51
|
Rolfo A, Nuzzo AM, De Amicis R, Moretti L, Bertoli S, Leone A. Fetal-Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020; 12:E1744. [PMID: 32545151 PMCID: PMC7353272 DOI: 10.3390/nu12061744] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances able to mimic or to interfere with the endocrine system, thus altering key biological processes such as organ development, reproduction, immunity, metabolism and behavior. High concentrations of EDCs are found in several everyday products including plastic bottles and food containers and they could be easily absorbed by dietary intake. In recent years, considerable interest has been raised regarding the biological effects of EDCs, particularly Bisphenol A (BPA) and phthalates, on human pregnancy and fetal development. Several evidence obtained on in vitro and animal models as well as by epidemiologic and population studies strongly indicated that endocrine disruptors could negatively impact fetal and placental health by interfering with the embryonic developing epigenome, thus establishing disease paths into adulthood. Moreover, EDCs could cause and/or contribute to the onset of severe gestational conditions as Preeclampsia (PE), Fetal Growth Restriction (FGR) and gestational diabetes in pregnancy, as well as obesity, diabetes and cardiovascular complications in reproductive age. Therefore, despite contrasting data being present in the literature, endocrine disruptors must be considered as a therapeutic target. Future actions aimed at reducing or eliminating EDC exposure during the perinatal period are mandatory to guarantee pregnancy success and preserve fetal and adult health.
Collapse
Affiliation(s)
- Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Anna Maria Nuzzo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Ramona De Amicis
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
| | - Laura Moretti
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
- Istituto Auxologico Italiano, IRCCS, Lab of Nutrition and Obesity Research, 20145 Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
| |
Collapse
|
52
|
Saoi M, Kennedy KM, Gohir W, Sloboda DM, Britz-McKibbin P. Placental Metabolomics for Assessment of Sex-specific Differences in Fetal Development During Normal Gestation. Sci Rep 2020; 10:9399. [PMID: 32523064 PMCID: PMC7286906 DOI: 10.1038/s41598-020-66222-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
The placenta is a metabolically active interfacial organ that plays crucial roles in fetal nutrient delivery, gas exchange and waste removal reflecting dynamic maternal and fetal interactions during gestation. There is growing evidence that the sex of the placenta influences fetal responses to external stimuli in utero, such as changes in maternal nutrition and exposure to environmental stressors. However, the exact biochemical mechanisms associated with sex-specific metabolic adaptations during pregnancy and its link to placental function and fetal development remain poorly understood. Herein, multisegment injection-capillary electrophoresis-mass spectrometry is used as a high throughput metabolomics platform to characterize lyophilized placental tissue (~2 mg dried weight) from C57BL/6J mice fed a standardized diet. Over 130 authentic metabolites were consistently measured from placental extracts when using a nontargeted metabolomics workflow with stringent quality control and robust batch correction. Our work revealed distinct metabolic phenotype differences that exist between male (n = 14) and female (n = 14) placentae collected at embryonic day E18.5. Intracellular metabolites associated with fatty acid oxidation and purine degradation were found to be elevated in females as compared to male placentae (p < 0.05, effect size >0.40), including uric acid, valerylcarnitine, hexanoylcarnitine, and 3-hydroxyhexanolycarnitine. This murine model sheds new insights into sex-specific differences in placental mitochondrial function and protective mechanisms against deleterious oxidative stress that may impact fetal growth and birth outcomes later in life.
Collapse
Affiliation(s)
- Michelle Saoi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
53
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
54
|
Segal TR, Giudice LC. Before the beginning: environmental exposures and reproductive and obstetrical outcomes. Fertil Steril 2020; 112:613-621. [PMID: 31561863 DOI: 10.1016/j.fertnstert.2019.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
There is growing consensus that preconception exposure to environmental toxins can adversely affect fertility, pregnancy, and fetal development, which may persist into the neonatal and adult periods and potentially have multigenerational effects. Here we review current data on preconception and prenatal exposure to several chemicals, including heavy metals, endocrine-disrupting chemicals, pesticides, and air pollution, and their associated obstetrical and reproductive health effects. Reproductive endocrinologists and affiliated health care providers have a unique opportunity to counsel patients before they get pregnant to minimize exposure to hazardous chemicals with the goal to improve reproductive outcomes and assure a healthy lifestyle overall. We provide practical tools and some publicly available resources for reproductive health professionals to assess a patient's risks and ways to reduce chemical and air pollution exposures during the critical preconception and prenatal periods.
Collapse
Affiliation(s)
- Thalia R Segal
- Center for Reproductive Health, University of California, San Francisco, California.
| | - Linda C Giudice
- Center for Reproductive Health, University of California, San Francisco, California
| |
Collapse
|
55
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
56
|
Kaminen-Ahola N. Fetal alcohol spectrum disorders: Genetic and epigenetic mechanisms. Prenat Diagn 2020; 40:1185-1192. [PMID: 32386259 DOI: 10.1002/pd.5731] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/26/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are a consequence of prenatal alcohol exposure (PAE). The etiology of the complex FASD phenotype with growth deficit, birth defects, and neurodevelopmental impairments is under extensive research. Both genetic and environmental factors contribute to the wide phenotype: chromosomal rearrangements, risk and protective alleles, environmental-induced epigenetic alterations as well as gene-environment interactions are all involved. Understanding the molecular mechanisms of PAE can provide tools for prevention or intervention of the alcohol-induced developmental disorders in the future. By revealing the alcohol-induced genetic and epigenetic alterations which associate with the variable FASD phenotypes, it is possible to identify biomarkers for the disorder. This would enable early diagnoses and personalized support for development of the affected child.
Collapse
Affiliation(s)
- Nina Kaminen-Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
57
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
58
|
Freeman DM, Lou D, Li Y, Martos SN, Wang Z. The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure. Epigenetics Chromatin 2020; 13:17. [PMID: 32178731 PMCID: PMC7076959 DOI: 10.1186/s13072-020-00338-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The significance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-traditional ASMs are sensitive to exposures in association with human disease. RESULTS We first explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal development and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identified regions were differentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegeneration. Both regions were significantly hypomethylated in response to rotenone. CONCLUSIONS Our data indicate that non-germline ASMs seem conserved between mouse and human genomes, overlap important regulatory factor binding motifs, and regulate the expression of genes vital to neuronal function. These results support the notion that ASMs are sensitive to environmental factors such as rotenone and may alter the risk of neurological disease later in life by disrupting neuronal development.
Collapse
Affiliation(s)
- Dana M Freeman
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Dan Lou
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yanqiang Li
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne N Martos
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zhibin Wang
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- The State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
59
|
Mao J, Jain A, Denslow ND, Nouri MZ, Chen S, Wang T, Zhu N, Koh J, Sarma SJ, Sumner BW, Lei Z, Sumner LW, Bivens NJ, Roberts RM, Tuteja G, Rosenfeld CS. Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc Natl Acad Sci U S A 2020; 117:4642-4652. [PMID: 32071231 PMCID: PMC7060676 DOI: 10.1073/pnas.1919563117] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 μg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.
Collapse
Affiliation(s)
- Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Biomedical Sciences, University of Missouri, Columbia, MO 65211
| | - Ashish Jain
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Nancy D Denslow
- Physiological Sciences, University of Florida, Gainesville, FL 32611
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| | - Mohammad-Zaman Nouri
- Physiological Sciences, University of Florida, Gainesville, FL 32611
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Tingting Wang
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Ning Zhu
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Jin Koh
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
| | - Barbara W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
- Biochemistry, University of Missouri, Columbia, MO 65211
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
- Biochemistry, University of Missouri, Columbia, MO 65211
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211;
- Biochemistry, University of Missouri, Columbia, MO 65211
- Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Geetu Tuteja
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011;
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211;
- Biomedical Sciences, University of Missouri, Columbia, MO 65211
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211
- University of Missouri Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
60
|
Martini M, Corces VG, Rissman EF. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm Behav 2020; 119:104677. [PMID: 31927019 PMCID: PMC9942829 DOI: 10.1016/j.yhbeh.2020.104677] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
It is our hope this mini-review will stimulate discussion and new research. Here we briefly examine the literature on transgenerational actions of endocrine disrupting chemicals (EDCs) on brain and behavior and their underlying epigenetic mechanisms including: DNA methylation, histone modifications, and non-coding RNAs. We stress that epigenetic modifications need to be examined in a synergistic manner, as they act together in situ on chromatin to change transcription. Next we highlight recent work from one of our laboratories (VGC). The data provide new evidence that the sperm genome is poised for transcription. In developing sperm, gene enhancers and promoters are accessible for transcription and these activating motifs are also found in preimplantation embryos. Thus, DNA modifications associated with transcription factors during fertilization, in primordial germ cells (PGCs), and/or during germ cell maturation may be passed to offspring. We discuss the implications of this model to EDC exposures and speculate on whether natural variation in hormone levels during fertilization and PGC migration may impart transgenerational effects on brain and behavior. Lastly we discuss how this mechanism could apply to neural sexual differentiation.
Collapse
Affiliation(s)
- Mariangela Martini
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
61
|
Oestrogenic Endocrine Disruptors in the Placenta and the Fetus. Int J Mol Sci 2020; 21:ijms21041519. [PMID: 32102189 PMCID: PMC7073155 DOI: 10.3390/ijms21041519] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the stability and regulation of the endocrine system of the body or its offspring. These substances are generally stable in chemical properties, not easy to be biodegraded, and can be enriched in organisms. In the past half century, EDCs have gradually entered the food chain, and these substances have been frequently found in maternal blood. Perinatal maternal hormone levels are unstable and vulnerable to EDCs. Some EDCs can affect embryonic development through the blood-fetal barrier and cause damage to the neuroendocrine system, liver function, and genital development. Some also effect cross-generational inheritance through epigenetic mechanisms. This article mainly elaborates the mechanism and detection methods of estrogenic endocrine disruptors, such as bisphenol A (BPA), organochlorine pesticides (OCPs), diethylstilbestrol (DES) and phthalates (PAEs), and their effects on placenta and fetal health in order to raise concerns about the proper use of products containing EDCs during pregnancy and provide a reference for human health.
