51
|
Vignali PDA, Barbi J, Pan F. Metabolic Regulation of T Cell Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1011:87-130. [DOI: 10.1007/978-94-024-1170-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
52
|
Sackstein R, Schatton T, Barthel SR. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. J Transl Med 2017; 97:669-697. [PMID: 28346400 PMCID: PMC5446300 DOI: 10.1038/labinvest.2017.25] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/17/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Advances in cancer immunotherapy have offered new hope for patients with metastatic disease. This unfolding success story has been exemplified by a growing arsenal of novel immunotherapeutics, including blocking antibodies targeting immune checkpoint pathways, cancer vaccines, and adoptive cell therapy (ACT). Nonetheless, clinical benefit remains highly variable and patient-specific, in part, because all immunotherapeutic regimens vitally hinge on the capacity of endogenous and/or adoptively transferred T-effector (Teff) cells, including chimeric antigen receptor (CAR) T cells, to home efficiently into tumor target tissue. Thus, defects intrinsic to the multi-step T-cell homing cascade have become an obvious, though significantly underappreciated contributor to immunotherapy resistance. Conspicuous have been low intralesional frequencies of tumor-infiltrating T-lymphocytes (TILs) below clinically beneficial threshold levels, and peripheral rather than deep lesional TIL infiltration. Therefore, a Teff cell 'homing deficit' may arguably represent a dominant factor responsible for ineffective immunotherapeutic outcomes, as tumors resistant to immune-targeted killing thrive in such permissive, immune-vacuous microenvironments. Fortunately, emerging data is shedding light into the diverse mechanisms of immune escape by which tumors restrict Teff cell trafficking and lesional penetrance. In this review, we scrutinize evolving knowledge on the molecular determinants of Teff cell navigation into tumors. By integrating recently described, though sporadic information of pivotal adhesive and chemokine homing signatures within the tumor microenvironment with better established paradigms of T-cell trafficking under homeostatic or infectious disease scenarios, we seek to refine currently incomplete models of Teff cell entry into tumor tissue. We further summarize how cancers thwart homing to escape immune-mediated destruction and raise awareness of the potential impact of immune checkpoint blockers on Teff cell homing. Finally, we speculate on innovative therapeutic opportunities for augmenting Teff cell homing capabilities to improve immunotherapy-based tumor eradication in cancer patients, with special focus on malignant melanoma.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Program of Excellence in Glycosciences, Harvard Medical School, 77 Avenue Louis Pasteur, Rm 671, Boston, MA 02115, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA,Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. Barthel
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA,Correspondence to: Dr. Steven R. Barthel, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115;
| |
Collapse
|
53
|
Speir M, Hermans IF, Weinkove R. Engaging Natural Killer T Cells as 'Universal Helpers' for Vaccination. Drugs 2017; 77:1-15. [PMID: 28005229 DOI: 10.1007/s40265-016-0675-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional vaccine adjuvants enhance peptide-specific T-cell and B-cell responses by modifying peptide stability or uptake or by binding to pattern-recognition receptors on antigen-presenting cells (APCs). This article discusses the application of a distinct mechanism of adjuvant activity: the activation of type I, or invariant, natural killer T (iNKT) cells to drive cellular and humoral immune responses. Using a semi-invariant T-cell receptor (TCR), iNKT cells recognize glycolipid antigens presented on cluster of differentiation (CD)-1d molecules. When their ligands are presented in concert with peptides, iNKT cells can provide T-cell help, 'licensing' APCs to augment peptide-specific T-cell and antibody responses. We discuss the potential benefits and limitations of exploiting iNKT cells as 'universal helpers' to enhance vaccine responses for the treatment and prevention of cancer and infectious diseases.
Collapse
Affiliation(s)
- Mary Speir
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,School of Biological Sciences, Victoria University Wellington, PO Box 600, Wellington, 6140, New Zealand. .,Maurice Wilkins Centre, Private Bag 92019, Auckland, New Zealand.
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,Wellington Blood and Cancer Centre, Wellington Hospital, Private Bag 7902, Wellington, 6242, New Zealand. .,Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, 6021, New Zealand.
| |
Collapse
|
54
|
Karta MR, Rosenthal PS, Beppu A, Vuong CY, Miller M, Das S, Kurten RC, Doherty TA, Broide DH. β 2 integrins rather than β 1 integrins mediate Alternaria-induced group 2 innate lymphoid cell trafficking to the lung. J Allergy Clin Immunol 2017; 141:329-338.e12. [PMID: 28366795 DOI: 10.1016/j.jaci.2017.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) expand in the lungs of mice during type 2 inflammation induced by the fungal allergen Alternaria alternata. The increase in ILC2 numbers in the lung has been largely attributed to local proliferation and whether ILC2s migrate from the circulation to the lung after Alternaria exposure is unknown. OBJECTIVE We examined whether human (lung, lymph node, and blood) and mouse lung ILC2s express β1 and β2 integrin adhesion molecules and whether these integrins are required for trafficking of ILC2s into the lungs of mice. METHODS Human and mouse ILC2s were assessed for surface expression of β1 and β2 integrin adhesion molecules by using flow cytometry. The role of β1 and β2 integrins in ILC2 trafficking to the lungs was assessed by in vivo blocking of these integrins before airway exposure to Alternaria in mice. RESULTS Both human and mouse lung ILC2s express high levels of β1 and β2 integrin adhesion receptors. Intranasal administration of Alternaria challenge reduced ILC2 numbers in the bone marrow and concurrently increased blood and lung ILC2 numbers. In vivo blocking of β2 integrins (CD18) significantly reduced ILC2 numbers in the lungs but did not alter ILC2 proliferation, apoptosis, and function. In contrast, in vivo blocking of β1 integrins or α4 integrins did not affect lung ILC2 numbers. CONCLUSION ILC2 numbers increase in the mouse lung not only through local proliferation but also through trafficking from the circulation into the lung using β2 rather than β1 or α4 integrins.
Collapse
Affiliation(s)
- Maya R Karta
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Peter S Rosenthal
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Andrew Beppu
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Christine Y Vuong
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Sudipta Das
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Richard C Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital Research Institute, Little Rock, Ark
| | - Taylor A Doherty
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
55
|
Dib K, Tikhonova IG, Ivetic A, Schu P. The cytoplasmic tail of L-selectin interacts with the adaptor-protein complex AP-1 subunit μ1A via a novel basic binding motif. J Biol Chem 2017; 292:6703-6714. [PMID: 28235798 DOI: 10.1074/jbc.m116.768598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/30/2017] [Indexed: 01/02/2023] Open
Abstract
L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin.
