51
|
Singh PP, Srivastava D, Shukla S, Varsha. Rhizophagus proliferus genome sequence reiterates conservation of genetic traits in AM fungi, but predicts higher saprotrophic activity. Arch Microbiol 2021; 204:105. [DOI: 10.1007/s00203-021-02651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022]
|
52
|
Patnaik A, Sharma B, Ahmad R, Kumar A, Chitrotpala R, Gupta M. A Case of Bilateral Central Retinal Artery Occlusion in a Post-COVID Rhino-Orbital-Cerebral Mucormycosis Patient. Cureus 2021; 13:e20062. [PMID: 35003938 PMCID: PMC8723730 DOI: 10.7759/cureus.20062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
|
53
|
COVID-19-associated-mucormycosis: possible role of free iron uptake and immunosuppression. Mol Biol Rep 2021; 49:747-754. [PMID: 34709573 PMCID: PMC8552432 DOI: 10.1007/s11033-021-06862-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 01/19/2023]
Abstract
COVID-19-associated-mucormycosis, commonly referred to as the "Black Fungus," is a rare secondary fungal infection in COVID-19 patients prompted by a group of mucor molds. Association of this rare fungal infection with SARS-CoV-2 infection has been declared as an endemic in India, with minor cases in several other countries around the globe. Although the fungal infection is not contagious like the viral infection, the causative fungal agent is omnipresent. Infection displays an overall mortality rate of around 50%, with many other secondary side effects posing a potential threat in exacerbating COVID-19 mortality rates. In this review, we have accessed the role of free iron availability in COVID-19 patients that might correlate to the pathogenesis of the causative fungal agent. Besides, we have analyzed the negative consequences of using immunosuppressive drugs in encouraging this opportunistic fungal infection.
Collapse
|
54
|
Genome Comparisons of the Fission Yeasts Reveal Ancient Collinear Loci Maintained by Natural Selection. J Fungi (Basel) 2021; 7:jof7100864. [PMID: 34682285 PMCID: PMC8537764 DOI: 10.3390/jof7100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Fission yeasts have a unique life history and exhibit distinct evolutionary patterns from other yeasts. Besides, the species demonstrate stable genome structures despite the relatively fast evolution of their genomic sequences. To reveal what could be the reason for that, comparative genomic analyses were carried out. Our results provided evidence that the structural and sequence evolution of the fission yeasts were correlated. Moreover, we revealed ancestral locally collinear blocks (aLCBs), which could have been inherited from their last common ancestor. These aLCBs proved to be the most conserved regions of the genomes as the aLCBs contain almost eight genes/blocks on average in the same orientation and order across the species. Gene order of the aLCBs is mainly fission-yeast-specific but supports the idea of filamentous ancestors. Nevertheless, the sequences and gene structures within the aLCBs are as mutable as any sequences in other parts of the genomes. Although genes of certain Gene Ontology (GO) categories tend to cluster at the aLCBs, those GO enrichments are not related to biological functions or high co-expression rates, they are, rather, determined by the density of essential genes and Rec12 cleavage sites. These data and our simulations indicated that aLCBs might not only be remnants of ancestral gene order but are also maintained by natural selection.
Collapse
|
55
|
Montoliu-Nerin M, Sánchez-García M, Bergin C, Kutschera VE, Johannesson H, Bever JD, Rosling A. In-depth Phylogenomic Analysis of Arbuscular Mycorrhizal Fungi Based on a Comprehensive Set of de novo Genome Assemblies. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:716385. [PMID: 37744125 PMCID: PMC10512289 DOI: 10.3389/ffunb.2021.716385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/06/2021] [Indexed: 09/26/2023]
Abstract
Morphological characters and nuclear ribosomal DNA (rDNA) phylogenies have so far been the basis of the current classifications of arbuscular mycorrhizal (AM) fungi. Improved understanding of the evolutionary history of AM fungi requires extensive ortholog sampling and analyses of genome and transcriptome data from a wide range of taxa. To circumvent the need for axenic culturing of AM fungi we gathered and combined genomic data from single nuclei to generate de novo genome assemblies covering seven families of AM fungi. We successfully sequenced the genomes of 15 AM fungal species for which genome data was not previously available. Comparative analysis of the previously published Rhizophagus irregularis DAOM197198 assembly confirm that our novel workflow generates genome assemblies suitable for phylogenomic analysis. Predicted genes of our assemblies, together with published protein sequences of AM fungi and their sister clades, were used for phylogenomic analyses. We evaluated the phylogenetic placement of Glomeromycota in relation to its sister phyla (Mucoromycota and Mortierellomycota), and found no support to reject a polytomy. Finally, we explored the phylogenetic relationships within Glomeromycota. Our results support family level classification from previous phylogenetic studies, and the polyphyly of the order Glomerales with Claroideoglomeraceae as the sister group to Glomeraceae and Diversisporales.
Collapse
Affiliation(s)
- Merce Montoliu-Nerin
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Marisol Sánchez-García
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Uppsala, Sweden
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claudia Bergin
- Microbial Single Cell Genomics Facility, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Verena Esther Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Systematic Biology, Uppsala University, Uppsala, Sweden
| | - James D. Bever
- Department of Ecology and Evolutionary Biology, and Kansas Biological Survey, University of Kansas, Lawrence, KS, United States
| | - Anna Rosling
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
56
|
Fernando LD, Dickwella Widanage MC, Penfield J, Lipton AS, Washton N, Latgé JP, Wang P, Zhang L, Wang T. Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Front Mol Biosci 2021; 8:727053. [PMID: 34513930 PMCID: PMC8423923 DOI: 10.3389/fmolb.2021.727053] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Chitin is a major carbohydrate component of the fungal cell wall and a promising target for novel antifungal agents. However, it is technically challenging to characterize the structure of this polymer in native cell walls. Here, we recorded and compared 13C chemical shifts of chitin using isotopically enriched cells of six Aspergillus, Rhizopus, and Candida strains, with data interpretation assisted by principal component analysis (PCA) and linear discriminant analysis (LDA) methods. The structure of chitin is found to be intrinsically heterogeneous, with peak multiplicity detected in each sample and distinct fingerprints observed across fungal species. Fungal chitin exhibits partial similarity to the model structures of α- and γ-allomorphs; therefore, chitin structure is not significantly affected by interactions with other cell wall components. Addition of antifungal drugs and salts did not significantly perturb the chemical shifts, revealing the structural resistance of chitin to external stress. In addition, the structure of the deacetylated form, chitosan, was found to resemble a relaxed two-fold helix conformation. This study provides high-resolution information on the structure of chitin and chitosan in their cellular contexts. The method is applicable to the analysis of other complex carbohydrates and polymer composites.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jackson Penfield
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Nancy Washton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jean-Paul Latgé
- Unité des Aspergillus, Département de Mycologie, Institut Pasteur, Paris, France
| | - Ping Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
57
|
Sahu RK, Salem-Bekhit MM, Bhattacharjee B, Almoshari Y, Ikbal AMA, Alshamrani M, Bharali A, Salawi A, Widyowati R, Alshammari A, Elbagory I. Mucormycosis in Indian COVID-19 Patients: Insight into Its Patho-Genesis, Clinical Manifestation, and Management Strategies. Antibiotics (Basel) 2021; 10:1079. [PMID: 34572661 PMCID: PMC8468123 DOI: 10.3390/antibiotics10091079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Mucormycosis in patients who have COVID-19 or who are otherwise immunocompromised has become a global problem, causing significant morbidity and mortality. Infection is debilitating and fatal, leading to loss of organs and emotional trauma. Radiographic manifestations are not specific, but diagnosis can be made through microscopic examination of materials collected from necrotic lesions. Treatment requires multidisciplinary expertise, as the fungus enters through the eyes and nose and may even reach the brain. Use of the many antifungal drugs available is limited by considerations of resistance and toxicity, but nanoparticles can overcome such limitations by reducing toxicity and increasing bioavailability. The lipid formulation of amphotericin-B (liposomal Am-B) is the first-line treatment for mucormycosis in COVID-19 patients, but its high cost and low availability have prompted a shift toward surgery, so that surgical debridement to remove all necrotic lesions remains the hallmark of effective treatment of mucormycosis in COVID-19. This review highlights the pathogenesis, clinical manifestation, and management of mucormycosis in patients who have COVID-19.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (R.K.S.); (R.W.)
