51
|
Signaling Incentive and Drive in the Primate Ventral Pallidum for Motivational Control of Goal-Directed Action. J Neurosci 2019; 39:1793-1804. [PMID: 30626695 PMCID: PMC6407294 DOI: 10.1523/jneurosci.2399-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022] Open
Abstract
Processing incentive and drive is essential for control of goal-directed behavior. The limbic part of the basal ganglia has been emphasized in these processes, yet the exact neuronal mechanism has remained elusive. In this study, we examined the neuronal activity of the ventral pallidum (VP) and its upstream area, the rostromedial caudate (rmCD), while two male macaque monkeys performed an instrumental lever release task in which a visual cue indicated the forthcoming reward size. We found that the activity of some neurons in VP and rmCD reflected the expected reward size transiently following the cue. Reward size coding appeared earlier and stronger in VP than in rmCD. We also found that the activity in these areas was modulated by the satiation level of monkeys, which also occurred more frequently in VP than in rmCD. The information regarding reward size and satiation level was independently signaled in the neuronal populations of these areas. The data thus highlighted the neuronal coding of key variables for goal-directed behavior in VP. Furthermore, pharmacological inactivation of VP induced more severe deficit of goal-directed behavior than inactivation of rmCD, which was indicated by abnormal error repetition and diminished satiation effect on the performance. These results suggest that VP encodes incentive value and internal drive and plays a pivotal role in the control of motivation to promote goal-directed behavior. SIGNIFICANCE STATEMENT The limbic part of the basal ganglia has been implicated in the motivational control of goal-directed action. Here, we investigated how the ventral pallidum (VP) and the rostromedial caudate (rmCD) encode incentive value and internal drive and control goal-directed behavior. Neuronal recording and subsequent pharmacological inactivation revealed that VP had stronger coding of reward size and satiation level than rmCD. Reward size and satiation level were independently encoded in the neuronal population of these areas. Furthermore, VP inactivation impaired goal-directed behavior more severely than rmCD inactivation. These results highlight the central role of VP in the motivational control of goal-directed action.
Collapse
|
52
|
Impacts of inter-trial interval duration on a computational model of sign-tracking vs. goal-tracking behaviour. Psychopharmacology (Berl) 2019; 236:2373-2388. [PMID: 31367850 PMCID: PMC6695359 DOI: 10.1007/s00213-019-05323-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/01/2019] [Indexed: 01/15/2023]
Abstract
In the context of Pavlovian conditioning, two types of behaviour may emerge within the population (Flagel et al. Nature, 469(7328): 53-57, 2011). Animals may choose to engage either with the conditioned stimulus (CS), a behaviour known as sign-tracking (ST) which is sensitive to dopamine inhibition for its acquisition, or with the food cup in which the reward or unconditioned stimulus (US) will eventually be delivered, a behaviour known as goal-tracking (GT) which is dependent on dopamine for its expression only. Previous work by Lesaint et al. (PLoS Comput Biol, 10(2), 2014) offered a computational explanation for these phenomena and led to the prediction that varying the duration of the inter-trial interval (ITI) would change the relative ST-GT proportion in the population as well as phasic dopamine responses. A recent study verified this prediction, but also found a rich variance of ST and GT behaviours within the trial which goes beyond the original computational model. In this paper, we provide a computational perspective on these novel results.
Collapse
|
53
|
Cogan ES, Shapses MA, Robinson TE, Tronson NC. Disrupting reconsolidation: memory erasure or blunting of emotional/motivational value? Neuropsychopharmacology 2019; 44:399-407. [PMID: 29786067 PMCID: PMC6300536 DOI: 10.1038/s41386-018-0082-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/23/2018] [Accepted: 04/24/2018] [Indexed: 11/09/2022]
Abstract
When memories are retrieved they become labile, and subject to alteration by a process known as reconsolidation. Disruption of memory reconsolidation decreases the performance of learned responses, which is often attributed to erasure of the memory; in the case of Pavlovian learning, to a loss of the association between a conditioned stimulus (CS) and unconditioned stimulus (US). However, an alternative interpretation is that disrupting reconsolidation does not erase memories, but blunts their emotional/motivational impact. It is difficult to parse the predictive vs. emotional/motivational value of CSs in non-human animals, but studies on variation in the form of conditioned responses (CRs) in a Pavlovian conditioned approach task suggest a way to do this. In this task a lever-CS paired with a food reward (US) acquires predictive value in all rats, but is attributed with emotional/motivational value to a greater extent in some rats (sign-trackers) than others (goal-trackers). We report that the post-retrieval administration of propranolol selectively attenuates a sign-tracking CR, and the associated neural activation of brain "motive circuits", while having no effect on conditioned orienting behavior in sign-trackers, or on goal-tracking CRs evoked by either a lever-CS or a tone-CS. We conclude that the disruption of reconsolidation by post-retrieval propranolol degrades the emotional/motivational impact of the CS, required for sign-tracking, but leaves the CS-US association intact. The possibility that post-retrieval interventions can reduce the emotional/motivational aspects of memories, without actually erasing them, has important implications for treating maladaptive memories that contribute to some psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth S. Cogan
- 0000000086837370grid.214458.eBiopsychology Program, Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109 USA
| | - Mark A. Shapses
- 0000000086837370grid.214458.eBiopsychology Program, Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109 USA
| | - Terry E. Robinson
- 0000000086837370grid.214458.eBiopsychology Program, Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109 USA
| | - Natalie C. Tronson
- 0000000086837370grid.214458.eBiopsychology Program, Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109 USA
| |
Collapse
|
54
|
Hawkins MAW, Vrany EA, Cyders MA, Ciciolla L, Wells TT, Stewart JC. Association between depressive symptom clusters and food attentional bias. Eat Behav 2018; 31:24-27. [PMID: 30071383 DOI: 10.1016/j.eatbeh.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The mechanisms underlying the depression-obesity relationship are unclear. Food attentional bias (FAB) represents one candidate mechanism that has not been examined. We evaluated the hypothesis that greater depressive symptoms are associated with increased FAB. METHOD Participants were 89 normal weight or overweight adults (mean age = 21.2 ± 4.0 years, 53% female, 33% non-white, mean body mass index in kg/m2 = 21.9 ± 1.8 for normal weight; 27.2 ± 1.5 for overweight). Total, somatic, and cognitive-affective depressive symptom scores were computed from the Patient Health Questionnaire-8 (PHQ-8). FAB scores were calculated using reaction times (RT) and eye-tracking (ET) direction and duration measures for a food visual probe task. Age, gender, race/ethnicity, and body fat percent were covariates. RESULTS Only PHQ-8 somatic symptoms were positively associated with RT-measured FAB (β = 0.23, p = .04). The relationship between somatic symptoms and ET direction (β = 0.18, p = .17) and duration (β = 0.23, p = .08) FAB indices were of similar magnitude but were not significant. Somatic symptoms accounted for 5% of the variance in RT-measured FAB. PHQ-8 total and cognitive-affective symptoms were unrelated to all FAB indices (ps ≥ 0.09). CONCLUSIONS Only greater somatic symptoms of depression were linked to food attentional bias as measured using reaction time. Well-powered prospective studies should examine whether this bias replicates, particularly for eye-tracking measures, and whether it partially mediates the depression-to-obesity relationship.