Collapse
|
62
|
Sobolewski M, Abston K, Conrad K, Marvin E, Harvey K, Susiarjo M, Cory-Slechta DA. Lineage- and Sex-Dependent Behavioral and Biochemical Transgenerational Consequences of Developmental Exposure to Lead, Prenatal Stress, and Combined Lead and Prenatal Stress in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27001. [PMID: 32073883 PMCID: PMC7064322 DOI: 10.1289/ehp4977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lead (Pb) exposure and prenatal stress (PS) during development are co-occurring risk factors with shared biological substrates. PS has been associated with transgenerational passage of altered behavioral phenotypes, whereas the transgenerational behavioral or biochemical consequences of Pb exposure, and modification of any such effects by PS, is unknown. OBJECTIVES The present study sought to determine whether Pb, PS, or combined Pb and PS exposures produced adverse transgenerational consequences on brain and behavior. METHODS Maternal Pb and PS exposures were carried out in F0 mice. Outside breeders were used at each subsequent breeding, producing four F1-F2 lineages: [F1 female-F2 female (FF), FM (male), MF, and MM]. F3 offspring were generated from each of these lineages and examined for outcomes previously found to be altered by Pb, PS, or combined Pb and PS in F1 offspring: behavioral performance [fixed-interval (FI) schedule of food reward, locomotor activity, and anxiety-like behavior], dopamine function [striatal expression of tyrosine hydroxylase (Th)], glucocorticoid receptor (GR) and plasma corticosterone, as well as brain-derived neurotrophic factor (BDNF) and total percent DNA methylation of Th and Bdnf genes in the frontal cortex and hippocampus. RESULTS Maternal F0 Pb exposure produced runting in F3 offspring. Considered across lineages, F3 females exhibited Pb-related alterations in behavior, striatal BDNF levels, frontal cortical Th total percentage DNA methylation levels and serum corticosterone levels, whereas F3 males showed Pb- and PS-related alterations in behavior and total percent DNA methylation of hippocampal Bdnf. However, numerous lineage-specific effects were observed, most of greater magnitude than those observed across lineages, with outcomes differing by F3 sex. DISCUSSION These findings support the possibility that exposures of previous generations to Pb or PS may influence the brain and behavior of future generations. Observed changes were sex-dependent, with F3 females showing multiple changes through Pb-exposed lineages. Lineage effects may occur through maternal responses to pregnancy, altered maternal behavior, epigenetic modifications, or a combination of mechanisms, but they have significant public health ramifications regardless of mechanism. https://doi.org/10.1289/EHP4977.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Kadijah Abston
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Harvey
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
63
|
Bansal A, Robles-Matos N, Wang PZ, Condon DE, Joshi A, Pinney SE. In utero Bisphenol A Exposure Is Linked with Sex Specific Changes in the Transcriptome and Methylome of Human Amniocytes. J Clin Endocrinol Metab 2020; 105:5571768. [PMID: 31536135 PMCID: PMC7046022 DOI: 10.1210/clinem/dgz037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Abstract
CONTEXT Prenatal exposure to bisphenol A (BPA) is linked to obesity and diabetes but the molecular mechanisms driving these phenomena are not known. Alterations in deoxyribonucleic acid (DNA) methylation in amniocytes exposed to BPA in utero represent a potential mechanism leading to metabolic dysfunction later in life. OBJECTIVE To profile changes in genome-wide DNA methylation and expression in second trimester human amniocytes exposed to BPA in utero. DESIGN A nested case-control study was performed in amniocytes matched for offspring sex, maternal race/ethnicity, maternal age, gestational age at amniocentesis, and gestational age at birth. Cases had amniotic fluid BPA measuring 0.251 to 23.74 ng/mL. Sex-specific genome-wide DNA methylation analysis and RNA-sequencing (RNA-seq) were performed to determine differentially methylated regions (DMRs) and gene expression changes associated with BPA exposure. Ingenuity pathway analysis was performed to identify biologically relevant pathways enriched after BPA exposure. In silico Hi-C analysis identified potential chromatin interactions with DMRs. RESULTS There were 101 genes with altered expression in male amniocytes exposed to BPA (q < 0.05) in utero, with enrichment of pathways critical to hepatic dysfunction, collagen signaling and adipogenesis. Thirty-six DMRs were identified in male BPA-exposed amniocytes and 14 in female amniocyte analysis (q < 0.05). Hi-C analysis identified interactions between DMRs and 24 genes with expression changes in male amniocytes and 12 in female amniocytes (P < 0.05). CONCLUSION In a unique repository of human amniocytes exposed to BPA in utero, sex-specific analyses identified gene expression changes in pathways associated with metabolic disease and novel DMRs with potential distal regulatory functions.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Robles-Matos
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Zhiping Wang
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Bioinformatics Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Condon
- Sanford Health, Sioux Falls, SD, USA
- Penn Bioinformatics Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Apoorva Joshi
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sara E Pinney
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Correspondence and Reprint Requests: Sara E. Pinney, Division of Endocrinology and Diabetes, Children’s Hospital Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA. E-mail:
| |
Collapse
|
64
|
Li Z, Lyu C, Ren Y, Wang H. Role of TET Dioxygenases and DNA Hydroxymethylation in Bisphenols-Stimulated Proliferation of Breast Cancer Cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27008. [PMID: 32105160 PMCID: PMC7064327 DOI: 10.1289/ehp5862] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor targeting estrogen receptors (ERs), has been implicated in the promotion of breast cancer. Perinatal exposure of BPA could induce longitudinal alteration of DNA hydroxymethylation in imprinted loci of mouse blood cells. To date, no data has been reported on the effects of BPA on DNA hydroxymethylation in breast cells. Therefore, we asked whether BPA can induce DNA hydroxymethylation change in human breast cells. Given that dysregulated epigenetic DNA hydroxymethylation is observed in various cancers, we wondered how DNA hydroxymethylation modulates cancer development, and specifically, whether and how BPA and its analogs promote breast cancer development via DNA hydroxymethylation. OBJECTIVES We aimed to explore the interplay of the estrogenic activity of bisphenols at environmental exposure dose levels with TET dioxygenase-catalyzed DNA hydroxymethylation and to elucidate their roles in the proliferation of ER+ breast cancer cells as stimulated by environmentally relevant bisphenols. METHODS Human MCF-7 and T47D cell lines were used as ER-dependent breast cell proliferation models, and the human MDA-MB-231 cell line was used as an ER-independent breast cell model. These cells were treated with BPA or bisphenol S (BPS) to examine BPA/BPS-related proliferation. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and enzyme-linked immunosorbent assays (ELISAs) were used to detect DNA hydroxymethylation. Crispr/Cas9 and RNA interference technologies, quantitative polymerase chain reaction (qPCR), and Western blot analyses were used to evaluate the expression and function of genes. Co-immunoprecipitation (Co-IP), bisulfite sequencing-PCR (BSP), and chromatin immunoprecipitation-qPCR (ChIP-qPCR) were used to identify the interactions of target proteins. RESULTS We measured higher proliferation in ER+ breast cancer cells treated with BPA or its replacement, BPS, accompanied by an ERα-dependent decrease in genomic DNA hydroxymethylation. The results of our overexpression, knockout, knockdown, and inhibition experiments suggested that TET2-catalyzed DNA hydroxymethylation played a suppressive role in BPA/BPS-stimulated cell proliferation. On the other hand, we observed that TET2 was negatively regulated by the activation of ERα (dimerized and phosphorylated), which was also induced by BPA/BPS binding. Instead of a direct interaction between TET2 and ERα, data of our Co-IP, BSP, and ChIP-qPCR experiments indicated that the activated ERα increased the DNA methyltransferase (DNMT)-mediated promoter methylation of TET2, leading to an inhibition of the TET2 expression and DNA hydroxymethylation. CONCLUSIONS We identified a new feedback circuit of ERα activation-DNMT-TET2-DNA hydroxymethylation in ER+ breast cancer cells and uncovered a pivotal role of TET2-mediated DNA hydroxymethylation in modulating BPA/BPS-stimulated proliferation. Moreover, to our knowledge, we for the first time established a linkage among chemical exposure, DNA hydroxymethylation, and tumor-associated proliferation. These findings further clarify the estrogenic activity of BPA/BPS and its profound implications for the regulation of epigenetic DNA hydroxymethylation and cell proliferation. https://doi.org/10.1289/EHP5862.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Cong Lyu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Environment and Health, Jianghan University, Wuhan, China
| |
Collapse
|
65
|
Liu Y, Wang L, Zhu L, Ran B, Wang Z. Bisphenol A disturbs transcription of steroidogenic genes in ovary of rare minnow Gobiocypris rarus via the abnormal DNA and histone methylation. CHEMOSPHERE 2020; 240:124935. [PMID: 31563720 DOI: 10.1016/j.chemosphere.2019.124935] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Increasing studies have established the toxic effects of BPA on development and reproduction in animals. In present study, we investigated epigenetic effects on the transcription of several ovarian steroidogenic genes in rare minnows Gobiocypris rarus after BPA exposure at 15 μgL-1 for 21, 42 and 63 d. Results showed that short term BPA exposure (21 d) caused significant increase of both estradiol and testerone levels whereas long term exposure (63 d) led to significant decrease of them. The oocytes development was hindered after BPA exposure. BPA treatments for 21 and 42 d resulted in significant increase of genome DNA methylation in ovary while 63-d exposure caused marked decrease. The histone trimethylation levels (H3K4me3, H3K9me3 and H3K27me3) in the ovary were also disturbed by BPA. H3K9me3 was significantly decreased after 21 d whereas it was markedly increased after 42 and 63 d. The 42-d exposure caused significant decrease for H3K4me3. Meanwhile, 42- and 63-d BPA exposure led to significant decrease of H3K27me3. DNA methylation could involve in gene expression regulation of cyp17a1 and cyp19a1a after BPA exposure. After short (21 d) and long term (63 d) BPA exposure, the respective mRNA expression down-regulation and up-regulation of star, cyp11a1, and cyp17a1 were mediated by H3K9me3. This study suggests that epigenetic modulation including DNA and histone methylation could be responsible for the detrimental effects on ovary development upon BPA exposure in G. rarus. It is speculated that BPA exposures for short or long term duration could disturb the steroidogenesis in entirely different mechanisms.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Benhui Ran
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
66
|
Yang CF, Karmaus WJJ, Yang CC, Chen ML, Wang IJ. Bisphenol a Exposure, DNA Methylation, and Asthma in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010298. [PMID: 31906378 PMCID: PMC6981376 DOI: 10.3390/ijerph17010298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Epidemiological studies have reported the relationship between bisphenol A (BPA) exposure and increased prevalence of asthma, but the mechanisms remain unclear. Here, we investigated whether BPA exposure and DNA methylation related to asthma in children. We collected urinary and blood samples from 228 children (Childhood Environment and Allergic Diseases Study cohort) aged 3 years. Thirty-three candidate genes potentially interacting with BPA exposure were selected from a toxicogenomics database. DNA methylation was measured in 22 blood samples with top-high and bottom-low exposures of BPA. Candidate genes with differential methylation levels were validated by qPCR and promoter associated CpG islands have been investigated. Correlations between the methylation percentage and BPA exposure and asthma were analyzed. According to our findings, MAPK1 showed differential methylation and was further investigated in 228 children. Adjusting for confounders, urinary BPA glucuronide (BPAG) level inversely correlated with MAPK1 promoter methylation (β = -0.539, p = 0.010). For the logistic regression analysis, MAPK1 methylation status was dichotomized into higher methylated and lower methylated groups with cut off continuous variable of median of promoter methylation percentage (50%) while performing the analysis. MAPK1 methylation was lower in children with asthma than in children without asthma (mean ± SD; 69.82 ± 5.88% vs. 79.82 ± 5.56%) (p = 0.001). Mediation analysis suggested that MAPK1 methylation acts as a mediation variable between BPA exposure and asthma. The mechanism of BPA exposure on childhood asthma might, therefore, be through the alteration of MAPK1 methylation. The mechanism of BPA exposure on childhood asthma might, therefore, be through the alteration of MAPK1 methylation.
