zou H, Tian Z, Li K, Xu J, Li X, Li Y. Comprehensive characterization of human-virus protein-protein interactions reveals disease comorbidities and potential antiviral drugs. Comput Struct Biotechnol J 2022; 20:1244-1253. [PMID: 35356543 PMCID: PMC8924640 DOI: 10.1016/j.csbj.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
The protein-protein interactions (PPIs) between human and viruses play important roles in viral infection and host immune responses. Rapid accumulation of experimentally validated human-virus PPIs provides an unprecedented opportunity to investigate the regulatory pattern of viral infection. However, we are still lack of knowledge about the regulatory patterns of human-virus interactions. We collected 27,293 experimentally validated human-virus PPIs, covering 8 virus families, 140 viral proteins and 6059 human proteins. Functional enrichment analysis revealed that the viral interacting proteins were likely to be enriched in cell cycle and immune-related pathways. Moreover, we analysed the topological features of the viral interacting proteins and found that they were likely to locate in central regions of human PPI network. Based on network proximity analyses of diseases genes and human-virus interactions in the human interactome, we revealed the associations between complex diseases and viral infections. Network analysis also implicated potential antiviral drugs that were further validated by text mining. Finally, we presented the Human-Virus Protein-Protein Interaction database (HVPPI, http://bio-bigdata.hrbmu.edu.cn/HVPPI), that provides experimentally validated human-virus PPIs as well as seamlessly integrates online functional analysis tools. In summary, comprehensive understanding the regulatory pattern of human-virus interactome will provide novel insights into fundamental infectious mechanism discovery and new antiviral therapy development.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Jing Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Haozhe Zou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zhanyu Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
52
|
García-Matarín L, Velilla-Zancada S, Trillo-Calvo E, Molina-Escribano F, Serrano-Cumplido A. [Potentially useful drugs in the treatment of COVID-19 in Primary Care]. Semergen 2022; 48:137-148. [PMID: 34454827 PMCID: PMC8316068 DOI: 10.1016/j.semerg.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
The consequences of the SARS-CoV-2 pandemic have exceeded any forecast made. Today we know that the level of severity of the infection in its initial stages will correspond to the evolution and the presence of sequelae in the future. There are no specific treatments that have shown sufficient evidence to allow their recommendation, especially in the mild-moderate stages of the disease. The anti-Covid vaccination is showing clear benefits, both in the prevention of the disease and in its evolution, with the consequent improvement in the numbers of those affected by the pandemic. The use of different drugs used in other indications has been proposed as possible beneficial treatments for COVID-19 that, if used, will be prescribed individually taking into account the characteristics and situation of the patient, the evolutionary phase of the disease as well as well as the limitations of the lack of evidence in its administration.
Collapse
Affiliation(s)
- L García-Matarín
- Médico de familia, Centro de Salud Aguadulce Sur, Almería, Servicio Andaluz de Salud, España
| | - S Velilla-Zancada
- Médico de familia, Centro de Salud Joaquín Elizalde, Logroño, Servicio Riojano de Salud, España
| | - E Trillo-Calvo
- Médico de familia, Centro de Salud Campo de Belchite, Zaragoza, Servicio Aragonés de Salud, España
| | - F Molina-Escribano
- Médico de familia, Centro de Salud de Sisante, Cuenca, Servicio de Salud de Castilla-La Mancha, España
| | | |
Collapse
|
53
|
Modulation of Inflammatory Cytokine Production in Human Monocytes by cGMP and IRAK3. Int J Mol Sci 2022; 23:ijms23052552. [PMID: 35269704 PMCID: PMC8909980 DOI: 10.3390/ijms23052552] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin-1 receptor-associated kinase-3 (IRAK3) is a critical checkpoint molecule of inflammatory responses in the innate immune system. The pseudokinase domain of IRAK3 contains a guanylate cyclase (GC) centre that generates small amounts of cyclic guanosine monophosphate (cGMP) associated with IRAK3 functions in inflammation. However, the mechanisms of IRAK3 actions are poorly understood. The effects of low cGMP levels on inflammation are unknown, therefore a dose–response effect of cGMP on inflammatory markers was assessed in THP-1 monocytes challenged with lipopolysaccharide (LPS). Sub-nanomolar concentrations of membrane permeable 8-Br-cGMP reduced LPS-induced NFκB activity, IL-6 and TNF-α cytokine levels. Pharmacologically upregulating cellular cGMP levels using a nitric oxide donor reduced cytokine secretion. Downregulating cellular cGMP using a soluble GC inhibitor increased cytokine levels. Knocking down IRAK3 in THP-1 cells revealed that unlike the wild type cells, 8-Br-cGMP did not suppress inflammatory responses. Complementation of IRAK3 knockdown cells with wild type IRAK3 suppressed cytokine production while complementation with an IRAK3 mutant at GC centre only partially restored this function. Together these findings indicate low levels of cGMP form a critical component in suppressing cytokine production and in mediating IRAK3 action, and this may be via a cGMP enriched nanodomain formed by IRAK3 itself.
Collapse
|
54
|
Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:143. [PMID: 35187603 PMCID: PMC8858600 DOI: 10.1007/s00018-021-04102-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.
Collapse
|
55
|
Zahoránszky-Kőhalmi G, Siramshetty VB, Kumar P, Gurumurthy M, Grillo B, Mathew B, Metaxatos D, Backus M, Mierzwa T, Simon R, Grishagin I, Brovold L, Mathé EA, Hall MD, Michael SG, Godfrey AG, Mestres J, Jensen LJ, Oprea TI. A Workflow of Integrated Resources to Catalyze Network Pharmacology Driven COVID-19 Research. J Chem Inf Model 2022; 62:718-729. [PMID: 35057621 PMCID: PMC10790216 DOI: 10.1021/acs.jcim.1c00431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen, and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. Here, we describe a workflow we designed for a semiautomated integration of rapidly emerging data sets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 63 278 host-host protein, and 1221 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is made publicly accessible via a web interface and via API calls based on the Bolt protocol. Details for accessing the database are provided on a landing page (https://neo4covid19.ncats.io/). We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19.
Collapse
Affiliation(s)
| | - Vishal B. Siramshetty
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Praveen Kumar
- Department of Internal Medicine, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, NM 87131, USA
- Department of Computer Science, University of New Mexico, 1 University of New Mexico Albuquerque, NM 87131, USA
| | - Manideep Gurumurthy
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Busola Grillo
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Biju Mathew
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Dimitrios Metaxatos
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Mark Backus
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Tim Mierzwa
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Reid Simon
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Ivan Grishagin
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
- Rancho BioSciences LLC., 16955 Via Del Campo Suite 200, San Diego, CA 92127, USA
| | - Laura Brovold
- Rancho BioSciences LLC., 16955 Via Del Campo Suite 200, San Diego, CA 92127, USA
| | - Ewy A. Mathé
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Alexander G. Godfrey
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Jordi Mestres
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Lars J. Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences,University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Tudor I. Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, NM 87131, USA
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences,University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- UNM Comprehensive Cancer Center, 1201 Camino de Salud NE, Albuquerque, NM 87102, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| |
Collapse
|
56
|
Li L, Gang X, Wang J, Gong X. Role of melatonin in respiratory diseases (Review). Exp Ther Med 2022; 23:271. [PMID: 35251337 PMCID: PMC8892605 DOI: 10.3892/etm.2022.11197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lijie Li
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaochao Gang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Jiajia Wang
- Department of Pediatrics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaoyan Gong
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
57
|
Okeke ES, Ogugofor MO, Nkwoemeka NE, Nweze EJ, Okoye CO. Phytomelatonin: a potential phytotherapeutic intervention on COVID-19-exposed individuals. Microbes Infect 2022; 24:104886. [PMID: 34534695 PMCID: PMC8440003 DOI: 10.1016/j.micinf.2021.104886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Phytomelatonin is a pleiotropic molecule that originated in higher plants with many diverse actions and is primarily an antioxidant. The recent identification and advancement of phytomelatonin unraveled the potential of this modulatory molecule being considered a new plant hormone, suggesting its relevance in treating respiratory infections, including COVID-19. Besides, this molecule is also involved in multiple hormonal, physiological, and biological processes at different levels of cell organization and has been marked for its ability to cross the blood-brain barrier and prominent antioxidant effects, reducing mitochondrial electron leakage, up-regulating antioxidant enzymes, acting as a free radical scavenger, and interfering with pro-inflammatory signaling pathways as seen in mood swings, body temperature, sleep, cancer, cardiac rhythms, and immunological regulation modulators. However, due to its diversity, availability, affordability, convenience, and high safety profile, phytomelatonin has also been suggested as a natural adjuvant. This review discussed the origin, content in various plant species, processes of extraction, and detection and therapeutic potentials of phytomelatonin in treating COVID-19-exposed individuals.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria; Natural Science Unit, SGS, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria; School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
| | - Martins Obinna Ogugofor
- Department of Biochemistry, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria; Department of Chemical Sciences, Coal City University, Enugu, Enugu State, Nigeria
| | - Ndidi Ethel Nkwoemeka
- Natural Science Unit, SGS, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
| | - Charles Obinwanne Okoye
- School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria; Biofuels Institute, Jiangsu University, Zhenjiang, 212013, PR China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya.
| |
Collapse
|
58
|
Borges L, Gennari-Felipe M, Dias BB, Hatanaka E. Melatonin, Zinc, and Vitamin C: Potential Adjuvant Treatment for COVID-19 Patients. Front Nutr 2022; 8:821824. [PMID: 35155533 PMCID: PMC8826215 DOI: 10.3389/fnut.2021.821824] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
The use of nutraceutical approaches may regulate the immune system, performing a potential strategy to contain the worst outcomes of COVID-19. We reviewed the current evidence surrounding nutritional/nutraceutical approaches for the therapy in patients with COVID-19. We searched the PubMed database to report randomized controlled trials (RCTs) and observational research that used melatonin, zinc, or vitamin C supplementation as an intervention for COVID-19 treatment. To date, we found only three concluded studies that assessed zinc supplementation and melatonin therapy in patients with COVID-19, but with inconclusive data, relatively small sample size, and early termination of the trial. On the other hand, vitamin C therapy appears to reduce hyperinflammation and improve the oxygen support status of patients with COVID-19. However, a large part of this research involves pilot trials, and there are still conflicting data regarding mortality rate, mechanical ventilation, and duration of symptoms of patients with COVID-19. Melatonin, zinc, and vitamin C supplementation should be investigated further on the nutritional status-immune response, and data from ongoing trials are needed to understand these molecules as a therapy strategy in patients COVID-19.