Collapse
Affiliation(s)
- Karim Dib
- From the Max Planck Institute for Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany, .,the Center for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Irina G Tikhonova
- the School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Aleksandar Ivetic
- the BHF Center for Research Excellence, Cardiovascular Division, Faculty of Life Sciences and Medicine, King's College London, London SE5 9NU, United Kingdom, and
| | - Peter Schu
- University Medical Center Göttingen, Department of Cellular Biochemistry, Georg-August University Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
56
|
Muders K, Pilat C, Deuster V, Frech T, Krüger K, Pons-Kühnemann J, Mooren FC. Effects of Traumeel (Tr14) on recovery and inflammatory immune response after repeated bouts of exercise: a double-blind RCT. Eur J Appl Physiol 2017; 117:591-605. [PMID: 28224232 DOI: 10.1007/s00421-017-3554-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/21/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE The purpose of this double-blind, randomized, placebo-controlled clinical trial was to investigate the effects of the natural combination medicine Traumeel (Tr14) consisting of 14 diluted biological and mineral components on the inflammatory immune response and recovery up to 72 h after repetitive bouts of bicycle tests. METHODS Antigen-stimulated IL-1ra and IL-6 were defined as primary outcome measures. Moreover, various immunological and serum muscle damage markers were investigated. The evaluation was performed using the score of the area under the curve with respect to increase (AUCi) for 24 and 72 h after the second exercise test (EX2). RESULTS The Tr14 group indicated a lower decrease of lymphocytes by tendency (p = 0.06) and a lower activation of lymphocyte activation markers (CD62L absolute: p = 0.04; CD69: p = 0.01 and CD69 absolute: p = 0.05) in the period 24 h after EX2. In addition, the Tr14 group indicated a higher expression of antigen-stimulated CCL3 (p = 0.01), CCL4 (p = 0.07) and serum CCL2 (p = 0.05) in the period 24 h after EX2. There was a tendentially lower decrease of monocytes (p = 0.09) and a lower expression of antigen-stimulated MMP-3 (p = 0.01) in the Tr14 group in the period 72 h after EX2. However, antigen-stimulated IL-1ra and IL-6 showed no group differences. CONCLUSION In line with the previous results, it was shown that Tr14 attenuates the adaptive immune response partially. Furthermore, the results indicate that Tr14 is able to stimulate the innate immune system via an increased production of pro-inflammatory chemokines. It is speculated that the higher expression of chemokines might play a role in the regeneration and recovery after exercise.
Collapse
Affiliation(s)
- Kerstin Muders
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394, Giessen, Germany.
| | - Christian Pilat
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394, Giessen, Germany
| | - Vanessa Deuster
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394, Giessen, Germany
| | - Torsten Frech
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394, Giessen, Germany
| | - Karsten Krüger
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394, Giessen, Germany
| | | | - Frank-Christoph Mooren
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394, Giessen, Germany
| |
Collapse
|
57
|
Camps-Bossacoma M, Pérez-Cano FJ, Franch À, Untersmayr E, Castell M. Effect of a cocoa diet on the small intestine and gut-associated lymphoid tissue composition in an oral sensitization model in rats. J Nutr Biochem 2017; 42:182-193. [PMID: 28189917 DOI: 10.1016/j.jnutbio.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/14/2017] [Indexed: 01/10/2023]
Abstract
Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer's patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+cells as well. In cocoa-fed animals, we identified a five-time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain; Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| | - Francisco J Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
58
|
Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol 2017; 10:58-68. [PMID: 27143301 DOI: 10.1038/mi.2016.39] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/19/2016] [Indexed: 02/07/2023]
Abstract
Despite recent breakthroughs in identifying mucosal-associated invariant T (MAIT) cell antigens (Ags), the precise requirements for in vivo MAIT cell responses to infection remain unclear. Using major histocompatibility complex-related protein 1 (MR1) tetramers, the MAIT cell response was investigated in a model of bacterial lung infection employing riboflavin gene-competent and -deficient bacteria. MAIT cells were rapidly enriched in the lungs of C57BL/6 mice infected with Salmonella Typhimurium, comprising up to 50% of αβ-T cells after 1 week. MAIT cell accumulation was MR1-dependent, required Ag derived from the microbial riboflavin synthesis pathway, and did not occur in response to synthetic Ag, unless accompanied by a Toll-like receptor agonist or by co-infection with riboflavin pathway-deficient S. Typhimurium. The MAIT cell response was associated with their long-term accumulation in the lungs, draining lymph nodes and spleen. Lung MAIT cells from infected mice displayed an activated/memory phenotype, and most expressed the transcription factor retinoic acid-related orphan receptor γt. T-bet expression increased following infection. The majority produced interleukin-17 while smaller subsets produced interferon-γ or tumor necrosis factor, detected directly ex vivo. Thus the activation and expansion of MAIT cells coupled with their pro-inflammatory cytokine production occurred in response to Ags derived from microbial riboflavin synthesis and was augmented by co-stimulatory signals.
Collapse
|
59
|
Ku AW, Muhitch JB, Powers CA, Diehl M, Kim M, Fisher DT, Sharda AP, Clements VK, O'Loughlin K, Minderman H, Messmer MN, Ma J, Skitzki JJ, Steeber DA, Walcheck B, Ostrand-Rosenberg S, Abrams SI, Evans SS. Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes. eLife 2016; 5. [PMID: 27929373 PMCID: PMC5199197 DOI: 10.7554/elife.17375] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive network that drives cancer escape by disabling T cell adaptive immunity. The prevailing view is that MDSC-mediated immunosuppression is restricted to tissues where MDSC co-mingle with T cells. Here we show that splenic or, unexpectedly, blood-borne MDSC execute far-reaching immune suppression by reducing expression of the L-selectin lymph node (LN) homing receptor on naïve T and B cells. MDSC-induced L-selectin loss occurs through a contact-dependent, post-transcriptional mechanism that is independent of the major L-selectin sheddase, ADAM17, but results in significant elevation of circulating L-selectin in tumor-bearing mice. Even moderate deficits in L-selectin expression disrupt T cell trafficking to distant LN. Furthermore, T cells preconditioned by MDSC have diminished responses to subsequent antigen exposure, which in conjunction with reduced trafficking, severely restricts antigen-driven expansion in widely-dispersed LN. These results establish novel mechanisms for MDSC-mediated immunosuppression that have unanticipated implications for systemic cancer immunity. DOI:http://dx.doi.org/10.7554/eLife.17375.001
Collapse
Affiliation(s)
- Amy W Ku
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| | - Jason B Muhitch
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States.,Department of Urology, Roswell Park Cancer Institute, Buffalo, United States
| | - Colin A Powers
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, United States
| | - Michael Diehl
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, United States
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States.,Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, United States
| | - Anand P Sharda
- Department of Urology, Roswell Park Cancer Institute, Buffalo, United States
| | - Virginia K Clements
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, United States
| | - Kieran O'Loughlin
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, United States
| | - Hans Minderman
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, United States
| | - Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| | - Jing Ma
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, United States
| | - Joseph J Skitzki
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, United States
| | - Douglas A Steeber
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, United States
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| | - Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| |
Collapse
|
60
|
Ayala VI, Trivett MT, Barsov EV, Jain S, Piatak M, Trubey CM, Alvord WG, Chertova E, Roser JD, Smedley J, Komin A, Keele BF, Ohlen C, Ott DE. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol 2016; 90:9942-9952. [PMID: 27558423 PMCID: PMC5068542 DOI: 10.1128/jvi.01522-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023] Open
Abstract
AIDS virus infections are rarely controlled by cell-mediated immunity, in part due to viral immune evasion and immunodeficiency resulting from CD4+ T-cell infection. One likely aspect of this failure is that antiviral cellular immune responses are either absent or present at low levels during the initial establishment of infection. To test whether an extensive, timely, and effective response could reduce the establishment of infection from a high-dose inoculum, we adoptively transferred large numbers of T cells that were molecularly engineered with anti-simian immunodeficiency virus (anti-SIV) activity into rhesus macaques 3 days following an intrarectal SIV inoculation. To measure in vivo antiviral activity, we assessed the number of viruses transmitted using SIVmac239X, a molecularly tagged viral stock containing 10 genotypic variants, at a dose calculated to transmit 12 founder viruses. Single-genome sequencing of plasma virus revealed that the two animals receiving T cells expressing SIV-specific T-cell receptors (TCRs) had significantly fewer viral genotypes than the two control animals receiving non-SIV-specific T cells (means of 4.0 versus 7.5 transmitted viral genotypes; P = 0.044). Accounting for the likelihood of transmission of multiple viruses of a particular genotype, the calculated means of the total number of founder viruses transmitted were 4.5 and 14.5 in the experimental and control groups, respectively (P = 0.021). Thus, a large antiviral T-cell response timed with virus exposure can limit viral transmission. The presence of strong, preexisting T-cell responses, including those induced by vaccines, might help prevent the establishment of infection at the lower-exposure doses in humans that typically transmit only a single virus. IMPORTANCE The establishment of AIDS virus infection in an individual is essentially a race between the spreading virus and host immune defenses. Cell-mediated immune responses induced by infection or vaccination are important contributors in limiting viral replication. However, in human immunodeficiency virus (HIV)/SIV infection, the virus usually wins the race, irreversibly crippling the immune system before an effective cellular immune response is developed and active. We found that providing an accelerated response by adoptively transferring large numbers of antiviral T cells shortly after a high-dose mucosal inoculation, while not preventing infection altogether, limited the number of individual viruses transmitted. Thus, the presence of strong, preexisting T-cell responses, including those induced by vaccines, might prevent infection in humans, where the virus exposure is considerably lower.