Collapse
Affiliation(s)
- Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.Y.); (M.-L.C.)
| | - Wilfried J. J. Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA;
| | - Chen-Chang Yang
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.Y.); (M.-L.C.)
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.Y.); (M.-L.C.)
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 242, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- College of Public Health, China Medical University, Taichung 400-439, Taiwan
- National Institutes of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053,Taiwan
- Correspondence: ; Tel.: +886-2-2276-5566 (ext. 2532); Fax: +886-2-2998-8028
| |
Collapse
|
67
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
68
|
Robinson JF, Kapidzic M, Hamilton EG, Chen H, Puckett KW, Zhou Y, Ona K, Parry E, Wang Y, Park JS, Costello JF, Fisher SJ. Genomic Profiling of BDE-47 Effects on Human Placental Cytotrophoblasts. Toxicol Sci 2019; 167:211-226. [PMID: 30202865 DOI: 10.1093/toxsci/kfy230] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite gradual legislative efforts to phase out flame retardants (FRs) from the marketplace, polybrominated diphenyl ethers (PBDEs) are still widely detected in human maternal and fetal tissues, eg, placenta, due to their continued global application in consumer goods and inherent biological persistence. Recent studies in rodents and human placental cell lines suggest that PBDEs directly cause placental toxicity. During pregnancy, trophoblasts play key roles in uterine invasion, vascular remodeling, and anchoring of the placenta-fetal unit to the mother. Thus, to study the potential consequences of PBDE exposures on human placental development, we used an in vitro model: primary villous cytotrophoblasts (CTBs). Following exposures, the endpoints that were evaluated included cytotoxicity, function (migration, invasion), the transcriptome, and the methylome. In a concentration-dependent manner, common PBDE congeners, BDE-47 and -99, significantly reduced cell viability and increased death. Upon exposures to sub-cytotoxic concentrations (≤ 5 µM), we observed BDE-47 accumulation in CTBs with limited evidence of metabolism. At a functional level, BDE-47 hindered the ability of CTBs to migrate and invade. Transcriptomic analyses of BDE-47 effects suggested concentration-dependent changes in gene expression, involving stress pathways, eg, inflammation and lipid/cholesterol metabolism as well as processes underlying trophoblast fate, eg, differentiation, migration, and vascular morphogenesis. In parallel assessments, BDE-47 induced low-level global increases in methylation of CpG islands, including a subset that were proximal to genes with roles in cell adhesion/migration. Thus, using a primary human CTB model, we showed that PBDEs induced alterations at cellular and molecular levels, which could adversely impact placental development.
Collapse
Affiliation(s)
- Joshua F Robinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Mirhan Kapidzic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Emily G Hamilton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Hao Chen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Kenisha W Puckett
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Yan Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Katherine Ona
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Emily Parry
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - Yunzhu Wang
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Susan J Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| |
Collapse
|
69
|
Strakovsky RS, Schantz SL. Using Experimental Models to Assess Effects of Bisphenol A (BPA) and Phthalates on the Placenta: Challenges and Perspectives. Toxicol Sci 2019; 166:250-268. [PMID: 30203063 DOI: 10.1093/toxsci/kfy224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The placenta is critical for all aspects of fetal development. Bisphenol A (BPA) and phthalates are endocrine disruptors with ubiquitous exposure in pregnant women-their effects on the placenta is an area of growing research interest. Therefore, our objectives were to (1) summarize research related to the effects BPA or phthalates on placental outcomes in animal and cell models, and (2) evaluate the challenges for using such models to study the impacts of these chemicals on placental endpoints. Overall, studies in cells and animal models suggest that BPA and phthalates impact placental hormones, some epigenetic endpoints, increase inflammation and oxidative stress, and decrease cell viability and nutrient transfer. However, few animal or cell studies have assessed these outcomes at concentrations relevant to humans. Furthermore, it is unclear whether effects of BPA/phthalates on the placenta in animal models mediate fetal outcomes, as most studies have dosed after the earliest stages of placental and fetal development. It is also unclear whether effects of these chemicals are sex-specific, as few studies have considered placental sex. Finally, while there is substantial evidence for effects of mono-(2-ethylhexyl) phthalate (the major metabolite of di-(2-ethylhexyl) phthalate), on placental endpoints in cells, little is currently known about effects of other phthalates to which pregnant women are exposed. Moving forward, these limitations will need to be addressed to help us understand the precise mechanisms of action of these chemicals within the placenta, and how these reported perturbations impact fetal health.
Collapse
Affiliation(s)
- Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48823
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology.,Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2347 Beckman Institute, Urbana, Illinois 61801
| |
Collapse
|
70
|
Malloy MA, Kochmanski JJ, Jones TR, Colacino JA, Goodrich JM, Dolinoy DC, Svoboda LK. Perinatal Bisphenol A Exposure and Reprogramming of Imprinted Gene Expression in the Adult Mouse Brain. Front Genet 2019; 10:951. [PMID: 31649729 PMCID: PMC6796247 DOI: 10.3389/fgene.2019.00951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic imprinting, a phenomenon by which genes are expressed in a monoallelic, parent-of-origin-dependent fashion, is critical for normal brain development. Expression of imprinted genes is regulated via epigenetic mechanisms, including DNA methylation (5-methylcytosine, 5mC), and disruptions in imprinting can lead to disease. Early-life exposure to the endocrine disrupting chemical bisphenol A (BPA) is associated with abnormalities in brain development and behavior, as well as with disruptions in epigenetic patterning, including 5mC and DNA hydroxymethylation (5-hydroxymethylcytosine, 5hmC). Using an established mouse model of perinatal environmental exposure, the objective of this study was to examine the effects of perinatal BPA exposure on epigenetic regulation of imprinted gene expression in adult mice. Two weeks prior to mating, dams were assigned to control chow or chow containing an environmentally relevant dose (50 µg/kg) of BPA. Exposure continued until offspring were weaned at post-natal day 21, and animals were followed until 10 months of age. Expression of three imprinted genes—Pde10a, Ppp1r9a, and Kcnq1, as well as three genes encoding proteins critical for regulation of 5mC and 5hmC—Dnmt1, Tet1, and Tet2, were evaluated in the right cortex and midbrain using qRT-PCR. Perinatal BPA exposure was associated with a significant increase in adult Kcnq1 (p = 0.04) and Dnmt1 (p = 0.02) expression in the right cortex, as well as increased expression of Tet2 in the midbrain (p = 0.03). Expression of Tet2 and Kcnq1 were positively correlated in the midbrain. Analysis of 5mC and 5hmC at the Kcnq1 locus was conducted in parallel samples using standard and oxidative bisulfite conversion followed by pyrosequencing. This analysis revealed enrichment of both 5mC and 5hmC at this locus in both brain regions. No significant changes in 5mC and 5hmC at Kcnq1 were observed with perinatal BPA exposure. Together, these data suggest that perinatal BPA exposure results in altered expression of Kcnq1, Dnmt1, and Tet2 in the adult mouse brain. Further studies with larger sample sizes are necessary to understand the mechanistic basis for these changes, as well as to determine the implications they have for brain development and function.