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, India;
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar 799022, India
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Alakesh Bharali
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Hatkhowapara, Guwahati 781017, India;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (R.K.S.); (R.W.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ibrahim Elbagory
- College of Pharmacy, Northern Border University, Arar 1321, Saudi Arabia;
| |
Collapse
|
58
|
Akan OD, Udofia GE, Okeke ES, Mgbechidinma CL, Okoye CO, Zoclanclounon YAB, Atakpa EO, Adebanjo OO. Plastic waste: Status, degradation and microbial management options for Africa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112758. [PMID: 34030015 DOI: 10.1016/j.jenvman.2021.112758] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
This paper presents a review of synthetic polymer (notably plastic) wastes profiles in Africa, their current management status, and better options. Data revealed that of the approximated 86.14 million metric tonnes and 31.5 million metric tonnes of primary polymers and plastics, respectively, and an estimated 230 million metric tonnes of plastic components imported between 1990 and 2017, about 17 million metric tonnes are mismanaged. Leading African nations on the plastic wastes generator table in increasing order are Tunisia (6.9%), Morocco (9.6%), Algeria (11.2%), South Africa (11.6%), Nigeria (16.9%), and the chief is Egypt (18.4%). The volume of plastic wastes generated in Africa directly correlates with her increasing population status, however, the current treatment options have major drawbacks (high energy and technological input, high demand for space, and creation of obnoxious by-products). Ineffective regulations, poor monitoring, and slow adoption of veritable practices by governments are responsible for the steady increase in plastic volume in the African landscapes and environments. In Nigeria, only about 9% and 12% of the total generated wastes are recycled and incinerated. The remainder bulk is either discarded into waste dumps (and a few available landfills) or natural environments. There is a paucity of standard plastic biodegradative work by African scientists, and only a few works show detection of competent synthetic plastic degrading microbes globally. Asides from the ills of possible omission of core degraders, there is a need for researchers to follow standard degradation procedures to arrive at efficient, reproducible, and generally accepted outcomes utilizable on a larger scale. Thus, metagenomic search on the vast African urban and rural plastisphere is the best isolation option.
Collapse
Affiliation(s)
- Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 41004, China; Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Mkpat Enin LGA, Uyo P.M.B., 1167, Akwa-Ibom State, Nigeria.
| | - Godwin Evans Udofia
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo PMB, 1017, Nigeria
| | - Emmanuel Sunday Okeke
- Environmental Chemistry and Toxicology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies University of Nigeria, Nsukka, 410001, Nigeria.
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Yedomon Ange Bovys Zoclanclounon
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea; Department of Management of Environment, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 POB 2009, Cotonou, Benin
| | | | | |
Collapse
|
59
|
Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the Dots: Interplay of Pathogenic Mechanisms between COVID-19 Disease and Mucormycosis. J Fungi (Basel) 2021; 7:616. [PMID: 34436155 PMCID: PMC8400165 DOI: 10.3390/jof7080616] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19)-associated mucormycosis (CAM) is an emerging threat globally, especially in India. More than 40,000 CAM cases have been reported in India. The emergence of CAM cases in India has been attributed to environmental, host, and iatrogenic factors. Mucorales spore burden has been reported globally; however, their presence is higher in tropical countries such as India, contributing to the emergence of CAM. Before the COVID-19 pandemic, patients with diabetes mellitus, haematological malignancies, solid organ transplants, corticosteroid therapy and neutropenia were more prone to mucormycosis, whereas in COVID-19 patients, virus-induced endothelial dysfunction, hyperglycaemia, and immune dysfunction following corticosteroid use increase the risk of acquiring mucormycosis. The interaction of Mucorales spores with the epithelial cells, followed by endothelial invasion, is a crucial step in the pathogenesis of mucormycosis. Endothelial damage and increased endothelial receptor expression induced by COVID-19 infection may predispose patients to CAM. COVID-19 infection may directly induce hyperglycaemia by damaging beta cells of the pancreas or by corticosteroid therapy, which may contribute to CAM pathogenesis. Iron acquisition from the host, especially in diabetic ketoacidosis (DKA) or deferoxamine therapy, is an important virulence trait of Mucorales. Similarly, the hyperferritinaemia caused by COVID-19 may act as a source of iron for Mucorales growth and invasion. In addition, corticosteroid treatment reduces or abolishes the innate immune functions of phagocytic cells contributing to the pathogenesis of CAM. This review aims to discuss primarily the host and iatrogenic factors shared between COVID-19 and mucormycosis that could explain the emergence of CAM.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Medical Microbiology, Department of Public Health, International Higher School of Medicine, Issyk-Kul Regional Campus, Cholpon-Ata 722125, Kyrgyzstan;
| | - Anna Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Raees Ahmad Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Shivaprakash Mandya Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| |
Collapse
|
60
|
Zhou X, Li J, Tang N, Xie H, Fan X, Chen H, Tang M, Xie X. Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms 2021; 9:1557. [PMID: 34442636 PMCID: PMC8401276 DOI: 10.3390/microorganisms9081557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutualistic symbiosis with a majority of terrestrial vascular plants. To achieve an efficient nutrient trade with their hosts, AM fungi sense external and internal nutrients, and integrate different hierarchic regulations to optimize nutrient acquisition and homeostasis during mycorrhization. However, the underlying molecular networks in AM fungi orchestrating the nutrient sensing and signaling remain elusive. Based on homology search, we here found that at least 72 gene components involved in four nutrient sensing and signaling pathways, including cAMP-dependent protein kinase A (cAMP-PKA), sucrose non-fermenting 1 (SNF1) protein kinase, target of rapamycin kinase (TOR) and phosphate (PHO) signaling cascades, are well conserved in AM fungi. Based on the knowledge known in model yeast and filamentous fungi, we outlined the possible gene networks functioning in AM fungi. These pathways may regulate the expression of downstream genes involved in nutrient transport, lipid metabolism, trehalase activity, stress resistance and autophagy. The RNA-seq analysis and qRT-PCR results of some core genes further indicate that these pathways may play important roles in spore germination, appressorium formation, arbuscule longevity and sporulation of AM fungi. We hope to inspire further studies on the roles of these candidate genes involved in these nutrient sensing and signaling pathways in AM fungi and AM symbiosis.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
| | - Nianwu Tang
- UMR Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280 Champenoux, France;
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| |
Collapse
|
61
|
Lackner N, Posch W, Lass-Flörl C. Microbiological and Molecular Diagnosis of Mucormycosis: From Old to New. Microorganisms 2021; 9:microorganisms9071518. [PMID: 34361953 PMCID: PMC8304313 DOI: 10.3390/microorganisms9071518] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Members of the order Mucorales may cause severe invasive fungal infections (mucormycosis) in immune-compromised and otherwise ill patients. Diagnosis of Mucorales infections and discrimination from other filamentous fungi are crucial for correct management. Here, we present an overview of current state-of-the-art mucormycosis diagnoses, with a focus on recent developments in the molecular field. Classical diagnostic methods comprise histology/microscopy as well as culture and are still the gold standard. Newer molecular methods are evolving quickly and display great potential in early diagnosis, although standardization is still missing. Among them, quantitative PCR assays with or without melt curve analysis are most widely used to detect fungal DNA in clinical samples. Depending on the respective assay, sequencing of the resulting PCR product can be necessary for genus or even species identification. Further, DNA-based methods include microarrays and PCR-ESI-MS. However, general laboratory standards are still in development, meaning that molecular methods are currently limited to add-on analytics to culture and microscopy.
