51
|
Kausar A. Emerging polyimide and graphene derived nanocomposite foam: research and technical tendencies. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1934011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
52
|
Abstract
The catalytic effect of copper in Devarda’s Al-Cu-Zn alloy (Dev. alloy) and sole metallic copper, copper salts and copper oxides in the coaction of NaBH4 within the hydrodehalogenation (HDH) of polybrominated phenols, such as the herbicide Bromoxynil in alkaline aqueous solution has been investigated. Namely, the hydrodebromination (HDB) activity of Dev. alloy/NaOH system has been compared to heterogeneous Cu-based catalysts using NaBH4 as a reductant. Differences in the solid-state structures of used Cu-based heterogeneous catalysts after the mentioned HDB process have been studied using the powder XRD and SEM techniques. It was found that some of the used copper-based catalysts are reusable and reasonably effective even at room temperature. Efficiency of the most promising copper-based reduction systems (Dev. alloy/NaOH and Cu-based catalysts/NaBH4) have been successfully tested within the HDB of industrially important brominated flame retardant tetrabromobisphenol A (TBBPA). Dev. alloy/NaOH and Cu-based catalyst generated in-situ within the CuSO4/NaBH4 produced were recognized as the most active HDB agents for complete debromination of both BRX and TBBPA.
Collapse
|
53
|
Zhang Y, Liu J, Li S. Synthesis of a Flame Retardant for Epoxy Resins: Thermal Stability, Flame Retardancy, and Flame-Retardant Modes. INT POLYM PROC 2021. [DOI: 10.1515/ipp-2020-3915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A polyphosphonate (PDPA) flame retardant that contains phenyl phosphonic dichloride and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide groups, has been synthesized. The flame retardant was introduced into epoxy resins (EP) and cured by 4,4’-diamino diphenylmethane. The vertical burning, limited-oxygen index and cone calorimeter tests reveal that the PDPA can enhance the flame-retardant properties of the EP significantly. With only a 4 wt% PDPA loading, the EP composites achieved a limited-oxygen index value of 33.4% and a V-0 rating in the vertical burning test, and the peak heat release rate and total heat release were decreased by 40.9% and 24.6%, respectively. The thermal properties and gas pyrolysis products of the EP composites were evaluated by thermogravimetric analysis and thermogravimetric analysis-Fourier transform infrared spectroscopy, and the morphology and structure of residual char were characterized by scanning electron microscopy, Flourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. To explain the combined effects of the condensed and gas phases, modes of the flame-retardant action are proposed.
Collapse
Affiliation(s)
- Y. Zhang
- School of Biology and Chemical Engineering, Shandong Vocational College of Science & Technology , Weifang , PRC
| | - J. Liu
- School of Material Science and Engineering, Beijing Institute of Technology , Beijing , PRC
| | - S. Li
- BOE Technology Group Co., Ltd ., Beijing , PRC
| |
Collapse
|
54
|
Oloruntoba K, Sindiku O, Osibanjo O, Herold C, Weber R. Polybrominated diphenyl ethers (PBDEs) concentrations in soil and plants around municipal dumpsites in Abuja, Nigeria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116794. [PMID: 33640822 DOI: 10.1016/j.envpol.2021.116794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. It has been established that PBDEs may be released into the environment during improper handling and disposal of e-waste and other products containing PBDEs that is prevalent in developing countries. This research work assessed the status of PBDE contamination at dumpsites in Nigeria. Soil and edible plant samples were collected from the dumpsites and control sites for analysis. The concentrations of ∑7PBDE in the topsoils around the dumpsites at 0-15 cm depth ranged from 112 to 366 ng/g dry weight (dw) while that of the topsoil of the control site 500 m from the dumpsite ranged from 26.8 to 39.7 ng/g dw. These high concentrations stem likely from open burning of waste including electronic waste on the landfills. Plant samples (bentgrass, spinach, tomatoes, pumpkin and sweet potatoes) around the dumpsites were found to be contaminated by PBDEs with levels ranging from 25.0 to 60.5 ng/g dw in plant roots and from 8.45 to 32.2 ng/g dw in plant shoots for ∑7PBDE. This suggests that consumption of vegetables by humans and ingestion of contaminated soils and feed by chickens and cows can transfer PBDEs into the human food chain around the dumpsites. The comparison of PBDE levels in soils and the PBDE levels in chicken eggs from the former study indicate that PBDE levels in the soils are sufficient to explain the levels in the chicken eggs with a reasonable carry-over rate for PBDEs of 0.28 on average. The PBDE contamination in the soil was sufficient to result in a relevant exposure of humans via accumulation in eggs. The study shows that a better management of end-of-life products containing PBDEs is needed to reduce PBDE exposure risk in Africa.
Collapse
Affiliation(s)
- Kike Oloruntoba
- Department of Chemistry, University of Ibadan, Ibadan, Nigeria; Raw Materials Research and Development Council, Abuja, Nigeria.
| | - Omotayo Sindiku
- Department of Chemistry, University of Ibadan, Ibadan, Nigeria.
| | | | | | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany.
| |
Collapse
|
55
|
Li Q, Yuan M, Shangguan J, Guo M, Wu J, Zhang Y, Pei M, Zhang Z, Zhang M, Sun Y, Tian C, Li J, Zhang G. Insights into Persistent Toxic Substances in Protective Cases of Mobile Phones: Occurrence, Health Risks, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6076-6086. [PMID: 33856783 DOI: 10.1021/acs.est.0c07603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite the popularity of smartphones worldwide, persistent toxic substances (PTSs) in protective cases of mobile phones (PCMPs) and their health risks via direct skin contact have been ignored. This study investigated PTSs in PCMPs made in China with different materials and sales territory and their potential harm to human health. Polybrominated diphenyl ethers (PBDEs, 6.40 ng/g), new brominated flame retardants (NBFRs, 144 ng/g), organophosphate esters (OPEs, 10.1 μg/g), short-chain chlorinated paraffins (SCCPs, 3.58 μg/g), medium-chain chlorinated paraffins (MCCPs, 3.17 μg/g), and heavy metals (HMs, 72.3 μg/g) were detected. It was found that the different concentrations and compositions depend on the material, region, and use. Moreover, the raw materials used to fabricate PCMPs are of variable quality and may include recycled plastic waste. There are no standard quality specifications for PCMPs, and different materials have different properties, including specific surface area and adsorption ability. The risk assessment performed by Monte Carlo simulations indicated that the PTSs evaluated pose no health risks to the general population and may have adverse effects on individual high-exposure populations. According to the results of this work, it is suggested that more stringent global specifications for the selection of raw materials should be established, including the content and structural characteristics of PTSs, limitations on the use of additives in the production process, and the handling after use.
Collapse
Affiliation(s)
- Qilu Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Yuan
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Mengran Guo
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiajia Wu
- Agilent Technologies (China), Inc., Beijing 100102, China
| | - Ying Zhang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengyuan Pei
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ziyi Zhang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengqiong Zhang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yujing Sun
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
56
|
Young AS, Hauser R, James-Todd TM, Coull BA, Zhu H, Kannan K, Specht AJ, Bliss MS, Allen JG. Impact of "healthier" materials interventions on dust concentrations of per- and polyfluoroalkyl substances, polybrominated diphenyl ethers, and organophosphate esters. ENVIRONMENT INTERNATIONAL 2021; 150:106151. [PMID: 33092866 PMCID: PMC7940547 DOI: 10.1016/j.envint.2020.106151] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), and organophosphate esters (OPEs) are found in building materials and associated with thyroid disease, infertility, and impaired development. This study's objectives were to (1) compare levels of PFAS, PBDEs, and OPEs in dust from spaces with conventional versus "healthier" furniture and carpet, and (2) identify other product sources of flame retardants in situ. We measured 15 PFAS, 8 PBDEs, and 19 OPEs in dust from offices, common areas, and classrooms having undergone either no intervention (conventional rooms in older buildings meeting strict fire codes; n = 12), full "healthier" materials interventions (rooms with "healthier" materials in buildings constructed more recently or gut-renovated; n = 7), or partial interventions (other rooms with at least "healthier" foam furniture but more potential building contamination; n = 28). We also scanned all materials for bromine and phosphorus as surrogates of PBDEs and OPEs respectively, using x-ray fluorescence. In multilevel regression models, rooms with full "healthier" materials interventions had 78% lower dust levels of PFAS than rooms with no intervention (p < 0.01). Rooms with full "healthier" interventions also had 65% lower OPE levels in dust than rooms with no intervention (p < 0.01) and 45% lower PBDEs than rooms with only partial interventions (p < 0.10), adjusted for covariates related to insulation, electronics, and furniture. Bromine loadings from electronics in rooms were associated with PBDE concentrations in dust (p < 0.05), and the presence of exposed insulation was associated with OPE dust concentrations (p < 0.001). Full "healthier" materials renovations successfully reduced chemical classes in dust. Future interventions should address electronics, insulation, and building cross-contamination.