Collapse
Affiliation(s)
- Victor I Ayala
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Eugene V Barsov
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - W Gregory Alvord
- DMS Applied Information & Management Sciences, Frederick National Laboratory for Cancer Research, Maryland, USA
| | - Elena Chertova
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D Roser
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alexander Komin
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
61
|
Mahnke K, Useliene J, Ring S, Kage P, Jendrossek V, Robson SC, Bylaite-Bucinskiene M, Steinbrink K, Enk AH. Down-Regulation of CD62L Shedding in T Cells by CD39 + Regulatory T Cells Leads to Defective Sensitization in Contact Hypersensitivity Reactions. J Invest Dermatol 2016; 137:106-114. [PMID: 27623510 DOI: 10.1016/j.jid.2016.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023]
Abstract
Injection of regulatory T cells (Tregs) followed by sensitization with 2,4,6-trinitrochlorobenzene induced a transient increase in size and cellularity of skin-draining lymph nodes (LNs) in mice. This led us to hypothesize that Tregs may affect the trafficking of T cells from and to peripheral LNs. Two to three hours after sensitization, we found fewer CD8+ T cells expressing CD62L in LNs compared with untreated controls. Injection of wild-type Tregs prevented this down-regulation of CD62L. In contrast, Tregs devoid of the adenosine triphosphate (ATP)-degrading ecto-enzyme CD39 were unable to do so. As for the mechanism of CD62L regulation, we found that ATP, which is released in skin upon hapten-exposure, is inducing the protease ADAM17 in LN-residing T cells via engagement of P2X7 ATP receptors. ADAM17 cleaves CD62L from the surface of CD8+ T cells, which in turn provide a signal for T cells to leave the LNs. This regulation of CD62L is disturbed by the presence of Tregs, because Tregs remove extracellular ATP from the tissue by activity of CD39 and, therefore, abrogate the shedding of CD62L. Thus, these data indicate that the regulation of ATP turnover by Tregs in skin and LNs is an important modulator for immune responses.
Collapse
Affiliation(s)
- Karsten Mahnke
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| | - Jurgina Useliene
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany; Centre of Dermatovenereology, Vilnius University Hospital Santariskiu klinikos, Vilnius, Lithuania
| | - Sabine Ring
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Paula Kage
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Simon C Robson
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander H Enk
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| |
Collapse
|
62
|
Manjati T, Nkambule B, Ipp H. Immune activation is associated with decreased thymic function in asymptomatic, untreated HIV-infected individuals. South Afr J HIV Med 2016; 17:445. [PMID: 29568606 PMCID: PMC5843076 DOI: 10.4102/sajhivmed.v17i1.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/25/2016] [Indexed: 11/15/2022] Open
Abstract
Background Reduced thymic function causes poor immunological reconstitution in human immunodeficiency virus (HIV)-positive patients on combined antiretroviral therapy (cART). The association between immune activation and thymic function in asymptomatic HIV-positive treatment-naive individuals has thus far not been investigated. Aims and objectives To optimise a five-colour flow cytometric assay for measurement of thymic function by measuring recent thymic emigrants (RTEs) in treatment-naive HIV-infected patients and healthy controls and correlate results with levels of immune activation, CD4 counts and viral load. Methods Blood obtained from 53 consenting HIV-positive individuals and 32 controls recruited from HIV prevention and testing clinic in Cape Town, South Africa. RTEs were measured (CD3+/CD4+/CD45RA+/CD31+/CD62L+) and levels were correlated with CD4 counts of HIV-infected individuals, log viral load and levels of immune activation (CD8+/CD38+ T-cells). Results HIV-infected individuals had reduced frequencies of RTEs when compared to controls (p = 0.0035). Levels of immune activation were inversely correlated with thymic function (p = 0.0403), and the thymic function in HIV-infected individuals showed no significant correlation with CD4 counts (p = 0.31559) and viral load (p = 0.20628). Conclusions There was impaired thymic function in HIV-infected individuals, which was associated with increased levels of immune activation. The thymic dysfunction was not associated with CD4 counts and viral load. Immune activation may result in inflammatory damage to the thymus and subsequent thymic dysfunction, and CD4 counts and viral load may not necessarily reflect thymic dysfunction in HIV.