Collapse
|
62
|
Tõlgo M, Hüttner S, Rugbjerg P, Thuy NT, Thanh VN, Larsbrink J, Olsson L. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:131. [PMID: 34082802 PMCID: PMC8176577 DOI: 10.1186/s13068-021-01975-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biomass-degrading enzymes with improved activity and stability can increase substrate saccharification and make biorefineries economically feasible. Filamentous fungi are a rich source of carbohydrate-active enzymes (CAZymes) for biomass degradation. The newly isolated LPH172 strain of the thermophilic Ascomycete Thielavia terrestris has been shown to possess high xylanase and cellulase activities and tolerate low pH and high temperatures. Here, we aimed to illuminate the lignocellulose-degrading machinery and novel carbohydrate-active enzymes in LPH172 in detail. RESULTS We sequenced and analyzed the 36.6-Mb genome and transcriptome of LPH172 during growth on glucose, cellulose, rice straw, and beechwood xylan. 10,128 predicted genes were found in total, which included 411 CAZy domains. Compared to other fungi, auxiliary activity (AA) domains were particularly enriched. A higher GC content was found in coding sequences compared to the overall genome, as well as a high GC3 content, which is hypothesized to contribute to thermophilicity. Primarily auxiliary activity (AA) family 9 lytic polysaccharide monooxygenase (LPMO) and glycoside hydrolase (GH) family 7 glucanase encoding genes were upregulated when LPH172 was cultivated on cellulosic substrates. Conventional hemicellulose encoding genes (GH10, GH11 and various CEs), as well as AA9 LPMOs, were upregulated when LPH172 was cultivated on xylan. The observed co-expression and co-upregulation of genes encoding AA9 LPMOs, other AA CAZymes, and (hemi)cellulases point to a complex and nuanced degradation strategy. CONCLUSIONS Our analysis of the genome and transcriptome of T. terrestris LPH172 elucidates the enzyme arsenal that the fungus uses to degrade lignocellulosic substrates. The study provides the basis for future characterization of potential new enzymes for industrial biomass saccharification.
Collapse
Affiliation(s)
- Monika Tõlgo
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Silvia Hüttner
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Peter Rugbjerg
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Nguyen Thanh Thuy
- Center for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Hanoi, Vietnam
| | - Vu Nguyen Thanh
- Center for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Hanoi, Vietnam
| | - Johan Larsbrink
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Wallenberg Wood Science Centre, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
63
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
64
|
Structure prediction and function characterization of WC-2 proteins in Blakeslea trispora. Int Microbiol 2021; 24:427-439. [PMID: 33973112 DOI: 10.1007/s10123-021-00181-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Blakeslea trispora is known for its potential to produce an excess of carotenoids in mixed cultures of strains of opposite sex. The biosynthesis of β-carotene in B. trispora is activated not only by sex hormone trisporic acid but also by light, especially blue light. In fungi, the most intensively investigated blue-light reception proteins are WC-1 and WC-2, and the two proteins form a transcription factor complex which is called WCC by their PAS domains. Notably, multiple genes similar to wc-1 and wc-2 have been identified and characterized in Phycomyces, Mucor, and Rhizopus. Here we report that there are four members of wc-2-like gene family in B. trispora genome: Btwc-2a, Btwc-2b, Btwc-2c, and Btwc-2d. When the mycelia were exposed to blue light, their transcription levels are regulated differentially. Except for BtWC-2b, which only has a PAS domain, the other three proteins contain both a PAS domain and a ZnF domain. BtWC-2a interacts with either BtWC-1a or BtWC-1c to form different photoreceptor complexes in yeast two-hybrid assays, which is the unique situation not yet described in other fungi. In addition, the protein-protein docking analysis by the predicted 3D structures showed that the two complexes are structurally different. These results suggested that WC proteins of B. trispora are still involved in light regulation by forming WCC and the regulation mechanism of the photobiology appears to be more complex.
Collapse
|
65
|
Heineike BM, El-Samad H. Paralogs in the PKA Regulon Traveled Different Evolutionary Routes to Divergent Expression in Budding Yeast. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:642336. [PMID: 37744115 PMCID: PMC10512328 DOI: 10.3389/ffunb.2021.642336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 09/26/2023]
Abstract
Functional divergence of duplicate genes, or paralogs, is an important driver of novelty in evolution. In the model yeast Saccharomyces cerevisiae, there are 547 paralog gene pairs that survive from an interspecies Whole Genome Hybridization (WGH) that occurred ~100MYA. In this work, we report that ~1/6th (110) of these WGH paralogs pairs (or ohnologs) are differentially expressed with a striking pattern upon Protein Kinase A (PKA) inhibition. One member of each pair in this group has low basal expression that increases upon PKA inhibition, while the other has moderate and unchanging expression. For these genes, expression of orthologs upon PKA inhibition in the non-WGH species Kluyveromyces lactis and for PKA-related stresses in other budding yeasts shows unchanging expression, suggesting that lack of responsiveness to PKA was likely the typical ancestral phenotype prior to duplication. Promoter sequence analysis across related budding yeast species further revealed that the subsequent emergence of PKA-dependence took different evolutionary routes. In some examples, regulation by PKA and differential expression appears to have arisen following the WGH, while in others, regulation by PKA appears to have arisen in one of the two parental lineages prior to the WGH. More broadly, our results illustrate the unique opportunities presented by a WGH event for generating functional divergence by bringing together two parental lineages with separately evolved regulation into one species. We propose that functional divergence of two ohnologs can be facilitated through such regulatory divergence.
Collapse
Affiliation(s)
- Benjamin M. Heineike
- Bioinformatics Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
66
|
Stanford FA, Matthies N, Cseresnyés Z, Figge MT, Hassan MIA, Voigt K. Expression Patterns in Reductive Iron Assimilation and Functional Consequences during Phagocytosis of Lichtheimia corymbifera, an Emerging Cause of Mucormycosis. J Fungi (Basel) 2021; 7:jof7040272. [PMID: 33916756 PMCID: PMC8065604 DOI: 10.3390/jof7040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential micronutrient for most organisms and fungi are no exception. Iron uptake by fungi is facilitated by receptor-mediated internalization of siderophores, heme and reductive iron assimilation (RIA). The RIA employs three protein groups: (i) the ferric reductases (Fre5 proteins), (ii) the multicopper ferroxidases (Fet3) and (iii) the high-affinity iron permeases (Ftr1). Phenotyping under different iron concentrations revealed detrimental effects on spore swelling and hyphal formation under iron depletion, but yeast-like morphology under iron excess. Since access to iron is limited during pathogenesis, pathogens are placed under stress due to nutrient limitations. To combat this, gene duplication and differential gene expression of key iron uptake genes are utilized to acquire iron against the deleterious effects of iron depletion. In the genome of the human pathogenic fungus L. corymbifera, three, four and three copies were identified for FRE5, FTR1 and FET3 genes, respectively. As in other fungi, FET3 and FTR1 are syntenic and co-expressed in L. corymbifera. Expression of FRE5, FTR1 and FET3 genes is highly up-regulated during iron limitation (Fe-), but lower during iron excess (Fe+). Fe- dependent upregulation of gene expression takes place in LcFRE5 II and III, LcFTR1 I and II, as well as LcFET3 I and II suggesting a functional role in pathogenesis. The syntenic LcFTR1 I–LcFET3 I gene pair is co-expressed during germination, whereas LcFTR1 II- LcFET3 II is co-expressed during hyphal proliferation. LcFTR1 I, II and IV were overexpressed in Saccharomyces cerevisiae to represent high and moderate expression of intracellular transport of Fe3+, respectively. Challenge of macrophages with the yeast mutants revealed no obvious role for LcFTR1 I, but possible functions of LcFTR1 II and IVs in recognition by macrophages. RIA expression pattern was used for a new model of interaction between L. corymbifera and macrophages.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute (HKI), 07745 Jena, Germany; (F.A.S.); (N.M.); (M.I.A.H.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Nina Matthies
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute (HKI), 07745 Jena, Germany; (F.A.S.); (N.M.); (M.I.A.H.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute, 12622 Jena, Germany;
| | - Marc Thilo Figge
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Applied Systems Biology, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute, 12622 Jena, Germany;
| | - Mohamed I. Abdelwahab Hassan
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute (HKI), 07745 Jena, Germany; (F.A.S.); (N.M.); (M.I.A.H.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
- National Research Centre, Pests & Plant Protection Department, 33rd El Buhouth St., Dokki, Giza 12622, Egypt
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute (HKI), 07745 Jena, Germany; (F.A.S.); (N.M.); (M.I.A.H.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Correspondence: or ; Tel.: +49-3641-532-1395
| |
Collapse
|
67
|
Bardeci NG, Tofolón E, Trajtenberg F, Caramelo J, Larrieux N, Rossi S, Buschiazzo A, Moreno S. The crystal structure of yeast regulatory subunit reveals key evolutionary insights into Protein Kinase A oligomerization. J Struct Biol 2021; 213:107732. [PMID: 33819633 DOI: 10.1016/j.jsb.2021.107732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Protein Kinase A (PKA) is a widespread enzyme that plays a key role in many signaling pathways from lower eukaryotes to metazoans. In mammals, the regulatory (R) subunits sequester and target the catalytic (C) subunits to proper subcellular locations. This targeting is accomplished by the dimerization and docking (D/D) domain of the R subunits. The activation of the holoenzyme depends on the binding of the second messenger cAMP. The only available structures of the D/D domain proceed from mammalian sources. Unlike dimeric mammalian counterparts, the R subunit from Saccharomyces cerevisiae (Bcy1) forms tetramers in solution. Here we describe the first high-resolution structure of a non-mammalian D/D domain. The tetramer in the crystals of the Bcy1 D/D domain is a dimer of dimers that retain the classical D/D domain fold. By using phylogenetic and structural analyses combined with site-directed mutagenesis, we found that fungal R subunits present an insertion of a single amino acid at the D/D domain that shifts the position of a downstream, conserved arginine. This residue participates in intra-dimer interactions in mammalian D/D domains, while due to this insertion it is involved in inter-dimer contacts in Bcy1, which are crucial for the stability of the tetramer. This surprising finding challenges well-established concepts regarding the oligomeric state within the PKAR protein family and provides important insights into the yet unexplored structural diversity of the D/D domains and the molecular determinants of R subunit oligomerization.