Collapse
Affiliation(s)
- Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Population Health Sciences, Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA.
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tamarra M James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Aaron J Specht
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maya S Bliss
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
57
|
Phosphorus/phosphorus-nitrogen flame retardants applied to polyurethane/rice husk eco-composites: thermal behavior, flame retardancy, and physico-mechanical properties. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03237-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
58
|
Wang L, Yang Y, Deng H, Duan W, Zhu J, Wei Y, Li W. Flame Retardant Properties of a Guanidine Phosphate-Zinc Borate Composite Flame Retardant on Wood. ACS OMEGA 2021; 6:11015-11024. [PMID: 34056255 PMCID: PMC8153910 DOI: 10.1021/acsomega.1c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
This work combines guanidine dihydrogen phosphate (GDP) and zinc borate (ZB) to modify wood via microwave-ultrasonic impregnation for realizing favorable flame retardancy and thermal stability, which were investigated by the limiting oxygen index (LOI), thermogravimetric analysis (TGA), and cone calorimetry tests (CONE). The treated samples show better performance in fire retardancy with the LOI value increasing to 47.8%, and the results of TGA indicate the outstanding thermal stability of wood. In addition, the decline of heat release rate, total heat release, smoke production rate, and total smoke production examined by CONE further demonstrates the achievement of excellent flame retardancy and smoke suppression properties of the GDP/ZB-modified wood.
Collapse
Affiliation(s)
- Linyuan Wang
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, China
| | - Yabing Yang
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, China
| | - Hongbo Deng
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, China
| | - Wenyi Duan
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, China
| | - Jiajie Zhu
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, China
| | - Yue Wei
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, China
| | - Wei Li
- Fourth
Oil Production Plant of Qinghai Oilfield, China National Petroleum Corporation, Jiuquan 736202, China
| |
Collapse
|
59
|
Wang Q, Zhao H, Bekele TG, Qu B, Chen J. Organophosphate esters (OPEs) in wetland soil and Suaeda salsa from intertidal Laizhou Bay, North China: Levels, distribution, and soil-plant transfer model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142891. [PMID: 33109368 DOI: 10.1016/j.scitotenv.2020.142891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Wetlands have attracted much attention due to releases of organophosphate esters (OPEs) and other emerging contaminants into this particular environment. Here, Suaeda salsa plants and wetland soils collected from Laizhou Bay, North China, were analyzed to investigate the levels, distribution, and soil-plant transfer of OPEs in these ecosystems. The Σ18OPEs concentrations ranged from 137 to 386 ng/g dry weight (dw), whereas in rhizosphere the concentrations were between 99.8 and 198 ng/g dw. Suaeda salsa rhizosphere could promote the absorption of OPEs in wetlands, and Suaeda salsa root presents a greater rate of absorption. The Σ18OPEs concentrations ranged from 32.9 to 56.8 ng/g dw in roots, 3.93 to 7.51 ng/g dw in stems, and 2.79 to 4.06 ng/g dw in leaves. Log RCFs, log TFr-s and log TFs-l showed no significant correlations with their log KOW, indicating the complexity of uptake and translocation in the natural environment. Predictive model for the OPEs availability to Suaeda salsa was established from the experimental data. The field-based BCFs of all OPEs were dependent on KOW, decreased with increasing KOW. This study provides important insights into the phytoremediation potential of OPEs using Suaeda salsa as an effective strategy and their role in environmental risk assessment of OPEs in wetlands.
Collapse
Affiliation(s)
- Qingzhi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
60
|
Palen B, Kolibaba TJ, Brehm JT, Shen R, Quan Y, Wang Q, Grunlan JC. Clay-Filled Polyelectrolyte Complex Nanocoating for Flame-Retardant Polyurethane Foam. ACS OMEGA 2021; 6:8016-8020. [PMID: 33817460 PMCID: PMC8014921 DOI: 10.1021/acsomega.0c05354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/05/2021] [Indexed: 05/17/2023]
Abstract
Polyurethane foam (PUF) is a highly flammable material typically used for cushioning in furniture and automobiles. A polyelectrolyte complex coating containing polyethylenimine, ammonium polyphosphate, and halloysite clay was applied to PUF using a two-step deposition process in an attempt to reduce its flammability. Electron microscopy confirms that this conformal thin film preserves the porous morphology of the foam and adds 20% to the foam's weight. Directly exposing coated foam to a butane torch flame yields a 73% residue after burning while keeping the internal structure of the foam intact. Cone calorimetry reveals a 52.5% reduction in the peak heat release rate (pkHRR) of the clay-based coating compared to that of the uncoated foam. This significant reduction in pkHRR and preservation of the porous structure of the foam highlights the utility of this easy-to-deposit, environmentally benign treatment to reduce the foam's flammability.
Collapse
Affiliation(s)
- Bethany Palen
- Department
of Chemistry, Department of Materials Science and Engineering, Department of Mechanical
Engineering, Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Thomas J. Kolibaba
- Department
of Chemistry, Department of Materials Science and Engineering, Department of Mechanical
Engineering, Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Jacob T. Brehm
- Department
of Chemistry, Department of Materials Science and Engineering, Department of Mechanical
Engineering, Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Ruiqing Shen
- Department
of Chemistry, Department of Materials Science and Engineering, Department of Mechanical
Engineering, Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Yufeng Quan
- Department
of Chemistry, Department of Materials Science and Engineering, Department of Mechanical
Engineering, Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Qingsheng Wang
- Department
of Chemistry, Department of Materials Science and Engineering, Department of Mechanical
Engineering, Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Jaime C. Grunlan
- Department
of Chemistry, Department of Materials Science and Engineering, Department of Mechanical
Engineering, Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
61
|
Hosokawa Y, Nakashima E, Ueno T. Image analysis of flame behavior for polyolefins and polystyrene in vertical flame test. J Appl Polym Sci 2021. [DOI: 10.1002/app.49845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshifumi Hosokawa
- Department of Chemical Systems Engineering Graduate School of Engineering, Nagoya University Nagoya Japan
| | - Erika Nakashima
- Department of Applied Chemistry College of Engineering, Chubu University Kasugai Japan
| | - Tomonaga Ueno
- Department of Chemical Systems Engineering Graduate School of Engineering, Nagoya University Nagoya Japan
| |
Collapse
|
62
|
Hogberg HT, de Cássia da Silveira E Sá R, Kleensang A, Bouhifd M, Cemiloglu Ulker O, Smirnova L, Behl M, Maertens A, Zhao L, Hartung T. Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Arch Toxicol 2021; 95:207-228. [PMID: 33078273 PMCID: PMC7811506 DOI: 10.1007/s00204-020-02903-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47-the most abundant PBDE congener-with four OPFR (isopropylated phenyl phosphate-IPP, triphenyl phosphate-TPHP, isodecyl diphenyl phosphate-IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)-TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1-5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell-cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.