Collapse
Affiliation(s)
- Misty A W Hawkins
- Department of Psychology, Oklahoma State University, Stillwater, OK, USA.
| | - Elizabeth A Vrany
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa A Cyders
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Lucia Ciciolla
- Department of Psychology, Oklahoma State University, Stillwater, OK, USA
| | - Tony T Wells
- Department of Psychology, Oklahoma State University, Stillwater, OK, USA
| | - Jesse C Stewart
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
55
|
Behavioral and Neural Evidence of the Rewarding Value of Exercise Behaviors: A Systematic Review. Sports Med 2018; 48:1389-1404. [PMID: 29556981 DOI: 10.1007/s40279-018-0898-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND In a time of physical inactivity pandemic, attempts to better understand the factors underlying the regulation of exercise behavior are important. The dominant neurobiological approach to exercise behavior considers physical activity to be a reward; however, negative affective responses during exercise challenge this idea. OBJECTIVE Our objective was to systematically review studies testing the automatic reactions triggered by stimuli associated with different types of exercise behavior (e.g. physical activity, sedentary behaviors) and energetic cost variations (e.g. decreased energetic cost, irrespective of the level of physical activity). We also examined evidence supporting the hypothesis that behaviors minimizing energetic cost (BMEC) are rewarding. METHODS Two authors systematically searched, screened, extracted, and analyzed data from articles in the MEDLINE database. RESULTS We included 26 studies. Three outcomes of automatic processes were tested: affective reactions, attentional capture, and approach tendencies. Behavioral results show that physical activity can become attention-grabbing, automatically trigger positive affect, and elicit approach behaviors. These automatic reactions explain and predict exercise behaviors; however, the use of a wide variety of measures prevents drawing solid conclusions about the specific effects of automatic processes. Brain imaging results are scarce but show that stimuli associated with physical activity and, to a lesser extent, sedentary behaviors activate regions involved in reward processes. Studies investigating the rewarding value of behaviors driving energetic cost variations such as BMEC are lacking. CONCLUSION Reward is an important factor in exercise behavior. The literature based on the investigation of automatic behaviors seems in line with the suggestion that physical activity is rewarding, at least for physically active individuals. Results suggest that sedentary behaviors could also be rewarding, although this evidence remains weak due to a lack of investigations. Finally, from an evolutionary perspective, BMEC are likely to be rewarding; however, no study has investigated this hypothesis. In sum, additional studies are required to establish a strong and complete framework of the reward processes underlying automatic exercise behavior.
Collapse
|
56
|
Myles D, Carter A, Yücel M. Cognitive neuroscience can support public health approaches to minimise the harm of 'losses disguised as wins' in multiline slot machines. Eur J Neurosci 2018; 50:2384-2391. [PMID: 30276920 DOI: 10.1111/ejn.14191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/03/2018] [Accepted: 09/20/2018] [Indexed: 11/26/2022]
Abstract
Video slot machines are associated with both accelerated transition into problematic forms of gambling, as well as psychosocial harm above and beyond other forms of gambling. A growing body of evidence is uncovering how key design features of multiline slot machines produce an inflated experience of reward, despite the fact that these features offer no overall financial benefit to the player. A pernicious example of this are 'losses disguised as wins' (LDWs), which occur when simultaneous bets placed on multiple lines result in a winning combination that returns an amount greater than zero, but less the total wager. These events are usually accompanied by the same celebratory sounds and animations that accompany true wins. We argue that LDWs may leverage neuropsychological phenomena that underlie reinforcement learning and contribute to extended or repetitive use and gambling-related harm. While other characteristics of slot machine gambling have been examined by cognitive neuroscientists, this feature has not yet received attention. Neuroscientific methods can be used to assess the impact of LDWs on the human reward system, to assess the claim that these events are a reinforcing and contributing factor in the development of harmful play. Positive findings would provide further persuasive evidence in support of strategies to minimise gambling harm through the regulation of machine design.
Collapse
Affiliation(s)
- Dan Myles
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, 770 Blackburn Rd, Clayton, Vic, 3800, Australia
| | - Adrian Carter
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, 770 Blackburn Rd, Clayton, Vic, 3800, Australia
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, 770 Blackburn Rd, Clayton, Vic, 3800, Australia
| |
Collapse
|
57
|
Abstract
The Virtual Personalities Model is a motive-based neural network model that provides both a psychological model and a computational implementation that explicates the dynamics and often large within-person variability in behavior that arises over time. At the same time the same model can produce -- across many virtual personalities - between subject variability in behavior that when factor analyzed yields familiar personality structure (e.g., the Big-5). First, we describe our personality model and its implementation as a neural network model. Second, we focus on detailing the neurobiological underpinnings of this model. Third, we examine the learning mechanisms, and their biological substrates, as ways that the model gets "wired up", discussing Pavlovian and instrumental conditioning, Pavlovian to instrumental transfer (PIT), and habits. Finally, we describe the dynamics of how initial differences in propensities (e.g., dopamine functioning), wiring differences due to experience, and other factors could operate together to develop and change personality over time, and how this might be empirically examined. Thus, our goal is to contribute to the rising chorus of voices seeking a more precise neurobiologically-based science of the complex dynamics underlying personality.
Collapse
|
58
|
De Tommaso M, Mastropasqua T, Turatto M. Working for beverages without being thirsty: Human Pavlovian-instrumental transfer despite outcome devaluation. LEARNING AND MOTIVATION 2018. [DOI: 10.1016/j.lmot.2018.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
59
|
Devoto F, Zapparoli L, Bonandrini R, Berlingeri M, Ferrulli A, Luzi L, Banfi G, Paulesu E. Hungry brains: A meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. Neurosci Biobehav Rev 2018; 94:271-285. [PMID: 30071209 DOI: 10.1016/j.neubiorev.2018.07.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
Abstract
The dysregulation of food intake in chronic obesity has been explained by different theories. To assess their explanatory power, we meta-analyzed 22 brain-activation imaging studies. We found that obese individuals exhibit hyper-responsivity of the brain regions involved in taste and reward for food-related stimuli. Consistent with a Reward Surfeit Hypothesis, obese individuals exhibit a ventral striatum hyper-responsivity in response to pure tastes, particularly when fasting. Furthermore, we found that obese subjects display more frequent ventral striatal activation for visual food cues when satiated: this continued processing within the reward system, together with the aforementioned evidence, is compatible with the Incentive Sensitization Theory. On the other hand, we did not find univocal evidence in favor of a Reward Deficit Hypothesis nor for a systematic deficit of inhibitory cognitive control. We conclude that the available brain activation data on the dysregulated food intake and food-related behavior in chronic obesity can be best framed within an Incentive Sensitization Theory. Implications of these findings for a brain-based therapy of obesity are briefly discussed.