Collapse
Affiliation(s)
- Nicolás González Bardeci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina.
| | - Enzo Tofolón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Julio Caramelo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Fundación Instituto Leloir, Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires C1405BWE, Argentina
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Silvia Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Silvia Moreno
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina.
| |
Collapse
|
68
|
Bruno M, Horst R, Pekmezovic M, Kumar V, Li Y, Netea MG, Latgé JP, Gresnigt MS, van de Veerdonk FL. Data of common and species-specific transcriptional host responses to pathogenic fungi. Data Brief 2021; 35:106928. [PMID: 33850980 PMCID: PMC8039545 DOI: 10.1016/j.dib.2021.106928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Using a comparative RNA-Sequencing based transcriptional profiling approach, responses of primary human peripheral blood mononuclear cells (PBMCs) to common human pathogenic fungi have been characterized (Bruno et al. Computational and Structural Biology Journal). Primary human PBMCs were stimulated in vitro with the fungi A. fumigatus, C. albicans, and R. oryzae after which RNA was isolated and sequenced. From raw sequencing reads differential expressed genes in response to the different fungi where calculated by comparison with unstimulated cells. By overlapping differentially expressed genes in response to the pathogenic fungi A. fumigatus, C. albicans, and R. oryzae a dataset was generated that encompasses a common response to these three distinct fungi as well as species-specific responses. Here we present datasets on these common and species-specific responses that complement the original study (Bruno et al. Computational and Structural Biology Journal). These data serve to facilitate further fundamental research on the immune response to opportunistic pathogenic fungi such as A. fumigatus, C. albicans, and R. oryzae.
Collapse
Affiliation(s)
- Mariolina Bruno
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robter Horst
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Mark S Gresnigt
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
69
|
Mucoricin is a ricin-like toxin that is critical for the pathogenesis of mucormycosis. Nat Microbiol 2021; 6:313-326. [PMID: 33462434 PMCID: PMC7914224 DOI: 10.1038/s41564-020-00837-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/20/2020] [Indexed: 01/28/2023]
Abstract
Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis. Inhibition of the toxin in Rhizopus delemar through RNA interference compromises the ability of the fungus to damage host cells and attenuates virulence in mice. This 17 kDa toxin has structural and functional features of the plant toxin ricin, including the ability to inhibit protein synthesis through its N-glycosylase activity, the existence of a motif that mediates vascular leak and a lectin sequence. Antibodies against the toxin inhibit R. delemar- or toxin-mediated vascular permeability in vitro and cross react with ricin. A monoclonal anti-ricin B chain antibody binds to the toxin and also inhibits its ability to cause vascular permeability. Therefore, we propose the name 'mucoricin' for this toxin. Not only is mucoricin important in the pathogenesis of mucormycosis but our data suggest that a ricin-like toxin is produced by organisms beyond the plant and bacterial kingdoms. Importantly, mucoricin should be a promising therapeutic target.
Collapse
|
70
|
Muszewska A, Okrasińska A, Steczkiewicz K, Drgas O, Orłowska M, Perlińska-Lenart U, Aleksandrzak-Piekarczyk T, Szatraj K, Zielenkiewicz U, Piłsyk S, Malc E, Mieczkowski P, Kruszewska JS, Bernat P, Pawłowska J. Metabolic Potential, Ecology and Presence of Associated Bacteria Is Reflected in Genomic Diversity of Mucoromycotina. Front Microbiol 2021; 12:636986. [PMID: 33679672 PMCID: PMC7928374 DOI: 10.3389/fmicb.2021.636986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e., Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e., U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e., M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e., Thamnidium elegans and Mucor saturninus). We complement computational genome annotation with experimental characteristics of their digestive capabilities, cell wall carbohydrate composition, and extensive total lipid profiles. These traits inferred from genome composition, e.g., in terms of identified encoded enzymes, are in accordance with experimental results. Finally, we link the presence of associated bacteria with observed characteristics. Thamnidium elegans genome harbors an additional, complete genome of an associated bacterium classified to Paenibacillus sp. This fungus displays multiple altered traits compared to the remaining isolates, regardless of their evolutionary distance. For instance, it has expanded carbon assimilation capabilities, e.g., efficiently degrades carboxylic acids, and has a higher diacylglycerol:triacylglycerol ratio and skewed phospholipid composition which suggests a more rigid cellular membrane. The bacterium can complement the host enzymatic capabilities, alter the fungal metabolism, cell membrane composition but does not change the composition of the cell wall of the fungus. Comparison of early-diverging Umbelopsidales with evolutionary younger Mucorales points at several subtle differences particularly in their carbon source preferences and encoded carbohydrate repertoire. Nevertheless, all tested Mucoromycotina share features including the ability to produce 18:3 gamma-linoleic acid, use TAG as the storage lipid and have fucose as a cell wall component.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Drgas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Malc
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Piotr Mieczkowski
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
71
|
Bhardwaj A, Roy V, Priyadarshini I. A mini review: Mucormycosis in coronavirus disease-19, host-iron assimilation, and probiotics as novel therapy. J Pharmacol Pharmacother 2021. [DOI: 10.4103/jpp.jpp_58_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
72
|
Bruno M, Dewi IM, Matzaraki V, ter Horst R, Pekmezovic M, Rösler B, Groh L, Röring RJ, Kumar V, Li Y, Carvalho A, Netea MG, Latgé JP, Gresnigt MS, van de Veerdonk FL. Comparative host transcriptome in response to pathogenic fungi identifies common and species-specific transcriptional antifungal host response pathways. Comput Struct Biotechnol J 2020; 19:647-663. [PMID: 33510868 PMCID: PMC7817431 DOI: 10.1016/j.csbj.2020.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Candidiasis, aspergillosis, and mucormycosis cause the majority of nosocomial fungal infections in immunocompromised patients. Using an unbiased transcriptional profiling in PBMCs exposed to the fungal species causing these infections, we found a core host response in healthy individuals that may govern effective fungal clearance: it consists of 156 transcripts, involving canonical and non-canonical immune pathways. Systematic investigation of key steps in antifungal host defense revealed fungal-specific signatures. As previously demonstrated, Candida albicans induced type I and Type II interferon-related pathways. In contrast, central pattern recognition receptor, reactive oxygen species production, and host glycolytic pathways were down-regulated in response to Rhizopus oryzae, which was associated with an ER-stress response. TLR5 was identified to be uniquely regulated by Aspergillus fumigatus and to control cytokine release in response to this fungus. In conclusion, our data reveals the transcriptional profiles induced by C. albicans, A. fumigatus, and R. oryzae, and describes both the common and specific antifungal host responses that could be exploited for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariolina Bruno
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Intan M.W. Dewi
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vicky Matzaraki
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob ter Horst
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Berenice Rösler
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laszlo Groh
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rutger J. Röring
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vinod Kumar
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Mihai G. Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Mark S. Gresnigt
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
73
|
Červenák F, Sepšiová R, Nosek J, Tomáška Ľ. Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biol Evol 2020; 13:6127219. [PMID: 33537752 PMCID: PMC7857110 DOI: 10.1093/gbe/evaa268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
In virtually every eukaryotic species, the ends of nuclear chromosomes are protected by telomeres, nucleoprotein structures counteracting the end-replication problem and suppressing recombination and undue DNA repair. Although in most cases, the primary structure of telomeric DNA is conserved, there are several exceptions to this rule. One is represented by the telomeric repeats of ascomycetous yeasts, which encompass a great variety of sequences, whose evolutionary origin has been puzzling for several decades. At present, the key questions concerning the driving force behind their rapid evolution and the means of co-evolution of telomeric repeats and telomere-binding proteins remain largely unanswered. Previously published studies addressed mostly the general concepts of the evolutionary origin of telomeres, key properties of telomeric proteins as well as the molecular mechanisms of telomere maintenance; however, the evolutionary process itself has not been analyzed thoroughly. Here, we aimed to inspect the evolution of telomeres in ascomycetous yeasts from the subphyla Saccharomycotina and Taphrinomycotina, with special focus on the evolutionary origin of species-specific telomeric repeats. We analyzed the sequences of telomeric repeats from 204 yeast species classified into 20 families and as a result, we propose a step-by-step model, which integrates the diversity of telomeric repeats, telomerase RNAs, telomere-binding protein complexes and explains a propensity of certain species to generate the repeat heterogeneity within a single telomeric array.