Collapse
Affiliation(s)
- Maureen A Malloy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Joseph J Kochmanski
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Laurie K Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
71
|
Vander Roest M, Krapp C, Thorvaldsen JL, Bartolomei MS, Merryman WD. H19 is not hypomethylated or upregulated with age or sex in the aortic valves of mice. Physiol Rep 2019; 7:e14244. [PMID: 31609547 PMCID: PMC6778597 DOI: 10.14814/phy2.14244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
Epigenetic dysregulation of long noncoding RNA H19 was recently found to be associated with calcific aortic valve disease (CAVD) in humans by repressing NOTCH1 transcription. This finding offers a possible epigenetic explanation for the abundance of cases of CAVD that are not explained by any clear genetic mutation. In this study, we examined the effect of age and sex on epigenetic dysregulation of H19 and subsequent aortic stenosis. Cohorts of littermate, wild-type C57BL/6 mice were studied at developmental ages analogous to human middle age through advanced age. Cardiac and aortic valve function were assessed with M-mode echocardiography and pulsed wave Doppler ultrasound, respectively. Bisulfite sequencing was used to determine methylation-based epigenetic regulation of H19, and RT-PCR was used to determine changes in gene expression profiles. Male mice were found to have higher peak systolic velocities than females, with several of the oldest mice showing signs of early aortic stenosis. The imprinting control region of H19 was not hypomethylated with age, and H19 expression was lower in the aortic valves of older mice than in the youngest group. These results suggest that age-related upregulation of H19 is not observed in murine aortic valves and that other factors may initiate H19-related CAVD in humans.
Collapse
Affiliation(s)
| | - Christopher Krapp
- Epigenetics InstituteDepartment of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Joanne L. Thorvaldsen
- Epigenetics InstituteDepartment of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Marisa S. Bartolomei
- Epigenetics InstituteDepartment of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | | |
Collapse
|
72
|
Zhang W, Yang J, Lv Y, Li S, Qiang M. Paternal benzo[a]pyrene exposure alters the sperm DNA methylation levels of imprinting genes in F0 generation mice and their unexposed F1-2 male offspring. CHEMOSPHERE 2019; 228:586-594. [PMID: 31059956 DOI: 10.1016/j.chemosphere.2019.04.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Benzo[a]pyrene (BaP) is an environmental pollutant known to cause teratogenesis. However, the mechanism underlying this teratogenic effect is not fully understood. Recently, the alteration of DNA methylation of imprinting genes has emerged as a specific epigenetic mechanism linking the impact of environmental pollutants on embryonic development to paternal exposures. The aim of this study was to investigate the transgenerational effects of paternal BaP exposure on the imprinting genes in mouse sperm DNA. METHODS Male C57BL/6J mice received BaP (1.0 or 2.5 mg/kg) or olive oil twice a week for 12 weeks. The methylation status of 6 imprinting genes (H19, Meg3, Peg1, Peg3, Igf2 and Snrpn) was examined by bisulfite pyrosequencing of the sperm DNA of BaP-exposed F0 generation and their offspring. RESULTS BaP exposure reduced the methylation levels in the imprinting genes H19 and Meg3 and increased the methylation levels of Peg1 and Peg3; however, no significant differences was observed for the methylation levels of Igf2 or Snrpn in the sperm DNA. Furthermore, BaP-exposed male mice were mated with unexposed female mice to generate F1-2 generations. The methylation levels of the 6 genes in the sperm DNA from F1-2 offspring showed a similar pattern as that of the F0 male. The effects were attenuated in F1-2 generations. CONCLUSIONS Paternal BaP exposure altered the methylation levels of imprinting genes, implicating that imprinting genes are susceptible to environmental toxicants. Furthermore, a similar alteration was observed in the F1-2 generations although the attenuated in methylation in F2 generation, revealing a potential transgenerational effect.
Collapse
Affiliation(s)
- Wenping Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Jia Yang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Yi Lv
- Department of Toxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mei Qiang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan 030001, China.
| |
Collapse
|
73
|
Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 2019; 20:235-248. [PMID: 30647469 DOI: 10.1038/s41576-018-0092-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos.
Collapse
|
74
|
Luderer U, Eskenazi B, Hauser R, Korach KS, McHale CM, Moran F, Rieswijk L, Solomon G, Udagawa O, Zhang L, Zlatnik M, Zeise L, Smith MT. Proposed Key Characteristics of Female Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Data in Hazard Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:75001. [PMID: 31322437 PMCID: PMC6791466 DOI: 10.1289/ehp4971] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Identification of female reproductive toxicants is currently based largely on integrated epidemiological and in vivo toxicology data and, to a lesser degree, on mechanistic data. A uniform approach to systematically search, organize, integrate, and evaluate mechanistic evidence of female reproductive toxicity from various data types is lacking. OBJECTIVE We sought to apply a key characteristics approach similar to that pioneered for carcinogen hazard identification to female reproductive toxicant hazard identification. METHODS A working group of international experts was convened to discuss mechanisms associated with chemical-induced female reproductive toxicity and identified 10 key characteristics of chemicals that cause female reproductive toxicity: 1) alters hormone receptor signaling; alters reproductive hormone production, secretion, or metabolism; 2) chemical or metabolite is genotoxic; 3) induces epigenetic alterations; 4) causes mitochondrial dysfunction; 5) induces oxidative stress; 6) alters immune function; 7) alters cell signal transduction; 8) alters direct cell–cell interactions; 9) alters survival, proliferation, cell death, or metabolic pathways; and 10) alters microtubules and associated structures. As proof of principle, cyclophosphamide and diethylstilbestrol (DES), for which both human and animal studies have demonstrated female reproductive toxicity, display at least 5 and 3 key characteristics, respectively. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), for which the epidemiological evidence is mixed, exhibits 5 key characteristics. DISCUSSION Future efforts should focus on evaluating the proposed key characteristics against additional known and suspected female reproductive toxicants. Chemicals that exhibit one or more of the key characteristics could be prioritized for additional evaluation and testing. A key characteristics approach has the potential to integrate with pathway-based toxicity testing to improve prediction of female reproductive toxicity in chemicals and potentially prevent some toxicants from entering common use. https://doi.org/10.1289/EHP4971.
Collapse
Affiliation(s)
- Ulrike Luderer
- Center for Occupational and Environmental Health, University of California, Irvine, Irvine, California, USA
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kenneth S. Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Cliona M. McHale
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Linda Rieswijk
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Gina Solomon
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute of Environmental Studies, Tsukuba-City, Ibaraki, Japan
| | - Luoping Zhang
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Marya Zlatnik
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, California, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Martyn T. Smith
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
75
|
Spinelli P, Latchney SE, Reed JM, Fields A, Baier BS, Lu X, McCall MN, Murphy SP, Mak W, Susiarjo M. Identification of the novel Ido1 imprinted locus and its potential epigenetic role in pregnancy loss. Hum Mol Genet 2019; 28:662-674. [PMID: 30403776 DOI: 10.1093/hmg/ddy383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
Previous studies show that aberrant tryptophan catabolism reduces maternal immune tolerance and adversely impacts pregnancy outcomes. Tryptophan depletion in pregnancy is facilitated by increased activity of tryptophan-depleting enzymes [i.e. the indolamine-2,3 dioxygenase (IDO)1 and IDO2) in the placenta. In mice, inhibition of IDO1 activity during pregnancy results in fetal loss; however, despite its important role, regulation of Ido1 gene transcription is unknown. The current study shows that the Ido1 and Ido2 genes are imprinted and maternally expressed in mouse placentas. DNA methylation analysis demonstrates that nine CpG sites at the Ido1 promoter constitute a differentially methylated region that is highly methylated in sperm but unmethylated in oocytes. Bisulfite cloning sequencing analysis shows that the paternal allele is hypermethylated while the maternal allele shows low levels of methylation in E9.5 placenta. Further study in E9.5 placentas from the CBA/J X DBA/2 spontaneous abortion mouse model reveals that aberrant methylation of Ido1 is linked to pregnancy loss. DNA methylation analysis in humans shows that IDO1 is hypermethylated in human sperm but partially methylated in placentas, suggesting similar methylation patterns to mouse. Importantly, analysis in euploid placentas from first trimester pregnancy loss reveals that IDO1 methylation significantly differs between the two placenta cohorts, with most CpG sites showing increased percent of methylation in miscarriage placentas. Our study suggests that DNA methylation is linked to regulation of Ido1/IDO1 expression and altered Ido1/IDO1 DNA methylation can adversely influence pregnancy outcomes.
Collapse
Affiliation(s)
- Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jasmine M Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ashley Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian S Baier
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiang Lu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Shawn P Murphy
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Winifred Mak
- Department of Obstetric Gynecology, Dell Medical School, University of Texas, Austin, TX, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
76
|
Kamai EM, McElrath TF, Ferguson KK. Fetal growth in environmental epidemiology: mechanisms, limitations, and a review of associations with biomarkers of non-persistent chemical exposures during pregnancy. Environ Health 2019; 18:43. [PMID: 31068204 PMCID: PMC6505101 DOI: 10.1186/s12940-019-0480-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-persistent chemicals, such as phthalates, environmental phenols, organophosphate pesticides, and others, are challenging to study because of their ubiquity in the environment, diverse exposure routes, and high temporal variability of biomarkers. Nonetheless, there is interest in understanding how gestational exposure to these chemicals may affect fetal growth, as perturbations to normal fetal growth are related to a plethora of adverse health outcomes in childhood and adulthood. METHODS The purpose of this review is to describe the state of the science on this topic. We searched PubMed for studies that included both 1) biomarkers of non-persistent chemicals collected during pregnancy and 2) fetal growth outcomes measured at birth (e.g., birth weight) or by ultrasound in utero (e.g., estimated fetal weight). RESULTS The bulk of the literature we found uses biomarkers measured at a single time point in pregnancy and birth weight as the primary measure of fetal growth. There is a small, but growing, body of research that uses ultrasound measures to assess fetal growth during pregnancy. In addition to summarizing the findings of the publications we identified, we describe inconsistencies in methodology, areas for improvement, and gaps in existing knowledge that can be targeted for improvement in future work. This literature is characterized by variability in methodology, likely contributing to the inconsistency of results reported. We further discuss maternal, placental, and fetal pathways by which these classes of chemicals may affect fetal growth. CONCLUSIONS To improve understanding of how everyday chemical exposures affect fetal growth, and ultimately lifelong health outcomes, mechanisms of toxicant action should be considered alongside improved study designs for future hypothesis-driven research.