Collapse
Affiliation(s)
- Helena T Hogberg
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Rita de Cássia da Silveira E Sá
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Andre Kleensang
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mounir Bouhifd
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ozge Cemiloglu Ulker
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Lena Smirnova
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Alexandra Maertens
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liang Zhao
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
63
|
Meena M, Jacob J. Pentaerythritol derived phosphorous based bicyclic compounds as promising flame retardants for thermoplastic polyurethane films. J Appl Polym Sci 2020. [DOI: 10.1002/app.50375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Mahipal Meena
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Josemon Jacob
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
64
|
Effect of silica aerogel – Aluminium trihydroxide hybrid filler on the physio-mechanical and thermal decomposition behaviour of unsaturated polyester resin composite. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
65
|
Sienkiewicz A, Czub P. Flame Retardancy of Biobased Composites-Research Development. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5253. [PMID: 33233820 PMCID: PMC7699906 DOI: 10.3390/ma13225253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023]
Abstract
Due to the thermal and fire sensitivity of polymer bio-composite materials, especially in the case of plant-based fillers applied for them, next to intensive research on the better mechanical performance of composites, it is extremely important to improve their reaction to fire. This is necessary due to the current widespread practical use of bio-based composites. The first part of this work relates to an overview of the most commonly used techniques and different approaches towards the increasing the fire resistance of petrochemical-based polymeric materials. The next few sections present commonly used methods of reducing the flammability of polymers and characterize the most frequently used compounds. It is highlighted that despite adverse health effects in animals and humans, some of mentioned fire retardants (such as halogenated organic derivatives e.g., hexabromocyclododecane, polybrominated diphenyl ether) are unfortunately also still in use, even for bio-composite materials. The most recent studies related to the development of the flame retardation of polymeric materials are then summarized. Particular attention is paid to the issue of flame retardation of bio-based polymer composites and the specifics of reducing the flammability of these materials. Strategies for retarding composites are discussed on examples of particular bio-polymers (such as: polylactide, polyhydroxyalkanoates or polyamide-11), as well as polymers obtained on the basis of natural raw materials (e.g., bio-based polyurethanes or bio-based epoxies). The advantages and disadvantages of these strategies, as well as the flame retardants used in them, are highlighted.
Collapse
Affiliation(s)
- Anna Sienkiewicz
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland;
| | | |
Collapse
|
66
|
Appavoo D, Amarnath N, Lochab B. Cardanol and Eugenol Sourced Sustainable Non-halogen Flame Retardants for Enhanced Stability of Renewable Polybenzoxazines. Front Chem 2020; 8:711. [PMID: 33195009 PMCID: PMC7554585 DOI: 10.3389/fchem.2020.00711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Olefin bonds participate in co-reaction with the benzoxazine functionality of the monomer and are one of the strategies used to affect the crosslink density of a polybenzoxazine network. In general, the double bond incorporation in starting material is usually catalyzed by expensive, rare earth metals affecting the sustainability of the reaction. The natural abundance of feedstocks with inherent double bonds may be a powerful platform for the development of novel greener structures, with potential applications in polymers. Here, we report the design, synthesis, and characterization of a biobased non-halogen flame retardant, consisting of naturally occurring phenols, eugenol (E), and cardanol (C). The presence of a covalently linked phosphazene (P) core allowed the synthesis of hexa-functional flame retardant molecules, abbreviated as EP and CP. The chemical structures of the synthesized EP and CP were confirmed by Fourier transform infrared (FTIR), nuclear magnetic resonance (1H, 13C, 31P NMR), and single crystal XRD (only in the case of EP). Their polymerization with cardanol sourced tri-oxazine benzoxazine monomer, C-trisapm, was followed by FTIR, NMR, and DSC studies. The thermal stability and flame retardant properties of the hybrid phosphazene-benzoxazine copolymers was determined by thermogravimetry analysis (TGA), limiting oxygen index (LOI), vertical burning, and smoke density analyses. SEM images of the char residues of the polymers with or without the addition of reactive phosphazene molecules confirmed the intumescent flame retarding mechanism. Current work highlights the utility of sustainable origin non-halogen flame retardant (FR) molecules and their utility in polybenzoxazine chemistry.
Collapse
Affiliation(s)
- Divambal Appavoo
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Nagarjuna Amarnath
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
67
|
Abstract
Purpose of Review Flame retardant (FR) compounds can adversely impact neurodevelopment. This updated literature review summarizes epidemiological studies of FRs and neurotoxicity published since 2015, covering historical (polybrominated biphenyls [PBBs], polychlorinated biphenyls [PCBs]), contemporary (polybrominated diphenyl ethers [PBDEs], hexabromocyclododecane [HBCD], and tetrabromobisphenol A [TBBPA]), and current-use organophosphate FRs (OPFRs) and brominated FRs (2-ethylhexyl 2,3,4,5-tetrabromobezoate [EH-TBB] TBB), bis(2-ethylhexyl) tetrabromophthalate [BEH-TEBP]), focusing on prenatal and postnatal periods of exposure. Recent Findings Continuing studies on PCBs still reveal adverse associations on child cognition and behavior. Recent studies indicate PBDEs are neurotoxic, particularly for gestational exposures with decreased cognition and increased externalizing behaviors. Findings were suggestive for PBDEs and other behavioral domains and neuroimaging. OPFR studies provide suggestive evidence of reduced cognition and more behavioral problems. Summary Despite a lack of studies of PBBs, TBBPA, EH-TBB, and BEH-TEBP, and only two studies of HBCD, recent literature of PCBs, PBDEs, and OPFRs are suggestive of developmental neurotoxicity, calling for more studies of OPFRs.
Collapse
|
68
|
Suitability and Modification of Different Renewable Materials as Feedstock for Sustainable Flame Retardants. Molecules 2020; 25:molecules25215122. [PMID: 33158075 PMCID: PMC7662329 DOI: 10.3390/molecules25215122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their chemical structure, conventional flame retardants are often toxic, barely biodegradable and consequently neither healthy nor environmentally friendly. Their use is therefore increasingly limited by regulations. For this reason, research on innovative flame retardants based on sustainable materials is the main focus of this work. Wheat starch, wheat protein, xylan and tannin were modified with phosphate salts in molten urea. The functionalization leads to the incorporation of phosphates (up to 48 wt.%) and nitrogen (up to 22 wt.%). The derivatives were applied on wood fibers and tested as flame retardants. The results indicate that these modified biopolymers can provide the same flame-retardant performances as commercial compounds currently used in the wood fiber industry. Besides, the flame retardancy smoldering effects may also be reduced compared to unmodified wood fibers depending on the used biopolymer. These results show that different biopolymers modified in phosphate/urea systems are a serious alternative to conventional flame retardants.