Collapse
Affiliation(s)
- F Devoto
- fMRI Unit, IRCSS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Psychology and PhD Program in Neuroscience of the School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - L Zapparoli
- fMRI Unit, IRCSS Istituto Ortopedico Galeazzi, Milan, Italy
| | - R Bonandrini
- Department of Psychology and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - M Berlingeri
- DISTUM, Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy; Center of Developmental Neuropsychology, ASUR Marche, Area Vasta 1, Pesaro, Italy
| | - A Ferrulli
- Endocrinology and Metabolic Diseases Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - L Luzi
- Endocrinology and Metabolic Diseases Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - G Banfi
- fMRI Unit, IRCSS Istituto Ortopedico Galeazzi, Milan, Italy; University Vita e Salute San Raffaele, Milan, Italy
| | - E Paulesu
- fMRI Unit, IRCSS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Psychology and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
60
|
Panayi MC, Killcross S. Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits. eLife 2018; 7:e37357. [PMID: 30044220 PMCID: PMC6101941 DOI: 10.7554/elife.37357] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/24/2018] [Indexed: 01/12/2023] Open
Abstract
The orbitofrontal cortex (OFC) is critical for updating reward-directed behaviours flexibly when outcomes are devalued or when task contingencies are reversed. Failure to update behaviour in outcome devaluation and reversal learning procedures are considered canonical deficits following OFC lesions in non-human primates and rodents. We examined the generality of these findings in rodents using lesions of the rodent lateral OFC (LO) in instrumental action-outcome and Pavlovian cue-outcome devaluation procedures. LO lesions disrupted outcome devaluation in Pavlovian but not instrumental procedures. Furthermore, although both anterior and posterior LO lesions disrupted Pavlovian outcome devaluation, only posterior LO lesions were found to disrupt reversal learning. Posterior but not anterior LO lesions were also found to disrupt the attribution of motivational value to Pavlovian cues in sign-tracking. These novel dissociable task- and subregion-specific effects suggest a way to reconcile contradictory findings between rodent and non-human primate OFC research.
Collapse
Affiliation(s)
- Marios C Panayi
- School of PsychologyThe University of New South WalesKensingtonAustralia
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Simon Killcross
- School of PsychologyThe University of New South WalesKensingtonAustralia
| |
Collapse
|
61
|
Morris LS, Voon V, Leggio L. Stress, Motivation, and the Gut-Brain Axis: A Focus on the Ghrelin System and Alcohol Use Disorder. Alcohol Clin Exp Res 2018; 42:10.1111/acer.13781. [PMID: 29797564 PMCID: PMC6252147 DOI: 10.1111/acer.13781] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
Abstract
Since its discovery, the gut hormone, ghrelin, has been implicated in diverse functional roles in the central nervous system. Central and peripheral interactions between ghrelin and other hormones, including the stress-response hormone cortisol, govern complex behavioral responses to external cues and internal states. By acting at ventral tegmental area dopaminergic projections and other areas involved in reward processing, ghrelin can induce both general and directed motivation for rewards, including craving for alcohol and other alcohol-seeking behaviors. Stress-induced increases in cortisol seem to increase ghrelin in the periphery, suggesting a pathway by which ghrelin influences how stressful life events trigger motivation for rewards. However, in some states, ghrelin may be protective against the anxiogenic effects of stressors. This critical review brings together a dynamic and growing literature, that is, at times inconsistent, on the relationships between ghrelin, central reward-motivation pathways, and central and peripheral stress responses, with a special focus on its emerging role in the context of alcohol use disorder.
Collapse
Affiliation(s)
- Laurel S. Morris
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychology, University of Cambridge, UK
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
62
|
Dynamic Encoding of Incentive Salience in the Ventral Pallidum: Dependence on the Form of the Reward Cue. eNeuro 2018; 5:eN-NWR-0328-17. [PMID: 29740595 PMCID: PMC5938716 DOI: 10.1523/eneuro.0328-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/26/2018] [Accepted: 04/20/2018] [Indexed: 12/03/2022] Open
Abstract
Some rats are especially prone to attribute incentive salience to a cue (conditioned stimulus, CS) paired with food reward (sign-trackers, STs), but the extent they do so varies as a function of the form of the CS. Other rats respond primarily to the predictive value of a cue (goal-trackers, GTs), regardless of its form. Sign-tracking is associated with greater cue-induced activation of mesolimbic structures than goal-tracking; however, it is unclear how the form of the CS itself influences activity in neural systems involved in incentive salience attribution. Thus, our goal was to determine how different cue modalities affect neural activity in the ventral pallidum (VP), which is known to encode incentive salience attribution, as rats performed a two-CS Pavlovian conditioned approach task in which both a lever-CS and a tone-CS predicted identical food reward. The lever-CS elicited sign-tracking in some rats (STs) and goal-tracking in others (GTs), whereas the tone-CS elicited only goal-tracking in all rats. The lever-CS elicited robust changes in neural activity (sustained tonic increases or decreases in firing) throughout the VP in STs, relative to GTs. These changes were not seen when STs were exposed to the tone-CS, and in GTs there were no differences in firing between the lever-CS and tone-CS. We conclude that neural activity throughout the VP encodes incentive signals and is especially responsive when a cue is of a form that promotes the attribution of incentive salience to it, especially in predisposed individuals.
Collapse
|
63
|
Burke CJ, Soutschek A, Weber S, Raja Beharelle A, Fehr E, Haker H, Tobler PN. Dopamine Receptor-Specific Contributions to the Computation of Value. Neuropsychopharmacology 2018; 43:1415-1424. [PMID: 29251282 PMCID: PMC5916370 DOI: 10.1038/npp.2017.302] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/07/2017] [Accepted: 12/08/2017] [Indexed: 11/09/2022]
Abstract
Dopamine is thought to play a crucial role in value-based decision making. However, the specific contributions of different dopamine receptor subtypes to the computation of subjective value remain unknown. Here we demonstrate how the balance between D1 and D2 dopamine receptor subtypes shapes subjective value computation during risky decision making. We administered the D2 receptor antagonist amisulpride or placebo before participants made choices between risky options. Compared with placebo, D2 receptor blockade resulted in more frequent choice of higher risk and higher expected value options. Using a novel model fitting procedure, we concurrently estimated the three parameters that define individual risk attitude according to an influential theoretical account of risky decision making (prospect theory). This analysis revealed that the observed reduction in risk aversion under amisulpride was driven by increased sensitivity to reward magnitude and decreased distortion of outcome probability, resulting in more linear value coding. Our data suggest that different components that govern individual risk attitude are under dopaminergic control, such that D2 receptor blockade facilitates risk taking and expected value processing.
Collapse
Affiliation(s)
- Christopher J Burke
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Alexander Soutschek
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Susanna Weber
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Anjali Raja Beharelle
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Ernst Fehr
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Helene Haker
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
64
|
Overby PF, Daniels CW, Del Franco A, Goenaga J, Powell GL, Gipson CD, Sanabria F. Effects of nicotine self-administration on incentive salience in male Sprague Dawley rats. Psychopharmacology (Berl) 2018; 235:1121-1130. [PMID: 29374305 DOI: 10.1007/s00213-018-4829-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
RATIONALE Prolonged use of nicotine appears to enhance incentive salience, a motivational-cognitive process that transforms an otherwise neutral stimulus into a "wanted" stimulus. It has been suggested that nicotinic enhancement of incentive salience contributes to the potential of relapse in individuals with tobacco addiction. However, there are two main limitations of prior research that caution this claim: (a) the use of passive experimentally delivered nicotine and (b) the use of sign-tracking as an index of incentive salience, without acknowledging the competing nature of goal- and sign-tracking responses. OBJECTIVES To determine whether nicotinic enhancement of incentive salience attributed to non-nicotinic stimuli occurs when rats self-administer nicotine, and whether it is facilitated by a prior history of nicotine self-administration. METHODS Twenty-three male rats were trained daily, for 24 days, on a nicotine self-administration (SA) paradigm in the morning, and on a four-conditioned-stimuli Pavlovian conditioned approach (4-CS PCA) task in the afternoon. Self-administration was followed by extinction and cue reinstatement. A subcutaneous nicotine challenge was performed during the last 7 days of the study. RESULTS Nicotine self-administration selectively enhanced sign-tracking in the 4-CS PCA. Upon extinction, sign-tracking quickly declined to control levels. Experimenter-administered nicotine enhanced sign-tracking similarly regardless of nicotine history. CONCLUSIONS The results suggest that nicotinic enhancement of incentive salience is transient, and a previous history of nicotine use does not cause further sensitization. Taken together, these results suggest that nicotine enhances incentive salience, particularly-and perhaps exclusively-while onboard.