Collapse
Affiliation(s)
- Thandiwe Manjati
- Division of Haematology, Department of Pathology, Stellenbosch University, South Africa.,Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Bongani Nkambule
- Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa.,Department of Physiology, School of Laboratory and Medical Sciences, University of KwaZulu-Natal, South Africa
| | - Hayley Ipp
- Division of Haematology, Department of Pathology, Stellenbosch University, South Africa.,Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
63
|
Banerjee A, Thyagarajan K, Chatterjee S, Chakraborty P, Kesarwani P, Soloshchenko M, Al-Hommrani M, Andrijauskaite K, Moxley K, Janakiraman H, Scheffel MJ, Helke K, Armenson K, Palanisamy V, Rubinstein MP, Mayer EG, Cole DJ, Paulos CM, Christina-Voelkel-Johnson, Nishimura MI, Mehrotra S. Lack of p53 Augments Antitumor Functions in Cytolytic T Cells. Cancer Res 2016; 76:5229-5240. [PMID: 27466285 DOI: 10.1158/0008-5472.can-15-1798] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Repetitive stimulation of T-cell receptor (TCR) with cognate antigen results in robust proliferation and expansion of the T cells, and also imprints them with replicative senescence signatures. Our previous studies have shown that life-span and antitumor function of T cells can be enhanced by inhibiting reactive oxygen species (ROS) or intervening with ROS-dependent JNK activation that leads to its activation-induced cell death. Because tumor suppressor protein p53 is also a redox active transcription factor that regulates cellular ROS generation that triggers downstream factor-mediating apoptosis, we determined if p53 levels could influence persistence and function of tumor-reactive T cells. Using h3T TCR transgenic mice, with human tyrosinase epitope-reactive T cells developed on p53 knockout (KO) background, we determined its role in regulating antitumor T-cell function. Our data show that as compared with h3T cells, h3T-p53 KO T cells exhibited enhanced glycolytic commitment that correlated with increased proliferation, IFNγ secretion, cytolytic capacity, expression of stemness gene signature, and decreased TGF-β signaling. This increased effector function correlated to the improved control of subcutaneously established murine melanoma after adoptive transfer of p53-KO T cells. Pharmacological inhibition of human TCR-transduced T cells using a combination of p53 inhibitors also potentiated the T-cell effector function and improved persistence. Thus, our data highlight the key role of p53 in regulating the tumor-reactive T-cell response and that targeting this pathway could have potential translational significance in adoptive T-cell therapy. Cancer Res; 76(18); 5229-40. ©2016 AACR.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | | | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Pravin Kesarwani
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | | | - Mazen Al-Hommrani
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | | | - Kelly Moxley
- Department of Surgery, Oncology Institute, Loyola University, Maywood, IL 60153
| | | | - Matthew J Scheffel
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Kristi Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Kent Armenson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Viswanathan Palanisamy
- Department of Oral Health Research, Medical University of South Carolina, Charleston, SC 29425
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Elizabeth-Garrett Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Chrystal M Paulos
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
| | | | - Michael I Nishimura
- Department of Surgery, Oncology Institute, Loyola University, Maywood, IL 60153
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
64
|
Braun M, Ress ML, Yoo YE, Scholz CJ, Eyrich M, Schlegel PG, Wölfl M. IL12-mediated sensitizing of T-cell receptor-dependent and -independent tumor cell killing. Oncoimmunology 2016; 5:e1188245. [PMID: 27622043 DOI: 10.1080/2162402x.2016.1188245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022] Open
Abstract
Interleukin 12 (IL12) is a key inflammatory cytokine critically influencing Th1/Tc1-T-cell responses at the time of initial antigen encounter. Therefore, it may be exploited for cancer immunotherapy. Here, we investigated how IL12, and other inflammatory cytokines, shape effector functions of human T-cells. Using a defined culture system, we followed the gradual differentiation and function of antigen-specific CD8(+) T cells from their initial activation as naïve T cells through their expansion phase as early memory cells to full differentiation as clonally expanded effector T cells. The addition of IL12 8 days after the initial priming event initiated two mechanistically separate events: First, IL12 sensitized the T-cell receptor (TCR) for antigen-specific activation, leading to an approximately 10-fold increase in peptide sensitivity and, in consequence, enhanced tumor cell killing. Secondly, IL12 enabled TCR/HLA-independent activation and cytotoxicity: this "non-specific" effect was mediated by the NK cell receptor DNAM1 (CD226) and dependent on ligand expression of the target cells. This IL12 regulated, DNAM1-mediated killing is dependent on src-kinases as well as on PTPRC (CD45) activity. Thus, besides enhancing TCR-mediated activation, we here identified for the first time a second IL12 mediated mechanism leading to activation of a receptor-dependent killing pathway via DNAM1.
Collapse
Affiliation(s)
- Matthias Braun
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany; Else-Kröner Forschungskolleg for Interdisciplinary Translational Immunology, School of Medicine, University of Würzburg, Würzburg, Germany
| | - Marie L Ress
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg , Würzburg, Germany
| | - Young-Eun Yoo
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg , Würzburg, Germany
| | - Claus J Scholz
- Core Unit Systems Medicine, University of Würzburg , Würzburg, Germany
| | - Matthias Eyrich
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg , Würzburg, Germany
| | - Paul G Schlegel
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany; Clinical Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Matthias Wölfl
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany; Clinical Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
65
|
Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol 2016; 28:35-44. [DOI: 10.1016/j.smim.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
66
|
Mohammed RN, Watson HA, Vigar M, Ohme J, Thomson A, Humphreys IR, Ager A. L-selectin Is Essential for Delivery of Activated CD8(+) T Cells to Virus-Infected Organs for Protective Immunity. Cell Rep 2016; 14:760-771. [PMID: 26804910 PMCID: PMC4742564 DOI: 10.1016/j.celrep.2015.12.090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic CD8+ T lymphocytes play a critical role in the host response to infection by viruses. The ability to secrete cytotoxic chemicals and cytokines is considered pivotal for eliminating virus. Of equal importance is how effector CD8+ T cells home to virus-infected tissues. L-selectin has not been considered important for effector T cell homing, because levels are low on activated T cells. We report here that, although L-selectin expression is downregulated following T cell priming in lymph nodes, L-selectin is re-expressed on activated CD8+ T cells entering the bloodstream, and recruitment of activated CD8+ T cells from the bloodstream into virus-infected tissues is L-selectin dependent. Furthermore, L-selectin on effector CD8+ T cells confers protective immunity to two evolutionally distinct viruses, vaccinia and influenza, which infect mucosal and visceral organs, respectively. These results connect homing and a function of virus-specific CD8+ T cells to a single molecule, L-selectin. L-selectin is re-expressed on activated CD8+ T cells exiting lymph nodes L-selectin does not regulate priming, differentiation, or function of cytotoxic T lymphocytes Entry of activated CD8+ T cells into virus-infected tissues is L-selectin dependent The level of cell-surface L-selectin determines the extent of anti-viral immunity
Collapse
Affiliation(s)
- Rebar N Mohammed
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - H Angharad Watson
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Miriam Vigar
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ohme
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Amanda Thomson
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ann Ager
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
67
|
Bing T, Shangguan D, Wang Y. Facile Discovery of Cell-Surface Protein Targets of Cancer Cell Aptamers. Mol Cell Proteomics 2015. [PMID: 26199357 DOI: 10.1074/mcp.m115.051243] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer biomarker discovery constitutes a frontier in cancer research. In recent years, cell-binding aptamers have become useful molecular probes for biomarker discovery. However, there are few successful examples, and the critical barrier resides in the identification of the cell-surface protein targets for the aptamers, where only a limited number of aptamer targets have been identified so far. Herein, we developed a universal SILAC-based quantitative proteomic method for target discovery of cell-binding aptamers. The method allowed for distinguishing specific aptamer-binding proteins from nonspecific proteins based on abundance ratios of proteins bound to aptamer-carrying bait and control bait. In addition, we employed fluorescently labeled aptamers for monitoring and optimizing the binding conditions. We were able to identify and validate selectin L and integrin α4 as the protein targets for two previously reported aptamers, Sgc-3b and Sgc-4e, respectively. This strategy should be generally applicable for the discovery of protein targets for other cell-binding aptamers, which will promote the applications of these aptamers.