Collapse
Affiliation(s)
- Filip Červenák
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| |
Collapse
|
74
|
Prakash H, Karuppiah P, A Al-Dhabi N, Prasad GS, Badapanda C, Chakrabarti A, Rudramurthy SM. Comparative genomics of Sporothrix species and identification of putative pathogenic-gene determinants. Future Microbiol 2020; 15:1465-1481. [PMID: 33179528 DOI: 10.2217/fmb-2019-0302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To understand the phylogenomics, pathogenic/virulence-associated genes and genomic evolution of pathogenic Sporothrix species. Materials & methods: We performed in silico comparative genome analysis of Sporothrix species using ab initio tools and in-house scripts. We predicted genes and repeats, compared genomes based on synteny, identified orthologous clusters, assessed genes family expansion/contraction, predicted secretory proteins and finally searched for similar sequences from various databases. Results: The phylogenomics revealed that Sporothrix species are closely related to Ophiostoma species. The gene family evolutionary analysis revealed the expansion of genes related to virulence (CFEM domain, iron acquisition genes, lysin motif domain), stress response (Su[var]3-9, Enhancer-of-zeste and Trithorax domain and Domain of unknown function 1996), proteases (aspartic protease, x-pro dipeptidyl-peptidase), cell wall composition associated genes (chitin deacetylase, chitinase) and transporters (major facilitator superfamily transporter, oligo-peptide transporter family) in Sporothrix species. Conclusion: The present study documents the putative pathogenic/virulence-associated genes in the Sporothrix species.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Ponmurugan Karuppiah
- Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif A Al-Dhabi
- Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gandham S Prasad
- Technology, Industrial Liaison & Entrepreneurship Unit, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Chandan Badapanda
- Bioinformatics Division, Xcelris Labs Limited, Ahmedabad 380015, Gujarat, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
75
|
Yin L, Luo X, Zhang Y, Zheng W, Yin F, Fu Y. Comparative proteomic analysis of Rhizopus oryzae hyphae displaying filamentous and pellet morphology. 3 Biotech 2020; 10:469. [PMID: 33088665 DOI: 10.1007/s13205-020-02458-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
Industrial strains of Rhizopus oryzae is known for its strong ability to produce L-( +)-lactic acid, ethanol, and fumaric acid at high yields. To better understand the underlying mechanism behind the physiology of R. oryzae, we conducted the proteome changes between two different morphologies using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. R. oryzae exhibited pellet morphology and filamentous morphology when the initial pH of the culture medium was 3.0 and 5.0, respectively. The concentration of lactic acid reached 63.5 g L-1 in the samples containing the pellet morphology, compared to 41.5 g L-1 produced by filamentous R. oryzae. Proteomic analysis indicated that expression levels of 128 proteins changed significantly. Of these, 17 protein spots were successfully identified by mass spectrometry and were deemed to be mainly involved in carbohydrate metabolism, genetic information processing, chitin metabolism, protein catabolism, protein folding, and antioxidative pathway. L-lactate dehydrogenase (RO3G_06188), enolase (RO3G_05466) and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase (RO3G_02462) were found to be upregulated, while isocitrate dehydrogenase (RO3G_13820) was downregulated in the samples with pellet morphology compared to the filamentous hyphae. These results suggested that more carbon flow was directed towards lactic acid biosynthesis in R. oryzae hyphae with pellet morphology.
Collapse
Affiliation(s)
- Longfei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Yingying Zhang
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Fengwei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| |
Collapse
|
76
|
Mullis A, Lu Z, Zhan Y, Wang TY, Rodriguez J, Rajeh A, Chatrath A, Lin Z. Parallel Concerted Evolution of Ribosomal Protein Genes in Fungi and Its Adaptive Significance. Mol Biol Evol 2020; 37:455-468. [PMID: 31589316 PMCID: PMC6993855 DOI: 10.1093/molbev/msz229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosomal protein (RP) genes encode structural components of ribosomes, the cellular machinery for protein synthesis. A single functional copy has been maintained in most of 78–80 RP families in animals due to evolutionary constraints imposed by gene dosage balance. Some fungal species have maintained duplicate copies in most RP families. The mechanisms by which the RP genes were duplicated and maintained and their functional significance are poorly understood. To address these questions, we identified all RP genes from 295 fungi and inferred the timing and nature of gene duplication events for all RP families. We found that massive duplications of RP genes have independently occurred by different mechanisms in three distantly related lineages: budding yeasts, fission yeasts, and Mucoromycota. The RP gene duplicates in budding yeasts and Mucoromycota were mainly created by whole genome duplication events. However, duplicate RP genes in fission yeasts were likely generated by retroposition, which is unexpected considering their dosage sensitivity. The sequences of most RP paralogs have been homogenized by repeated gene conversion in each species, demonstrating parallel concerted evolution, which might have facilitated the retention of their duplicates. Transcriptomic data suggest that the duplication and retention of RP genes increased their transcript abundance. Physiological data indicate that increased ribosome biogenesis allowed these organisms to rapidly consume sugars through fermentation while maintaining high growth rates, providing selective advantages to these species in sugar-rich environments.
Collapse
Affiliation(s)
- Alison Mullis
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Judith Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO
| | - Ahmad Rajeh
- Department of Biology, Saint Louis University, St. Louis, MO.,Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO
| | - Ajay Chatrath
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO
| |
Collapse
|
77
|
Romeo O, Marchetta A, Giosa D, Giuffrè L, Urzì C, De Leo F. Whole Genome Sequencing and Comparative Genome Analysis of the Halotolerant Deep Sea Black Yeast Hortaea werneckii. Life (Basel) 2020; 10:E229. [PMID: 33023088 PMCID: PMC7601665 DOI: 10.3390/life10100229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Hortaea werneckii, an extreme halotolerant black yeast in the order of Capnodiales, was recently isolated from different stations and depths in the Mediterranean Sea, where it was shown to be the dominant fungal species. In order to explore the genome characteristics of these Mediterranean isolates, we carried out a de-novo sequencing of the genome of one strain isolated at a depth of 3400 m (MC873) and a re-sequencing of one strain taken from a depth of 2500 m (MC848), whose genome was previously sequenced but was highly fragmented. A comparative phylogenomic analysis with other published H. werneckii genomes was also carried out to investigate the evolution of the strains from the deep sea in this environment. A high level of genome completeness was obtained for both genomes, for which genome duplication and an extensive level of heterozygosity (~4.6%) were observed, supporting the recent hypothesis that a genome duplication caused by intraspecific hybridization occurred in most H. werneckii strains. Phylogenetic analyses showed environmental and/or geographical specificity, suggesting a possible evolutionary adaptation of marine H. werneckii strains to the deep sea environment. We release high-quality genome assemblies from marine H. werneckii strains, which provides additional data for further genomics analysis, including niche adaptation, fitness and evolution studies.