Collapse
Affiliation(s)
- Elizabeth M. Kamai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kelly K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
77
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
78
|
Bedi Y, Golding MC. Context is King — Questioning the causal role of DNA methylation in environmentally induced changes in gene expression. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
79
|
Shu L, Meng Q, Diamante G, Tsai B, Chen YW, Mikhail A, Luk H, Ritz B, Allard P, Yang X. Prenatal Bisphenol A Exposure in Mice Induces Multitissue Multiomics Disruptions Linking to Cardiometabolic Disorders. Endocrinology 2019; 160:409-429. [PMID: 30566610 PMCID: PMC6349005 DOI: 10.1210/en.2018-00817] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
The health impacts of endocrine-disrupting chemicals (EDCs) remain debated, and their tissue and molecular targets are poorly understood. In this study, we leveraged systems biology approaches to assess the target tissues, molecular pathways, and gene regulatory networks associated with prenatal exposure to the model EDC bisphenol A (BPA). Prenatal BPA exposure at 5 mg/kg/d, a dose below most reported no-observed-adverse-effect levels, led to tens to thousands of transcriptomic and methylomic alterations in the adipose, hypothalamus, and liver tissues in male offspring in mice, with cross-tissue perturbations in lipid metabolism as well as tissue-specific alterations in histone subunits, glucose metabolism, and extracellular matrix. Network modeling prioritized main molecular targets of BPA, including Pparg, Hnf4a, Esr1, Srebf1, and Fasn as well as numerous less studied targets such as Cyp51 and long noncoding RNAs across tissues, Fa2h in hypothalamus, and Nfya in adipose tissue. Lastly, integrative analyses identified the association of BPA molecular signatures with cardiometabolic phenotypes in mouse and human. Our multitissue, multiomics investigation provides strong evidence that BPA perturbs diverse molecular networks in central and peripheral tissues and offers insights into the molecular targets that link BPA to human cardiometabolic disorders.
Collapse
Affiliation(s)
- Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Brandon Tsai
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Andrew Mikhail
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Helen Luk
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
80
|
Wang H, Lou D, Wang Z. Crosstalk of Genetic Variants, Allele-Specific DNA Methylation, and Environmental Factors for Complex Disease Risk. Front Genet 2019; 9:695. [PMID: 30687383 PMCID: PMC6334214 DOI: 10.3389/fgene.2018.00695] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
Over the past decades, genome-wide association studies (GWAS) have identified thousands of phenotype-associated DNA sequence variants for potential explanations of inter-individual phenotypic differences and disease susceptibility. However, it remains a challenge for translating the associations into causative mechanisms for complex diseases, partially due to the involved variants in the noncoding regions and the inconvenience of functional studies in human population samples. So far, accumulating evidence has suggested a complex crosstalk among genetic variants, allele-specific binding of transcription factors (ABTF), and allele-specific DNA methylation patterns (ASM), as well as environmental factors for disease risk. This review aims to summarize the current studies regarding the interactions of the aforementioned factors with a focus on epigenetic insights. We present two scenarios of single nucleotide polymorphisms (SNPs) in coding regions and non-coding regions for disease risk, via potentially impacting epigenetic patterns. While a SNP in a coding region may confer disease risk via altering protein functions, a SNP in non-coding region may cause diseases, via SNP-altering ABTF, ASM, and allele-specific gene expression (ASE). The allelic increases or decreases of gene expression are key for disease risk during development. Such ASE can be achieved via either a "SNP-introduced ABTF to ASM" or a "SNP-introduced ASM to ABTF." Together with our additional in-depth review on insulator CTCF, we are convinced to propose a working model that the small effect of a SNP acts through altered ABTF and/or ASM, for ASE and eventual disease outcome (named as a "SNP intensifier" model). In summary, the significance of complex crosstalk among genetic factors, epigenetic patterns, and environmental factors requires further investigations for disease susceptibility.
Collapse
Affiliation(s)
- Huishan Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
81
|
Mother-child transmission of epigenetic information by tunable polymorphic imprinting. Proc Natl Acad Sci U S A 2018; 115:E11970-E11977. [PMID: 30509985 PMCID: PMC6304996 DOI: 10.1073/pnas.1815005115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
First, our work provides critical biological interpretation of intermediate DNA methylation readouts at the nc886 differentially methylated region (DMR). nc886 was identified in multiple large-scale epigenome-wide association studies (EWAS) that did not recognize that this region acts as a contiguous DMR imposed by genomic imprinting, highlighting the need to reexamine several 450k data sets. Second, strict control of genomic imprinting was thought to be required for organismal viability. Reports of polymorphic imprinting are limited to specific tissue types such as placenta and brain. In blood and somatic tissues, we show nc886 imprinting is mosaic in the population and influenced by maternal environment. Genomic imprinting mediated by DNA methylation restricts gene expression to a single allele determined by parental origin and is not generally considered to be under genetic or environmental influence. Here, we focused on a differentially methylated region (DMR) of approximately 1.9 kb that includes a 101-bp noncoding RNA gene (nc886/VTRNA2-1), which is maternally imprinted in ∼75% of humans. This is unlike other imprinted genes, which demonstrate monoallelic methylation in 100% of individuals. The DMR includes a CTCF binding site on the centromeric side defining the DMR boundary and is flanked by a CTCF binding site on the telomeric side. The centromeric CTCF binding site contains an A/C polymorphism (rs2346018); the C allele is associated with less imprinting. The frequency of imprinting of the nc886 DMR in infants was linked to at least two nongenetic factors, maternal age at delivery and season of conception. In a separate cohort, nc886 imprinting was associated with lower body mass index in children at 5 y of age. Thus, we propose that the imprinting status of the nc886 DMR is “tunable” in that it is associated with maternal haplotype and prenatal environment. This provides a potential mechanism for transmitting information, with phenotypic consequences, from mother to child.
Collapse
|
82
|
Desai M, Ferrini MG, Jellyman JK, Han G, Ross MG. In vivo and in vitro bisphenol A exposure effects on adiposity. J Dev Orig Health Dis 2018; 9:678-687. [PMID: 30156179 PMCID: PMC6363869 DOI: 10.1017/s2040174418000600] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As adipogenesis is a critical factor contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn adipose tissue at the stem-cell level. For in vivo studies, female rats received BPA before and during pregnancy and lactation via drinking water, and offspring were studied for measures of adiposity signals. For in vitro BPA exposure, primary pre-adipocyte cell cultures from healthy newborns were utilized. We studied pre-adipocyte proliferative and differentiation effects of BPA and explored putative signal factors which partly explain adipose responses and underlying epigenetic mechanisms mediated by BPA. Maternal BPA-induced offspring adiposity, hypertrophic adipocytes and increased adipose tissue protein expression of pro-adipogenic and lipogenic factors. Consistent with in vivo data, in vitro BPA exposure induced a dose-dependent increase in pre-adipocyte proliferation and increased adipocyte lipid content. In vivo and in vitro BPA exposure promotes the proliferation and differentiation of adipocytes, contributing to an enhanced capacity for lipid storage. These findings reinforce the marked effects of BPA on adipogenesis and highlight the susceptibility of stem-cell populations during early life with long-term consequence on metabolic homeostasis.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Monica G. Ferrini
- Department of Health and Life Sciences Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA
| | - Juanita K. Jellyman
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
| | - Michael G. Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Obstetrics and Gynaecology, Charles R. Drew University, Los Angeles, CA
| |
Collapse
|
83
|
Transgenerational effects of maternal bisphenol: a exposure on offspring metabolic health. J Dev Orig Health Dis 2018; 10:164-175. [PMID: 30362448 DOI: 10.1017/s2040174418000764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exposure to the endocrine disruptor bisphenol A (BPA) is ubiquitous and associated with health abnormalities that persist in subsequent generations. However, transgenerational effects of BPA on metabolic health are not widely studied. In a maternal C57BL/6J mice (F0) exposure model using BPA doses that are relevant to human exposure levels (10 μg/kg/day, LowerB; 10 mg/kg/day, UpperB), we showed male- and dose-specific effects on pancreatic islets of the first (F1) and second generation (F2) offspring relative to controls (7% corn oil diet; control). In this study, we determined the transgenerational effects (F3) of BPA on metabolic health and pancreatic islets in our model. Adult F3 LowerB and UpperB male offspring had increased body weight relative to Controls, however glucose tolerance was similar in the three groups. F3 LowerB, but not UpperB, males had reduced β-cell mass and smaller islets which was associated with increased glucose-stimulated insulin secretion. Similar to F1 and F2 BPA male offspring, staining for markers of T-cells and macrophages (CD3 and F4/80) was increased in pancreas of F3 LowerB and UpperB male offspring, which was associated with changes in cytokine levels. In contrast to F3 BPA males, LowerB and UpperB female offspring had comparable body weight, glucose tolerance and insulin secretion as Controls. Thus, maternal BPA exposure resulted in fewer metabolic defects in F3 than F1 and F2 offspring, and these were sex- and dose-specific.