Collapse
Affiliation(s)
- Tao Bing
- From the ‡Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; §Department of Chemistry, University of California, Riverside, CA92521-0403
| | - Dihua Shangguan
- From the ‡Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China;
| | - Yinsheng Wang
- §Department of Chemistry, University of California, Riverside, CA92521-0403
| |
Collapse
|
68
|
HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes. J Virol 2015; 89:5687-700. [PMID: 25822027 DOI: 10.1128/jvi.00611-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Leukocyte recirculation between blood and lymphoid tissues is required for the generation and maintenance of immune responses against pathogens and is crucially controlled by the L-selectin (CD62L) leukocyte homing receptor. CD62L has adhesion and signaling functions and initiates the capture and rolling on the vascular endothelium of cells entering peripheral lymph nodes. This study reveals that CD62L is strongly downregulated on primary CD4(+) T lymphocytes upon infection with human immunodeficiency virus type 1 (HIV-1). Reduced cell surface CD62L expression was attributable to the Nef and Vpu viral proteins and not due to increased shedding via matrix metalloproteases. Both Nef and Vpu associated with and sequestered CD62L in perinuclear compartments, thereby impeding CD62L transport to the plasma membrane. In addition, Nef decreased total CD62L protein levels. Importantly, infection with wild-type, but not Nef- and Vpu-deficient, HIV-1 inhibited the capacity of primary CD4(+) T lymphocytes to adhere to immobilized fibronectin in response to CD62L ligation. Moreover, HIV-1 infection impaired the signaling pathways and costimulatory signals triggered in primary CD4(+) T cells by CD62L ligation. We propose that HIV-1 dysregulates CD62L expression to interfere with the trafficking and activation of infected T cells. Altogether, this novel HIV-1 function could contribute to virus dissemination and evasion of host immune responses. IMPORTANCE L-selectin (CD62L) is an adhesion molecule that mediates the first steps of leukocyte homing to peripheral lymph nodes, thus crucially controlling the initiation and maintenance of immune responses to pathogens. Here, we report that CD62L is downmodulated on the surfaces of HIV-1-infected T cells through the activities of two viral proteins, Nef and Vpu, that prevent newly synthesized CD62L molecules from reaching the plasma membrane. We provide evidence that CD62L downregulation on HIV-1-infected primary T cells results in impaired adhesion and signaling functions upon CD62L triggering. Removal of cell surface CD62L may predictably keep HIV-1-infected cells away from lymph nodes, the privileged sites of both viral replication and immune response activation, with important consequences, such as systemic viral spread and evasion of host immune surveillance. Altogether, we propose that Nef- and Vpu-mediated subversion of CD62L function could represent a novel determinant of HIV-1 pathogenesis.
Collapse
|
69
|
Increased expression of L-selectin (CD62L) in high-grade urothelial carcinoma: A potential marker for metastatic disease. Urol Oncol 2015; 33:387.e17-27. [PMID: 25618296 DOI: 10.1016/j.urolonc.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/06/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
INTRODUCTION L-Selectin (CD62L) is a vascular adhesion molecule constitutively expressed on leukocytes with a primary function of directing leukocyte migration and homing of lymphocytes to lymph nodes. In a gene expression microarray study comparing laser-captured microdissected high-grade muscle-invasive bladder cancer (MIBC) without prior treatment and low-grade bladder cancer (LGBC) human samples, we found CD62L to be the highest differentially expressed gene. We sought to examine the differential expression of CD62L in MIBCs and its clinical relevance. METHODS Unfixed fresh and formalin-fixed paraffin-embedded human bladder cancer specimens and serum samples were obtained from the University of Connecticut Health Center tumor bank. Tumor cells were isolated from frozen tumor tissue sections by laser-captured microdissected followed by RNA isolation. Quantitative polymerase chain reaction was used to validate the level of CD62L transcripts. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to evaluate the CD62L protein localization and expression level. Flow cytometry was used to identify the relative number of cells expressing CD62L in fresh tumor tissue. In silico studies were performed using the Oncomine database. RESULTS Immunostaining showed a uniformly higher expression of CD62L in MIBC specimens vs. LGBCs specimens. Further, CD62L localization was seen in foci of metastatic tumor cells in lymph node specimens from patients with high-grade MIBC and known nodal involvement. Up-regulated expression of CD62L was also observed by flow cytometric analysis of freshly isolated tumor cells from biopsies of high-grade cancers vs. LGBC specimens. Circulating CD62L levels were also found to be higher in serum samples from patients with high-grade metastatic vs. high-grade nonmetastatic MIBC. In addition, in silico analysis of Oncomine Microarray Database showed a significant correlation between CD62L expression and tumor aggressiveness and clinical outcomes. CONCLUSION These data confirm the expression of CD62L on urothelial carcinoma cells and suggest that CD62L may serve as biomarker to predict the presence of or risk for developing metastatic disease in patients with bladder cancer.
Collapse
|
70
|
Kawamoto H, Maeda T, Masuda K. Cloning and expansion of antigen-specific T cells using iPSC technology: A novel strategy for cancer immunotherapy. Inflamm Regen 2015. [DOI: 10.2492/inflammregen.35.220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hiroshi Kawamoto
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takuya Maeda
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kyoko Masuda
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
71
|
Gomez-Eerland R, Nuijen B, Heemskerk B, van Rooij N, van den Berg JH, Beijnen JH, Uckert W, Kvistborg P, Schumacher TN, Haanen JB, Jorritsma A. Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype. Hum Gene Ther Methods 2014; 25:277-87. [PMID: 25143008 PMCID: PMC4208561 DOI: 10.1089/hgtb.2014.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/16/2014] [Indexed: 12/21/2022] Open
Abstract
Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Engineering/methods
- Cell Proliferation
- Clinical Trials as Topic
- Cytotoxicity, Immunologic/genetics
- Gene Expression
- Genetic Vectors
- Humans
- Immunologic Memory/genetics
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-15/pharmacology
- Interleukin-2/genetics
- Interleukin-2/immunology
- Interleukin-7/pharmacology
- MART-1 Antigen/genetics
- MART-1 Antigen/immunology
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/therapy
- Phenotype
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Retroviridae/genetics
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Transduction, Genetic
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Raquel Gomez-Eerland
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Amsterdam BioTherapeutics Unit, 1066 EC Amsterdam, The Netherlands
| | - Bianca Heemskerk
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Nienke van Rooij
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Joost H. van den Berg
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Amsterdam BioTherapeutics Unit, 1066 EC Amsterdam, The Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Amsterdam BioTherapeutics Unit, 1066 EC Amsterdam, The Netherlands
| | - Wolfgang Uckert
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Pia Kvistborg
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ton N. Schumacher
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Annelies Jorritsma
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
72
|
Iinuma C, Waki M, Kawakami A, Yamaguchi M, Tomaru U, Sasaki N, Masuda S, Matsui Y, Iwasaki S, Baba T, Kasahara M, Yoshiki T, Paletta D, Herrmann T, Ishizu A. Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis. Int Immunol 2014; 27:105-14. [PMID: 25239132 DOI: 10.1093/intimm/dxu088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously generated a rat model that spontaneously developed small vessel vasculitis (SVV). In this study, a T cell clone reactive with rat vascular endothelial cells (REC) was established and named VASC-1. Intravenous injection of VASC-1 induced SVV in normal recipients. VASC-1 was a TCRαβ/CD3-positive CD4/CD8 double-negative T cell clone with expression of NKG2D. The cytokine mRNA profile under unstimulated condition was positive for IL-4 and IFN-γ but negative for IL-2 and IL-10. After interaction with REC, the mRNA expression of IL-2, IL-5 and IL-6 was induced in VASC-1, which was inhibited by blocking of CD1d on the REC surface. Although the protein levels of these cytokines seemed to be lower than the detection limit in the culture medium, IFN-γ was detectable. The production of IFN-γ from the VASC-1 stimulated with LPS-pre-treated REC was inhibited by the CD1d blockade on the REC. These findings indicated VASC-1 as an NKT cell clone. The NKT cell pool includes two major subsets, namely types I and II. Type I NKT cells are characterized by expression of semi-invariant TCRs and the potential to bind to marine sponge-derived α-galactosylceramide (α-GalCer) loaded on CD1d; whereas, type II NKT cells do not manifest these characteristics. VASC-1 exhibited a usage of TCR other than the type I invariant TCR α chain and did not bind to α-GalCer-loaded CD1d; therefore, it was determined as a type II NKT cell clone. The collective evidence suggested that REC-reactive type II NKT cells could be involved in the pathogenesis of SVV in rats.