Collapse
Affiliation(s)
- Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (O.R.); (A.M.); (L.G.); (C.U.)
| | - Alessia Marchetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (O.R.); (A.M.); (L.G.); (C.U.)
| | - Domenico Giosa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, 98125 Messina, Italy;
| | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (O.R.); (A.M.); (L.G.); (C.U.)
| | - Clara Urzì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (O.R.); (A.M.); (L.G.); (C.U.)
| | - Filomena De Leo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (O.R.); (A.M.); (L.G.); (C.U.)
| |
Collapse
|
78
|
Pereira-Santana A, Gamboa-Tuz SD, Zhao T, Schranz ME, Vinuesa P, Bayona A, Rodríguez-Zapata LC, Castano E. Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin. PLoS Comput Biol 2020; 16:e1008318. [PMID: 33075080 PMCID: PMC7608942 DOI: 10.1371/journal.pcbi.1008318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/03/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.
Collapse
Affiliation(s)
- Alejandro Pereira-Santana
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Tao Zhao
- Bioinformatics and Evolutionary Genomics, VIB-UGent Center for Plant Systems Biology, Gent, Belgium
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Andrea Bayona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | | | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
79
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
80
|
|
81
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
82
|
Phylogenomic Analyses of Non-Dikarya Fungi Supports Horizontal Gene Transfer Driving Diversification of Secondary Metabolism in the Amphibian Gastrointestinal Symbiont, Basidiobolus. G3-GENES GENOMES GENETICS 2020; 10:3417-3433. [PMID: 32727924 PMCID: PMC7466969 DOI: 10.1534/g3.120.401516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research into secondary metabolism (SM) production by fungi has resulted in the discovery of diverse, biologically active compounds with significant medicinal applications. The fungi rich in SM production are taxonomically concentrated in the subkingdom Dikarya, which comprises the phyla Ascomycota and Basidiomycota. Here, we explore the potential for SM production in Mucoromycota and Zoopagomycota, two phyla of nonflagellated fungi that are not members of Dikarya, by predicting and identifying core genes and gene clusters involved in SM. The majority of non-Dikarya have few genes and gene clusters involved in SM production except for the amphibian gut symbionts in the genus Basidiobolus. Basidiobolus genomes exhibit an enrichment of SM genes involved in siderophore, surfactin-like, and terpene cyclase production, all these with evidence of constitutive gene expression. Gene expression and chemical assays also confirm that Basidiobolus has significant siderophore activity. The expansion of SMs in Basidiobolus are partially due to horizontal gene transfer from bacteria, likely as a consequence of its ecology as an amphibian gut endosymbiont.
Collapse
|
83
|
Rush TA, Puech-Pagès V, Bascaules A, Jargeat P, Maillet F, Haouy A, Maës AQ, Carriel CC, Khokhani D, Keller-Pearson M, Tannous J, Cope KR, Garcia K, Maeda J, Johnson C, Kleven B, Choudhury QJ, Labbé J, Swift C, O'Malley MA, Bok JW, Cottaz S, Fort S, Poinsot V, Sussman MR, Lefort C, Nett J, Keller NP, Bécard G, Ané JM. Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nat Commun 2020; 11:3897. [PMID: 32753587 PMCID: PMC7403392 DOI: 10.1038/s41467-020-17615-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development.
Collapse
Affiliation(s)
- Tomás Allen Rush
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Virginie Puech-Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Adeline Bascaules
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Patricia Jargeat
- Laboratoire Évolution et Diversité Biologique, Université de Toulouse, CNRS, UPS, IRD, Toulouse, France
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Alexandra Haouy
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Arthur QuyManh Maës
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michelle Keller-Pearson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joanna Tannous
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin R Cope
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
- South Dakota State University, Brookings, SD, 57007, USA
| | - Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chad Johnson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bailey Kleven
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Quanita J Choudhury
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
- University of Georgia, Athens, GA, 30602, USA
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Candice Swift
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Jin Woo Bok
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sylvain Cottaz
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Sébastien Fort
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Verena Poinsot
- Laboratoire des Interactions Moléculaires et Réactivités Chimiques et Photochimiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Corinne Lefort
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Jeniel Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France.
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
84
|
Hassan MIA, Kruse JM, Krüger T, Dahse HM, Cseresnyés Z, Blango MG, Slevogt H, Hörhold F, Ast V, König R, Figge MT, Kniemeyer O, Brakhage AA, Voigt K. Functional surface proteomic profiling reveals the host heat-shock protein A8 as a mediator of Lichtheimia corymbifera recognition by murine alveolar macrophages. Environ Microbiol 2020; 22:3722-3740. [PMID: 32583550 DOI: 10.1111/1462-2920.15140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Mucormycosis is an emergent, fatal fungal infection of humans and warm-blooded animals caused by species of the order Mucorales. Immune cells of the innate immune system serve as the first line of defence against inhaled spores. Alveolar macrophages were challenged with the mucoralean fungus Lichtheimia corymbifera and subjected to biotinylation and streptavidin enrichment procedures followed by LC-MS/MS analyses. A total of 28 host proteins enriched for binding to macrophage-L. corymbifera interaction. Among those, the HSP70-family protein Hspa8 was found to be predominantly responsive to living and heat-killed spores of a virulent and an attenuated strain of L. corymbifera. Confocal scanning laser microscopy of infected macrophages revealed colocalization of Hspa8 with phagocytosed spores of L. corymbifera. The amount of detectable Hspa8 was dependent on the multiplicity of infection. Incubation of alveolar macrophages with an anti-Hspa8 antibody prior to infection reduced their capability to phagocytose spores of L. corymbifera. In contrast, anti-Hspa8 antibodies did not abrogate the phagocytosis of Aspergillus fumigatus conidia by macrophages. These results suggest an important contribution of the heat-shock family protein Hspa8 in the recognition of spores of the mucoralean fungus L. corymbifera by host alveolar macrophages and define a potential immunomodulatory therapeutic target.
Collapse
Affiliation(s)
- Mohamed I Abdelwahab Hassan
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Pests and Plant Protection Department, National Research Centre, 33rd El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Janis M Kruse
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Zoltán Cseresnyés
- Department of Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Matthew G Blango
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, Jena, Germany
| | - Franziska Hörhold
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Volker Ast
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Marc Thilo Figge
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
85
|
Soare AY, Watkins TN, Bruno VM. Understanding Mucormycoses in the Age of "omics". Front Genet 2020; 11:699. [PMID: 32695145 PMCID: PMC7339291 DOI: 10.3389/fgene.2020.00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Mucormycoses are deadly invasive infections caused by several fungal species belonging to the subphylum Mucoromycotina, order Mucorales. Hallmarks of disease progression include angioinvasion and tissue necrosis that aid in fungal dissemination through the blood stream, causing deeper infections and resulting in poor penetration of antifungal agents to the site of infection. In the absence of surgical removal of the infected focus, antifungal therapy alone is rarely curative. Even when surgical debridement is combined with high-dose antifungal therapy, the mortality associated with mucormycoses is >50%. The unacceptably high mortality rate, limited options for therapy and the extreme morbidity of highly disfiguring surgical therapy provide a clear mandate to understand the molecular mechanisms that govern pathogenesis with the hopes of developing alternative strategies to treat and prevent mucormycoses. In the absence of robust forward and reverse genetic systems available for this taxonomic group of fungi, unbiased next generation sequence (NGS)-based approaches have provided much needed insights into our understanding of many aspects of Mucormycoses, including genome structure, drug resistance, diagnostic development, and fungus-host interactions. Here, we will discuss the specific contributions that NGS-based approaches have made to the field and discuss open questions that can be addressed using similar approaches.