Collapse
|
84
|
Ye Y, Tang Y, Xiong Y, Feng L, Li X. Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2. FASEB J 2018; 33:2732-2742. [PMID: 30303745 DOI: 10.1096/fj.201800934rrr] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Preeclampsia leads to adverse outcomes for pregnant women. Bisphenol A (BPA) is an environmental endocrine disruptor and has been shown to be positively associated with increased risk of preeclampsia in human studies. We investigated whether BPA exposure causes preeclampsia-like features in pregnant mice and the associated underlying mechanisms. Experiments were performed in animal models and cell cultures. In pregnant mice, BPA-exposed mice exhibited preeclampsia-like features including hypertension, disruption of the circulation, and the placental angiogenesis biomarkers fms-related tyrosine kinase 1 and placenta growth factor, and glomerular atrophy; urinary protein was not affected. These preeclampsia-like features correlated with increased retention of smooth muscle cells and reduced vessel areas at the junctional zone of the placenta. In addition, there were disrupted expression of invasion-related genes including increased tissue inhibitors of metalloproteinases, decreased metalloproteinases, and Wnt family member WNT2/β-catenin, which correlated with increased DNA methylation in its promoter region and upregulation of DNA methyltransferase (Dnmt)1. BPA exposure impeded the interaction between the human cytotrophoblast cell line, HTR-8/SVneo, and endothelium cells. BPA exposure down-regulated WNT2 expression, and elevated the DNA methylation of WNT2; these results were consistent with in vivo observations. Inhibition of DNMT in HTR-8/SVneo cells resulted in reduced DNA methylation and increased expression of WNT2. Taken together, these data demonstrate that BPA exposure alters trophoblast cell invasion and causes abnormal placental vessel remodeling, both of which lead to the development of preeclampsia-like features in pregnant mice. Our results suggest that this phenomenon involves the epigenetic reprogramming and down-regulation of WNT2 mediated by DNMT1.-Ye, Y., Tang, Y., Xiong, Y., Feng, L., Li, X. Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2.
Collapse
Affiliation(s)
- Yunzhen Ye
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yao Tang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yu Xiong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina, USA.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.,The Shanghai Key Laboratory of Birth Defects, Shanghai, China; and.,Institutes of Biochemical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
85
|
Horan TS, Pulcastro H, Lawson C, Gerona R, Martin S, Gieske MC, Sartain CV, Hunt PA. Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations. Curr Biol 2018; 28:2948-2954.e3. [PMID: 30220498 PMCID: PMC6156992 DOI: 10.1016/j.cub.2018.06.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022]
Abstract
20 years ago, accidental bisphenol A (BPA) exposure caused a sudden increase in chromosomally abnormal eggs from our control mice [1]. Subsequent rodent studies demonstrated developmental effects of exposure with repercussions on adult health and fertility (e.g., [2-9]; reviewed in [10-17]). Studies in monkeys, humans, fish, and worms suggest BPA effects extend across species (e.g., [18-30]; reviewed in [31-33]). Widespread use has resulted in ubiquitous environmental contamination and human BPA exposure. Consumer concern resulted in "BPA-free" products produced using structurally similar bisphenols that are now detectable environmental and human contaminants (e.g., [34-41]). We report here studies initiated by meiotic changes mirroring our previous BPA experience and implicating exposure to BPS (a common BPA replacement) from damaged polysulfone cages. Like with BPA [1, 2, 5], our data show that exposure to common replacement bisphenols induces germline effects in both sexes that may affect multiple generations. These findings add to growing evidence of the biological risks posed by this class of chemicals. Rapid production of structural variants of BPA and other EDCs circumvents efforts to eliminate dangerous chemicals, exacerbates the regulatory burden of safety assessment, and increases environmental contamination. Our experience suggests that these environmental contaminants pose a risk not only to reproductive health but also to the integrity of the research environment. EDCs, like endogenous hormones, can affect diverse processes. The sensitivity of the germline allows us to detect effects that, although not immediately apparent in other systems, may induce variability that undermines experimental reproducibility and impedes scientific advancement.
Collapse
Affiliation(s)
- Tegan S Horan
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Hannah Pulcastro
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Roy Gerona
- School of Medicine, University of California, San Francisco, CA, USA
| | - Spencer Martin
- School of Medicine, University of California, San Francisco, CA, USA
| | - Mary C Gieske
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Caroline V Sartain
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
86
|
Mustieles V, Williams PL, Fernandez MF, Mínguez-Alarcón L, Ford JB, Calafat AM, Hauser R, Messerlian C. Maternal and paternal preconception exposure to bisphenols and size at birth. Hum Reprod 2018; 33:1528-1537. [PMID: 29982563 PMCID: PMC6070117 DOI: 10.1093/humrep/dey234] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Are maternal and paternal preconception urinary bisphenol A (BPA) or bisphenol S (BPS) concentrations associated with offspring birth size? SUMMARY ANSWER Maternal-but not paternal-preconception urinary BPA concentrations were associated with lower birth size among couples seeking fertility evaluation. WHAT IS KNOWN ALREADY Prenatal BPA exposure has been previously associated with reduced birth size in some but not all epidemiologic studies. However, the potential effect of BPA exposure before conception in either parent is unknown. Data on BPS is practically absent. STUDY DESIGN, SIZE, DURATION Ongoing prospective preconception cohort of women and men seeking fertility evaluation between 2005 and 2016 in a large fertility center in an academic hospital in Boston, MA, USA. PARTICIPANTS/MATERIALS, SETTING, METHODS We examined the association between maternal and paternal preconception, as well as maternal prenatal urinary BPA and BPS concentrations, and size at birth among 346 singletons from couples recruited in the Environment and Reproductive Health (EARTH) Study using multivariable linear regression. Infant birth weight and head circumference were abstracted from delivery records. Mean preconception and prenatal exposures were estimated by averaging urinary ln-BPA and ln-BPS concentrations in multiple maternal and paternal urine samples collected before pregnancy, and maternal pregnancy samples collected in each trimester. MAIN RESULTS AND THE ROLE OF CHANCE Maternal preconception urinary BPA concentrations were inversely associated with birth weight and head circumference in adjusted models: each ln-unit increase was associated with a decrease in birth weight of 119 g (95% CI: -212, -27), and a head circumference decrease of 0.72 cm (95% CI: -1.3, -0.1). Additional adjustment by gestational age or prenatal BPA exposure modestly attenuated results. Women with higher prenatal BPA concentrations had infants with lower mean birth weight (-75 g, 95% CI: -153, 2) although this did not achieve statistical significance. Paternal preconception urinary BPA concentrations were not associated with either birth weight or head circumference. No consistent patterns emerged for BPS concentrations measured in either parent. LIMITATIONS, REASONS FOR CAUTION We observed a strong negative association between maternal-but not paternal-preconception BPA concentrations and offspring birth size among a subfertile population. Although these results are overall consistent with prior studies on prenatal BPA exposure, these findings may not be generalizable to women without fertility concerns. WIDER IMPLICATIONS OF THE FINDINGS This study suggests that the unexplored maternal preconception period may be a sensitive window for BPA effects on birth outcomes. STUDY FUNDING/COMPETING INTEREST(S) Work supported by Grants (ES R01 009718, ES 022955 and ES 000002) from the National Institute of Environmental Health Sciences (NIEHS). C.M. was supported by a post-doctoral fellowship award from the Canadian Institutes of Health Research. There are no competing interests to declare.
Collapse
Affiliation(s)
- Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Spain
- Center for Biomedical Research (CIBM), University of Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Mariana F Fernandez
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Spain
- Center for Biomedical Research (CIBM), University of Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA
| | - Russ Hauser
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | | |
Collapse
|
87
|
Pathak R, Feil R. Environmental effects on chromatin repression at imprinted genes and endogenous retroviruses. Curr Opin Chem Biol 2018; 45:139-147. [DOI: 10.1016/j.cbpa.2018.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
|
88
|
Abstract
The incidence of metabolic disorders like type 2 diabetes (T2D) and obesity continue to increase. Although it is evident that the increasing incidence of diabetes confers a global societal and economic burden, the mechanisms responsible for the increased incidence of T2D are not well understood. Extensive efforts to understand the association of early-life perturbations with later onset of metabolic diseases, the founding principle of developmental origins of health and disease, have been crucial in determining the mechanisms that may be driving the pathogenesis of T2D. As the programming of the epigenome occurs during critical periods of development, it has emerged as a potential molecular mechanism that could occur early in life and impact metabolic health decades later. In this review, we critically evaluate human and animal studies that illustrated an association of epigenetic processes with development of T2D as well as intervention strategies that have been employed to reverse the perturbed epigenetic modification or reprogram the naturally occurring epigenetic marks to favor improved metabolic outcome. We highlight that although our understanding of epigenetics and its contribution toward developmental origins of T2D continues to grow, whether epigenetics is a cause, consequence, or merely a correlation remains debatable due to the many limitations/challenges of the existing epigenetic studies. Finally, we discuss the potential of establishing collaborative research efforts between different disciplines, including physiology, epigenetics, and bioinformatics, to help advance the developmental origins field with great potential for understanding the pathogenesis of T2D and developing preventive strategies for T2D.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| |
Collapse
|
89
|
Strakovsky RS, Schantz SL. Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy022. [PMID: 30210810 PMCID: PMC6128378 DOI: 10.1093/eep/dvy022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 05/18/2023]
Abstract
The placenta guides fetal growth and development. Bisphenol A (BPA) and phthalates are widespread environmental contaminants and endocrine disruptors, and the placental epigenetic response to these chemicals is an area of growing research interest. Therefore, our objective was to summarize research linking BPA or phthalate exposure to placental outcomes in human pregnancies, with a particular focus on epigenetic endpoints. In PubMed, studies were selected for review (without limiting start date and ending on 1 May 2018) if they reported any direct effects of BPA or phthalates on the placenta in humans. Collectively, available studies suggest that BPA and phthalate exposures are associated with changes to placental micro-RNA expression, DNA methylation, and genomic imprinting. Furthermore, several studies suggest that fetal sex may be an important modifier of placental outcomes in response to these chemicals. Studies in humans demonstrate associations of BPA and phthalate exposure with adverse placental outcomes. Moving forward, more studies should consider sex differences (termed "placental sex") in the measured outcomes, and should utilize appropriate statistical approaches to assess modification by fetal sex. Furthermore, more consistent sample collection and molecular outcome assessment paradigms will be indispensable for making progress in the field. These advances, together with improved non-invasive tools for measuring placental function and outcomes across pregnancy, will be critical for understanding the mechanisms driving placental epigenetic disruption in response to BPA and phthalates, and how these disruptions translate into placental and fetal health.