Collapse
|
69
|
Zhang X, Zhang Y, Ji Z, Wang F, Zhang L, Song M, Li H. Oxidative damage mechanism in Saccharomyces cerevisiae cells exposed to tetrachlorobisphenol A. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103507. [PMID: 33007436 DOI: 10.1016/j.etap.2020.103507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Tetrachlorobisphenol A (TCBPA) can promote intracellular reactive oxygen species (ROS) accumulation. However, limited attention has been given to mechanisms underlying TCBPA exposure-associated ROS accumulation. Here, such mechanisms were explored in the simple eukaryotic model organism Saccharomyces cerevisiae exposed to multiple concentrations of TCBPA. Addition of diphenyleneiodonium, a specific inhibitor of NADPH oxidase, blocked TCBPA treatment-associated intracellular ROS accumulation. NADPH oxidase can be activated by calcineurin, mitogen-activated protein kinase (MAPK), and tyrosine kinase. Therefore, corresponding specific inhibition respectively on these three kinases was performed and results suggested that the Ca2+ signaling pathway, MAPK pathway, and tyrosine kinase pathway all contributed to the TCBPA exposure-associated intracellular ROS accumulation. In addition, TCBPA exposure-associated up-regulation of genes involved in ROS production and down-regulation of catalase promoted ROS accumulation in S. cerevisiae. To sum up, our current results provide insights into the understanding of TCBPA exposure-associated ROS accumulation.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yaxian Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhihua Ji
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Lei Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
70
|
Abboud M, Bondock S, El‐Zahhar AA, Alghamdi MM, Keshk SMAS. Synthesis and characterization of dialdehyde cellulose/amino‐functionalized
MCM
‐41 c
ore‐shell
microspheres as a new eco‐friendly flame‐retardant nanocomposite. J Appl Polym Sci 2020. [DOI: 10.1002/app.50215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science King Khalid University Abha Saudi Arabia
| | - Samir Bondock
- Department of Chemistry, College of Science King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Adel A. El‐Zahhar
- Department of Chemistry, College of Science King Khalid University Abha Saudi Arabia
| | - Majed M. Alghamdi
- Department of Chemistry, College of Science King Khalid University Abha Saudi Arabia
| | - Sherif M. A. S. Keshk
- Nanomaterials and Systems for Renewable Energy Laboratory, Research and Technology Center of Energy Hammam Lif Tunisia
| |
Collapse
|
71
|
König S, Kreis P, Herbert C, Wego A, Steinmann M, Wang D, Frank E, Buchmeiser MR. Melt-Spinning of an Intrinsically Flame-Retardant Polyacrylonitrile Copolymer. MATERIALS 2020; 13:ma13214826. [PMID: 33126721 PMCID: PMC7663686 DOI: 10.3390/ma13214826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/25/2020] [Accepted: 10/25/2020] [Indexed: 12/01/2022]
Abstract
Poly(acrylonitrile) (PAN) fibers have two essential drawbacks: they are usually processed by solution-spinning, which is inferior to melt spinning in terms of productivity and costs, and they are flammable in air. Here, we report on the synthesis and melt-spinning of an intrinsically flame-retardant PAN-copolymer with phosphorus-containing dimethylphosphonomethyl acrylate (DPA) as primary comonomer. Furthermore, the copolymerization parameters of the aqueous suspension polymerization of acrylonitrile (AN) and DPA were determined applying both the Fineman and Ross and Kelen and Tüdõs methods. For flame retardancy and melt-spinning tests, multiple PAN copolymers with different amounts of DPA and, in some cases, methyl acrylate (MA) have been synthesized. One of the synthesized PAN-copolymers has been melt-spun with propylene carbonate (PC) as plasticizer; the resulting PAN-fibers had a tenacity of 195 ± 40 MPa and a Young’s modulus of 5.2 ± 0.7 GPa. The flame-retardant properties have been determined by Limiting Oxygen Index (LOI) flame tests. The LOI value of the melt-spinnable PAN was 25.1; it therefore meets the flame retardancy criteria for many applications. In short, the reported method shows that the disadvantage of high comonomer content necessary for flame retardation can be turned into an advantage by enabling melt spinning.
Collapse
Affiliation(s)
- Simon König
- German Institutes of Textile and Fiber Research, Körschtalstr. 26, D-73770 Denkendorf, Germany; (S.K.); (P.K.); (M.S.); (E.F.)
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany;
| | - Philipp Kreis
- German Institutes of Textile and Fiber Research, Körschtalstr. 26, D-73770 Denkendorf, Germany; (S.K.); (P.K.); (M.S.); (E.F.)
| | - Christian Herbert
- Dralon GmbH, Chempark Dormagen, Postfach 10 04 85, 41522 Dormagen, Germany; (C.H.); (A.W.)
| | - Andreas Wego
- Dralon GmbH, Chempark Dormagen, Postfach 10 04 85, 41522 Dormagen, Germany; (C.H.); (A.W.)
| | - Mark Steinmann
- German Institutes of Textile and Fiber Research, Körschtalstr. 26, D-73770 Denkendorf, Germany; (S.K.); (P.K.); (M.S.); (E.F.)
| | - Dongren Wang
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany;
| | - Erik Frank
- German Institutes of Textile and Fiber Research, Körschtalstr. 26, D-73770 Denkendorf, Germany; (S.K.); (P.K.); (M.S.); (E.F.)
| | - Michael R. Buchmeiser
- German Institutes of Textile and Fiber Research, Körschtalstr. 26, D-73770 Denkendorf, Germany; (S.K.); (P.K.); (M.S.); (E.F.)
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany;
- Correspondence:
| |
Collapse
|
72
|
Xue Q, Wu Q, Yao Y, Li X, Sun J, Gu X, Song W, Yan F, Zhang S. A bio‐safe cyclophosphazene derivative flame retardant for
polylactic acid
composites: Flammability and cytotoxicity. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingxia Xue
- Shandong Engineering Laboratory of Marine Rehabilitation Drugs and Special New Materials, School of Pharmacy Weifang Medical University Weifang China
| | - Quan Wu
- Beijing Key Laboratory of Advanced Functional Polymer Composites Beijing University of Chemical Technology Beijing China
| | - Yuan Yao
- Beijing Key Laboratory of Advanced Functional Polymer Composites Beijing University of Chemical Technology Beijing China
| | - Xinjian Li
- Shandong Engineering Laboratory of Marine Rehabilitation Drugs and Special New Materials, School of Pharmacy Weifang Medical University Weifang China
| | - Jun Sun
- Beijing Key Laboratory of Advanced Functional Polymer Composites Beijing University of Chemical Technology Beijing China
| | - Xiaoyu Gu
- Beijing Key Laboratory of Advanced Functional Polymer Composites Beijing University of Chemical Technology Beijing China
| | - Weiguo Song
- Shandong Engineering Laboratory of Marine Rehabilitation Drugs and Special New Materials, School of Pharmacy Weifang Medical University Weifang China
- Doye Pharma Co., Ltd. Dongying China
| | - Fang Yan
- Shandong Engineering Laboratory of Marine Rehabilitation Drugs and Special New Materials, School of Pharmacy Weifang Medical University Weifang China
| | - Sheng Zhang
- Beijing Key Laboratory of Advanced Functional Polymer Composites Beijing University of Chemical Technology Beijing China
| |
Collapse
|
73
|
Cheng H, Luo H, Hu Y, Tao S. Release kinetics as a key linkage between the occurrence of flame retardants in microplastics and their risk to the environment and ecosystem: A critical review. WATER RESEARCH 2020; 185:116253. [PMID: 32768659 DOI: 10.1016/j.watres.2020.116253] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The widely occurring debris of plastic materials, particularly microplastics, can be an important source of flame retardants, which are one of the main groups of chemicals added in the production of plastics from polymers. This review provides an overview on the use of flame retardants in plastic manufacturing, the kinetics of their releases from microplastics, the factors affecting their releases, and the potential environmental and ecosystem risk of the released flame retardants. The releases of flame retardants from microplastics typically involve three major steps: internal diffusion, mass transfer across the plastic-medium boundary layer, and diffusion in the environmental medium, while the overall mass transfer rate is commonly controlled by diffusion within the plastic matrix. The overall release rates of additive flame retardants from microplastics, which are dependent on the particle's geometry, can often be described by the Fick's Law. The physicochemical properties of flame retardant and plastic matrix, and ambient temperature all affect the release rate, which can be predicted with empirical and semi-empirical models. Weathering of microplastics, which reduces their particle sizes and likely disrupts their polymeric structures, can greatly accelerate the releases of flame retardants. Flame retardants could also be released directly from the microplastics ingested by aquatic organisms and seabirds, with physical and chemical digestion in the bodies significantly enhancing their release rates. Limited by the extremely slow diffusion in plastic matrices, the fluxes of flame retardants released from microplastics are very low, and are unlikely to pose significant risk to the ecosystem in general. More research is needed to characterize the mechanical, chemical, and biological processes that degrade microplastics and accelerate the releases of flame retardants and to model their release kinetics from microplastics, while efforts should also be made to develop environmentally benign flame retardants to ultimately minimize their risk to the environment and ecosystem.