Collapse
Affiliation(s)
- Alexandra Y. Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya N. Watkins
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
86
|
|
87
|
|
88
|
Lax C, Pérez-Arques C, Navarro-Mendoza MI, Cánovas-Márquez JT, Tahiri G, Pérez-Ruiz JA, Osorio-Concepción M, Murcia-Flores L, Navarro E, Garre V, Nicolás FE. Genes, Pathways, and Mechanisms Involved in the Virulence of Mucorales. Genes (Basel) 2020; 11:E317. [PMID: 32188171 PMCID: PMC7140881 DOI: 10.3390/genes11030317] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
The order Mucorales is a group of ancient fungi with limited tools for gene manipulation. The main consequence of this manipulation unwillingness is the limited knowledge about its biology compared to other fungal groups. However, the emerging of mucormycosis, a fungal infection caused by Mucorales, is attracting the medical spotlight in recent years because the treatments available are not efficient in reducing the high mortality associated with this disease. The result of this renewed interest in Mucorales and mucormycosis is an extraordinarily productive effort to unveil their secrets during the last decade. In this review, we describe the most compelling advances related to the genetic study of virulence factors, pathways, and molecular mechanisms developed in these years. The use of a few genetic study models has allowed the characterization of virulence factors in Mucorales that were previously described in other pathogens, such as the uptake iron systems, the mechanisms of dimorphism, and azole resistances. More importantly, recent studies are identifying new genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, offering new alternatives to develop specific strategies against mucormycosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.L.); (C.P.-A.); (M.I.N.-M.); (J.T.C.-M.); (G.T.); (J.A.P.-R.); (M.O.-C.); (L.M.-F.); (V.G.)
| |
Collapse
|
89
|
Lebreton A, Corre E, Jany JL, Brillet-Guéguen L, Pèrez-Arques C, Garre V, Monsoor M, Debuchy R, Le Meur C, Coton E, Barbier G, Meslet-Cladière L. Comparative genomics applied to Mucor species with different lifestyles. BMC Genomics 2020; 21:135. [PMID: 32039703 PMCID: PMC7011435 DOI: 10.1186/s12864-019-6256-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite a growing number of investigations on early diverging fungi, the corresponding lineages have not been as extensively characterized as Ascomycota or Basidiomycota ones. The Mucor genus, pertaining to one of these lineages is not an exception. To this date, a restricted number of Mucor annotated genomes is publicly available and mainly correspond to the reference species, Mucor circinelloides, and to medically relevant species. However, the Mucor genus is composed of a large number of ubiquitous species as well as few species that have been reported to specifically occur in certain habitats. The present study aimed to expand the range of Mucor genomes available and identify potential genomic imprints of adaptation to different environments and lifestyles in the Mucor genus. RESULTS In this study, we report four newly sequenced genomes of Mucor isolates collected from non-clinical environments pertaining to species with contrasted lifestyles, namely Mucor fuscus and Mucor lanceolatus, two species used in cheese production (during ripening), Mucor racemosus, a recurrent cheese spoiler sometimes described as an opportunistic animal and human pathogen, and Mucor endophyticus, a plant endophyte. Comparison of these new genomes with those previously available for six Mucor and two Rhizopus (formerly identified as M. racemosus) isolates allowed global structural and functional description such as their TE content, core and species-specific genes and specialized genes. We proposed gene candidates involved in iron metabolism; some of these genes being known to be involved in pathogenicity; and described patterns such as a reduced number of CAZymes in the species used for cheese ripening as well as in the endophytic isolate that might be related to adaptation to different environments and lifestyles within the Mucor genus. CONCLUSIONS This study extended the descriptive data set for Mucor genomes, pointed out the complexity of obtaining a robust phylogeny even with multiple genes families and allowed identifying contrasting potentially lifestyle-associated gene repertoires. The obtained data will allow investigating further the link between genetic and its biological data, especially in terms of adaptation to a given habitat.
Collapse
Affiliation(s)
- Annie Lebreton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Erwan Corre
- Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France
| | - Jean-Luc Jany
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Loraine Brillet-Guéguen
- Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, 29680, Roscoff, France
| | - Carlos Pèrez-Arques
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Misharl Monsoor
- Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France
| | - Robert Debuchy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, CEDEX 91198, Gif-sur-Yvette, France
| | - Christophe Le Meur
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Georges Barbier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Laurence Meslet-Cladière
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| |
Collapse
|
90
|
Coleine C, Masonjones S, Sterflinger K, Onofri S, Selbmann L, Stajich JE. Peculiar genomic traits in the stress-adapted cryptoendolithic Antarctic fungus Friedmanniomyces endolithicus. Fungal Biol 2020; 124:458-467. [PMID: 32389308 DOI: 10.1016/j.funbio.2020.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 11/28/2022]
Abstract
Friedmanniomyces endolithicus is a highly melanized fungus endemic to the Antarctic, occurring exclusively in endolithic communities of the ice-free areas of the Victoria Land, including the McMurdo Dry Valleys, the coldest and most hyper-arid desert on Earth and accounted as the Martian analog on our planet. F. endolithicus is highly successful in these inhospitable environments, the most widespread and commonly isolated species from these peculiar niches, indicating a high degree of adaptation. The nature of its extremo tolerance has not been previously studied. To investigate this, we sequenced genome of F. endolithicus CCFEE 5311 to explore gene content and genomic patterns that could be attributed to its specialization. The predicted functional potential of the genes was assigned by similarity to InterPro and CAZy domains. The genome was compared to phylogenetically close relatives which are also melanized fungi occurring in extreme environments including Friedmanniomyces simplex, Baudoinia panamericana, Acidomyces acidophilus, Hortaea thailandica and Hortaea werneckii. We tested if shared genomic traits existed among these species and hyper-extremotolerant fungus F. endolithicus. We found that some characters for stress tolerance such as meristematic growth and cold tolerance are enriched in F. endolithicus that may be triggered by the exposure to Antarctic prohibitive conditions.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Sawyer Masonjones
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Katja Sterflinger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
91
|
Patyshakuliyeva A, Falkoski DL, Wiebenga A, Timmermans K, de Vries RP. Macroalgae Derived Fungi Have High Abilities to Degrade Algal Polymers. Microorganisms 2019; 8:E52. [PMID: 31888103 PMCID: PMC7023191 DOI: 10.3390/microorganisms8010052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022] Open
Abstract
Marine fungi associated with macroalgae are an ecologically important group that have a strong potential for industrial applications. In this study, twenty-two marine fungi isolated from the brown seaweed Fucus sp. were examined for their abilities to produce algal and plant biomass degrading enzymes. Growth of these isolates on brown and green algal biomass revealed a good growth, but no preference for any specific algae. Based on the analysis of enzymatic activities, macroalgae derived fungi were able to produce algae specific and (hemi-)cellulose degrading enzymes both on algal and plant biomass. However, the production of algae specific activities was lower than the production of cellulases and xylanases. These data revealed the presence of different enzymatic approaches for the degradation of algal biomass by macroalgae derived fungi. In addition, the results of the present study indicate our poor understanding of the enzymes involved in algal biomass degradation and the mechanisms of algal carbon source utilization by marine derived fungi.
Collapse
Affiliation(s)
- Aleksandrina Patyshakuliyeva
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.P.); (D.L.F.); (A.W.)
| | - Daniel L. Falkoski
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.P.); (D.L.F.); (A.W.)
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.P.); (D.L.F.); (A.W.)
| | - Klaas Timmermans
- NIOZ Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ ′t Horntje, The Netherlands;
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.P.); (D.L.F.); (A.W.)
| |
Collapse
|
92
|
Corrochano LM. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annu Rev Genet 2019; 53:149-170. [DOI: 10.1146/annurev-genet-120417-031415] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In Neurospora crassa, light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In Aspergillus nidulans, the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.
Collapse
Affiliation(s)
- Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
93
|
Comparative analysis of five Mucor species transcriptomes. Genomics 2019; 111:1306-1314. [DOI: 10.1016/j.ygeno.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
|
94
|
Walther G, Wagner L, Kurzai O. Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa. J Fungi (Basel) 2019; 5:E106. [PMID: 31739583 PMCID: PMC6958464 DOI: 10.3390/jof5040106] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed.
Collapse
Affiliation(s)
- Grit Walther
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, 07745 Jena, Germany; (L.W.); (O.K.)
| | - Lysett Wagner
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, 07745 Jena, Germany; (L.W.); (O.K.)
| | - Oliver Kurzai
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, 07745 Jena, Germany; (L.W.); (O.K.)