Collapse
Affiliation(s)
- Rita S Strakovsky
- The Department of Food Science and Human Nutrition, Michigan State University, 236C Trout Building, 469 Wilson Road, East Lansing, MI, USA
- Correspondence address. The Department of Food Science and Human Nutrition, Michigan State University, 236C Trout Building, 469 Wilson Road, East Lansing, MI 48823, USA. Tel: 517-353-3352; Fax: 517-353-8963; E-mail:
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, USA
- Department of Comparative Biosciences, 2347 Beckman Institute, University of Illinois Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, USA
| |
Collapse
|
90
|
Kochmanski JJ, Marchlewicz EH, Cavalcante RG, Perera BPU, Sartor MA, Dolinoy DC. Longitudinal Effects of Developmental Bisphenol A Exposure on Epigenome-Wide DNA Hydroxymethylation at Imprinted Loci in Mouse Blood. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077006. [PMID: 30044229 PMCID: PMC6108846 DOI: 10.1289/ehp3441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Epigenetic machinery plays an important role in genomic imprinting, a developmental process that establishes parent-of-origin-specific monoallelic gene expression. Although a number of studies have investigated the role of 5-methylcytosine in imprinting control, the contribution of 5-hydroxymethylcytosine (5-hmC) to this epigenetic phenomenon remains unclear. OBJECTIVES Using matched mouse blood samples (from mice at 2, 4, and 10 months of age), our objective was to examine the effects of perinatal bisphenol A (BPA) exposure (50 μg/kg diet) on longitudinal 5-hmC patterns at imprinted regions. We also aimed to test the hypothesis that 5-hmC would show defined patterns at imprinted genes that persist across the life course. METHODS Genome-wide 5-hmC levels were measured using hydroxymethylated DNA immunoprecipitation sequencing (HMeDIP-seq). Modeling of differential hydroxymethylation by BPA exposure was performed using a pipeline of bioinformatics tools, including the csaw R package. RESULTS Based on BPA exposure, we identified 5,950 differentially hydroxymethylated regions (DHMRs), including 12 DHMRs that were annotated to murine imprinted genes—Gnas, Grb10, Plagl1, Klf14, Pde10a, Snrpn, Airn, Cmah, Ppp1r9a, Kcnq1, Phactr2, and Pde4d. When visualized, these imprinted gene DHMRs showed clear, consistent patterns of differential 5-hmC by developmental BPA exposure that persisted throughout adulthood. CONCLUSIONS These data show long-term establishment of 5-hmC marks at imprinted loci during development. Further, the effect of perinatal BPA exposure on 5-hmC at specific imprinted loci indicates that developmental exposure to environmental toxicants may alter long-term imprinted gene regulation via an epigenetic mechanism. https://doi.org/10.1289/EHP3441.
Collapse
Affiliation(s)
- Joseph J Kochmanski
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Elizabeth H Marchlewicz
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Raymond G Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
91
|
Xin F, Fischer E, Krapp C, Krizman EN, Lan Y, Mesaros C, Snyder NW, Bansal A, Robinson MB, Simmons RA, Bartolomei MS. Mice exposed to bisphenol A exhibit depressive-like behavior with neurotransmitter and neuroactive steroid dysfunction. Horm Behav 2018; 102:93-104. [PMID: 29763587 PMCID: PMC6261494 DOI: 10.1016/j.yhbeh.2018.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 11/28/2022]
Abstract
Fetal exposure to endocrine disrupting chemicals (EDCs) has been associated with adverse neurobehavioral outcomes across the lifespan and can persist across multiple generations of offspring. However, the underlying mechanisms driving these changes are not well understood. We investigated the molecular perturbations associated with EDC-induced behavioral changes in first (F1) and second (F2) filial generations, using the model EDC bisphenol A (BPA). C57BL/6J dams were exposed to BPA from preconception until lactation through the diet at doses (10 μg/kg bw/d-lower dose or 10 mg/kg bw/d-upper dose) representative of human exposure levels. As adults, F1 male offspring exhibited increased depressive-like behavior, measured by the forced swim test, while females were unaffected. These behavioral changes were limited to the F1 generation and were not associated with altered maternal care. Transcriptome analysis by RNA-sequencing in F1 control and upper dose BPA-exposed adult male hippocampus revealed neurotransmitter systems as major pathways disrupted by developmental BPA exposure. High performance liquid chromatography demonstrated a male-specific reduction in hippocampal serotonin. Administration of the selective serotonin reuptake inhibitor fluoxetine (20 mg/kg bw) rescued the depressive-like phenotype in males exposed to lower, but not upper, dose BPA, suggesting distinct mechanisms of action for each exposure dose. Finally, high resolution mass spectrometry revealed reduced circulating levels of the neuroactive steroid dehydroepiandrosterone in BPA-exposed males, suggesting another potential mechanism underlying the depressive-like phenotype. Thus, behavioral changes associated with early life BPA exposure may be mediated by sex-specific disruptions in the serotonergic system and/or sex steroid biogenesis in male offspring.
Collapse
Affiliation(s)
- Frances Xin
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Fischer
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth N Krizman
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Amita Bansal
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca A Simmons
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
92
|
Marjonen H, Toivonen M, Lahti L, Kaminen-Ahola N. Early prenatal alcohol exposure alters imprinted gene expression in placenta and embryo in a mouse model. PLoS One 2018; 13:e0197461. [PMID: 29763474 PMCID: PMC5953443 DOI: 10.1371/journal.pone.0197461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can harm the embryonic development and cause life-long consequences in offspring’s health. To clarify the molecular mechanisms of PAE we have used a mouse model of early alcohol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first eight days of gestation (GD 0.5–8.5). Owing to the detected postnatal growth-restricted phenotype in the offspring of this mouse model and both prenatal and postnatal growth restriction in alcohol-exposed humans, we focused on imprinted genes Insulin-like growth factor 2 (Igf2), H19, Small Nuclear Ribonucleoprotein Polypeptide N (Snrpn) and Paternally expressed gene 3 (Peg3), which all are known to be involved in embryonic and placental growth and development. We studied the effects of alcohol on DNA methylation level at the Igf2/H19 imprinting control region (ICR), Igf2 differentially methylated region 1, Snrpn ICR and Peg3 ICR in 9.5 embryonic days old (E9.5) embryos and placentas by using MassARRAY EpiTYPER. To determine alcohol-induced alterations globally, we also examined methylation in long interspersed nuclear elements (Line-1) in E9.5 placentas. We did not observe any significant alcohol-induced changes in DNA methylation levels. We explored effects of PAE on gene expression of E9.5 embryos as well as E9.5 and E16.5 placentas by using quantitative PCR. The expression of growth promoter gene Igf2 was decreased in the alcohol-exposed E9.5 and E16.5 placentas. The expression of negative growth controller H19 was significantly increased in the alcohol-exposed E9.5 embryos compared to controls, and conversely, a trend of decreased expression in alcohol-exposed E9.5 and E16.5 placentas were observed. Furthermore, increased Snrpn expression in alcohol-exposed E9.5 embryos was also detected. Our study indicates that albeit no alterations in the DNA methylation levels of studied sequences were detected by EpiTYPER, early PAE can affect the expression of imprinted genes in both developing embryo and placenta.
Collapse
Affiliation(s)
- Heidi Marjonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mia Toivonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Laura Lahti
- Department of Biological and Environmental Sciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
93
|
Du L, Sun W, Li XM, Li XY, Liu W, Chen D. DNA methylation and copy number variation analyses of human embryonic stem cell-derived neuroprogenitors after low-dose decabromodiphenyl ether and/or bisphenol A exposure. Hum Exp Toxicol 2018; 37:475-485. [PMID: 28597690 DOI: 10.1177/0960327117710535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The polybrominated diphenyl ether flame retardants decabromodiphenyl ether (BDE-209) and bisphenol A (BPA) are environmental contaminants that can cross the placenta and exert toxicity in the developing fetal nervous system. Copy number variants (CNVs) play a role in a number of genetic disorders and may be implicated in BDE-209/BPA teratogenicity. In this study, we found that BDE-209 and/or BPA exposure decreased neural differentiation efficiency of human embryonic stem cells (hESCs), although there was a >90% induction of neuronal progenitor cells (NPCs) from exposed hESCs. However, the mean of CNV numbers in the NPCs with BDE-209 + BPA treatment was significantly higher compared to the other groups, whereas DNA methylation was lower and DNA methyltransferase(DNMT1 and DNMT3A) expression were significantly decreased in all of the BDE-209 and/or BPA treatment groups compared with the control groups. The number of CNVs in chromosomes 3, 4, 11, 22, and X in NPCs with BDE-209 and/or BPA exposure was higher compared to the control group. In addition, CNVs in chromosomes 7, 8, 14, and 16 were stable in hESCs and hESCs-derived NPCs irrespective of BDE-209/BPA exposure, and CNVs in chromosomes 20 q11.21 and 16 p13.11 might be induced by neural differentiation. Thus, BDE-209/BPA exposure emerges as a potential source of CNVs distinct from neural differentiation by itself. BDE-209 and/or BPA exposure may cause genomic instability in cultured stem cells via reduced activity of DNA methyltransferase, suggesting a new mechanism of human embryonic neurodevelopmental toxicity caused by this class of environmental toxins.