Collapse
Affiliation(s)
- Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Hang Luo
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Key Laboratory of Groundwater Circulation and EvolutioSchool of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
74
|
Wang C, Chen H, Li H, Yu J, Wang X, Liu Y. Review of emerging contaminant tris(1,3-dichloro-2-propyl)phosphate: Environmental occurrence, exposure, and risks to organisms and human health. ENVIRONMENT INTERNATIONAL 2020; 143:105946. [PMID: 32663715 DOI: 10.1016/j.envint.2020.105946] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is a halogen-containing organophosphorus chemical that is widely employed in various consumer products with a high production volume. As an additive flame retardant (FR), TDCPP tends to be released into the environment through multiple routes. It is ubiquitous in environmental media, biotic matrixes, and humans, and thus is deemed to be an emerging environmental contaminant. To date, significant levels of TDCPP and its primary diester metabolite, bis(1,3-dichloro-2-propyl)phosphate, have been detected in human samples of seminal plasma, breast milk, blood plasma, placenta, and urine, thereby causing wide concern about the potential human health effects resulting from exposure to this chemical. Despite the progress in research on TDCPP over the past few years, we are still far from fully understanding the environmental behavior and health risks of this emerging contaminant. Thus, this paper critically reviews the environmental occurrence, exposure, and risks posed by TDCPP to organisms and human health among the literature published in the last decade. It has been demonstrated that TDCPP induces acute-, nerve-, developmental-, reproductive-, hepatic-, nephron-, and endocrine-disrupting toxicity in animals, which has caused increasing concern worldwide. Simultaneously, TDCPP induces cytotoxicity by increasing the formation of reactive oxygen species and inducing endoplasmic reticulum stress in multiple human cell lines in vitro, and also causes endocrine-disrupting effects, including reproductive dysfunction and adverse pregnancy outcomes, according to human epidemiology studies. This review not only provides a better understanding of the behavior of this emerging contaminant in the environment, but also enhances the comprehension of the health risks posed by TDCPP exposure to ecosystems and humans.
Collapse
Affiliation(s)
- Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Jun Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
75
|
Abu-Thabit N, Hakeem AS, Mezghani K, Ratemi E, Elzagheid M, Umar Y, Primartomo A, Al Batty S, Azad AK, Al Anazi S, Ahmad A. Preparation of pH-Indicative and Flame-Retardant Nanocomposite Films for Smart Packaging Applications. SENSORS 2020; 20:s20195462. [PMID: 32977576 PMCID: PMC7582257 DOI: 10.3390/s20195462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
There is an increasing demand for sustainable and safe packaging technologies to improve consumer satisfaction, reduce food loss during storage and transportation, and track the quality status of food throughout its distribution. This study reports the fabrication of colorimetric pH-indicative and flame-retardant nanocomposite films (NCFs) based on polyvinyl alcohol (PVA) and nanoclays for smart and safe food packaging applications. Tough, flexible, and transparent NCFs were obtained using 15% nanoclay loading (PVA-15) with superior properties, including low solubility/swelling in water and high thermal stability with flame-retardant behavior. The NCFs showed average mechanical properties that are comparable to commercial films for packaging applications. The color parameters were recorded at different pH values and the prepared NCFs showed distinctive colorimetric pH-responsive behavior during the transition from acidic to alkaline medium with high values for the calculated color difference (∆E ≈ 50). The prepared NCFs provided an effective way to detect the spoilage of the shrimp samples via monitoring the color change of the NCFs during the storage period. The current study proposes the prepared NCFs as renewable candidates for smart food packaging featuring colorimetric pH-sensing for monitoring food freshness as well as a safer alternative choice for applications that demand films with fire-retardant properties.
Collapse
Affiliation(s)
- Nedal Abu-Thabit
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
- Correspondence: ; Tel.: +966-13-340-5400
| | - Abbas Saeed Hakeem
- Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Khaled Mezghani
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Elaref Ratemi
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Mohamed Elzagheid
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Yunusa Umar
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Adhi Primartomo
- Department of Mechanical and Manufacturing Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia;
| | - Sirhan Al Batty
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Abdul Kalam Azad
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Sami Al Anazi
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Ayman Ahmad
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| |
Collapse
|
76
|
Li Z, Tang X, Zhu L, Qi X, Cao G, Lu G. Cytotoxic Screening and Transcriptomics Reveal Insights into the Molecular Mechanisms of Trihexyl Phosphate-Triggered Hepatotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11464-11475. [PMID: 32841022 DOI: 10.1021/acs.est.0c03824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mounting evidence shows that organophosphate flame retardants (OPFRs), especially aryl- and halogenated-OPFRs, exert various adverse health effects on living organisms. This study evaluated the hepatotoxic effect of trihexyl phosphate (THP) as a long-chain alkyl-OPFR on human hepatocyte cells (LO2) and mouse hepatocyte cells (AML12) by performing screening of cytotoxicity in vitro. In combination with transcriptomic analysis, toxicological mechanisms in vitro were further investigated. Results showed that THP triggered hepatotoxicity in vitro by altering four signaling pathways: endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and the glycolysis signaling pathway. Exposure of LO2 and AML12 liver cells to THP (25 μg/mL) significantly induced ER stress-mediated apoptosis and cell cycle arrest. Meanwhile, downregulation of glycolysis caused the blockage of energy metabolism. Furthermore, the high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) revealed that much of THP was absorbed into the cells and displayed stability in the two liver cell lines. In vivo assays using a mouse model demonstrated that exposure to THP at 400 mg/kg induced the ballooning degeneration of hepatocytes in liver tissue, whereas exposure to THP at 800 mg/kg caused acute liver injury with high alanine aminotransferase levels. This study provides novel insights into the impact of THP on hepatotoxicity in vitro and in vivo and uncovers the underlying toxicological mechanisms, which may serve as a guide for further ecological risk assessment and reasonable application of alkyl-OPFRs.
Collapse
Affiliation(s)
- Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lingfei Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaojie Qi
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Gang Cao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
77
|
Itumoh EJ, Data S, Leitao EM. Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates. Molecules 2020; 25:E3684. [PMID: 32823507 PMCID: PMC7463754 DOI: 10.3390/molecules25163684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
This review covers the main synthetic routes to and the corresponding mechanisms of phosphoramidate formation. The synthetic routes can be separated into six categories: salt elimination, oxidative cross-coupling, azide, reduction, hydrophosphinylation, and phosphoramidate-aldehyde-dienophile (PAD). Examples of some important compounds synthesized through these routes are provided. As an important class of organophosphorus compounds, the applications of phosphoramidate compounds, are also briefly introduced.
Collapse
Affiliation(s)
- Emeka J. Itumoh
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- Department of Industrial Chemistry, Ebonyi State University, Abakaliki 480001, Ebonyi State, Nigeria
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Shailja Data
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Erin M. Leitao
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
78
|
Liu Z, Wu W, Wu W, Liu C, Wang Y, Wang Z. Synthesis of a triazine-based macromolecular hybrid charring agent containing zinc borate and its flame retardancy and thermal properties in polypropylene. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1786790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhaowen Liu
- Sino-German Joint Research Center of Advanced Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Wei Wu
- Sino-German Joint Research Center of Advanced Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Wenzheng Wu
- Sino-German Joint Research Center of Advanced Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Chao Liu
- Sino-German Joint Research Center of Advanced Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yi Wang
- Sino-German Joint Research Center of Advanced Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhengyi Wang
- Sino-German Joint Research Center of Advanced Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
79
|
Eco-friendly flame retardant poly(lactic acid) composites based on banana peel powders and phytic acid: flame retardancy and thermal property. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02176-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
80
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Conde KN, Roepke TA. The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:438-455. [PMID: 32546061 PMCID: PMC7337410 DOI: 10.1080/15287394.2020.1777235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previously, sex-dependent alterations in energy homeostasis were reported in adult mice fed a standard chow attributed to exposure to a mixture of organophosphate flame retardants (OPFRs) via estrogen receptors (ERα). In this study, adult male and female mice (C57BL/6J; Taconic) were treated with the same mixture of OPFRs (1 mg/kg each of tricresyl phosphate (TCP), triphenyl phosphate (TPP), and tris(1-3-dichloro-2propyl)phosphate (TDCPP)) for 7 weeks on a low-fat diet (LFD, 10% kcal fat) or a high fat (HFD, 45% kcal fat) in a diet-induced obesity model. Consistent with our previous observations, OPFRs altered weight gain in males, differentially with diet, while females remained unaffected. OPFR treatment also revealed sex-dependent perturbations in metabolic activity. During the night (approximately 0100-0400 hr), males exhibited elevated activity and oxygen consumption, while in females these parameters were decreased, irrespective of diet. OPFR disrupted feeding behavior and abolished diurnal water intake patterns in females while increasing nighttime fluid consumption in males. Despite no marked effect of OPFRs on glucose or insulin tolerance, OPFR treatment altered circulating insulin and leptin in females and ghrelin in males. Data indicate that adult OPFR exposure might influence, and perhaps exacerbate, the effects of diet-induced obesity in adult mice by altering activity, ingestive behavior, and metabolism.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Kristie N. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
81
|
Occurrence of Halogenated Pollutants in Domestic and Occupational Indoor Dust. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113813. [PMID: 32471253 PMCID: PMC7313465 DOI: 10.3390/ijerph17113813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
The occurrence of halogenated organic pollutants in indoor dust can be high due to the presence of textile, electronic devices, furniture, and building materials treated with these chemicals. In this explorative study, we focused on emerging organic pollutants, such as novel brominated flame retardants (nBFRs) and some perfluoroalkyl substances, together with legacy polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (BDEs) in settled dust collected in houses and workplaces such as one office and two electrotechnical and mechanical workshops. The total contribution of the investigated pollutants was lower in house and in office dusts except for few nBFRs (such as bis (2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate at a concentration of 464.5 ng/g in a house and hexachlorocyclopentadienyldibromocyclooctane at 40.4 ng/g in the office), whereas in electrotechnical and mechanical workshops a high incidence of PCBs, BDEs, and nBFRs occurred (for example, BDE 209 at a concentration of 2368.0 ng/g and tetrabromobisphenol A at 32,320.1 ng/g in electrotechnical and mechanical workshops). Estimated daily intakes were also calculated, showing that domestic and occupational environments can lead to a similar contribution in terms of human exposure. The higher exposure contribution was associated to nBFRs, whose EDIs were in the range of 3968.2–555,694.2 pg/kg bw/day. To provide a complete view about the indoor contamination, in this investigation, we also included polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives. Definitely, dust collection represents a simple, fast, and cost-effective sampling and dust contamination level can be a useful indicator of environment healthiness. Besides, the presented method can be a smart tool to provide a time and money saving technique to characterize 99 pollutants thanks to a single sample treatment.