Collapse
Affiliation(s)
- Paula F Overby
- Department of Psychology, Arizona State University, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
| | - Carter W Daniels
- Department of Psychology, Arizona State University, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
| | - Armani Del Franco
- School of Life Sciences, Arizona State University, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
| | - Julianna Goenaga
- Department of Psychology, Arizona State University, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
| | - Gregory L Powell
- Department of Psychology, Arizona State University, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
- School of Life Sciences, Arizona State University, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
| | - Cassandra D Gipson
- Department of Psychology, Arizona State University, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
| | - Federico Sanabria
- Department of Psychology, Arizona State University, P.O. Box 871104, Tempe, AZ, 85287-1104, USA.
| |
Collapse
|
65
|
Abstract
Food uncertainty has the effect of invigorating food-related responses. Psychologists have noted that mammals and birds respond more to a conditioned stimulus that unreliably predicts food delivery, and ecologists have shown that animals (especially small passerines) consume and/or hoard more food and can get fatter when access to that resource is unpredictable. Are these phenomena related? We think they are. Psychologists have proposed several mechanistic interpretations, while ecologists have suggested a functional interpretation: The effect of unpredictability on fat reserves and hoarding behavior is an evolutionary strategy acting against the risk of starvation when food is in short supply. Both perspectives are complementary, and we argue that the psychology of incentive motivational processes can shed some light on the causal mechanisms leading animals to seek and consume more food under uncertainty in the wild. Our theoretical approach is in agreement with neuroscientific data relating to the role of dopamine, a neurotransmitter strongly involved in incentive motivation, and its plausibility has received some explanatory and predictive value with respect to Pavlovian phenomena. Overall, we argue that the occasional and unavoidable absence of food rewards has motivational effects (called incentive hope) that facilitate foraging effort. We show that this hypothesis is computationally tenable, leading foragers in an unpredictable environment to consume more food items and to have higher long-term energy storage than foragers in a predictable environment.
Collapse
|
66
|
Adrenergic manipulation inhibits pavlovian conditioned approach behaviors. Behav Brain Res 2017; 339:278-285. [PMID: 29128392 DOI: 10.1016/j.bbr.2017.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 11/20/2022]
Abstract
Environmental rewards and Pavlovian reward cues can acquire incentive salience, thereby eliciting incentive motivational states and instigate reward-seeking. In rats, the incentive salience of food cues can be measured during a Pavlovian conditioned approach paradigm, in which rats engage in cue-directed approach ("sign-tracking") or approach the food delivery location ("goal-tracking"). While it has been shown that dopamine signaling is necessary for sign-tracking, some studies have suggested that norepinephrine is involved in learning to sign-track as well. Thus, in order to investigate the influence of norepinephrine in Pavlovian conditioned approach, we administered three adrenergic drugs while rats learned that a food cue (an illuminated, retractable lever) preceded the delivery of banana-flavored food pellets into a food-cup. We found that pre-session injections of disulfiram (a dopamine-β-hydroxylase inhibitor) inhibited the development of sign-tracking, but goal-tracking was only affected at the high dose. In one experiment, post-session injections of disulfiram blocked the development of sign-tracking, although this effect was not replicated in a separate set of rats. Post-session injections of prazosin (an α1-adrenergic receptor antagonist) and propranolol (a β-adrenergic receptor antagonist) also blocked the development of sign-tracking but not goal-tracking. Taken together, these results suggest that adrenergic transmission mediates the acquisition of sign-tracking but not goal-tracking, and thus plays a selective role in the attribution of incentive salience food cues.
Collapse
|
67
|
Misdeed of the need: towards computational accounts of transition to addiction. Curr Opin Neurobiol 2017; 46:142-153. [DOI: 10.1016/j.conb.2017.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
|
68
|
Cheval B, Audrin C, Sarrazin P, Pelletier L. When hunger does (or doesn't) increase unhealthy and healthy food consumption through food wanting: The distinctive role of impulsive approach tendencies toward healthy food. Appetite 2017; 116:99-107. [DOI: 10.1016/j.appet.2017.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
69
|
Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S, Umayam L, Aniceto R, Chang LA, Lauchie S, Ogundeyi O, Ordish C, Shinomiya A, Sigmund C, Takemura S, Tran J, Turner GC, Rubin GM, Scheffer LK. A connectome of a learning and memory center in the adult Drosophila brain. eLife 2017; 6. [PMID: 28718765 PMCID: PMC5550281 DOI: 10.7554/elife.26975] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall. DOI:http://dx.doi.org/10.7554/eLife.26975.001
Collapse
Affiliation(s)
- Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toshihide Hige
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Allan Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - William Katz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lei-Ann Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Sigmund
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Julie Tran
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
70
|
Schomaker J, Walper D, Wittmann BC, Einhäuser W. Attention in natural scenes: Affective-motivational factors guide gaze independently of visual salience. Vision Res 2017; 133:161-175. [PMID: 28279712 DOI: 10.1016/j.visres.2017.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 11/30/2022]
Abstract
In addition to low-level stimulus characteristics and current goals, our previous experience with stimuli can also guide attentional deployment. It remains unclear, however, if such effects act independently or whether they interact in guiding attention. In the current study, we presented natural scenes including every-day objects that differed in affective-motivational impact. In the first free-viewing experiment, we presented visually-matched triads of scenes in which one critical object was replaced that varied mainly in terms of motivational value, but also in terms of valence and arousal, as confirmed by ratings by a large set of observers. Treating motivation as a categorical factor, we found that it affected gaze. A linear-effect model showed that arousal, valence, and motivation predicted fixations above and beyond visual characteristics, like object size, eccentricity, or visual salience. In a second experiment, we experimentally investigated whether the effects of emotion and motivation could be modulated by visual salience. In a medium-salience condition, we presented the same unmodified scenes as in the first experiment. In a high-salience condition, we retained the saturation of the critical object in the scene, and decreased the saturation of the background, and in a low-salience condition, we desaturated the critical object while retaining the original saturation of the background. We found that highly salient objects guided gaze, but still found additional additive effects of arousal, valence and motivation, confirming that higher-level factors can also guide attention, as measured by fixations towards objects in natural scenes.
Collapse
Affiliation(s)
- Judith Schomaker
- Justus Liebig University Giessen, Department of Psychology and Sports Science, Germany.
| | - Daniel Walper
- Chemnitz University of Technology, Institute of Physics, Physics of Cognition, Germany
| | - Bianca C Wittmann
- Justus Liebig University Giessen, Department of Psychology and Sports Science, Germany
| | - Wolfgang Einhäuser
- Chemnitz University of Technology, Institute of Physics, Physics of Cognition, Germany
| |
Collapse
|
71
|
Sennwald V, Pool E, Sander D. Considering the Influence of the Pavlovian System on Behavior: Appraisal and Value Representation. PSYCHOLOGICAL INQUIRY 2017. [DOI: 10.1080/1047840x.2017.1259951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vanessa Sennwald
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Laboratory for the Study of Emotion Elicitation and Expression, Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Eva Pool
- Human Reward and Decision Making Laboratory, Humanities and Social Sciences, California Institute of Technology, Pasadena, California
| | - David Sander
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Laboratory for the Study of Emotion Elicitation and Expression, Department of Psychology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
72
|
Mannella F, Mirolli M, Baldassarre G. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model. Front Behav Neurosci 2016; 10:181. [PMID: 27803652 PMCID: PMC5067467 DOI: 10.3389/fnbeh.2016.00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or "action-outcomes", e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior.