Collapse
Affiliation(s)
- Leandro Borges
- Interdisciplinary Program of Health Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | | | | | | |
Collapse
|
59
|
Turilli ES, Lualdi M, Fasano M. Looking at COVID-19 from a Systems Biology Perspective. Biomolecules 2022; 12:188. [PMID: 35204689 PMCID: PMC8961533 DOI: 10.3390/biom12020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The sudden outbreak and worldwide spread of the SARS-CoV-2 pandemic pushed the scientific community to find fast solutions to cope with the health emergency. COVID-19 complexity, in terms of clinical outcomes, severity, and response to therapy suggested the use of multifactorial strategies, characteristic of the network medicine, to approach the study of the pathobiology. Proteomics and interactomics especially allow to generate datasets that, reduced and represented in the forms of networks, can be analyzed with the tools of systems biology to unveil specific pathways central to virus-human host interaction. Moreover, artificial intelligence tools can be implemented for the identification of druggable targets and drug repurposing. In this review article, we provide an overview of the results obtained so far, from a systems biology perspective, in the understanding of COVID-19 pathobiology and virus-host interactions, and in the development of disease classifiers and tools for drug repurposing.
Collapse
Affiliation(s)
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, I-21052 Busto Arsizio, Italy; (E.S.T.); (M.L.)
| |
Collapse
|
60
|
Guo Y, Esfahani F, Shao X, Srinivasan V, Thomo A, Xing L, Zhang X. Integrative COVID-19 biological network inference with probabilistic core decomposition. Brief Bioinform 2022; 23:6425808. [PMID: 34791019 PMCID: PMC8689992 DOI: 10.1093/bib/bbab455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for millions of deaths around the world. To help contribute to the understanding of crucial knowledge and to further generate new hypotheses relevant to SARS-CoV-2 and human protein interactions, we make use of the information abundant Biomine probabilistic database and extend the experimentally identified SARS-CoV-2-human protein-protein interaction (PPI) network in silico. We generate an extended network by integrating information from the Biomine database, the PPI network and other experimentally validated results. To generate novel hypotheses, we focus on the high-connectivity sub-communities that overlap most with the integrated experimentally validated results in the extended network. Therefore, we propose a new data analysis pipeline that can efficiently compute core decomposition on the extended network and identify dense subgraphs. We then evaluate the identified dense subgraph and the generated hypotheses in three contexts: literature validation for uncovered virus targeting genes and proteins, gene function enrichment analysis on subgraphs and literature support on drug repurposing for identified tissues and diseases related to COVID-19. The major types of the generated hypotheses are proteins with their encoding genes and we rank them by sorting their connections to the integrated experimentally validated nodes. In addition, we compile a comprehensive list of novel genes, and proteins potentially related to COVID-19, as well as novel diseases which might be comorbidities. Together with the generated hypotheses, our results provide novel knowledge relevant to COVID-19 for further validation.
Collapse
Affiliation(s)
- Yang Guo
- Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Fatemeh Esfahani
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, 1200 Montreal Road, K1A 0R6, Ottawa, ON, Canada
| | - Venkatesh Srinivasan
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Alex Thomo
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, 110 Science Place, S7N 5A2, Saskatoon, SK, Canada
| | - Xuekui Zhang
- Corresponding author: Xuekui Zhang, Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada.
| |
Collapse
|
61
|
Shchetinin E, Baturin V, Arushanyan E, Bolatchiev A, Bobryshev D. Potential and Possible Therapeutic Effects of Melatonin on SARS-CoV-2 Infection. Antioxidants (Basel) 2022; 11:140. [PMID: 35052644 PMCID: PMC8772978 DOI: 10.3390/antiox11010140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
The absence of effective drugs for COVID-19 prevention and treatment requires the search for new candidates among approved medicines. Fundamental studies and clinical observations allow us to approach an understanding of the mechanisms of damage and protection from exposure to SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of melatonin. We have attempted to present scientifically proven mechanisms of action for the potential therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological properties allows its inclusion as an effective addition to the methods of prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Evgeny Shchetinin
- Department of Pathophysiology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Vladimir Baturin
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Eduard Arushanyan
- Department of Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Albert Bolatchiev
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Dmitriy Bobryshev
- Center of Personalized Medicine, Stavropol State Medical University, 355000 Stavropol, Russia
| |
Collapse
|
62
|
Computational approaches for drug repositioning and repurposing to combat SARS-CoV-2 infection. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022:247-265. [PMCID: PMC9300474 DOI: 10.1016/b978-0-323-91172-6.00008-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Drug repositioning (also referred to as drug repurposing) is the method of exploring novel therapeutic indications for Food and Drug Administration-approved clinically implemented drugs. The unique strategy of drug repositioning is used to boost the drug development process since drug discovery is an expensive, arduous, cumbersome, and high-risk procedure. Recently, several pharmaceutical firms have used the drug repositioning technique in their drug discovery and development programs to develop new medications based on the identification of new therapeutic targets. This technique is extremely effective, saves time, is comparatively economical, and has a low chance of failure. Developing appropriate treatment measures to inhibit the spread of Coronavirus disease-2019 (COVID-19) is currently a top priority. As a result, several studies were conducted to build novel therapeutic molecules using diverse strategies of drug repurposing to discover drug candidates against COVID-19 infection that can act as substantial inhibitors against virus particles. By implementing virtual screening of drug libraries, it is possible to identify potential drugs through drug repurposing. A molecular docking approach and calculation of binding free energy are used to estimate binding affinity and drug–receptor interactions. Drug-repurposing methodologies can be divided into three categories: target-oriented, drug-oriented, and disease-oriented, based on the gathered data about the various physicochemical, pharmacokinetic and pharmacological features of a drug candidate. Using computational methods such as homology modeling and molecular similarity, this methodology aids in determining the binding interaction of drug molecules with the target protein of the virus. In this book chapter, we explore a typical set of currently utilized computational techniques for identifying repurposable drug molecules for COVID-19, as well as their supporting databases. We also assess promising drugs anticipated by computational approaches to drugs currently being evaluated in clinical trials. Moreover, we also examine the takeaways from the evaluated research efforts, such as how to competently combine bioinformatics tools with experimental work and suggest a fully integrated drug-repurposing approach to combat the deadly COVID-19 infection.
Collapse
|
63
|
Masoudi-Sobhanzadeh Y, Esmaeili H, Masoudi-Nejad A. A fuzzy logic-based computational method for the repurposing of drugs against COVID-19. BIOIMPACTS : BI 2022; 12:315-324. [PMID: 35975205 PMCID: PMC9376160 DOI: 10.34172/bi.2021.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/27/2021] [Accepted: 04/03/2021] [Indexed: 01/09/2023]
Abstract
Introduction: COVID-19 has spread out all around the world and seriously interrupted human activities. Being a newfound disease, not only many aspects of the disease are unknown, but also there is not an effective medication to cure the disease. Besides, designing a drug is a time-consuming process and needs large investment. Hence, drug repurposing techniques, employed to discover the hidden benefits of the existing drugs, maybe a useful option for treating COVID-19. Methods: The present study exploits the drug repositioning concepts and introduces some candidate drugs which may be effective in controlling COVID-19. The suggested method consists of three main steps. First, the required data such as the amino acid sequences of targets and drug-target interactions are extracted from the public databases. Second, the similarity score between the targets (protein/enzymes) and genome of SARS-COV-2 is computed using the proposed fuzzy logic-based method. Since the classical approaches yield outcomes which may not be useful for the real-world applications, the fuzzy technique can address the issue. Third, after ranking targets based on the obtained scores, the usefulness of drugs affecting them is examined for managing COVID-19. Results: The results indicate that antiviral medicines, designed for curing hepatitis C, may also cure COVID-19. According to the findings, ribavirin, simeprevir, danoprevir, and XTL-6865 may be helpful in controlling the disease. Conclusion: It can be concluded that the similarity-based drug repurposing techniques may be the most suitable option for managing emerging diseases such as COVID-19 and can be applied to a wide range of data. Also, fuzzy logic-based scoring methods can produce outcomes which are more consistent with the real-world biological applications than others.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
,Corresponding authors: Ali Masoudi-Nejad, ; Yosef Masoudi-Sobhanzadeh,
| | - Hosein Esmaeili
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
,Corresponding authors: Ali Masoudi-Nejad, ; Yosef Masoudi-Sobhanzadeh,
| |
Collapse
|
64
|
Budnevsky AV, Avdeev SN, Kosanovic D, Shishkina VV, Filin AA, Esaulenko DI, Ovsyannikov ES, Samoylenko TV, Redkin AN, Suvorova OA, Perveeva IM. Role of mast cells in the pathogenesis of severe lung damage in COVID-19 patients. Respir Res 2022; 23:371. [PMID: 36544127 PMCID: PMC9769495 DOI: 10.1186/s12931-022-02284-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is still insufficient knowledge with regard to the potential involvement of mast cells (MCs) and their mediators in the pathology of coronavirus disease-2019 (COVID-19). Therefore, our study aimed to investigate the role of MCs, their activation and protease profiles in the pathogenesis of early and late lung damage in COVID-19 patients. METHODS Formalin-fixed and paraffin embedded lung specimens from 30 patients who died from COVID-19 and 9 controls were used for histological detection of MCs and their proteases (tryptase, chymase) followed by morphometric quantification. RESULTS Our results demonstrated increased numbers of MCs at early stage and further augmentation of MCs number during the late stage of alveolar damage in COVID-19 patients, as compared to the control group. Importantly, the percentage of degranulated (activated) MCs was higher during both stages of alveolar lesions in comparison to the controls. While there was no prominent alteration in the profile of tryptase-positive MCs, our data revealed a significant elevation in the number of chymase-positive MCs in the lungs of COVID-19 patients, compared to the controls. CONCLUSIONS MCs are characterized by dysregulated accumulation and increased activation in the lungs of patients suffering from COVID-19. However, future profound studies are needed for precise analysis of the role of these immune cells in the context of novel coronavirus disease.