Collapse
Affiliation(s)
- Chihiro Iinuma
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Masashi Waki
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Ai Kawakami
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Madoka Yamaguchi
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Naomi Sasaki
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Sakiko Masuda
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Yuki Matsui
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Sari Iwasaki
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Tomohisa Baba
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan Present address: Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa 9201192, Japan
| | - Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Takashi Yoshiki
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Daniel Paletta
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Akihiro Ishizu
- Division of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| |
Collapse
|
73
|
Oishi K, Hamaguchi Y, Matsushita T, Hasegawa M, Okiyama N, Dernedde J, Weinhart M, Haag R, Tedder TF, Takehara K, Kohsaka H, Fujimoto M. A crucial role of L-selectin in C protein-induced experimental polymyositis in mice. Arthritis Rheumatol 2014; 66:1864-71. [PMID: 24644046 DOI: 10.1002/art.38630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/11/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the role of adhesion molecules in C protein-induced myositis (CIM), a murine model of polymyositis (PM). METHODS CIM was induced in wild-type mice, L-selectin-deficient (L-selectin(-/-) ) mice, intercellular adhesion molecule 1 (ICAM-1)-deficient (ICAM-1(-/-) ) mice, and mice deficient in both L-selectin and ICAM-1 (L-selectin(-/-) ICAM-1(-/-) mice). Myositis severity, inflammatory cell infiltration, and messenger RNA expression in the inflamed muscles were analyzed. The effect of dendritic polyglycerol sulfate, a synthetic inhibitor that suppresses the function of L-selectin and endothelial P-selectin, was also examined. RESULTS L-selectin(-/-) mice and L-selectin(-/-) ICAM-1(-/-) mice developed significantly less severe myositis compared to wild-type mice, while ICAM-1 deficiency did not inhibit the development of myositis. L-selectin(-/-) mice that received wild-type T cells developed myositis. Treatment with dendritic polyglycerol sulfate significantly diminished the severity of myositis in wild-type mice compared to treatment with control. CONCLUSION These data indicate that L-selectin plays a major role in the development of CIM, whereas ICAM-1 plays a lesser role, if any, in the development of CIM. L-selectin-targeted therapy may be a candidate for the treatment of PM.
Collapse
|
74
|
Metushi IG, Cai P, Dervovic D, Liu F, Lobach A, Nakagawa T, Uetrecht J. Development of a novel mouse model of amodiaquine-induced liver injury with a delayed onset. J Immunotoxicol 2014; 12:247-60. [PMID: 25046026 DOI: 10.3109/1547691x.2014.934977] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Amodiaquine (AQ) treatment is associated with a high incidence of idiosyncratic drug-induced liver injury (IDILI) and agranulocytosis. Evidence suggests that AQ-induced IDILI is immune mediated. A significant impediment to mechanistic studies of IDILI is the lack of valid animal models. This study reports the first animal model of IDILI with characteristics similar to mild IDILI in humans. Treatment of female C57BL/6 mice with AQ led to liver injury with delayed onset, which resolved despite continued treatment. Covalent binding of AQ was detected in the liver, which was greater in female than in male mice, and higher in the liver than in other organs. Covalent binding in the liver was maximal by Day 3, which did not explain the delayed onset of alanine aminotransferase (ALT) elevation. However, coincident with the elevated serum ALT, infiltration of liver and splenic mononuclear cells and activation of CD8 T-cells within the liver were identified. By Week 7, when ALT levels had returned close to normal, down-regulation of several inflammatory cytokines and up-regulation of PD-1 on T-cells suggested induction of immune tolerance. Treatment of Rag1(-/-) mice with AQ resulted in higher ALT activities than C57BL/6 mice, which suggested that the adaptive immune response was responsible for immune tolerance. In contrast, depletion of NK cells significantly attenuated the increase in ALT, which implied a role for NK cells in mild AQ-induced IDILI. This is the first example of a delayed-onset animal model of IDILI that appears to be immune-mediated.
Collapse
Affiliation(s)
- Imir G Metushi
- Department of Pharmacology and Toxicology, Faculty of Medicine and
| | | | | | | | | | | | | |
Collapse
|
75
|
Karlsson M, Linton L, Lampinen M, Karlén P, Glise H, Befrits R, Janczewska I, Carlson M, Winqvist O, Eberhardson M. Naïve T cells correlate with mucosal healing in patients with inflammatory bowel disease. Scand J Gastroenterol 2014; 49:66-74. [PMID: 24188321 DOI: 10.3109/00365521.2013.853829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In previous studies, adaptive immune responses involving T-helper cells have been shown to play an important role in inflammatory bowel diseases (IBDs). METHODS The aim of this study was to investigate any correlation between the degree of mucosal inflammation and the phenotype of gut-infiltrating T-helper cells. Biopsies from intestinal mucosa were obtained and intestinal T cells were analyzed with regard to activity and maturation markers. Patients with active colitis (39 with Crohn's disease and 47 with ulcerative colitis) were included and treated with corticosteroids, biologicals or leukocytapheresis. Flow cytometry was used to analyze activation marker expression on gut-infiltrating T-helper cells. RESULTS Mucosal healing was reflected by almost 100% increase of CD62L expression in mucosal T cells in patients in remission compared to those with active inflammation (p < 0.01). The frequency of mucosal-naïve CD4(+)CD45RA(+) T cells was reduced by 50% in mucosa displaying remission (5.3% compared to 12% of the total amount and CD4(+) T cells, p < 0.001). Surprisingly, the proportion of early activated T-helper cells (CD4(+)CD69(+)) did not differ between mucosa in remission and non-remission (43% and 42%, respectively). Moreover, no change in memory T-helper cells (CD4(+)CD45RO(+)) was observed (64% compared to 66%). The findings were independent of diagnosis (Crohn's disease or ulcerative colitis) or mode of treatment. CONCLUSION This study suggests that a reduced recruitment of naïve T-helper cells and increased frequency of T-helper cells with lymph node homing marker expression reflect mucosal healing in IBD. Surprisingly, the degree of activation of mucosal T-helper cells did not correlate with disease remission.