Collapse
Affiliation(s)
- Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| | - Marco Mirolli
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| |
Collapse
|
73
|
Dopamine Increases a Value-Independent Gambling Propensity. Neuropsychopharmacology 2016; 41:2658-67. [PMID: 27149935 PMCID: PMC5026733 DOI: 10.1038/npp.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 11/09/2022]
Abstract
Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine's role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options-a finding with implications for understanding a range of reward-related psychopathologies including addiction.
Collapse
|
74
|
Ahrens AM, Meyer PJ, Ferguson LM, Robinson TE, Aldridge JW. Neural Activity in the Ventral Pallidum Encodes Variation in the Incentive Value of a Reward Cue. J Neurosci 2016; 36:7957-70. [PMID: 27466340 PMCID: PMC4961780 DOI: 10.1523/jneurosci.0736-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED There is considerable individual variation in the extent to which reward cues are attributed with incentive salience. For example, a food-predictive conditioned stimulus (CS; an illuminated lever) becomes attractive, eliciting approach toward it only in some rats ("sign trackers," STs), whereas others ("goal trackers," GTs) approach the food cup during the CS period. The purpose of this study was to determine how individual differences in Pavlovian approach responses are represented in neural firing patterns in the major output structure of the mesolimbic system, the ventral pallidum (VP). Single-unit in vivo electrophysiology was used to record neural activity in the caudal VP during the performance of ST and GT conditioned responses. All rats showed neural responses to both cue onset and reward delivery but, during the CS period, STs showed greater neural activity than GTs both in terms of the percentage of responsive neurons and the magnitude of the change in neural activity. Furthermore, neural activity was positively correlated with the degree of attraction to the cue. Given that the CS had equal predictive value in STs and GTs, we conclude that neural activity in the VP largely reflects the degree to which the CS was attributed with incentive salience. SIGNIFICANCE STATEMENT Cues associated with reward can acquire motivational properties (i.e., incentive salience) that cause them to have a powerful influence on desire and motivated behavior. There are individual differences in sensitivity to reward-paired cues, with some individuals attaching greater motivational value to cues than others. Here, we investigated the neural activity associated with these individual differences in incentive salience. We found that cue-evoked neural firing in the ventral pallidum (VP) reflected the strength of incentive motivation, with the greatest neural responses occurring in individuals that demonstrated the strongest attraction to the cue. This suggests that the VP plays an important role in the process by which cues gain control over motivation and behavior.
Collapse
Affiliation(s)
- Allison M Ahrens
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Paul J Meyer
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and Department of Psychology, University at Buffalo, Buffalo, New York 14051
| | - Lindsay M Ferguson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - J Wayne Aldridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| |
Collapse
|
75
|
Abstract
Cognitive control is subjectively costly, suggesting that engagement is modulated in relationship to incentive state. Dopamine appears to play key roles. In particular, dopamine may mediate cognitive effort by two broad classes of functions: (1) modulating the functional parameters of working memory circuits subserving effortful cognition, and (2) mediating value-learning and decision-making about effortful cognitive action. Here, we tie together these two lines of research, proposing how dopamine serves "double duty", translating incentive information into cognitive motivation.
Collapse
Affiliation(s)
- Andrew Westbrook
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Todd S Braver
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
76
|
Anselme P. Motivational control of sign-tracking behaviour: A theoretical framework. Neurosci Biobehav Rev 2016; 65:1-20. [DOI: 10.1016/j.neubiorev.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/25/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022]
|
77
|
DiFeliceantonio AG, Berridge KC. Dorsolateral neostriatum contribution to incentive salience: opioid or dopamine stimulation makes one reward cue more motivationally attractive than another. Eur J Neurosci 2016; 43:1203-18. [PMID: 26924040 PMCID: PMC4846486 DOI: 10.1111/ejn.13220] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/08/2023]
Abstract
Pavlovian cues for rewards can become attractive incentives: approached and 'wanted' as the rewards themselves. The motivational attractiveness of a previously learned cue is not fixed, but can be dynamically amplified during re-encounter by simultaneous activation of brain limbic circuitry. Here it was reported that opioid or dopamine microinjections in the dorsolateral quadrant of the neostriatum (DLS) of rats selectively amplify attraction toward a previously learned Pavlovian cue in an individualized fashion, at the expense of a competing cue. In an autoshaping (sign-tracking vs. goal-tracking) paradigm, microinjection of the mu opioid receptor agonist (DAMGO) or dopamine indirect agonist (amphetamine) in the DLS of sign-tracker individuals selectively enhanced their sign-tracking attraction toward the reward-predictive lever cue. By contrast, DAMGO or amphetamine in the DLS of goal-trackers selectively enhanced prepotent attraction toward the reward-proximal cue of sucrose dish. Amphetamine also enhanced goal-tracking in some sign-tracker individuals (if they ever defected to the dish even once). That DLS enhancement of cue attraction was due to stronger motivation, not stronger habits, was suggested by: (i) sign-trackers flexibly followed their cue to a new location when the lever was suddenly moved after DLS DAMGO microinjection; and (ii) DAMGO in the DLS also made sign-trackers work harder on a new instrumental nose-poke response required to earn presentations of their Pavlovian lever cue (instrumental conditioned reinforcement). Altogether, the current results suggest that DLS circuitry can enhance the incentive salience of a Pavlovian reward cue, selectively making that cue a stronger motivational magnet.
Collapse
Affiliation(s)
- Alexandra G. DiFeliceantonio
- John B Pierce Laboratory at Yale University, New Haven, CT, 06519
- The Max Planck Institute for Metabolism Research, Cologne, Germany, 50931
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kent C. Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
78
|
Pool E, Sennwald V, Delplanque S, Brosch T, Sander D. Measuring wanting and liking from animals to humans: A systematic review. Neurosci Biobehav Rev 2016; 63:124-42. [DOI: 10.1016/j.neubiorev.2016.01.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/05/2016] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
|
79
|
Zsuga J, Tajti G, Papp C, Juhasz B, Gesztelyi R. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation. Med Hypotheses 2016; 90:23-8. [PMID: 27063080 DOI: 10.1016/j.mehy.2016.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023]
Abstract
Interventions focusing on the prevention and treatment of chronic non-communicable diseases are on rise. In the current article, we propose that dysfunction of the mesocortico-limbic reward system contributes to the emergence of the WHO-identified risk behaviors (tobacco use, unhealthy diet, physical inactivity and harmful use of alcohol), behaviors that underlie the evolution of major non-communicable diseases (e.g. cardiovascular diseases, cancer, diabetes and chronic respiratory diseases). Given that dopaminergic neurons of the mesocortico-limbic system are tightly associated with reward-related processes and motivation, their dysfunction may fundamentally influence behavior. While nicotine and alcohol alter dopamine neuron function by influencing some receptors, mesocortico-limbic system dysfunction was associated with elevation of metabolic set-point leading to hedonic over-eating. Although there is some empirical evidence, precise molecular mechanism for linking physical inactivity and mesocortico-limbic dysfunction per se seems to be missing; identification of which may contribute to higher success rates for interventions targeting lifestyle changes pertaining to physical activity. In the current article, we compile evidence in support of a link between exercise and the mesocortico-limbic system by elucidating interactions on the axis of muscle - irisin - brain derived neurotrophic factor (BDNF) - and dopaminergic function of the midbrain. Irisin is a contraction-regulated myokine formed primarily in skeletal muscle but also in the brain. Irisin stirred considerable interest, when its ability to induce browning of white adipose tissue parallel to increasing thermogenesis was discovered. Furthermore, it may also play a role in the regulation of behavior given it readily enters the central nervous system, where it induces BDNF expression in several brain areas linked to reward processing, e.g. the ventral tegmental area and the hippocampus. BDNF is a neurotropic factor that increases neuronal dopamine content, modulates dopamine release relevant for neuronal plasticity and increased neuronal survival as well as learning and memory. Further linking BDNF to dopaminergic function is BDNF's ability to activate tropomyosin-related kinase B receptor that shares signalization with presynaptic dopamine-3 receptors in the ventral tegmental area. Summarizing, we propose that the skeletal muscle derived irisin may be the link between physical activity and reward-related processes and motivation. Moreover alteration of this axis may contribute to sedentary lifestyle and subsequent non-communicable diseases. Preclinical and clinical experimental models to test this hypothesis are also proposed.