Collapse
Affiliation(s)
- Andrey V. Budnevsky
- grid.445088.50000 0004 0620 3837Department of Faculty Therapy, Burdenko Voronezh State Medical University, 10 Studencheskaya Str., Voronezh, Russia 394036
| | - Sergey N. Avdeev
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Djuro Kosanovic
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Victoria V. Shishkina
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Andrey A. Filin
- Budgetary Health Care Institution of the Voronezh Region “Voronezh Regional Pathoanatomical Bureau”, Moskovsky Prospect, 151, Voronezh, Russia 394036
| | - Dmitry I. Esaulenko
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Evgeniy S. Ovsyannikov
- grid.445088.50000 0004 0620 3837Department of Faculty Therapy, Burdenko Voronezh State Medical University, 10 Studencheskaya Str., Voronezh, Russia 394036
| | - Tatiana V. Samoylenko
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Alexander N. Redkin
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Olga A. Suvorova
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Inna M. Perveeva
- Department of Pulmonology, Voronezh Regional Clinical Hospital, № 1, Moskovsky Prospect, 151, Voronezh, Russia 394036
| |
Collapse
|
65
|
Hooper PL. Heme oxygenase agonists-fluvoxamine, melatonin-are efficacious therapy for Covid-19. Cell Stress Chaperones 2022; 27:3-4. [PMID: 34846631 PMCID: PMC8630687 DOI: 10.1007/s12192-021-01246-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Philip L Hooper
- Department of Medicine, Division of Endocrinology and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
66
|
Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs 2022; 36:681-702. [PMID: 35727534 PMCID: PMC9210800 DOI: 10.1007/s40263-022-00931-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is still spreading worldwide over 2 years since its outbreak. The psychopathological implications in COVID-19 survivors such as depression, anxiety, and cognitive impairments are now recognized as primary symptoms of the "post-acute COVID-19 syndrome." Depressive psychopathology was reported in around 35% of patients at short, medium, and long-term follow-up after the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. Post-COVID-19 depressive symptoms are known to increase fatigue and affect neurocognitive functioning, sleep, quality of life, and global functioning in COVID-19 survivors. The psychopathological mechanisms underlying post-COVID-19 depressive symptoms are mainly related to the inflammation triggered by the peripheral immune-inflammatory response to the viral infection and to the persistent psychological burden during and after infection. The large number of SARS-CoV-2-infected patients and the high prevalence of post-COVID-19 depressive symptoms may significantly increase the pool of people suffering from depressive disorders. Therefore, it is essential to screen, diagnose, treat, and monitor COVID-19 survivors' psychopathology to counteract the depression disease burden and related years of life lived with disability. This paper reviews the current literature in order to synthesize the available evidence regarding epidemiology, clinical features, neurobiological underpinning, and pharmacological treatment of post-COVID-19 depressive symptoms.
Collapse
Affiliation(s)
- Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.
| | - Mariagrazia Palladini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.15496.3f0000 0001 0439 0892PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
67
|
Cecon E, Izabelle C, Poder SL, Real F, Zhu A, Tu L, Ghigna MR, Klonjkowski B, Bomsel M, Jockers R, Dam J. Therapeutic potential of melatonin and melatonergic drugs on K18-hACE2 mice infected with SARS-CoV-2. J Pineal Res 2022; 72:e12772. [PMID: 34586649 PMCID: PMC8646885 DOI: 10.1111/jpi.12772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
As the COVID-19 pandemic grows, several therapeutic candidates are being tested or undergoing clinical trials. Although prophylactic vaccination against SARS-CoV-2 infection has been shown to be effective, no definitive treatment exists to date in the event of infection. The rapid spread of infection by SARS-CoV-2 and its variants fully warrants the continued evaluation of drug treatments for COVID-19, especially in the context of repurposing of already available and safe drugs. Here, we explored the therapeutic potential of melatonin and melatonergic compounds in attenuating COVID-19 pathogenesis in mice expressing human ACE2 receptor (K18-hACE2), strongly susceptible to SARS-CoV-2 infection. Daily administration of melatonin, agomelatine, or ramelteon delays the occurrence of severe clinical outcome with improvement of survival, especially with high melatonin dose. Although no changes in most lung inflammatory cytokines are observed, treatment with melatonergic compounds limits the exacerbated local lung production of type I and type III interferons, which is likely associated with the observed improved symptoms in treated mice. The promising results from this preclinical study should encourage studies examining the benefits of repurposing melatonergic drugs to treat COVID-19 and related diseases in humans.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinINSERMCNRSUniversité de ParisParisFrance
| | | | - Sophie Le Poder
- UMR VirologieINRAEANSESÉcole Nationale Vétérinaire d'AlfortMaisons‐AlfortFrance
| | - Fernando Real
- Institut CochinINSERMCNRSUniversité de ParisParisFrance
| | - Aiwei Zhu
- Institut CochinINSERMCNRSUniversité de ParisParisFrance
| | - Ly Tu
- School of Medicine Le Kremlin‐BicêtreHôpital Marie Lannelongue, INSERM UMRS 999Université Paris‐SaclayLe Plessis‐RobinsonFrance
| | - Maria Rosa Ghigna
- School of Medicine Le Kremlin‐BicêtreHôpital Marie Lannelongue, INSERM UMRS 999Université Paris‐SaclayLe Plessis‐RobinsonFrance
| | - Bernard Klonjkowski
- UMR VirologieINRAEANSESÉcole Nationale Vétérinaire d'AlfortMaisons‐AlfortFrance
| | | | - Ralf Jockers
- Institut CochinINSERMCNRSUniversité de ParisParisFrance
| | - Julie Dam
- Institut CochinINSERMCNRSUniversité de ParisParisFrance
| |
Collapse
|
68
|
Graham KD, Steel A, Wardle J. Embracing the Complexity of Primary Health Care: System-Based Tools and Strategies for Researching the Case Management Process. J Multidiscip Healthc 2021; 14:2817-2826. [PMID: 34934325 PMCID: PMC8678537 DOI: 10.2147/jmdh.s327260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
The provision of health care is frequently a complex process, and favourable clinical outcomes are dependent on the effective management of this complexity. Contemporary medicine and health care practices that are biomedically aligned have been informed by a reductionist paradigm, potentially creating a misalignment between health care and the human organism as a complex adaptive system. Complexity science is increasingly gaining momentum within the academic literature and is being employed across a wide range of scientific disciplines, although this is less evident in medicine. Limited evidence was found within the literature of a complexity science framework being used to explore and inform individual health care practices; in this paper, this gap will be explored through consideration of the use of strategies and tools (specifically mind maps, computer-generated network mappings, exploratory data analysis, and computer-derived network analysis) which are congruent with a complexity science framework. This information may be useful to researchers investigating health care provision and to clinicians wishing to incorporate a complexity sensibility within their practice. ![]()
Point your SmartPhone at the code above. If you have a QR code reader, the video abstract will appear. Or use: https://youtu.be/8HBU6dBY53s
Collapse
Affiliation(s)
- Kim D Graham
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology, Sydney, NSW, 2007, Australia
| | - Amie Steel
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology, Sydney, NSW, 2007, Australia
| | - Jon Wardle
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, 2480, Australia
| |
Collapse
|
69
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
70
|
Giovane RA, Di Giovanni-Kinsley S, Keeton E. Micronutrients for potential therapeutic use against COVID-19; a review. Clin Nutr ESPEN 2021; 46:9-13. [PMID: 34857253 PMCID: PMC8487093 DOI: 10.1016/j.clnesp.2021.09.744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023]
Abstract
SARS CoV-2 has caused a pandemic that has challenged both clinicians and researchers in finding an effective treatment option. Currently there only exists a two series vaccine that has a high efficacy in preventing infection. There is no standard effective treatment against SARS CoV-2 however several nutraceuticals such as melatonin, zinc, selenium, vitamin C and vitamin D are being proposed as prevention and treatment options.
Collapse
Affiliation(s)
- Richard A Giovane
- Regional Medical Center of Central Alabama, 29 L.V. Stabler Drive, Greenville, AL, 36037, USA.
| | | | - Emily Keeton
- University of Alabama, Department of Family Medicine, 801 Campus Drive, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
71
|
Li CX, Gao J, Zhang Z, Chen L, Li X, Zhou M, Wheelock ÅM. Multiomics integration-based molecular characterizations of COVID-19. Brief Bioinform 2021; 23:6447675. [PMID: 34864875 PMCID: PMC8769889 DOI: 10.1093/bib/bbab485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/23/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly became a global health challenge, leading to unprecedented social and economic consequences. The mechanisms behind the pathogenesis of SARS-CoV-2 are both unique and complex. Omics-scale studies are emerging rapidly and offer a tremendous potential to unravel the puzzle of SARS-CoV-2 pathobiology, as well as moving forward with diagnostics, potential drug targets, risk stratification, therapeutic responses, vaccine development and therapeutic innovation. This review summarizes various aspects of understanding multiomics integration-based molecular characterizations of COVID-19, which to date include the integration of transcriptomics, proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers an abridgment of omics investigations related to disease pathogenesis and virulence, the role of host genetic variation and a broad array of immune and inflammatory phenotypes contributing to understanding COVID-19 traits. Insights into this review, which combines existing strategies and multiomics integration profiling, may help further advance our knowledge of COVID-19.