Collapse
|
82
|
Hales BF, Robaire B. Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 2020; 8:915-923. [DOI: 10.1111/andr.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Barbara F. Hales
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
- Department of Obstetrics and Gynecology McGill University Montreal QC Canada
| |
Collapse
|
83
|
Biomolecules as Flame Retardant Additives for Polymers: A Review. Polymers (Basel) 2020; 12:polym12040849. [PMID: 32272648 PMCID: PMC7240707 DOI: 10.3390/polym12040849] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Biological molecules can be obtained from natural sources or from commercial waste streams and can serve as effective feedstocks for a wide range of polymer products. From foams to epoxies and composites to bulk plastics, biomolecules show processability, thermal stability, and mechanical adaptations to fulfill current material requirements. This paper summarizes the known bio-sourced (or bio-derived), environmentally safe, thermo-oxidative, and flame retardant (BEST-FR) additives from animal tissues, plant fibers, food waste, and other natural resources. The flammability, flame retardance, and—where available—effects on polymer matrix’s mechanical properties of these materials will be presented. Their method of incorporation into the matrix, and the matrices for which the BEST-FR should be applicable will also be made known if reported. Lastly, a review on terminology and testing methodology is provided with comments on future developments in the field.
Collapse
|
84
|
Bethke C, Goedderz D, Weber L, Standau T, Döring M, Altstädt V. Improving the flame‐retardant property of bottle‐grade PET foam made by reactive foam extrusion. J Appl Polym Sci 2020. [DOI: 10.1002/app.49042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Bethke
- Department of Polymer EngineeringUniversity of Bayreuth Bayreuth Germany
| | - Daniela Goedderz
- Fraunhofer Institute for Structural Durability and System Reliability LBF Darmstadt Germany
- Ernst‐Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt Darmstadt Germany
| | - Lais Weber
- Fraunhofer Institute for Structural Durability and System Reliability LBF Darmstadt Germany
- Ernst‐Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt Darmstadt Germany
| | - Tobias Standau
- Department of Polymer EngineeringUniversity of Bayreuth Bayreuth Germany
| | - Manfred Döring
- Fraunhofer Institute for Structural Durability and System Reliability LBF Darmstadt Germany
| | - Volker Altstädt
- Department of Polymer EngineeringUniversity of Bayreuth Bayreuth Germany
| |
Collapse
|
85
|
Yan J, Karlsson A, Zou Z, Dai D, Edlund U. Contamination of heavy metals and metalloids in biomass and waste fuels: Comparative characterisation and trend estimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134382. [PMID: 31698270 DOI: 10.1016/j.scitotenv.2019.134382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The use of contaminated biomass and waste fuels is essential for waste management, waste to energy (WtE) and mitigating carbon emissions. The contamination of heavy metals and metalloids is specially concerned by environmental regulation and waste to energy processes. In this study, comparative characterisation is performed for three typical contaminated biomass and waste fuels. i.e. recycled woods, combustible municipal solid waste, and industrial and commercial wastes. The contamination characteristics are further analysed using statistical methods (e.g. significance, correlation, profile, and principal component analyses) to identify specific contamination features, relations among the contaminants and potential contamination sources. Contamination trend is estimated based on the continuously monitoring fuel qualities, the driving forces for regulating and reduction of the contaminations, and potential changes in major contamination sources. The comparative characterisation combined with statistical analyses provides a better way to understand the contamination mechanisms. The approach can also relate the fuel contamination with the contamination sources and their changes for trend estimation. Generally, the toxic heavy metals and metalloids are expected to be significantly reduced due to stricter regulations, but there is no general trend for the reduction of other metals and metalloids because of the complicated changes in contamination sources and waste recycling streams in the near future.
Collapse
Affiliation(s)
- Jinying Yan
- Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Vattenfall AB, SE-169 92 Stockholm, Sweden.
| | | | - Zhi Zou
- Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Deliang Dai
- Economics and Statistics, Linnaeus University, SE-351 95 Växjö, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
86
|
Gebke S, Thümmler K, Sonnier R, Tech S, Wagenführ A, Fischer S. Flame Retardancy of Wood Fiber Materials Using Phosphorus-Modified Wheat Starch. Molecules 2020; 25:E335. [PMID: 31947576 PMCID: PMC7024314 DOI: 10.3390/molecules25020335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
Biopolymer-based flame retardants (FR) are a promising approach to ensure adequate protection against fire while minimizing health and environmental risks. Only a few, however, are suitable for industrial purposes because of their poor flame retardancy, complex synthesis pathway, expensive cleaning procedures, and inappropriate application properties. In the present work, wheat starch was modified using a common phosphate/urea reaction system and tested as flame retardant additive for wood fibers. The results indicate that starch derivatives from phosphate/urea systems can reach fire protection efficiencies similar to those of commercial flame retardants currently used in the wood fiber industry. The functionalization leads to the incorporation of fire protective phosphates (up to 38 wt.%) and nitrogen groups (up to 8.3 wt.%). The lowest levels of burning in fire tests were measured with soluble additives at a phosphate content of 3.5 wt.%. Smoldering effects could be significantly reduced compared to unmodified wood fibers. The industrial processing of a starch-based flame retardant on wood insulating materials exhibits the fundamental applicability of flame retardants. These results demonstrate that starch modified from phosphate/urea-systems is a serious alternative to traditional flame retardants.
Collapse
Affiliation(s)
- Stefan Gebke
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (S.G.); (S.F.)
| | - Katrin Thümmler
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (S.G.); (S.F.)
| | - Rodolphe Sonnier
- C2MA, IMT—Mines Alès, 6, avenue de Clavières, 30100 Alès, France;
| | - Sören Tech
- Wood and Fibre Material Technology, Technische Universität Dresden, 01062 Dresden, Germany; (S.T.); (A.W.)
| | - André Wagenführ
- Wood and Fibre Material Technology, Technische Universität Dresden, 01062 Dresden, Germany; (S.T.); (A.W.)