Collapse
Affiliation(s)
- Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary.
| | - Gabor Tajti
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Csaba Papp
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
80
|
Colombo M, Wright C. Explanatory pluralism: An unrewarding prediction error for free energy theorists. Brain Cogn 2016; 112:3-12. [PMID: 26905647 DOI: 10.1016/j.bandc.2016.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/22/2023]
Abstract
Courtesy of its free energy formulation, the hierarchical predictive processing theory of the brain (PTB) is often claimed to be a grand unifying theory. To test this claim, we examine a central case: activity of mesocorticolimbic dopaminergic (DA) systems. After reviewing the three most prominent hypotheses of DA activity-the anhedonia, incentive salience, and reward prediction error hypotheses-we conclude that the evidence currently vindicates explanatory pluralism. This vindication implies that the grand unifying claims of advocates of PTB are unwarranted. More generally, we suggest that the form of scientific progress in the cognitive sciences is unlikely to be a single overarching grand unifying theory.
Collapse
Affiliation(s)
- Matteo Colombo
- Tilburg Center for Logic, Ethics & Philosophy of Science, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands.
| | - Cory Wright
- Department of Philosophy, McIntosh Humanities Building 917, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-2408, USA.
| |
Collapse
|
81
|
Robinson MJF, Fischer AM, Ahuja A, Lesser EN, Maniates H. Roles of "Wanting" and "Liking" in Motivating Behavior: Gambling, Food, and Drug Addictions. Curr Top Behav Neurosci 2016; 27:105-136. [PMID: 26407959 DOI: 10.1007/7854_2015_387] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to seek out and consume rewards has evolutionarily been driven by the urge to fulfill physiological needs. However in a modern society dominated more by plenty than scarcity, we tend to think of motivation as fueled by the search for pleasure. Here, we argue that two separate but interconnected subcortical and unconscious processes direct motivation: "wanting" and "liking." These two psychological and neuronal processes and their related brain structures typically work together, but can become dissociated, particularly in cases of addiction. In drug addiction, for example, repeated consumption of addictive drugs sensitizes the mesolimbic dopamine system, the primary component of the "wanting" system, resulting in excessive "wanting" for drugs and their cues. This sensitizing process is long-lasting and occurs independently of the "liking" system, which typically remains unchanged or may develop a blunted pleasure response to the drug. The result is excessive drug-taking despite minimal pleasure and intense cue-triggered craving that may promote relapse long after detoxification. Here, we describe the roles of "liking" and "wanting" in general motivation and review recent evidence for a dissociation of "liking" and "wanting" in drug addiction, known as the incentive sensitization theory (Robinson and Berridge 1993). We also make the case that sensitization of the "wanting" system and the resulting dissociation of "liking" and "wanting" occurs in both gambling disorder and food addiction.
Collapse
Affiliation(s)
- M J F Robinson
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA.
| | - A M Fischer
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - A Ahuja
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - E N Lesser
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - H Maniates
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| |
Collapse
|
82
|
Ghitza UE. Commentary: Rewriting the Valuation and Salience of Alcohol-Related Stimuli via Memory Reconsolidation. Front Psychiatry 2016; 7:41. [PMID: 27014104 PMCID: PMC4794481 DOI: 10.3389/fpsyt.2016.00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Udi E Ghitza
- Center for the Clinical Trials Network, National Institute on Drug Abuse, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
83
|
Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation. J Neurosci 2015; 35:11572-82. [PMID: 26290234 DOI: 10.1523/jneurosci.2344-15.2015] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors.
Collapse
|
84
|
Abstract
The neuromodulator dopamine has a well established role in reporting appetitive prediction errors that are widely considered in terms of learning. However, across a wide variety of contexts, both phasic and tonic aspects of dopamine are likely to exert more immediate effects that have been less well characterized. Of particular interest is dopamine's influence on economic risk taking and on subjective well-being, a quantity known to be substantially affected by prediction errors resulting from the outcomes of risky choices. By boosting dopamine levels using levodopa (l-DOPA) as human subjects made economic decisions and repeatedly reported their momentary happiness, we show here an effect on both choices and happiness. Boosting dopamine levels increased the number of risky options chosen in trials involving potential gains but not trials involving potential losses. This effect could be better captured as increased Pavlovian approach in an approach-avoidance decision model than as a change in risk preferences within an established prospect theory model. Boosting dopamine also increased happiness resulting from some rewards. Our findings thus identify specific novel influences of dopamine on decision making and emotion that are distinct from its established role in learning.
Collapse
|
85
|
Kringelbach ML. A Balanced Mind: A Network Perspective on Mood and Motivation Brain Pathways. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
86
|
Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: A review of computational research. Neurosci Biobehav Rev 2015; 55:247-67. [PMID: 25979140 DOI: 10.1016/j.neubiorev.2015.05.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 01/05/2023]
Abstract
Despite being considered primarily a mood disorder, major depressive disorder (MDD) is characterized by cognitive and decision making deficits. Recent research has employed computational models of reinforcement learning (RL) to address these deficits. The computational approach has the advantage in making explicit predictions about learning and behavior, specifying the process parameters of RL, differentiating between model-free and model-based RL, and the computational model-based functional magnetic resonance imaging and electroencephalography. With these merits there has been an emerging field of computational psychiatry and here we review specific studies that focused on MDD. Considerable evidence suggests that MDD is associated with impaired brain signals of reward prediction error and expected value ('wanting'), decreased reward sensitivity ('liking') and/or learning (be it model-free or model-based), etc., although the causality remains unclear. These parameters may serve as valuable intermediate phenotypes of MDD, linking general clinical symptoms to underlying molecular dysfunctions. We believe future computational research at clinical, systems, and cellular/molecular/genetic levels will propel us toward a better understanding of the disease.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Taiki Takahashi
- Department of Behavioral Science/Center for Experimental Research in Social Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
87
|
O’Hara CB, Campbell IC, Schmidt U. A reward-centred model of anorexia nervosa: A focussed narrative review of the neurological and psychophysiological literature. Neurosci Biobehav Rev 2015; 52:131-52. [DOI: 10.1016/j.neubiorev.2015.02.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/09/2015] [Accepted: 02/22/2015] [Indexed: 12/13/2022]
|
88
|
Ikemoto S, Yang C, Tan A. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res 2015; 290:17-31. [PMID: 25907747 DOI: 10.1016/j.bbr.2015.04.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/26/2022]
Abstract
Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA.
| | - Chen Yang
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Aaron Tan
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
89
|
Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 14:473-92. [PMID: 24647659 DOI: 10.3758/s13415-014-0277-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.