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
95
|
Wu B, Cox MP. Greater genetic and regulatory plasticity of retained duplicates in Epichloë endophytic fungi. Mol Ecol 2019; 28:5103-5114. [PMID: 31614039 PMCID: PMC7004115 DOI: 10.1111/mec.15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
Gene duplicates can act as a source of genetic material from which new functions arise. Most duplicated genes revert to single copy genes and only a small proportion are retained. However, it remains unclear why some duplicate genes persist in the genome for an extended time. We investigate this question by analysing retained gene duplicates in the fungal genus Epichloë, ascomycete fungi that form close endophytic symbioses with their host grasses. Retained duplicates within this genus have two independent origins, but both long pre-date the origin and diversification of the genus Epichloë. We find that loss of retained duplicates within the genus is frequent and often associated with speciation. Retained duplicates have faster evolutionary rates (Ka) and show relaxed selection (Ka/Ks) compared to single copy genes. Both features are time-dependent. Through comparison of conspecific strains, we find greater evolutionary rates in coding regions and sequence divergence in regulatory regions of retained duplicates than single copy genes, with this pattern more pronounced for strains adapted to different grass host species. Consistent with this sequence divergence in regulatory regions, transcriptome analyses show greater expression variation of retained duplicates than single copy genes. This suggest that cis-regulatory changes make important contributions to the expression patterns of retained duplicates. Coupled with supporting observations from the model yeast Saccharomyces cerevisiae, these data suggest that genetic robustness and regulatory plasticity are common drivers behind the retention of duplicated genes in fungi.
Collapse
Affiliation(s)
- Baojun Wu
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
96
|
Mondo SJ, Jiménez DJ, Hector RE, Lipzen A, Yan M, LaButti K, Barry K, van Elsas JD, Grigoriev IV, Nichols NN. Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:229. [PMID: 31572496 PMCID: PMC6757388 DOI: 10.1186/s13068-019-1569-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/13/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). RESULTS The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. CONCLUSIONS We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species.
Collapse
Affiliation(s)
- Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
- Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO 80521 USA
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Ronald E. Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604 USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102 USA
| | - Nancy N. Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604 USA
| |
Collapse
|
97
|
Marcet-Houben M, Gabaldón T. Evolutionary and functional patterns of shared gene neighbourhood in fungi. Nat Microbiol 2019; 4:2383-2392. [PMID: 31527797 DOI: 10.1038/s41564-019-0552-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/29/2019] [Indexed: 11/09/2022]
Abstract
Gene clusters comprise genomically co-localized and potentially co-regulated genes that tend to be conserved across species. In eukaryotes, multiple examples of metabolic gene clusters are known, particularly among fungi and plants. However, little is known about how gene clustering patterns vary among taxa or with respect to functional roles. Furthermore, mechanisms of the formation, maintenance and evolution of gene clusters remain unknown. We surveyed 341 fungal genomes to discover gene clusters shared by different species, independently of their functions. We inferred 12,120 cluster families, which comprised roughly one third of the gene space and were enriched in genes associated with diverse cellular functions. Additionally, most clusters did not encode transcription factors, suggesting that they are regulated distally. We used phylogenomics to characterize the evolutionary history of these clusters. We found that most clusters originated once and were transmitted vertically, coupled to differential loss. However, convergent evolution-that is, independent appearance of the same cluster-was more prevalent than anticipated. Finally, horizontal gene transfer of entire clusters was somewhat restricted, with the exception of those associated with secondary metabolism. Altogether, our results provide insights on the evolution of gene clustering as well as a broad catalogue of evolutionarily conserved gene clusters whose function remains to be elucidated.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS), Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,ICREA, Barcelona, Spain. .,Barcelona Supercomputing Centre (BSC-CNS), Institute for Research in Biomedicine (IRB), Barcelona, Spain.
| |
Collapse
|
98
|
A new species concept for the clinically relevant Mucor circinelloides complex. Persoonia - Molecular Phylogeny and Evolution of Fungi 2019; 44:67-97. [PMID: 33116336 PMCID: PMC7567969 DOI: 10.3767/persoonia.2020.44.03] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Mucor species are common soil fungi but also known as agents of human infections (mucormycosis) and used in food production and biotechnology. Mucor circinelloides is the Mucor species that is most frequently isolated from clinical sources. The taxonomy of Mucor circinelloides and its close relatives (Mucor circinelloides complex – MCC) is still based on morphology and mating behaviour. The aim of the present study was a revised taxonomy of the MCC using a polyphasic approach. Using a set of 100 strains molecular phylogenetic analysis of five markers (ITS, rpb1, tsr1, mcm7, and cfs, introduced here) were performed, combined with phenotypic studies, mating tests and the determination of the maximum growth temperatures. The multi-locus analyses revealed 16 phylogenetic species of which 14 showed distinct phenotypical traits and were recognised as discrete species. Five of these species are introduced as novel taxa: M. amethystinus sp. nov., M. atramentarius sp. nov., M. variicolumellatus sp. nov., M. pseudocircinelloides sp. nov., and M. pseudolusitanicus sp. nov. The former formae of M. circinelloides represent one or two separate species. In the MCC, the simple presence of well-shaped zygospores only indicates a close relation of both strains, but not necessarily conspecificity. Seven species of the MCC have been implemented in human infection: M. circinelloides, M. griseocyanus, M. janssenii, M. lusitanicus, M. ramosissimus, M. variicolumellatus, and M. velutinosus.
Collapse
|
99
|
Sista Kameshwar AK, Qin W. Systematic review of publicly available non-Dikarya fungal proteomes for understanding their plant biomass-degrading and bioremediation potentials. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0264-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
100
|
Nguyen HDT, Sultana T, Kesanakurti P, Hambleton S. Genome sequencing and comparison of five Tilletia species to identify candidate genes for the detection of regulated species infecting wheat. IMA Fungus 2019; 10:11. [PMID: 32355611 PMCID: PMC7184893 DOI: 10.1186/s43008-019-0011-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
Tilletia species cause diseases on grass hosts with some causing bunt diseases on wheat (Triticum). Two of the four species infecting wheat have restricted distributions globally and are subject to quarantine regulations to prevent their spread to new areas. Tilletia indica causes Karnal bunt and is regulated by many countries while the non-regulated T. walkeri is morphologically similar and very closely related phylogenetically, but infects ryegrass (Lolium) and not wheat. Tilletia controversa causes dwarf bunt of wheat (DB) and is also regulated by some countries, while the closely related but non-regulated species, T. caries and T. laevis, both cause common bunt of wheat (CB). Historically, diagnostic methods have relied on cryptic morphology to differentiate these species in subsamples from grain shipments. Of the DNA-based methods published so far, most have focused on sequence variation among tested strains at a single gene locus. To facilitate the development of additional molecular assays for diagnostics, we generated whole genome data for multiple strains of the two regulated wheat pathogens and their closest relatives. Depending on the species, the genomes were assembled into 907 to 4633 scaffolds ranging from 24 Mb to 30 Mb with 7842 to 9952 gene models predicted. Phylogenomic analyses confirmed the placement of Tilletia in the Exobasidiomycetes and showed that T. indica and T. walkeri were in one clade whereas T. controversa, T. caries and T. laevis grouped in a separate clade. Single copy and species-specific genes were identified by orthologous group analysis. Unique species-specific genes were identified and evaluated as suitable markers to differentiate the quarantine and non-quarantine species. After further analyses and manual inspection, primers and probes for the optimum candidate genes were designed and tested in silico, for validation in future wet-lab studies.
Collapse
Affiliation(s)
- Hai D. T. Nguyen
- Biodiversity and Bioresources, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6 Canada
| | - Tahera Sultana
- Biodiversity and Bioresources, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6 Canada
- Present Address: Research Farm – Vineland, London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Avenue N., Vineland Station, Ontario L0R 2E0 Canada
| | - Prasad Kesanakurti
- Biodiversity and Bioresources, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6 Canada
- Present Address: NHP Research Alliance, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 Canada
| | - Sarah Hambleton
- Biodiversity and Bioresources, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6 Canada
| |
Collapse
|