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (S.G.); (S.F.)
| |
Collapse
|
87
|
Li L, Shao X, Zhao Z, Liu X, Jiang L, Huang K, Zhao S. Synergistic Fire Hazard Effect of a Multifunctional Flame Retardant in Building Insulation Expandable Polystyrene through a Simple Surface-Coating Method. ACS OMEGA 2020; 5:799-807. [PMID: 31956831 PMCID: PMC6964526 DOI: 10.1021/acsomega.9b03541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
This work reports a strategy based on γ-aminopropyltriethoxysilane (KH550) and graphene oxide (GO)-functionalized 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to fabricate P-N-Si integrated flame retardant [KDOPO-modified GO (DGO)] through mild Mannich and Silanization reactions to overcome the challenge of single gas-phase fire retardancy of DOPO. DGO-based phenolic epoxy resin (DGO/PER) is manufactured and coated on the surface of expandable polystyrene (EPS) foam plates to achieve fire safety, which is used as the thermally insulating external wall in buildings and constructions. The DGO/PER paintcoat imparts high fire safety to the EPS foam plate, exhibiting a high limiting oxygen index value of 29%, and a UL-94 V-0 classification is achieved with only 300 μm of layer thickness compared with the DOPO/PER paintcoat. Meanwhile, all combustion parameters such as peak heat release rate, heat release rate, total heat release, smoke release rate, total smoke rate, and ignition time present excellent promotions for EPS@DGO compared with EPS@DOPO. These dramatically reduced fire hazards are mainly attributed to the synergistic effects of DGO. Meanwhile, the DGO/PER flame-retardant paintcoat cannot deteriorate the thermal insulation performance of the EPS foam plate.
Collapse
Affiliation(s)
| | | | - Zheng Zhao
- Key Lab of Rubber-plastics, Ministry
of Education/Shandong Provincial Key Lab of Rubber-plastics, School
of Polymer Science and Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Xiaolin Liu
- Key Lab of Rubber-plastics, Ministry
of Education/Shandong Provincial Key Lab of Rubber-plastics, School
of Polymer Science and Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Licong Jiang
- Key Lab of Rubber-plastics, Ministry
of Education/Shandong Provincial Key Lab of Rubber-plastics, School
of Polymer Science and Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Kai Huang
- Key Lab of Rubber-plastics, Ministry
of Education/Shandong Provincial Key Lab of Rubber-plastics, School
of Polymer Science and Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Shuai Zhao
- Key Lab of Rubber-plastics, Ministry
of Education/Shandong Provincial Key Lab of Rubber-plastics, School
of Polymer Science and Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
88
|
Markwart JC, Battig A, Urbaniak T, Haag K, Koschek K, Schartel B, Wurm FR. Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials. Polym Chem 2020. [DOI: 10.1039/d0py00275e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vitrimers are a promising alternative to conventional composite materials as they can be recycled and reshaped but still need additives. Herein, intrinsic flame-retardant phosphorus-containing vitrimers are presented, which were used in composites.
Collapse
Affiliation(s)
| | - Alexander Battig
- Bundesanstalt für Materialforschung und -prüfung (BAM)
- 12205 Berlin
- Germany
| | - Tobias Urbaniak
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
- 28359 Bremen
- Germany
| | - Katharina Haag
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
- 28359 Bremen
- Germany
| | - Katharina Koschek
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
- 28359 Bremen
- Germany
| | - Bernhard Schartel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
- 28359 Bremen
- Germany
| | | |
Collapse
|
89
|
Incorporation of Comonomer exo-5-(Diphenylphosphato)Isosorbide-2- endo-Acrylate to Generate Flame Retardant Poly(Styrene). Polymers (Basel) 2019; 11:polym11122038. [PMID: 31835304 PMCID: PMC6960599 DOI: 10.3390/polym11122038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
A phosphorus containing acrylate monomer has been constructed from isosorbide, a renewable biomaterial. Treatment of isosorbide with diphenylchlorophosphate generates a mixture of phosphorus esters from which exo-5-(diphenylphosphato)isosorbide-2-endo-ol may be isolated using column chromatography. Conversion of the alcohol to the corresponding acrylate by treatment with acroyl chloride provides a reactive acryloyl monomer containing a diphenylphosphato unit. Copolymerization of this monomer, at levels to provide 1% or 2% phosphorus incorporation, with styrene generates a polymer with substantially diminished flammability compared to that for styrene homopolymer.
Collapse
|
90
|
Karaseva V, Bergeret A, Lacoste C, Fulcrand H, Ferry L. New Biosourced Flame Retardant Agents Based on Gallic and Ellagic Acids for Epoxy Resins. Molecules 2019; 24:molecules24234305. [PMID: 31779081 PMCID: PMC6930652 DOI: 10.3390/molecules24234305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was an investigation of the ability of gallic (GA) and ellagic (EA) acids, which are phenolic compounds encountered in various plants, to act as flame retardants (FRs) for epoxy resins. In order to improve their fireproofing properties, GA and EA were treated with boric acid (to obtain gallic acid derivatives (GAD) and ellagic acid derivatives (EAD)) to introduce borate ester moieties. Thermogravimetric analysis (TGA) highlighted the good charring ability of GA and EA, which was enhanced by boration. The grafting of borate groups was also shown to increase the thermal stability of GA and EA that goes up respectively from 269 to 528 °C and from 496 to 628 °C. The phenolic-based components were then incorporated into an epoxy resin formulated from diglycidyl ether of bisphenol A (DGEBA) and isophorone diamine (IPDA) (72, 18, and 10 wt.% of DGEBA, IPDA, and GA or EA, respectively). According to differential scanning calorimetry (DSC), the glass transition temperature (Tg) of the thermosets was decreased. Its values ranged from 137 up to 108 °C after adding the phenolic-based components. A cone calorimeter was used to evaluate the burning behavior of the formulated thermosets. A significant reduction of the peak of heat release rate (pHRR) for combustion was detected. Indeed, with 10 wt.% of GA and EA, pHRR was reduced by 12 and 44%, respectively, compared to that for neat epoxy resin. GAD and EAD also induced the decrease of pHRR values by 65 and 33%, respectively. In addition, a barrier effect was observed for the resin containing GAD. These results show the important influence of the biobased phenolic compounds and their boron derivatives on the fire behavior of a partially biobased epoxy resin.
Collapse
Affiliation(s)
- Valeriia Karaseva
- INRA, UMR 1083 SPO, 2 place Pierre Viala, 34060 Montpellier, France
- Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Alès, Université de Montpellier, 6 avenue de Clavières, 30319 Alès cedex, France; (A.B.); (C.L.)
- French Environment and Energy Management Agency, 20 avenue du Grésillé, BP 90406, 49004 Angers cedex 01, France
| | - Anne Bergeret
- Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Alès, Université de Montpellier, 6 avenue de Clavières, 30319 Alès cedex, France; (A.B.); (C.L.)
| | - Clément Lacoste
- Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Alès, Université de Montpellier, 6 avenue de Clavières, 30319 Alès cedex, France; (A.B.); (C.L.)
| | - Hélène Fulcrand
- INRA, UMR 1208 IATE, 2 Place Pierre Viala, 34060 Montpellier, France;
| | - Laurent Ferry
- Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Alès, Université de Montpellier, 6 avenue de Clavières, 30319 Alès cedex, France; (A.B.); (C.L.)