Collapse
|
90
|
Mechanisms of motivation-cognition interaction: challenges and opportunities. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 14:443-72. [PMID: 24920442 DOI: 10.3758/s13415-014-0300-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent years have seen a rejuvenation of interest in studies of motivation-cognition interactions arising from many different areas of psychology and neuroscience. The present issue of Cognitive, Affective, & Behavioral Neuroscience provides a sampling of some of the latest research from a number of these different areas. In this introductory article, we provide an overview of the current state of the field, in terms of key research developments and candidate neural mechanisms receiving focused investigation as potential sources of motivation-cognition interaction. However, our primary goal is conceptual: to highlight the distinct perspectives taken by different research areas, in terms of how motivation is defined, the relevant dimensions and dissociations that are emphasized, and the theoretical questions being targeted. Together, these distinctions present both challenges and opportunities for efforts aiming toward a more unified and cross-disciplinary approach. We identify a set of pressing research questions calling for this sort of cross-disciplinary approach, with the explicit goal of encouraging integrative and collaborative investigations directed toward them.
Collapse
|
91
|
Keramati M, Gutkin B. Homeostatic reinforcement learning for integrating reward collection and physiological stability. eLife 2014; 3. [PMID: 25457346 PMCID: PMC4270100 DOI: 10.7554/elife.04811] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/03/2014] [Indexed: 01/26/2023] Open
Abstract
Efficient regulation of internal homeostasis and defending it against perturbations requires adaptive behavioral strategies. However, the computational principles mediating the interaction between homeostatic and associative learning processes remain undefined. Here we use a definition of primary rewards, as outcomes fulfilling physiological needs, to build a normative theory showing how learning motivated behaviors may be modulated by internal states. Within this framework, we mathematically prove that seeking rewards is equivalent to the fundamental objective of physiological stability, defining the notion of physiological rationality of behavior. We further suggest a formal basis for temporal discounting of rewards by showing that discounting motivates animals to follow the shortest path in the space of physiological variables toward the desired setpoint. We also explain how animals learn to act predictively to preclude prospective homeostatic challenges, and several other behavioral patterns. Finally, we suggest a computational role for interaction between hypothalamus and the brain reward system. DOI:http://dx.doi.org/10.7554/eLife.04811.001 Our survival depends on our ability to maintain internal states, such as body temperature and blood sugar levels, within narrowly defined ranges, despite being subject to constantly changing external forces. This process, which is known as homeostasis, requires humans and other animals to carry out specific behaviors—such as seeking out warmth or food—to compensate for changes in their environment. Animals must also learn to prevent the potential impact of changes that can be anticipated. A network that includes different regions of the brain allows animals to perform the behaviors that are needed to maintain homeostasis. However, this network is distinct from the network that supports the learning of new behaviors in general. These two systems must, therefore, interact so that animals can learn novel strategies to support their physiological stability, but it is not clear how animals do this. Keramati and Gutkin have now devised a mathematical model that explains the nature of this interaction, and that can account for many behaviors seen among animals, even those that might otherwise appear irrational. There are two assumptions at the heart of the model. First, it is assumed that animals are capable of guessing the impact of the outcome of their behaviors on their internal state. Second, it is assumed that animals find a behavior rewarding if they believe that the predicted impact of its outcome will reduce the difference between a particular internal state and its ideal value. For example, a form of behavior for a human might be going to the kitchen, and an outcome might be eating chocolate. Based on these two assumptions, the model shows that animals stabilize their internal state around its ideal value by simply learning to perform behaviors that lead to rewarding outcomes (such as going into the kitchen and eating chocolate). Their theory also explains the physiological importance of a type of behavior known as ‘delay discounting’. Animals displaying this form of behavior regard a positive outcome as less rewarding the longer they have to wait for it. The model proves mathematically that delay discounting is a logical way to optimize homeostasis. In addition to making a number of predictions that could be tested in experiments, Keramati and Gutkin argue that their model can account for the failure of homeostasis to limit food consumption whenever foods loaded with salt, sugar or fat are freely available. DOI:http://dx.doi.org/10.7554/eLife.04811.002
Collapse
Affiliation(s)
- Mehdi Keramati
- Group for Neural Theory, INSERM U960, Departément des Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Boris Gutkin
- Group for Neural Theory, INSERM U960, Departément des Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, France
| |
Collapse
|
92
|
|
93
|
Anselme P. Incentive salience attribution under reward uncertainty: A Pavlovian model. Behav Processes 2014; 111:6-18. [PMID: 25444780 DOI: 10.1016/j.beproc.2014.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/29/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
There is a vast literature on the behavioural effects of partial reinforcement in Pavlovian conditioning. Compared with animals receiving continuous reinforcement, partially rewarded animals typically show (a) a slower development of the conditioned response (CR) early in training and (b) a higher asymptotic level of the CR later in training. This phenomenon is known as the partial reinforcement acquisition effect (PRAE). Learning models of Pavlovian conditioning fail to account for it. In accordance with the incentive salience hypothesis, it is here argued that incentive motivation (or 'wanting') plays a more direct role in controlling behaviour than does learning, and reward uncertainty is shown to have an excitatory effect on incentive motivation. The psychological origin of that effect is discussed and a computational model integrating this new interpretation is developed. Many features of CRs under partial reinforcement emerge from this model.
Collapse
Affiliation(s)
- Patrick Anselme
- Département de Psychologie, Cognition & Comportement, Université de Liège, 5 Boulevard du Rectorat (B 32), B 4000 Liège, Belgium.
| |
Collapse
|
94
|
Pezzulo G, van der Meer MAA, Lansink CS, Pennartz CMA. Internally generated sequences in learning and executing goal-directed behavior. Trends Cogn Sci 2014; 18:647-57. [PMID: 25156191 DOI: 10.1016/j.tics.2014.06.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/29/2022]
Abstract
A network of brain structures including hippocampus (HC), prefrontal cortex, and striatum controls goal-directed behavior and decision making. However, the neural mechanisms underlying these functions are unknown. Here, we review the role of 'internally generated sequences': structured, multi-neuron firing patterns in the network that are not confined to signaling the current state or location of an agent, but are generated on the basis of internal brain dynamics. Neurophysiological studies suggest that such sequences fulfill functions in memory consolidation, augmentation of representations, internal simulation, and recombination of acquired information. Using computational modeling, we propose that internally generated sequences may be productively considered a component of goal-directed decision systems, implementing a sampling-based inference engine that optimizes goal acquisition at multiple timescales of on-line choice, action control, and learning.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Roma, Italy
| | - Matthijs A A van der Meer
- Department of Biology and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Carien S Lansink
- Swammerdam Institute for Life Sciences - Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Amsterdam Brain and Cognition, Research Priority Program Brain and Cognition, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences - Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Amsterdam Brain and Cognition, Research Priority Program Brain and Cognition, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.
| |
Collapse
|
95
|
Experimental predictions drawn from a computational model of sign-trackers and goal-trackers. ACTA ACUST UNITED AC 2014; 109:78-86. [PMID: 24954026 DOI: 10.1016/j.jphysparis.2014.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/20/2022]
Abstract
Gaining a better understanding of the biological mechanisms underlying the individual variation observed in response to rewards and reward cues could help to identify and treat individuals more prone to disorders of impulsive control, such as addiction. Variation in response to reward cues is captured in rats undergoing autoshaping experiments where the appearance of a lever precedes food delivery. Although no response is required for food to be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly the lever. The impulsive and often maladaptive characteristics of the latter response are reminiscent of addictive behaviour in humans. In a previous article, we developed a computational model accounting for a set of experimental data regarding sign-trackers and goal-trackers. Here we show new simulations of the model to draw experimental predictions that could help further validate or refute the model. In particular, we apply the model to new experimental protocols such as injecting flupentixol locally into the core of the nucleus accumbens rather than systemically, and lesioning of the core of the nucleus accumbens before or after conditioning. In addition, we discuss the possibility of removing the food magazine during the inter-trial interval. The predictions from this revised model will help us better understand the role of different brain regions in the behaviours expressed by sign-trackers and goal-trackers.