Collapse
Affiliation(s)
- Mats Karlsson
- Department of Clinical Science and Education, Karolinska Institutet , Södersjukhuset, Stockholm , Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 2013; 13:649-65. [PMID: 23969736 DOI: 10.1038/nri3499] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 50 years, steady growth in the field of metalloproteinase biology has shown that the degradation of extracellular matrix components represents only a fraction of the functions performed by these enzymes and has highlighted their fundamental roles in immunity. Metalloproteinases regulate aspects of immune cell development, effector function, migration and ligand-receptor interactions. They carry out ectodomain shedding of cytokines and their cognate receptors. Together with their endogenous inhibitors TIMPs (tissue inhibitor of metalloproteinases), these enzymes regulate signalling downstream of the tumour necrosis factor receptor and the interleukin-6 receptor, as well as that downstream of the epidermal growth factor receptor and Notch, which are all pertinent for inflammatory responses. This Review discusses the metalloproteinase family as a crucial component in immune cell development and function.
Collapse
|
77
|
MacFarlane AW, Jillab M, Plimack ER, Hudes GR, Uzzo RG, Litwin S, Dulaimi E, Al-Saleem T, Campbell KS. PD-1 expression on peripheral blood cells increases with stage in renal cell carcinoma patients and is rapidly reduced after surgical tumor resection. Cancer Immunol Res 2013; 2:320-31. [PMID: 24764579 DOI: 10.1158/2326-6066.cir-13-0133] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Programmed death-1 (PD-1) receptor is an inhibitory receptor on hematopoietic cells that can negatively regulate immune responses, particularly responses to tumors, which often upregulate PD-1 ligands. PD-1/PD-1 ligand blocking antibodies can reverse the inhibition and show significant therapeutic promise in treating renal cell carcinoma (RCC), lung cancer, and melanoma. While PD-1 expression on tumor-infiltrating lymphocytes has been associated with poor outcome in RCC, we sought to define immune cell biomarkers, including PD-1, on peripheral blood mononuclear cells (PBMC) that could predict disease progression of RCC patients before and after nephrectomy. We analyzed expression of numerous immune cell markers on fresh PBMCs from 90 RCC patients preoperatively and 25 age-matched healthy controls by 10-color flow cytometry. Postoperative blood samples were also analyzed from 23 members of the RCC patient cohort. The most striking phenotypic immune biomarker in RCC patients was a significant increase in PD-1 expression on certain PBMCs in a subset of patients. Increased PD-1 expression on CD14(bright) myelomonocytic cells, effector T cells, and natural killer (NK) cells correlated to disease stage, and expression was significantly reduced on all cell types soon after surgical resection of the primary tumor. The results indicate that PD-1 expression on fresh peripheral blood leukocytes may provide a useful indicator of RCC disease progression. Furthermore, measuring PD-1 levels in peripheral blood may assist in identifying patients likely to respond to PD-1 blocking antibodies, and these therapies may be most effective before and immediately after surgical resection of the primary tumor, when PD-1 expression is most prominent.
Collapse
Affiliation(s)
- Alexander W MacFarlane
- Authors' Affiliations: Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol 2013; 264:71-83. [DOI: 10.1016/j.jneuroim.2013.08.013] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/12/2013] [Accepted: 08/22/2013] [Indexed: 01/16/2023]
|
79
|
Probability state modeling of memory CD8+ T-cell differentiation. J Immunol Methods 2013; 397:8-17. [DOI: 10.1016/j.jim.2013.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/29/2013] [Accepted: 08/04/2013] [Indexed: 02/02/2023]
|
80
|
Restifo NP, Gattinoni L. Lineage relationship of effector and memory T cells. Curr Opin Immunol 2013; 25:556-63. [PMID: 24148236 PMCID: PMC3858177 DOI: 10.1016/j.coi.2013.09.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/11/2013] [Indexed: 11/19/2022]
Abstract
Adaptive immunity is characterized by the ability to form long-lived immunological memory. Upon re-exposure to antigen, memory T cells respond more rapidly and robustly than naïve T cells, providing better clearance of pathogens. Recent reviews have reinforced the text-book view that memory T cells arise from effector cells. Although this notion is teleologically appealing, emerging data are more consistent with a model where naïve cells directly develop into memory cells without transitioning through an effector stage. A clear understanding of the lineage relationships between memory and effector cells has profound implications for the design of vaccines and for the development of effective T cell-based therapies.
Collapse
Affiliation(s)
- Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
81
|
Etemire E, Krull M, Hasenberg M, Reichardt P, Gunzer M. Transiently reduced PI3K/Akt activity drives the development of regulatory function in antigen-stimulated Naïve T-cells. PLoS One 2013; 8:e68378. [PMID: 23874604 PMCID: PMC3708928 DOI: 10.1371/journal.pone.0068378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/27/2013] [Indexed: 12/22/2022] Open
Abstract
Regulatory T-cells (Tregs) are central for immune homeostasis and divided in thymus-derived natural Tregs and peripherally induced iTreg. However, while phenotype and function of iTregs are well known, a remarkable lack exists in knowledge about signaling mechanisms leading to their generation from naïve precursors in peripheral tissues. Using antigen specific naïve T-cells from mice, we investigated CD4+ CD25+ FoxP3- iTreg induction during antigen-specific T-cell receptor (TCR) stimulation with weak antigen presenting cells (APC). We show that early signaling pathways such as ADAM-17-activation appeared similar in developing iTreg and effector cells (Teff) and both initially shedded CD62-L. But iTreg started reexpressing CD62-L after 24 h while Teff permanently downmodulated it. Furthermore, between 24 and 72 hours iTreg presented with significantly lower phosphorylation levels of Akt-S473 suggesting lower activity of the PI3K/Akt-axis. This was associated with a higher expression of the Akt hydrophobic motif-specific phosphatase PHLPP1 in iTreg. Importantly, the lack of costimulatory signals via CD28 from weak APC was central for the development of regulatory function in iTreg but not for the reappearance of CD62-L. Thus, T-cells display a window of sensitivity after onset of TCR triggering within which the intensity of the PI3K/Akt signal controls entry into either effector or regulatory pathways.