Collapse
Affiliation(s)
- L Du
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| | - W Sun
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - X M Li
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - X Y Li
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - W Liu
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| | - D Chen
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| |
Collapse
|
94
|
Exposure to Phthalate, an Endocrine Disrupting Chemical, Alters the First Trimester Placental Methylome and Transcriptome in Women. Sci Rep 2018; 8:6086. [PMID: 29666409 PMCID: PMC5904105 DOI: 10.1038/s41598-018-24505-w] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/04/2018] [Indexed: 11/08/2022] Open
Abstract
Phthalates are known endocrine disruptors and associated with decreased fecundity, pregnancy loss, and adverse obstetrical outcomes, however the underlying mechanisms remain to be established. Environmental factors can influence gene expression and cell function by modifying epigenetic marks, impacting the developing embryo as well as future generations of offspring. The impact of phthalates on placental gene methylation and expression is largely unknown. We studied the effect of maternal phthalate exposure on the human placental DNA methylome and transcriptome. We determined epigenome-wide DNA methylation marks (Illumina Infinium Human Methylation 850k BeadChip) and gene expression (Agilent whole human genome array) associated with phthalate exposure in first trimester placenta. Integrative genomic analysis of candidate genes was performed to define gene methylation-expression relationships. We identified 39 genes with significantly altered methylation and gene expression in the high phthalate exposure group. Most of these relationships were inversely correlated. This analysis identified epidermal growth factor receptor (EGFR) as a critical candidate gene mediating the effects of phthalates on early placental function. Although additional studies are needed to determine the functional consequences of these changes, our findings are consistent with the model that phthalates impact placental function by modulating the expression of critical placental genes through epigenetic regulation.
Collapse
|
95
|
Guerrero-Bosagna C, Morisson M, Liaubet L, Rodenburg TB, de Haas EN, Košťál Ľ, Pitel F. Transgenerational epigenetic inheritance in birds. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy008. [PMID: 29732172 PMCID: PMC5920295 DOI: 10.1093/eep/dvy008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 05/04/2023]
Abstract
While it has been shown that epigenetics accounts for a portion of the variability of complex traits linked to interactions with the environment, the real contribution of epigenetics to phenotypic variation remains to be assessed. In recent years, a growing number of studies have revealed that epigenetic modifications can be transmitted across generations in several animal species. Numerous studies have demonstrated inter- or multi-generational effects of changing environment in birds, but very few studies have been published showing epigenetic transgenerational inheritance in these species. In this review, we mention work conducted in parent-to-offspring transmission analyses in bird species, with a focus on the impact of early stressors on behaviour. We then present recent advances in transgenerational epigenetics in birds, which involve germline linked non-Mendelian inheritance, underline the advantages and drawbacks of working on birds in this field and comment on future directions of transgenerational studies in bird species.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58 183, Sweden
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - T Bas Rodenburg
- Behavioural Ecology Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Elske N de Haas
- Behavioural Ecology Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Ľubor Košťál
- Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
- Correspondence address. GenPhySE, INRA, 31326 Castanet-Tolosan, France. Tel:+33 561 28 54 35. E-mail:
| |
Collapse
|
96
|
Xin F, Smith LM, Susiarjo M, Bartolomei MS, Jepsen KJ. Endocrine-disrupting chemicals, epigenetics, and skeletal system dysfunction: exploration of links using bisphenol A as a model system. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy002. [PMID: 29732168 PMCID: PMC5920333 DOI: 10.1093/eep/dvy002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Early life exposures to endocrine-disrupting chemicals (EDCs) have been associated with physiological changes of endocrine-sensitive tissues throughout postnatal life. Although hormones play a critical role in skeletal growth and maintenance, the effects of prenatal EDC exposure on adult bone health are not well understood. Moreover, studies assessing skeletal changes across multiple generations are limited. In this article, we present previously unpublished data demonstrating dose-, sex-, and generation-specific changes in bone morphology and function in adult mice developmentally exposed to the model estrogenic EDC bisphenol A (BPA) at doses of 10 μg (lower dose) or 10 mg per kg bw/d (upper dose) throughout gestation and lactation. We show that F1 generation adult males, but not females, developmentally exposed to bisphenol A exhibit dose-dependent reductions in outer bone size resulting in compromised bone stiffness and strength. These structural alterations and weaker bone phenotypes in the F1 generation did not persist in the F2 generation. Instead, F2 generation males exhibited greater bone strength. The underlying mechanisms driving the EDC-induced physiological changes remain to be determined. We discuss potential molecular changes that could contribute to the EDC-induced skeletal effects, with an emphasis on epigenetic dysregulation. Furthermore, we assess the necessity of intact sex steroid receptors to mediate these effects. Expanding future assessments of EDC-induced effects to the skeleton may provide much needed insight into one of the many health effects of these chemicals and aid in regulatory decision making regarding exposure of vulnerable populations to these chemicals.
Collapse
Affiliation(s)
- Frances Xin
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren M Smith
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY14642, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
97
|
Shi M, Sekulovski N, MacLean JA, Hayashi K. Prenatal Exposure to Bisphenol A Analogues on Male Reproductive Functions in Mice. Toxicol Sci 2018; 163:620-631. [DOI: 10.1093/toxsci/kfy061] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
98
|
Cowley M, Skaar DA, Jima DD, Maguire RL, Hudson KM, Park SS, Sorrow P, Hoyo C. Effects of Cadmium Exposure on DNA Methylation at Imprinting Control Regions and Genome-Wide in Mothers and Newborn Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:037003. [PMID: 29529597 PMCID: PMC6071808 DOI: 10.1289/ehp2085] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Imprinted genes are defined by their preferential expression from one of the two parental alleles. This unique mode of gene expression is dependent on allele-specific DNA methylation profiles established at regulatory sequences called imprinting control regions (ICRs). These loci have been used as biosensors to study how environmental exposures affect methylation and transcription. However, a critical unanswered question is whether they are more, less, or equally sensitive to environmental stressors as the rest of the genome. OBJECTIVES Using cadmium exposure in humans as a model, we aimed to determine the relative sensitivity of ICRs to perturbation of methylation compared to similar, nonimprinted loci in the genome. METHODS We assayed DNA methylation genome-wide using bisulfite sequencing of 19 newborn cord blood and 20 maternal blood samples selected on the basis of maternal blood cadmium levels. Differentially methylated regions (DMRs) associated with cadmium exposure were identified. RESULTS In newborn cord blood and maternal blood, 641 and 1,945 cadmium-associated DMRs were identified, respectively. DMRs were more common at the 15 maternally methylated ICRs than at similar nonimprinted loci in newborn cord blood (p=5.64×10-8) and maternal blood (p=6.22×10-14), suggesting a higher sensitivity for ICRs to cadmium. Genome-wide, Enrichr analysis indicated that the top three functional categories for genes that overlapped DMRs in maternal blood were body mass index (BMI) (p=2.0×10-5), blood pressure (p=3.8×10-5), and body weight (p=0.0014). In newborn cord blood, the top three functional categories were BMI, atrial fibrillation, and hypertension, although associations were not significant after correction for multiple testing (p=0.098). These findings suggest that epigenetic changes may contribute to the etiology of cadmium-associated diseases. CONCLUSIONS We analyzed cord blood and maternal blood DNA methylation profiles genome-wide at nucleotide resolution in individuals selected for high and low blood cadmium levels in the first trimester. Our findings suggest that ICRs may be hot spots for perturbation by cadmium, motivating further study of these loci to investigate potential mechanisms of cadmium action. https://doi.org/10.1289/EHP2085.
Collapse
Affiliation(s)
- Michael Cowley
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- W.M. Keck Center for Behavioral Biology , North Carolina State University , Raleigh, North Carolina, USA
| | - David A Skaar
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Dereje D Jima
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University , Raleigh, North Carolina, USA
| | - Rachel L Maguire
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Kathleen M Hudson
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Sarah S Park
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Patricia Sorrow
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| |
Collapse
|
99
|
The toxic effects and possible mechanisms of Bisphenol A on oocyte maturation of porcine in vitro. Oncotarget 2018; 7:32554-65. [PMID: 27086915 PMCID: PMC5078033 DOI: 10.18632/oncotarget.8689] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA) and Di-(2-ethylhexyl) phthalate (DEHP) are widely used in the plastic industry such as water bottles, containers, packaging and toys. BPA and DEHP are shown to be the endocrine disruptors which disturb the endocrine system and are linked to several diseases including infertility. In this study, we investigated the effects of BPA exposure on porcine oocyte maturation and its possible reasons. Our results showed that: (i) the rates of oocyte maturation significantly decreased with 250 μM BPA treatment in vitro, but not DEHP. This might be due to the delayed cell cycle progression of oocyte maturation. (ii) BPA treatment resulted in abnormal cytoskeletons on porcine oocytes, showing with aberrant actin distribution, spindle morphology and chromosome alignment, which was further confirmed by the reduced p-MAPK level. (iii) The fluorescence intensity of histone methylation (H3K4me2) and DNA methylation (5 mC) levels were altered after BPA treatment, indicating that epigenetic modification was disturbed. (iv) BPA-exposed oocytes had higher rates of early stage apoptosis/autophagy, and this may be resulted from the increased level of oxidative stress. Collectively, our results indicated that porcine oocytes maturation was disrupted after BPA treatment through disrupting cytoskeletal dynamics, epigenetic modifications and inducing apoptosis/autophagy.
Collapse
|
100
|
Wasson JA, Birol O, Katz DJ. A Resource for the Allele-Specific Analysis of DNA Methylation at Multiple Genomically Imprinted Loci in Mice. G3 (BETHESDA, MD.) 2018; 8:91-103. [PMID: 29138238 PMCID: PMC5765370 DOI: 10.1534/g3.117.300417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
Genomically imprinted loci are expressed mono-allelically, dependent upon the parent of origin. Their regulation not only illuminates how chromatin regulates gene expression but also how chromatin can be reprogrammed every generation. Because of their distinct parent-of-origin regulation, analysis of imprinted loci can be difficult. Single nucleotide polymorphisms (SNPs) are required to accurately assess these elements allele specifically. However, publicly available SNP databases lack robust verification, making analysis of imprinting difficult. In addition, the allele-specific imprinting assays that have been developed employ different mouse strains, making it difficult to systemically analyze these loci. Here, we have generated a resource that will allow the allele-specific analysis of many significant imprinted loci in a single hybrid strain of Mus musculus This resource includes verification of SNPs present within 10 of the most widely used imprinting control regions and allele-specific DNA methylation assays for each gene in a C57BL/6J and CAST/EiJ hybrid strain background.
Collapse
Affiliation(s)
- Jadiel A Wasson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Onur Birol
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|