Collapse
|
96
|
Hall KD, Hammond RA, Rahmandad H. Dynamic interplay among homeostatic, hedonic, and cognitive feedback circuits regulating body weight. Am J Public Health 2014; 104:1169-75. [PMID: 24832422 DOI: 10.2105/ajph.2014.301931] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Obesity is associated with a prolonged imbalance between energy intake and expenditure, both of which are regulated by multiple feedback processes within and across individuals. These processes constitute 3 hierarchical control systems-homeostatic, hedonic, and cognitive-with extensive interaction among them. Understanding complex eating behavior requires consideration of all 3 systems and their interactions. Existing models of these processes are widely scattered, with relatively few attempts to integrate across mechanisms. We briefly review available empirical evidence and dynamic models, discussing challenges and potential for better integration. We conclude that developing richer models of dynamic interplay among systems should be a priority in the future study of obesity and that systems science modeling offers the potential to aid in this goal.
Collapse
Affiliation(s)
- Kevin D Hall
- Kevin D. Hall is with the National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. Ross A. Hammond is with the Brookings Institution, Washington, DC. Hazhir Rahmandad is with the Department of Industrial and Systems Engineering at Virginia Tech, Falls Church, VA
| | | | | |
Collapse
|
97
|
Aquili L. The causal role between phasic midbrain dopamine signals and learning. Front Behav Neurosci 2014; 8:139. [PMID: 24795588 PMCID: PMC4007013 DOI: 10.3389/fnbeh.2014.00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Affiliation(s)
- Luca Aquili
- Department of Psychology, Sunway University Bandar Sunway, Petaling Jaya, Malaysia
| |
Collapse
|
98
|
Colombo M. Deep and beautiful. The reward prediction error hypothesis of dopamine. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2014; 45:57-67. [PMID: 24252364 DOI: 10.1016/j.shpsc.2013.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
According to the reward-prediction error hypothesis (RPEH) of dopamine, the phasic activity of dopaminergic neurons in the midbrain signals a discrepancy between the predicted and currently experienced reward of a particular event. It can be claimed that this hypothesis is deep, elegant and beautiful, representing one of the largest successes of computational neuroscience. This paper examines this claim, making two contributions to existing literature. First, it draws a comprehensive historical account of the main steps that led to the formulation and subsequent success of the RPEH. Second, in light of this historical account, it explains in which sense the RPEH is explanatory and under which conditions it can be justifiably deemed deeper than the incentive salience hypothesis of dopamine, which is arguably the most prominent contemporary alternative to the RPEH.
Collapse
Affiliation(s)
- Matteo Colombo
- Tilburg Center for Logic, General Ethics, and Philosophy of Science, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.
| |
Collapse
|
99
|
Keller KL, Vollrath-Smith FR, Jafari M, Ikemoto S. Synergistic interaction between caloric restriction and amphetamine in food-unrelated approach behavior of rats. Psychopharmacology (Berl) 2014; 231:825-40. [PMID: 24101157 PMCID: PMC3945411 DOI: 10.1007/s00213-013-3300-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022]
Abstract
RATIONALE Approach behavior is regulated by the brain integrating information about environment and body state. Psychoactive drugs interact with this process. OBJECTIVES We examined the extent to which caloric (i.e., food) restriction, amphetamine (AMPH) and lithium interact in potentiating locomotor activity and responding reinforced by visual stimulus (VS), a reward unrelated to energy homeostasis. METHODS Rats either had ad libitum access to food or received daily rations that maintained 85-90 % of their original body weights. Leverpressing turned on a cue light for 1 s and turned off house light for 5 s. AMPH and lithium were administered through intraperitoneal injections and diet, respectively. RESULTS Food restriction or AMPH (1 mg/kg) alone had little effect on VS-reinforced responding; however, the combination of the two conditions markedly potentiated VS-reinforced responding (fourfold). Food restriction lasting 7 days or longer was needed to augment AMPH's effect on VS-reinforced responding. AMPH (0.3-3 mg/kg) potentiated locomotor activity similarly between food-restricted and ad libitum groups. Repeated injections of AMPH-sensitized locomotor activity, but not VS-reinforced responding. In addition, while chronic lithium treatments (0.2 % lithium carbonate chow) reduced VS-reinforced responding, chronic lithium further augmented AMPH-potentiated VS-reinforced responding. CONCLUSIONS Food restriction interacts with psychoactive drugs to potentiate goal-directed responding unrelated to food seeking in a much more powerful manner than previously thought. The novel finding that lithium can augment a psychostimulant effect of AMPH suggests caution when combining lithium and psychostimulant drugs in clinical settings.
Collapse
Affiliation(s)
- Kristine L. Keller
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore, Maryland, USA
| | - Fiori R. Vollrath-Smith
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore, Maryland, USA
| | - Mehrnoosh Jafari
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, Germany
| | - Satoshi Ikemoto
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore, Maryland, USA,Corresponding author: Satoshi Ikemoto, NIDA, NIH, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA, Tel: (443) 740-2722, Fax: (443) 740-2827,
| |
Collapse
|
100
|
Smith KS, Graybiel AM. Investigating habits: strategies, technologies and models. Front Behav Neurosci 2014; 8:39. [PMID: 24574988 PMCID: PMC3921576 DOI: 10.3389/fnbeh.2014.00039] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/25/2014] [Indexed: 12/27/2022] Open
Abstract
Understanding habits at a biological level requires a combination of behavioral observations and measures of ongoing neural activity. Theoretical frameworks as well as definitions of habitual behaviors emerging from classic behavioral research have been enriched by new approaches taking account of the identification of brain regions and circuits related to habitual behavior. Together, this combination of experimental and theoretical work has provided key insights into how brain circuits underlying action-learning and action-selection are organized, and how a balance between behavioral flexibility and fixity is achieved. New methods to monitor and manipulate neural activity in real time are allowing us to have a first look “under the hood” of a habit as it is formed and expressed. Here we discuss ideas emerging from such approaches. We pay special attention to the unexpected findings that have arisen from our own experiments suggesting that habitual behaviors likely require the simultaneous activity of multiple distinct components, or operators, seen as responsible for the contrasting dynamics of neural activity in both cortico-limbic and sensorimotor circuits recorded concurrently during different stages of habit learning. The neural dynamics identified thus far do not fully meet expectations derived from traditional models of the structure of habits, and the behavioral measures of habits that we have made also are not fully aligned with these models. We explore these new clues as opportunities to refine an understanding of habits.
Collapse
Affiliation(s)
- Kyle S Smith
- Department of Psychological and Brain Sciences, Dartmouth College Hanover, NH, USA
| | - Ann M Graybiel
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|