Collapse
Affiliation(s)
- Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Gao
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zicheng Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lu Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xun Li
- The First Hospital of Lanzhou University, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
72
|
Abdulhasan M, Ruden X, Rappolee B, Dutta S, Gurdziel K, Ruden DM, Awonuga AO, Korzeniewski SJ, Puscheck EE, Rappolee DA. Stress Decreases Host Viral Resistance and Increases Covid Susceptibility in Embryonic Stem Cells. Stem Cell Rev Rep 2021; 17:2164-2177. [PMID: 34155611 PMCID: PMC8216586 DOI: 10.1007/s12015-021-10188-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Stress-induced changes in viral receptor and susceptibility gene expression were measured in embryonic stem cells (ESC) and differentiated progeny. Rex1 promoter-Red Fluorescence Protein reporter ESC were tested by RNAseq after 72hr exposures to control stress hyperosmotic sorbitol under stemness culture (NS) to quantify stress-forced differentiation (SFD) transcriptomic programs. Control ESC cultured with stemness factor removal produced normal differentiation (ND). Bulk RNAseq transcriptomic analysis showed significant upregulation of two genes involved in Covid-19 cell uptake, Vimentin (VIM) and Transmembrane Serine Protease 2 (TMPRSS2). SFD increased the hepatitis A virus receptor (Havcr1) and the transplacental Herpes simplex 1 (HSV1) virus receptor (Pvrl1) compared with ESC undergoing ND. Several other coronavirus receptors, Glutamyl Aminopeptidase (ENPEP) and Dipeptidyl Peptidase 4 (DPP4) were upregulated significantly in SFD>ND. Although stressed ESC are more susceptible to infection due to increased expression of viral receptors and decreased resistance, the necessary Covid-19 receptor, angiotensin converting enzyme (ACE)2, was not expressed in our experiments. TMPRSS2, ENPEP, and DPP4 mediate Coronavirus uptake, but are also markers of extra-embryonic endoderm (XEN), which arise from ESC undergoing ND or SFD. Mouse and human ESCs differentiated to XEN increase TMPRSS2 and other Covid-19 uptake-mediating gene expression, but only some lines express ACE2. Covid-19 susceptibility appears to be genotype-specific and not ubiquitous. Of the 30 gene ontology (GO) groups for viral susceptibility, 15 underwent significant stress-forced changes. Of these, 4 GO groups mediated negative viral regulation and most genes in these increase in ND and decrease with SFD, thus suggesting that stress increases ESC viral susceptibility. Taken together, the data suggest that a control hyperosmotic stress can increase Covid-19 susceptibility and decrease viral host resistance in mouse ESC. However, this limited pilot study should be followed with studies in human ESC, tests of environmental, hormonal, and pharmaceutical stressors and direct tests for infection of stressed, cultured ESC and embryos by Covid-19.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA
| | - Ximena Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
| | | | - Sudipta Dutta
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Endocrinology and Cell Signaling LaboratoryDepartment of Integrative BiosciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, USA
| | - Katherine Gurdziel
- Genome Sciences Center, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Douglas M Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA
| | - Awoniyi O Awonuga
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
| | - Steve J Korzeniewski
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA
| | - Elizabeth E Puscheck
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, 60169, USA
| | - Daniel A Rappolee
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA.
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA.
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA.
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| |
Collapse
|
73
|
Ng YL, Salim CK, Chu JJH. Drug repurposing for COVID-19: Approaches, challenges and promising candidates. Pharmacol Ther 2021; 228:107930. [PMID: 34174275 PMCID: PMC8220862 DOI: 10.1016/j.pharmthera.2021.107930] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Traditional drug development and discovery has not kept pace with threats from emerging and re-emerging diseases such as Ebola virus, MERS-CoV and more recently, SARS-CoV-2. Among other reasons, the exorbitant costs, high attrition rate and extensive periods of time from research to market approval are the primary contributing factors to the lag in recent traditional drug developmental activities. Due to these reasons, drug developers are starting to consider drug repurposing (or repositioning) as a viable alternative to the more traditional drug development process. Drug repurposing aims to find alternative uses of an approved or investigational drug outside of its original indication. The key advantages of this approach are that there is less developmental risk, and it is less time-consuming since the safety and pharmacological profile of the repurposed drug is already established. To that end, various approaches to drug repurposing are employed. Computational approaches make use of machine learning and algorithms to model disease and drug interaction, while experimental approaches involve a more traditional wet-lab experiments. This review would discuss in detail various ongoing drug repurposing strategies and approaches to combat the current COVID-19 pandemic, along with the advantages and the potential challenges.
Collapse
Affiliation(s)
- Yan Ling Ng
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, 117545, Singapore,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore
| | - Cyrill Kafi Salim
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, 117545, Singapore,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, 117545, Singapore,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore,Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore,Corresponding author at: Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
74
|
Aronskyy I, Masoudi-Sobhanzadeh Y, Cappuccio A, Zaslavsky E. Advances in the computational landscape for repurposed drugs against COVID-19. Drug Discov Today 2021; 26:2800-2815. [PMID: 34339864 PMCID: PMC8323501 DOI: 10.1016/j.drudis.2021.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has caused millions of deaths and massive societal distress worldwide. Therapeutic solutions are urgently needed, but de novo drug development remains a lengthy process. One promising alternative is computational drug repurposing, which enables the prioritization of existing compounds through fast in silico analyses. Recent efforts based on molecular docking, machine learning, and network analysis have produced actionable predictions. Some predicted drugs, targeting viral proteins and pathological host pathways are undergoing clinical trials. Here, we review this work, highlight drugs with high predicted efficacy and classify their mechanisms of action. We discuss the strengths and limitations of the published methodologies and outline possible future directions. Finally, we curate a list of COVID-19 data portals and other repositories that could be used to accelerate future research.
Collapse
Affiliation(s)
- Illya Aronskyy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Antonio Cappuccio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
75
|
Mbarek H, Cocca M, Al-Sarraj Y, Saad C, Mezzavilla M, AlMuftah W, Cocciadiferro D, Novelli A, Quinti I, AlTawashi A, Salvaggio S, AlThani A, Novelli G, Ismail SI. Poking COVID-19: Insights on Genomic Constraints among Immune-Related Genes between Qatari and Italian Populations. Genes (Basel) 2021; 12:1842. [PMID: 34828448 PMCID: PMC8623290 DOI: 10.3390/genes12111842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
Host genomic information, specifically genomic variations, may characterize susceptibility to disease and identify people with a higher risk of harm, leading to better targeting of care and vaccination. Italy was the epicentre for the spread of COVID-19 in Europe, the first country to go into a national lockdown and has one of the highest COVID-19 associated mortality rates. Qatar, on the other hand has a very low mortality rate. In this study, we compared whole-genome sequencing data of 14398 adults and Qatari-national to 925 Italian individuals. We also included in the comparison whole-exome sequence data from 189 Italian laboratory-confirmed COVID-19 cases. We focused our study on a curated list of 3619 candidate genes involved in innate immunity and host-pathogen interaction. Two population-gene metric scores, the Delta Singleton-Cohort variant score (DSC) and Sum Singleton-Cohort variant score (SSC), were applied to estimate the presence of selective constraints in the Qatari population and in the Italian cohorts. Results based on DSC and SSC metrics demonstrated a different selective pressure on three genes (MUC5AC, ABCA7, FLNA) between Qatari and Italian populations. This study highlighted the genetic differences between Qatari and Italian populations and identified a subset of genes involved in innate immunity and host-pathogen interaction.
Collapse
Affiliation(s)
- Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha P.O. Box 5825, Qatar; (Y.A.-S.); (C.S.); (W.A.); (A.A.); (S.I.I.)
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS ‘Burlo Garofolo’, 34137 Trieste, Italy;
| | - Yasser Al-Sarraj
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha P.O. Box 5825, Qatar; (Y.A.-S.); (C.S.); (W.A.); (A.A.); (S.I.I.)
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha P.O. Box 5825, Qatar; (Y.A.-S.); (C.S.); (W.A.); (A.A.); (S.I.I.)
| | - Massimo Mezzavilla
- Institute for Maternal and Child Health, IRCCS ‘Burlo Garofolo’, 34137 Trieste, Italy;
| | - Wadha AlMuftah
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha P.O. Box 5825, Qatar; (Y.A.-S.); (C.S.); (W.A.); (A.A.); (S.I.I.)
| | - Dario Cocciadiferro
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.C.); (A.N.)
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.C.); (A.N.)
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Azza AlTawashi
- VP RDI Office, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha P.O. Box 5825, Qatar; (A.A.); (S.S.)
| | - Salvino Salvaggio
- VP RDI Office, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha P.O. Box 5825, Qatar; (A.A.); (S.S.)
| | - Asma AlThani
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha P.O. Box 5825, Qatar; (Y.A.-S.); (C.S.); (W.A.); (A.A.); (S.I.I.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Said I. Ismail
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha P.O. Box 5825, Qatar; (Y.A.-S.); (C.S.); (W.A.); (A.A.); (S.I.I.)
| |
Collapse
|
76
|
Mishra A, Khan WH, Rathore AS. Synergistic Effects of Natural Compounds Toward Inhibition of SARS-CoV-2 3CL Protease. J Chem Inf Model 2021; 61:5708-5718. [PMID: 34694807 PMCID: PMC8565457 DOI: 10.1021/acs.jcim.1c00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 12/24/2022]
Abstract
The biggest challenge in medical management and control of the COVID-19 pandemic is the nonavailability of the treatment molecules. While vaccines and other biotherapeutic products for managing COVID-19 have reached the market, a small-molecule cure is yet to be developed. This is relevant because the cost of production, storage, and ease of distribution of a small-molecule drug are significantly more favorable than those of biologics. In this paper, we present a multicompound approach, where two drug molecules are administered concurrently to offer an effective therapy for COVID-19. The co-action of the two compounds, each derived from natural origins, has been demonstrated against the 3CL protease, already recognized as a potential drug target for inhibiting SARS-CoV-2. The pair of compounds pursued in this study are flavonoid and naphthalene scaffold. Individually, they offer ∼30 to 35% inhibition at 10 μM. Comprehensive docking and molecular dynamics simulations elucidate that these compounds exhibit excellent binding in the process, which however quickly deteriorates, and the ligand is separated from the binding site. This suggests that while the ligands initially bind with the protease, they are unable to maintain it for an extended period. However, the simulation showed that a simultaneous docked complex of both the compounds together with the protein boosts the stronger binding for a sufficient time. The enzyme assay exhibited 97 and 85% inhibition activity when both compounds were used together at 100 and 50 μM, respectively. Later, a multiconcentration assay was used to determine the coinhibitory activity, and it was observed that the compounds have ∼20 to 30% inhibition activity even at lower concentrations of 0.5 and 1 μM. Surface plasmon resonance was used to measure the binding of the compounds, and when used together, the compounds had a 10-fold greater binding affinity. Thus, the results demonstrate a synergistic mechanism between the two compounds that enhances the inhibition activity against SARS-CoV-2 3CL protease.