Collapse
MESH Headings
- ADAM Proteins/genetics
- ADAM Proteins/immunology
- ADAM Proteins/metabolism
- ADAM17 Protein
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Down-Regulation
- L-Selectin/genetics
- L-Selectin/immunology
- L-Selectin/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/immunology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/immunology
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Eloho Etemire
- University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, Essen, Germany
| | - Marco Krull
- Otto von Guericke University, Institute of Molecular and Clinical Immunology, Magdeburg, Germany
| | - Mike Hasenberg
- University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, Essen, Germany
| | - Peter Reichardt
- Otto von Guericke University, Institute of Molecular and Clinical Immunology, Magdeburg, Germany
- * E-mail: (MG); (PR)
| | - Matthias Gunzer
- University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, Essen, Germany
- * E-mail: (MG); (PR)
| |
Collapse
|
82
|
Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii SI, Koseki H, Kawamoto H. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell 2013; 12:31-6. [PMID: 23290135 DOI: 10.1016/j.stem.2012.12.006] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/13/2012] [Accepted: 12/16/2012] [Indexed: 12/20/2022]
Abstract
Antigen-specific T cells represent a potential therapeutic avenue for a variety of conditions, but current approaches for generating such cells for therapeutic purposes are limited. In this study, we established iPSCs from mature cytotoxic T cells specific for the melanoma epitope MART-1. When cocultured with OP9/DLL1 cells, these iPSCs efficiently generated TCRβ(+)CD4(+)CD8(+) double positive (DP) cells expressing a T cell receptor (TCR) specific for the MART-1 epitope. Stimulation of these DP cells with anti-CD3 antibody generated a large number of CD8(+) T cells, and more than 90% of the resulting cells were specific for the original MART-1 epitope. Stimulation of the CD8(+) T cells with MART-1 antigen-presenting cells led to the secretion of IFNγ, demonstrating their specific reactivity. The present study therefore illustrates an approach for cloning and expanding functional antigen-specific CD8(+) T cells that might be applicable in cell-based therapy of cancer.
Collapse
Affiliation(s)
- Raul Vizcardo
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Proliferation-linked apoptosis of adoptively transferred T cells after IL-15 administration in macaques. PLoS One 2013; 8:e56268. [PMID: 23418547 PMCID: PMC3572023 DOI: 10.1371/journal.pone.0056268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
The adoptive transfer of antigen-specific effector T cells is being used to treat human infections and malignancy. T cell persistence is a prerequisite for therapeutic efficacy, but reliably establishing a high-level and durable T cell response by transferring cultured CD8+ T cells remains challenging. Thus, strategies that promote a transferred high-level T cell response may improve the efficacy of T cell therapy. Lymphodepletion enhances persistence of transferred T cells in mice in part by reducing competition for IL-15, a common γ-chain cytokine that promotes T cell memory, but lymphodepleting regimens have toxicity. IL-15 can be safely administered and has minimal effects on CD4+ regulatory T cells at low doses, making it an attractive adjunct in adoptive T cell therapy. Here, we show in lymphoreplete macaca nemestrina, that proliferation of adoptively transferred central memory-derived CD8+ effector T (TCM/E) cells is enhanced in vivo by administering IL-15. TCM/E cells migrated to memory niches, persisted, and acquired both central memory and effector memory phenotypes regardless of the cytokine treatment. Unexpectedly, despite maintaining T cell proliferation, IL-15 did not augment the magnitude of the transferred T cell response in blood, bone marrow, or lymph nodes. T cells induced to proliferate by IL-15 displayed increased apoptosis demonstrating that enhanced cycling was balanced by cell death. These results suggest that homeostatic mechanisms that regulate T cell numbers may interfere with strategies to augment a high-level T cell response by adoptive transfer of CD8+ TCM/E cells in lymphoreplete hosts.
Collapse
|
84
|
Gharbi SI, Avila-Flores A, Soutar D, Orive A, Koretzky GA, Albar JP, Mérida I. Transient PKCα shuttling to the immunological synapse is governed by (DGK)ζ and regulates L-selectin shedding. J Cell Sci 2013; 126:2176-86. [DOI: 10.1242/jcs.118513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Considerable evidence indicates that diacylglycerol (DAG) generation at the immunological synapse (IS) determines T cell functions by regulating the duration and amplitude of Ras/ERK signals. The exact mechanism by which DAG regulates Ras/ERK activation downstream of the T cell receptor (TCR) nonetheless remains poorly understood. Here we characterize PKCα as a previously unrecognized component of the machinery that translates cell receptor occupancy into Ras/ERK-propagated signals. We show transient translocation of PKCα to the IS, mediated by DAG generation at the contact area. Diacylglycerol kinase (DGK)ζ negatively regulated PKCα translocation kinetics, whereas PKCα activity limited its own persistence at the IS. Coordinated activation of DGKζ and PKCα in response to antigen recognition regulated the amplitude and duration of Ras/ERK activation; this in turn mediated early processes of T cell surface proteolysis such as L-selectin shedding. Analysis of DGKζ-deficient mice further showed that increased DAG signaling is translated to downstream elements of this pathway, as reflected by enhanced PKCα-dependent L-selectin shedding. We propose that early activation of a DAG/PKCα axis contributes to the mechanisms by which antigen affinity translates into TCR biological responses.
Collapse
|
85
|
Fanning SL, Zilberberg J, Stein J, Vazzana K, Berger SA, Korngold R, Friedman TM. Unraveling graft-versus-host disease and graft-versus-leukemia responses using TCR Vβ spectratype analysis in a murine bone marrow transplantation model. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23203931 DOI: 10.4049/jimmunol.1201641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The optimum use of allogeneic blood and marrow transplantation (BMT) as a curative therapy for hematological malignancies lies in the successful separation of mature donor T cells that are host reactive and induce graft-versus-host disease (GVHD) from those that are tumor reactive and mediate graft-versus-leukemia (GVL) effects. To study whether this separation was possible in an MHC-matched murine BMT model (B10.BR→CBA) with a CBA-derived myeloid leukemia line, MMC6, we used TCR Vβ CDR3-size spectratype analysis to first show that the Vβ13 family was highly skewed in the B10.BR anti-MMC6 CD8(+) T cell response but not in the alloresponse against recipient cells alone. Transplantation of CD8(+)Vβ13(+) T cells at the dose equivalent of their constituency in 1 × 10(7) CD8(+) T cells, a dose that had been shown to mediate lethal GVHD in recipient mice, induced a slight GVL response with no concomitant GVHD. Increasing doses of CD8(+)Vβ13(+) T cells led to more significant GVL responses but also increased GVHD symptoms and associated mortality. Subsequent spectratype analysis of GVHD target tissues revealed involvement of gut-infiltrating CD8(+)Vβ13(+) T cells accounting for the observed in vivo effects. When BMT recipients were given MMC6-presensitized CD8(+)Vβ13(+) T cells, they displayed a significant GVL response with minimal GVHD. Spectratype analysis of tumor-presensitized, gut-infiltrating CD8(+)Vβ13(+) T cells showed preferential usage of tumor-reactive CDR3-size lengths, and these cells expressed increased effector memory phenotype (CD44(+)CD62L(-/lo)). Thus, Vβ spectratyping can identify T cells involved in antihost and antitumor reactivity and tumor presensitization can aid in the separation of GVHD and GVL responses.
Collapse
Affiliation(s)
- Stacey L Fanning
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | | | | | | | | | | | | |
Collapse
|