Collapse
Affiliation(s)
- Avinash Mishra
- Department of Chemical Engineering,
Indian Institute of Technology, Hauz Khas, New Delhi 110016,
India
- Growdea Technologies Pvt.
Ltd., Gurugram, Haryana 122004, India
| | - Wajihul Hasan Khan
- Department of Chemical Engineering,
Indian Institute of Technology, Hauz Khas, New Delhi 110016,
India
| | - Anurag S. Rathore
- Department of Chemical Engineering,
Indian Institute of Technology, Hauz Khas, New Delhi 110016,
India
| |
Collapse
|
77
|
Starr KE, Burns K, Demler TL. Pharmacological and philosophical considerations for the around-the-clock use of scheduled melatonin to promote sedation and reduce aggression in individuals with serious mental illness: a case report. Int Clin Psychopharmacol 2021; 36:296-304. [PMID: 34605448 DOI: 10.1097/yic.0000000000000369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin, the endogenous hormone that helps maintain circadian rhythm, has been used exogenously for both primary and secondary sleep disorders. While the effects of melatonin given prior to planned sleep and to restore normal circadian sleep phases have been well studied, there is little information on the use of melatonin as a pharmacotherapeutic intervention for around-the-clock sedation to prevent agitation and aggressive patient behaviors. This is the first case report to our knowledge of melatonin used throughout the day, as a scheduled dose for prolonged treatment duration, to reduce aggression in a patient with severe mental illness.
Collapse
Affiliation(s)
- Kaitlyn E Starr
- Department of Pharmacy, Veterans Affairs Western New York Healthcare System
| | - Kimberly Burns
- Department of Pharmacy, New York State Office of Mental Health
| | - Tammie Lee Demler
- Department of Pharmacy, New York State Office of Mental Health
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo
- Department of Psychiatry, School of Medicine, Buffalo, New York, USA
| |
Collapse
|
78
|
Cheng K, Martin‐Sancho L, Pal LR, Pu Y, Riva L, Yin X, Sinha S, Nair NU, Chanda SK, Ruppin E. Genome-scale metabolic modeling reveals SARS-CoV-2-induced metabolic changes and antiviral targets. Mol Syst Biol 2021; 17:e10260. [PMID: 34709707 PMCID: PMC8552660 DOI: 10.15252/msb.202110260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.
Collapse
Affiliation(s)
- Kuoyuan Cheng
- Cancer Data Science Laboratory (CDSL)National Cancer Institute (NCI)National Institutes of Health (NIH)BethesdaMDUSA
- Biological Sciences Graduate Program (BISI)University of MarylandCollege ParkMDUSA
| | - Laura Martin‐Sancho
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Lipika R Pal
- Cancer Data Science Laboratory (CDSL)National Cancer Institute (NCI)National Institutes of Health (NIH)BethesdaMDUSA
| | - Yuan Pu
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Laura Riva
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
- Present address:
Calibr, a Division of The Scripps Research InstituteLa JollaCAUSA
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL)National Cancer Institute (NCI)National Institutes of Health (NIH)BethesdaMDUSA
- Biological Sciences Graduate Program (BISI)University of MarylandCollege ParkMDUSA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL)National Cancer Institute (NCI)National Institutes of Health (NIH)BethesdaMDUSA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL)National Cancer Institute (NCI)National Institutes of Health (NIH)BethesdaMDUSA
- Department of Computer ScienceUniversity of MarylandCollege ParkMDUSA
| |
Collapse
|
79
|
Sen A. Deficient synthesis of melatonin in COVID-19 can impair the resistance of coronavirus patients to mucormycosis. Med Hypotheses 2021; 158:110722. [PMID: 34753008 PMCID: PMC8553412 DOI: 10.1016/j.mehy.2021.110722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/25/2022]
Abstract
In addition to uncontrolled diabetes and the excess use of corticosteroids, it is believed that other factors may be responsible for the recent spurt of COVID-19 associated mucormycosis (CAM). In the present paper it is argued that COVID-19 increases the susceptibility of the patients to mucormycosis by augmenting the virulence factors of the mucor species, where deficient synthesis of melatonin plays a key role. Melatonin is synthesized from tryptophan via the serotonin pathway and melatonin deficiency in COVID-19 arises from the faulty absorption of tryptophan from the food because SARS-CoV-2 downregulates angiotensin-converting enzyme-2, the chaperone of the transporter of tryptophan. The enhanced fungal virulence in COVID-19 can be mitigated by correcting the melatonin deficiency as melatonin can prevent iron acquisition of the mucor species and inhibit their morphological transition from the yeast to the virulent hyphal form, given the fact that melatonin is an iron chelator, calmodulin blocker and inhibitor of myeloperoxidase as well as inhibitor of ferroptosis and pyroptosis. Also, by lowering the expression of glucose-regulated protein 78 and by inhibiting the suppression of T-cell immunity, melatonin can further increase the resistance of the patients to mucormycosis. Accordingly, clinical trials should be carried out on tryptophan supplementation, administration of selective serotonin reuptake inhibitors (to increase serotonin, the precursor of melatonin), and exogenous melatonin to find out how they perform in eliminating or reducing the propensity of the coronavirus patients to CAM.
Collapse
Affiliation(s)
- Amarnath Sen
- 40 Jadunath Sarbovouma Lane, Kolkata 700035, India.
| |
Collapse
|
80
|
Mechanism of Phosgene-Induced Acute Lung Injury and Treatment Strategy. Int J Mol Sci 2021; 22:ijms222010933. [PMID: 34681591 PMCID: PMC8535529 DOI: 10.3390/ijms222010933] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Phosgene (COCl2) was once used as a classic suffocation poison and currently plays an essential role in industrial production. Due to its high toxicity, the problem of poisoning caused by leakage during production, storage, and use cannot be ignored. Phosgene mainly acts on the lungs, causing long-lasting respiratory depression, refractory pulmonary edema, and other related lung injuries, which may cause acute respiratory distress syndrome or even death in severe cases. Due to the high mortality, poor prognosis, and frequent sequelae, targeted therapies for phosgene exposure are needed. However, there is currently no specific antidote for phosgene poisoning. This paper reviews the literature on the mechanism and treatment strategies to explore new ideas for the treatment of phosgene poisoning.
Collapse
|
81
|
Wang J, Luo L, Ding Q, Wu Z, Peng Y, Li J, Wang X, Li W, Liu G, Zhang B, Tang Y. Development of a Multi-Target Strategy for the Treatment of Vitiligo via Machine Learning and Network Analysis Methods. Front Pharmacol 2021; 12:754175. [PMID: 34603063 PMCID: PMC8479195 DOI: 10.3389/fphar.2021.754175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023] Open
Abstract
Vitiligo is a complex disorder characterized by the loss of pigment in the skin. The current therapeutic strategies are limited. The identification of novel drug targets and candidates is highly challenging for vitiligo. Here we proposed a systematic framework to discover potential therapeutic targets, and further explore the underlying mechanism of kaempferide, one of major ingredients from Vernonia anthelmintica (L.) willd, for vitiligo. By collecting transcriptome and protein-protein interactome data, the combination of random forest (RF) and greedy articulation points removal (GAPR) methods was used to discover potential therapeutic targets for vitiligo. The results showed that the RF model performed well with AUC (area under the receiver operating characteristic curve) = 0.926, and led to prioritization of 722 important transcriptomic features. Then, network analysis revealed that 44 articulation proteins in vitiligo network were considered as potential therapeutic targets by the GAPR method. Finally, through integrating the above results and proteomic profiling of kaempferide, the multi-target strategy for vitiligo was dissected, including 1) the suppression of the p38 MAPK signaling pathway by inhibiting CDK1 and PBK, and 2) the modulation of cellular redox homeostasis, especially the TXN and GSH antioxidant systems, for the purpose of melanogenesis. Meanwhile, this strategy may offer a novel perspective to discover drug candidates for vitiligo. Thus, the framework would be a useful tool to discover potential therapeutic strategies and drug candidates for complex diseases.
Collapse
Affiliation(s)
- Jiye Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lin Luo
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Qiong Ding
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yayuan Peng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoqin Wang
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.,Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bo Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.,Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
82
|
Xiang Y, Wong KCY, So HC. Exploring Drugs and Vaccines Associated with Altered Risks and Severity of COVID-19: A UK Biobank Cohort Study of All ATC Level-4 Drug Categories Reveals Repositioning Opportunities. Pharmaceutics 2021; 13:1514. [PMID: 34575590 PMCID: PMC8471264 DOI: 10.3390/pharmaceutics13091514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Effective therapies for COVID-19 are still lacking, and drug repositioning is a promising approach to address this problem. Here, we adopted a medical informatics approach to repositioning. We leveraged a large prospective cohort, the UK-Biobank (UKBB, N ~ 397,000), and studied associations of prior use of all level-4 ATC drug categories (N = 819, including vaccines) with COVID-19 diagnosis and severity. Effects of drugs on the risk of infection, disease severity, and mortality were investigated separately. Logistic regression was conducted, controlling for main confounders. We observed strong and highly consistent protective associations with statins. Many top-listed protective drugs were also cardiovascular medications, such as angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), calcium channel blocker (CCB), and beta-blockers. Some other drugs showing protective associations included biguanides (metformin), estrogens, thyroid hormones, proton pump inhibitors, and testosterone-5-alpha reductase inhibitors, among others. We also observed protective associations by influenza, pneumococcal, and several other vaccines. Subgroup and interaction analyses were also conducted, which revealed differences in protective effects in various subgroups. For example, protective effects of flu/pneumococcal vaccines were weaker in obese individuals, while protection by statins was stronger in cardiovascular patients. To conclude, our analysis revealed many drug repositioning candidates, for example several cardiovascular medications. Further studies are required for validation.
Collapse
Affiliation(s)
- Yong Xiang
- Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (Y.X.); (K.C.-Y.W.)
| | - Kenneth Chi-Yin Wong
- Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (Y.X.); (K.C.-Y.W.)
| | - Hon-Cheong So
- Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (Y.X.); (K.C.-Y.W.)
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Kunming 650223, China
- CUHK Shenzhen Research Institute, Shenzhen 518172, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
83
|
Azad A, Fatima S, Capraro A, Waters SA, Vafaee F. Integrative resource for network-based investigation of COVID-19 combinatorial drug repositioning and mechanism of action. PATTERNS (NEW YORK, N.Y.) 2021; 2:100325. [PMID: 34278363 PMCID: PMC8277549 DOI: 10.1016/j.patter.2021.100325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
An effective monotherapy to target the complex and multifactorial pathology of SARS-CoV-2 infection poses a challenge to drug repositioning, which can be improved by combination therapy. We developed an online network pharmacology-based drug repositioning platform, COVID-CDR (http://vafaeelab.com/COVID19repositioning.html), that enables a visual and quantitative investigation of the interplay between the primary drug targets and the SARS-CoV-2-host interactome in the human protein-protein interaction network. COVID-CDR prioritizes drug combinations with potential to act synergistically through different, yet potentially complementary, pathways. It provides the options for understanding multi-evidence drug-pair similarity scores along with several other relevant information on individual drugs or drug pairs. Overall, COVID-CDR is a first-of-its-kind online platform that provides a systematic approach for pre-clinical in silico investigation of combination therapies for treating COVID-19 at the fingertips of the clinicians and researchers.
Collapse
Affiliation(s)
- A.K.M. Azad
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Shadma Fatima
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
- Department of Medical Oncology, Ingham Institute of Applied Research, Sydney, Australia
| | - Alexander Capraro
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney and Sydney Children's Hospital, Sydney, Australia
| | - Shafagh A. Waters
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney and Sydney Children's Hospital, Sydney, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
- Data Science Hub, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
84
|
Moolamalla STR, Balasubramanian R, Chauhan R, Priyakumar UD, Vinod PK. Host metabolic reprogramming in response to SARS-CoV-2 infection: A systems biology approach. Microb Pathog 2021; 158:105114. [PMID: 34333072 PMCID: PMC8321700 DOI: 10.1016/j.micpath.2021.105114] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Understanding the pathogenesis of SARS-CoV-2 is essential for developing effective treatment strategies. Viruses hijack the host metabolism to redirect the resources for their replication and survival. The influence of SARS-CoV-2 on host metabolism is yet to be fully understood. In this study, we analyzed the transcriptomic data obtained from different human respiratory cell lines and patient samples (nasopharyngeal swab, peripheral blood mononuclear cells, lung biopsy, bronchoalveolar lavage fluid) to understand metabolic alterations in response to SARS-CoV-2 infection. We explored the expression pattern of metabolic genes in the comprehensive genome-scale network model of human metabolism, Recon3D, to extract key metabolic genes, pathways, and reporter metabolites under each SARS-CoV-2-infected condition. A SARS-CoV-2 core metabolic interactome was constructed for network-based drug repurposing. Our analysis revealed the host-dependent dysregulation of glycolysis, mitochondrial metabolism, amino acid metabolism, nucleotide metabolism, glutathione metabolism, polyamine synthesis, and lipid metabolism. We observed different pro- and antiviral metabolic changes and generated hypotheses on how the host metabolism can be targeted for reducing viral titers and immunomodulation. These findings warrant further exploration with more samples and in vitro studies to test predictions.
Collapse
Affiliation(s)
- S T R Moolamalla
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Rami Balasubramanian
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Ruchi Chauhan
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - P K Vinod
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
85
|
Cheng K, Martin-Sancho L, Pal LR, Pu Y, Riva L, Yin X, Sinha S, Nair NU, Chanda SK, Ruppin E. Genome-scale metabolic modeling reveals SARS-CoV-2-induced metabolic changes and antiviral targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.27.428543. [PMID: 33532779 PMCID: PMC7852273 DOI: 10.1101/2021.01.27.428543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism-targeting as a promising antiviral strategy.
Collapse
Affiliation(s)
- Kuoyuan Cheng
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Biological Sciences Graduate Program (BISI), University of Maryland, College Park, MD, USA
| | - Laura Martin-Sancho
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lipika R. Pal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuan Pu
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Laura Riva
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Biological Sciences Graduate Program (BISI), University of Maryland, College Park, MD, USA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sumit K. Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
86
|
Safarchi A, Fatima S, Ayati Z, Vafaee F. An update on novel approaches for diagnosis and treatment of SARS-CoV-2 infection. Cell Biosci 2021; 11:164. [PMID: 34420513 PMCID: PMC8380468 DOI: 10.1186/s13578-021-00674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has made a serious public health and economic crisis worldwide which united global efforts to develop rapid, precise, and cost-efficient diagnostics, vaccines, and therapeutics. Numerous multi-disciplinary studies and techniques have been designed to investigate and develop various approaches to help frontline health workers, policymakers, and populations to overcome the disease. While these techniques have been reviewed within individual disciplines, it is now timely to provide a cross-disciplinary overview of novel diagnostic and therapeutic approaches summarizing complementary efforts across multiple fields of research and technology. Accordingly, we reviewed and summarized various advanced novel approaches used for diagnosis and treatment of COVID-19 to help researchers across diverse disciplines on their prioritization of resources for research and development and to give them better a picture of the latest techniques. These include artificial intelligence, nano-based, CRISPR-based, and mass spectrometry technologies as well as neutralizing factors and traditional medicines. We also reviewed new approaches for vaccine development and developed a dashboard to provide frequent updates on the current and future approved vaccines.
Collapse
Affiliation(s)
- Azadeh Safarchi
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
| | - Shadma Fatima
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, Australia
| | - Zahra Ayati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
- UNSW Data Science Hub University of New South Wales, NSW Sydney, Australia
| |
Collapse
|
87
|
Herz RS, Herzog ED, Merrow M, Noya SB. The Circadian Clock, the Brain, and COVID-19: The Cases of Olfaction and the Timing of Sleep. J Biol Rhythms 2021; 36:423-431. [PMID: 34396817 PMCID: PMC8442129 DOI: 10.1177/07487304211031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Daily rhythms of behavior and neurophysiology are integral to the
circadian clocks of all animals. Examples of circadian clock
regulation in the human brain include daily rhythms in sleep-wake,
cognitive function, olfactory sensitivity, and risk for ischemic
stroke, all of which overlap with symptoms displayed by many COVID-19
patients. Motivated by the relatively unexplored, yet pervasive,
overlap between circadian functions and COVID-19 neurological
symptoms, this perspective piece uses daily variations in the sense of
smell and the timing of sleep and wakefulness as illustrative
examples. We propose that time-stamping clinical data and testing may
expand and refine diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Rachel S Herz
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sara B Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
88
|
Looking for pathways related to COVID-19: confirmation of pathogenic mechanisms by SARS-CoV-2-host interactome. Cell Death Dis 2021; 12:788. [PMID: 34385425 PMCID: PMC8357963 DOI: 10.1038/s41419-021-03881-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
In the last months, many studies have clearly described several mechanisms of SARS-CoV-2 infection at cell and tissue level, but the mechanisms of interaction between host and SARS-CoV-2, determining the grade of COVID-19 severity, are still unknown. We provide a network analysis on protein–protein interactions (PPI) between viral and host proteins to better identify host biological responses, induced by both whole proteome of SARS-CoV-2 and specific viral proteins. A host-virus interactome was inferred, applying an explorative algorithm (Random Walk with Restart, RWR) triggered by 28 proteins of SARS-CoV-2. The analysis of PPI allowed to estimate the distribution of SARS-CoV-2 proteins in the host cell. Interactome built around one single viral protein allowed to define a different response, underlining as ORF8 and ORF3a modulated cardiovascular diseases and pro-inflammatory pathways, respectively. Finally, the network-based approach highlighted a possible direct action of ORF3a and NS7b to enhancing Bradykinin Storm. This network-based representation of SARS-CoV-2 infection could be a framework for pathogenic evaluation of specific clinical outcomes. We identified possible host responses induced by specific proteins of SARS-CoV-2, underlining the important role of specific viral accessory proteins in pathogenic phenotypes of severe COVID-19 patients.
Collapse
|
89
|
Meng Y, Zhu V, Zhu Y. Co-distribution of Light At Night (LAN) and COVID-19 incidence in the United States. BMC Public Health 2021; 21:1509. [PMID: 34348695 PMCID: PMC8335974 DOI: 10.1186/s12889-021-11500-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background Light at night (LAN) as a circadian disruption factor may affect the human immune system and consequently increase an individual’s susceptibility to the severity of infectious diseases, such as COVID-19. COVID-19 infections spread differently in each state in the United States (US). The current analysis aimed to test whether there is an association between LAN and COVID-19 cases in 4 selected US states: Connecticut, New York, California, and Texas. Methods We analyzed clustering patterns of COVID-19 cases in ArcMap and performed a multiple linear regression model using data of LAN and COVID-19 incidence with adjustment for confounding variables including population density, percent below poverty, and racial factors. Results Hotspots of LAN and COVID-19 cases are located in large cities or metro-centers for all 4 states. LAN intensity is associated with cases/1 k for overall and lockdown durations in New York and Connecticut (P < 0.001), but not in Texas and California. The overall case rates are significantly associated with LAN in New York (P < 0.001) and Connecticut (P < 0.001). Conclusions We observed a significant positive correlation between LAN intensity and COVID-19 cases-rate/1 k, suggesting that circadian disruption of ambient light may increase the COVID-19 infection rate possibly by affecting an individual’s immune functions. Furthermore, differences in the demographic structure and lockdown policies in different states play an important role in COVID-19 infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-11500-6.
Collapse
Affiliation(s)
- Yidan Meng
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
| | - Vincent Zhu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, 06520, USA.
| |
Collapse
|
90
|
Chen F, Shi Q, Pei F, Vogt A, Porritt RA, Garcia G, Gomez AC, Cheng MH, Schurdak ME, Liu B, Chan SY, Arumugaswami V, Stern AM, Taylor DL, Arditi M, Bahar I. A systems-level study reveals host-targeted repurposable drugs against SARS-CoV-2 infection. Mol Syst Biol 2021; 17:e10239. [PMID: 34339582 PMCID: PMC8328275 DOI: 10.15252/msb.202110239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- School of MedicineTsinghua UniversityBeijingChina
| | - Qingya Shi
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- School of MedicineTsinghua UniversityBeijingChina
| | - Fen Pei
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Andreas Vogt
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Rebecca A Porritt
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
- Biomedical Sciences, Infectious and Immunologic Diseases Research CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Gustavo Garcia
- Department of Molecular and Medical PharmacologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | - Angela C Gomez
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Mary Hongying Cheng
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Mark E Schurdak
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Bing Liu
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of CardiologyDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical PharmacologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | - Andrew M Stern
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - D Lansing Taylor
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Moshe Arditi
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
- Biomedical Sciences, Infectious and Immunologic Diseases Research CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Ivet Bahar
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| |
Collapse
|
91
|
Reynolds JL, Dubocovich ML. Melatonin multifaceted pharmacological actions on melatonin receptors converging to abrogate COVID-19. J Pineal Res 2021; 71:e12732. [PMID: 33759236 PMCID: PMC8250125 DOI: 10.1111/jpi.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
Data indicate that controlling inflammatory responses to COVID-19 may be as important as antiviral therapies or could be an important adjunctive approach. Melatonin possesses anti-inflammation, antioxidation, and immune-enhancing features directly and/or indirectly through its own receptor signaling and is therefore well suited to reduce the severity of COVID-19. Studies have proposed that melatonin regulates COVID-19-associated proteins directly through regulation of molecules such as calmodulin (CALM) 1 and CALM 2, calreticulin (CalR), or myeloperoxidase (MPO) and/or indirectly through actions on GPCR (eg, MTNR1A, MTNR1B) and nuclear (eg, RORα, RORβ) melatonin receptor signaling. However, the exact mechanism(s) and doses by which melatonin reduces the severity of COVID-19 is still open for debate, warranting the need for further testing of melatonin in placebo-controlled randomized clinical trials for COVID-19.
Collapse
Affiliation(s)
- Jessica L. Reynolds
- Department of MedicineJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| | - Margarita L. Dubocovich
- Department of Pharmacology and ToxicologyJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
- Interdepartmental Graduate Program in NeuroscienceJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| |
Collapse
|
92
|
Multimodal single-cell omics analysis identifies epithelium-immune cell interactions and immune vulnerability associated with sex differences in COVID-19. Signal Transduct Target Ther 2021; 6:292. [PMID: 34330889 PMCID: PMC8322111 DOI: 10.1038/s41392-021-00709-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in the susceptibility of SARS-CoV-2 infection and severity have been controversial, and the underlying mechanisms of COVID-19 in a sex-specific manner remain understudied. Here we inspected sex differences in SARS-CoV-2 infection, hospitalization, admission to the intensive care unit (ICU), sera inflammatory biomarker profiling, and single-cell RNA-sequencing (scRNA-seq) profiles across nasal, bronchoalveolar lavage fluid (BALF), and peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with varying degrees of disease severities. Our propensity score-matching observations revealed that male individuals have a 29% elevated likelihood of SARS-CoV-2 positivity, with a hazard ratio (HR) 1.32 (95% confidence interval [CI] 1.18–1.48) for hospitalization and HR 1.51 (95% CI 1.24–1.84) for admission to ICU. Sera from male patients at hospital admission had elevated neutrophil–lymphocyte ratio and elevated expression of inflammatory markers (C-reactive protein and procalcitonin). We found that SARS-CoV-2 entry factors, including ACE2, TMPRSS2, FURIN, and NRP1, have elevated expression in nasal squamous cells from male individuals with moderate and severe COVID-19. We observed male-biased transcriptional activation in SARS-CoV-2-infected macrophages from BALF and sputum samples, which offers potential molecular mechanism for sex-biased susceptibility to viral infection. Cell–cell interaction network analysis reveals potential epithelium–immune cell interactions and immune vulnerability underlying male-elevated disease severity and mortality in COVID-19. Mechanistically, monocyte-elevated expression of Toll-like receptor 7 (TLR7) and Bruton tyrosine kinase (BTK) is associated with severe outcomes in males with COVID-19. In summary, these findings provide basis to decipher immune responses underlying sex differences and designing sex-specific targeted interventions and patient care for COVID-19.
Collapse
|
93
|
Loader J, Lampa E, Gustafsson S, Cars T, Sundström J. Renin-Angiotensin Aldosterone System Inhibitors in Primary Prevention and COVID-19. J Am Heart Assoc 2021; 10:e021154. [PMID: 34320843 PMCID: PMC8475700 DOI: 10.1161/jaha.120.021154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Considering the widespread risk of collider bias and confounding by indication in previous research, the associations between renin‐angiotensin aldosterone system (RAAS) inhibitor use and COVID‐19 remain unknown. Accordingly, this study tested the hypothesis that RAAS inhibitors influence the summation effect of COVID‐19 and its progression to severe outcomes. Methods and Results This nationwide cohort study compared all residents of Sweden, without prior cardiovascular disease, in monotherapy (as of January 1, 2020) with a RAAS inhibitor to those using a calcium channel blocker or a thiazide diuretic. Comparative cohorts were balanced using machine‐learning‐derived propensity score methods. Of 165 355 people in the analysis (51% women), 367 were hospitalized or died with COVID‐19 (246 using a RAAS inhibitor versus 121 using a calcium channel blocker or thiazide diuretic; Cox proportional hazard ratio [HR], 0.97; 95% CI, 0.74–1.27). When each outcome was assessed separately, 335 people were hospitalized with COVID‐19 (HR, 0.92; 95% CI, 0.70–1.22), and 64 died with COVID‐19 (HR, 1.22; 95% CI, 0.68–2.19). The severity of COVID‐19 outcomes did not differ between those using a RAAS inhibitor and those using a calcium channel blocker or thiazide diuretic (ordered logistic regression odds ratio, 1.01; 95% CI, 0.89–1.14). Conclusions Despite potential limitations, this study is among the best available evidence that RAAS inhibitor use in primary prevention does not increase the risk of severe COVID‐19 outcomes; presenting strong data from which scientists and policy makers alike can base, with greater confidence, their current position on the safety of using RAAS inhibitors during the COVID‐19 pandemic.
Collapse
Affiliation(s)
- Jordan Loader
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Erik Lampa
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | | | - Thomas Cars
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Johan Sundström
- Department of Medical Sciences Uppsala University Uppsala Sweden.,The George Institute for Global HealthUniversity of New South Wales Sydney NSW Australia
| |
Collapse
|
94
|
Javaid M, Haleem A, Pratap Singh R, Suman R. Pedagogy and innovative care tenets in COVID-19 pandemic: An enhancive way through Dentistry 4.0. SENSORS INTERNATIONAL 2021; 2:100118. [PMID: 34766061 PMCID: PMC8302480 DOI: 10.1016/j.sintl.2021.100118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
The global oral healthcare sector has now woken to implement Dentistry 4.0. The implementation of this revolution is feasible with extensive digital and advanced technologies applications and the adoption of new sets of processes in dentistry & its support areas. COVID-19 has bought new challenges to dental professionals and patients towards their customised requirements, regular dental health checkups, fast-paced and safe procedures. People are not visiting the dentist even for mild cases as they fear COVID-19 infection. We see that this set of technologies will help improve health education and treatment process and materials and minimise the infection. During the COVID-19 pandemic, there is a need to understand the possible impact of Dentistry 4.0 for education and innovative care. This paper discusses the significant benefits of Dentistry 4.0 technologies for the smart education platform and dentistry treatment. Finally, this article identifies twenty significant enhancements in dental education and effective care platforms during the COVID-19 pandemic by employing Dentistry 4.0 technologies. Thus, proper implementation of these technologies will improve the process efficiency in healthcare during the COVID-19 pandemic. Dentistry 4.0 technologies drive innovations to improve the quality of internet-connected healthcare devices. It creates automation and exchanges data to make a smart health care system. Therefore, helps better healthcare services, planning, monitoring, teaching, learning, treatment, and innovation capability. These technologies moved to smart transportation systems in the hospital during the COVID-19 Pandemic. Modern manufacturing technologies create digital transformation in manufacturing, optimises the operational processes and enhances productivity.
Collapse
Affiliation(s)
- Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Ravi Pratap Singh
- Department of Industrial and Production Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Rajiv Suman
- Department of Industrial & Production Engineering, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
95
|
Ramos E, López-Muñoz F, Gil-Martín E, Egea J, Álvarez-Merz I, Painuli S, Semwal P, Martins N, Hernández-Guijo JM, Romero A. The Coronavirus Disease 2019 (COVID-19): Key Emphasis on Melatonin Safety and Therapeutic Efficacy. Antioxidants (Basel) 2021; 10:1152. [PMID: 34356384 PMCID: PMC8301107 DOI: 10.3390/antiox10071152] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections constitute a tectonic convulsion in the normophysiology of the hosts. The current coronavirus disease 2019 (COVID-19) pandemic is not an exception, and therefore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, like any other invading microbe, enacts a generalized immune response once the virus contacts the body. Melatonin is a systemic dealer that does not overlook any homeostasis disturbance, which consequently brings into play its cooperative triad, antioxidant, anti-inflammatory, and immune-stimulant backbone, to stop the infective cycle of SARS-CoV-2 or any other endogenous or exogenous threat. In COVID-19, the corporal propagation of SARS-CoV-2 involves an exacerbated oxidative activity and therefore the overproduction of great amounts of reactive oxygen and nitrogen species (RONS). The endorsement of melatonin as a possible protective agent against the current pandemic is indirectly supported by its widely demonstrated beneficial role in preclinical and clinical studies of other respiratory diseases. In addition, focusing the therapeutic action on strengthening the host protection responses in critical phases of the infective cycle makes it likely that multi-tasking melatonin will provide multi-protection, maintaining its efficacy against the virus variants that are already emerging and will emerge as long as SARS-CoV-2 continues to circulate among us.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain;
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
- Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal
- Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Emilio Gil-Martín
- Nutrition, Food & Plant Science Group NF1, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain;
| | - Javier Egea
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand 248007, India
| | - Natália Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
96
|
Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:691. [PMID: 34358117 PMCID: PMC8308787 DOI: 10.3390/ph14070691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 outbreak is characterized by the need of the search for curative drugs for treatment. In this paper, we present an update of knowledge about the interest of the functional inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection. Forty-nine FIASMAs have been suggested in the treatment of SARS-CoV-2 infection using in silico, in vitro or in vivo studies. Further studies using large-sized, randomized and double-blinded controlled clinical trials are needed to evaluate FIASMAs in SARS-CoV-2 infection as off-label therapy.
Collapse
Affiliation(s)
- Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France;
- Irset (Institut de Recherche en Santé, Environnement et Travail)-Inserm UMR 1085, University of Rennes, CHU Rennes, INSERM, EHESP, 35000 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
| |
Collapse
|
97
|
Thompson LA, Gurka MJ, Filipp SL, Schatz DA, Mercado RE, Ostrov DA, Atkinson MA, Rasmussen SA. The influence of selection bias on identifying an association between allergy medication use and SARS-CoV-2 infection. EClinicalMedicine 2021; 37:100936. [PMID: 34104879 PMCID: PMC8175126 DOI: 10.1016/j.eclinm.2021.100936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Medications to prevent and treat SARS-CoV-2 infection are needed to complement emerging vaccinations. Recent in vitro and electronic health record (EHR) studies suggested that certain allergy medications could prevent SARS-CoV-2 infection. We sought to carefully examine the potential selection bias associated with utilizing EHRs in these settings. METHODS We analyzed associations of three allergy medications (cetirizine, diphenhydramine or hydroxyzine) with testing negative for SARS-CoV-2, measuring the potential effect of selection bias on these associations. We used a retrospective cohort of EHR data from 230,376 patients (18 years+) who visited outpatient clinicians in a single, large academic center at least once but were never hospitalized (10/1/2019-6/1/2020). Main exposures included EHR documentation of three allergy medications and allergy, with an intermediate outcome of receipt of a SARS-CoV-2 test, and the primary outcome as testing negative. FINDINGS SARS-CoV-2 testing rates varied by sex, age, race/ethnicity and insurance. Increasing age and public insurance were associated with a higher adjusted odds of test negativity, while being Black or Hispanic was significantly associated with test positivity. Allergy diagnosis and use of any of three allergy medications were each associated with a higher likelihood of receiving a test (e.g. diphenhydramine - Odds Ratio (OR) 2.99, 95% Confidence Interval (CI) 2.73, 3.28; cetirizine 1.75 (95% CI 1.60, 1.92)). Among those tested, only use of diphenhydramine was associated with a negative SARS-CoV-2 test (adjusted OR = 2.23, 95% CI 1.10, 4.55). However, analyses revealed that selection bias may be responsible for the apparent protective effect of diphenhydramine. INTERPRETATION Diphenhydramine use was associated with more SARS-CoV-2 testing and subsequent higher odds for negative tests. While EHR-based observational studies can inform a need for interventional trials, this study revealed limitations of EHR data. The finding that diphenhydramine documentation conferred a higher odds of testing negative for SARS-CoV-2 must be interpreted with caution due to probable selection bias.Abbreviations: SARS-CoV-2, ACE2, COVID-19, EHR.
Collapse
Affiliation(s)
- Lindsay A. Thompson
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL USA
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, Florida USA
| | - Matthew J. Gurka
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL USA
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, Florida USA
| | - Stephanie L. Filipp
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, Florida USA
| | - Desmond A. Schatz
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL USA
| | - Rebeccah E. Mercado
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL USA
| | - David A. Ostrov
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida USA
| | - Mark A. Atkinson
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL USA
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida USA
| | - Sonja A. Rasmussen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL USA
- Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, Florida USA
- Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida USA
| |
Collapse
|
98
|
Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol Adv 2021; 49:107739. [PMID: 33794304 DOI: 10.1016/j.biotechadv.2021.107739] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
With the development of modern high-throughput omic measurement platforms, it has become essential for biomedical studies to undertake an integrative (combined) approach to fully utilise these data to gain insights into biological systems. Data from various omics sources such as genetics, proteomics, and metabolomics can be integrated to unravel the intricate working of systems biology using machine learning-based predictive algorithms. Machine learning methods offer novel techniques to integrate and analyse the various omics data enabling the discovery of new biomarkers. These biomarkers have the potential to help in accurate disease prediction, patient stratification and delivery of precision medicine. This review paper explores different integrative machine learning methods which have been used to provide an in-depth understanding of biological systems during normal physiological functioning and in the presence of a disease. It provides insight and recommendations for interdisciplinary professionals who envisage employing machine learning skills in multi-omics studies.
Collapse
Affiliation(s)
- Parminder S Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Smarti Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Ewan Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Emanuele Trucco
- VAMPIRE project, Computing, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Emily Jefferson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
99
|
Song B, Li Z, Lin X, Wang J, Wang T, Fu X. Pretraining model for biological sequence data. Brief Funct Genomics 2021; 20:181-195. [PMID: 34050350 PMCID: PMC8194843 DOI: 10.1093/bfgp/elab025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
With the development of high-throughput sequencing technology, biological sequence data reflecting life information becomes increasingly accessible. Particularly on the background of the COVID-19 pandemic, biological sequence data play an important role in detecting diseases, analyzing the mechanism and discovering specific drugs. In recent years, pretraining models that have emerged in natural language processing have attracted widespread attention in many research fields not only to decrease training cost but also to improve performance on downstream tasks. Pretraining models are used for embedding biological sequence and extracting feature from large biological sequence corpus to comprehensively understand the biological sequence data. In this survey, we provide a broad review on pretraining models for biological sequence data. Moreover, we first introduce biological sequences and corresponding datasets, including brief description and accessible link. Subsequently, we systematically summarize popular pretraining models for biological sequences based on four categories: CNN, word2vec, LSTM and Transformer. Then, we present some applications with proposed pretraining models on downstream tasks to explain the role of pretraining models. Next, we provide a novel pretraining scheme for protein sequences and a multitask benchmark for protein pretraining models. Finally, we discuss the challenges and future directions in pretraining models for biological sequences.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangzheng Fu
- Corresponding author: Xiangzheng Fu, College of Information Science and Engineering, Hunan University, Changsha, Hunan, China. Tel: 86-0731-88821907; E-mail:
| |
Collapse
|
100
|
Zhou Y, Xu J, Hou Y, Leverenz JB, Kallianpur A, Mehra R, Liu Y, Yu H, Pieper AA, Jehi L, Cheng F. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther 2021; 13:110. [PMID: 34108016 PMCID: PMC8189279 DOI: 10.1186/s13195-021-00850-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia-like cognitive impairment is an increasingly reported complication of SARS-CoV-2 infection. However, the underlying mechanisms responsible for this complication remain unclear. A better understanding of causative processes by which COVID-19 may lead to cognitive impairment is essential for developing preventive and therapeutic interventions. METHODS In this study, we conducted a network-based, multimodal omics comparison of COVID-19 and neurologic complications. We constructed the SARS-CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR-Cas9-based genetic assay results and compared network-based relationships therein with those of known neurological manifestations using network proximity measures. We also investigated the transcriptomic profiles (including single-cell/nuclei RNA-sequencing) of Alzheimer's disease (AD) marker genes from patients infected with COVID-19, as well as the prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected with SARS-CoV-2. RESULTS We found significant network-based relationships between COVID-19 and neuroinflammation and brain microvascular injury pathways and processes which are implicated in AD. We also detected aberrant expression of AD biomarkers in the cerebrospinal fluid and blood of patients with COVID-19. While transcriptomic analyses showed relatively low expression of SARS-CoV-2 entry factors in human brain, neuroinflammatory changes were pronounced. In addition, single-nucleus transcriptomic analyses showed that expression of SARS-CoV-2 host factors (BSG and FURIN) and antiviral defense genes (LY6E, IFITM2, IFITM3, and IFNAR1) was elevated in brain endothelial cells of AD patients and healthy controls relative to neurons and other cell types, suggesting a possible role for brain microvascular injury in COVID-19-mediated cognitive impairment. Overall, individuals with the AD risk allele APOE E4/E4 displayed reduced expression of antiviral defense genes compared to APOE E3/E3 individuals. CONCLUSION Our results suggest significant mechanistic overlap between AD and COVID-19, centered on neuroinflammation and microvascular injury. These results help improve our understanding of COVID-19-associated neurological manifestations and provide guidance for future development of preventive or treatment interventions, although causal relationship and mechanistic pathways between COVID-19 and AD need future investigations.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - James B Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Asha Kallianpur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Reena Mehra
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14850, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, 14850, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lara Jehi
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|