- Correspondence:
| |
Collapse
|
91
|
Zhang Y, Su H, Ya M, Li J, Ho SH, Zhao L, Jian K, Letcher RJ, Su G. Distribution of flame retardants in smartphones and identification of current-use organic chemicals including three novel aryl organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133654. [PMID: 31635002 DOI: 10.1016/j.scitotenv.2019.133654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Smartphones have become an integral tool of society; in the year 2017, approximately 30% of the global population used smartphones. After their life cycle of use, most smartphones are not recycled and are instead discarded as e-waste, which increases the probability that chemicals they contain will eventually be released into the natural environment. In this study, the concentration and distribution of 52 major flame retardant (FR) chemicals were measured in eight components of seven models of largely produced smartphones. The results demonstrated that organophosphate esters (OPEs) were the principal FRs in these smartphone devices, while a suite of halogenated flame retardants (HFRs), including 25 polybrominated diphenyl ethers (PBDEs), were not detected. Triphenyl phosphate (TPHP) was the primary FR in the smartphones, followed by tris(2-butoxyethyl) phosphate (TBOEP), 2-ethylhexyl diphenyl phosphate (EHDPP), triethyl phosphate (TEP), tris(2-chloroethyl) phosphate (TCEP), and tris(2-chloroisopropyl) phosphate (TCIPP), respectively. The average smartphone contained 3.37 × 107 ng TPHP/unit, which was concentrated in the phone screen. We estimated the annual amount of ΣOPEs and TPHP in smartphones used globally to be 53.5 and 51.8 tons, respectively. Extracts of phone screens were further analyzed by use of an untargeted screening strategy, and other 10 organic chemicals were identified. Interestingly, 3 out of them shared similar backbone structure of TPHP, and these 3 chemicals were tri(2,4-di-t-butylphenyl) phosphate (TDTBPP; CAS No. 95906-11-9), 2-biphenylol diphenyl phosphate (BPDPP; 132-29-6), and tris (2-biphenyl) phosphate (TBPHP; 132-28-5). Collectively, this study provided the first information on distribution of major FRs in different components of smartphones, and also identified other 10 current-use organic chemicals including three novel aryl OPEs which should be considered in further environmental studies including in toxicological and monitoring programs.
Collapse
Affiliation(s)
- Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Miaolei Ya
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Luming Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kang Jian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, Carleton University, Ottawa, ON, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
92
|
Eco-Friendly Nanocellulose Embedded Polymer Composite Foam for Flame Retardancy Improvement. Macromol Res 2019. [DOI: 10.1007/s13233-020-8020-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
93
|
Oloruntoba K, Sindiku O, Osibanjo O, Balan S, Weber R. Polybrominated diphenyl ethers (PBDEs) in chicken eggs and cow milk around municipal dumpsites in Abuja, Nigeria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:282-289. [PMID: 31071566 DOI: 10.1016/j.ecoenv.2019.04.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 05/20/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in electronic equipment, as polymers in vehicles or construction, and in textiles. These additive flame retardants are emerging pollutants in Africa, released by the non-environmentally sound disposal of consumer products, often imported as secondhand, that have increasingly reached their end-of-life in the last decade. In Nigeria, which is a major receiver of e-waste and secondhand cars, there is a dearth of information regarding the levels of PBDEs in the environment, biota, and food. Thus, this study was designed to investigate the PBDE contamination of food samples of animal origin (chicken eggs and cow milk) around municipal waste dumpsites and background areas in Nigeria, to elucidate the role of dumpsites as potential sources of PBDE pollution and exposure in the country. Biological samples were collected over two years from two municipal waste dumpsites in Abuja. Fifty-six samples each of free-range chicken eggs and cow milk were collected. Control samples were collected approximately 5 km away from the dumpsites. After extraction and clean-up, the levels of POP-PBDEs listed in 2009 (major congeners of tetraBDE to heptaBDE), plus BDE-28 (Σ7PBDEs) were determined using GC-ECD. Data were analysed using descriptive statistics, t-test at α0.05. Levels of Σ7PBDEs (ng/g lipid weight (lw)) in chicken eggs at the two study sites ranged from 262.3 to 313.4 (ng/g lw), more than one order of magnitude higher than those at the control site in a village near the dumpsites (14.9 ± 3.73 ng/g lw), and two and more orders of magnitude higher compared to PBDE levels in these products in industrial countries and Nigerian supermarkets. Median PBDE levels in cow milk from the two dumpsites were 49.1 and 81.5 ng/g lw, respectively, considerably higher than levels in other studies. Proper disposal methods of waste polymers containing PBDEs such as co-incineration in BAT cement kilns and plastic recycling with separation is urgently needed in Nigeria and other parts of Africa, to prevent open burning as well as crude recycle to reduce PBDE levels in the environment and human food.
Collapse
Affiliation(s)
- Kike Oloruntoba
- Department of Chemistry, University of Ibadan, Ibadan, Nigeria; Raw Materials Research and Development Council, Abuja, Nigeria.
| | - Omotayo Sindiku
- Department of Chemistry, University of Ibadan, Ibadan, Nigeria.
| | | | - Simona Balan
- Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA.
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany.
| |
Collapse
|
94
|
Chen R, Hou R, Hong X, Yan S, Zha J. Organophosphate flame retardants (OPFRs) induce genotoxicity in vivo: A survey on apoptosis, DNA methylation, DNA oxidative damage, liver metabolites, and transcriptomics. ENVIRONMENT INTERNATIONAL 2019; 130:104914. [PMID: 31226563 DOI: 10.1016/j.envint.2019.104914] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND As potential substitutes for polybrominated diphenyl ethers (PBDEs), organophosphate flame retardants (OPFRs) have been frequently detected in the environment. However, the genotoxicity induced by these OPFRs has rarely been described, and the results reported in previous studies are conflicting and inconsistent. OBJECTIVES The present study aimed to determine how OPFRs induced genetic toxicity in vivo. METHODS Using Chinese rare minnow as a model, the toxicity of three OPFRs was screened with RNA-seq. To verify the OPFR-induced genotoxicity, alkaline comet assay, cell apoptosis analysis, HPLC-based DNA methylation assay, 8-OHdG assay, bioconcentration and biotransformation investigation were performed. RESULTS According to transcriptomic data, TDCIPP exposure substantially altered the pathways related to DNA damage, including the cell cycle, DNA replication, Fanconi anemia pathway, p53 signaling pathway, and various DNA repair pathways. Although TBOEP and TPHP did not affect DNA damage, TDCIPP induced DNA damage in a dose-dependent manner. TDCIPP also induced apoptosis, altered the activities of caspase-3 and -9, and increased the 8-OHdG levels, while a significant difference in the levels of DNA methylation induced by OPFRs was not observed. CONCLUSIONS Based on these results, TDCIPP induced DNA oxidative damage, eventually leading to genotoxicity in vivo.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Hou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
95
|
Gouesse RJ, Lavoie M, Dianati E, Wade MG, Hales BF, Robaire B, Plante I. Gestational and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Downregulates Junctional Proteins, Thyroid Hormone Receptor α1 Expression, and the Proliferation-Apoptosis Balance in Mammary Glands Post Puberty. Toxicol Sci 2019; 171:13-31. [PMID: 31241157 PMCID: PMC6735962 DOI: 10.1093/toxsci/kfz147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Mammary gland development requires hormonal regulation during puberty, pregnancy, and lactation. Brominated flame retardants (BFRs) are endocrine disruptors; they are added to consumer products to satisfy flammability standards. Previously, we showed that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts proteins of the adherens junctions in rat dam mammary glands at weaning. Here, we hypothesize that perinatal exposure to the same BFR mixture also disrupts junctional proteins and signaling pathways controlling mammary gland development in pups. Dams were exposed through diet to a BFR mixture based on the substances in house dust; doses of the mixture used were 0, 0.06, 20, or 60 mg/kg/day. Dams were exposed continuously beginning prior to mating until pups' weaning; female offspring were euthanized on postnatal day (PND) 21, 46, and 208. The lowest dose of BFRs significantly downregulated adherens junction proteins, E-cadherin, and β-catenin, and the gap junction protein p-Cx43, as well as thyroid hormone receptor alpha 1 protein at PND 46. No effects were observed on estrogen or progesterone receptors. The low dose also resulted in a decrease in cleaved caspase-3, a downward trend in PARP levels, proteins involved in apoptosis, and an upward trend in proliferating cell nuclear antigen, a marker of proliferation. No effects were observed on ductal elongation or on the numbers of terminal end buds. Together, our results indicate that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts cell-cell interactions, thyroid hormone homeostasis and the proliferation-apoptosis balance at PND 46, a critical stage for mammary gland development.
Collapse
Affiliation(s)
| | - Mélanie Lavoie
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Elham Dianati
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Mike G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario, Canada
| | | | - Bernard Robaire
- Department of Pharmacology & Therapeutics
- Department of Obstetrics & Gynecology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabelle Plante
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| |
Collapse
|
96
|
Wang Q, Zhao H, Xu L, Wang Y. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:683-689. [PMID: 30878008 DOI: 10.1016/j.ecoenv.2019.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The increasing load of organophosphate flame retardants (OPFRs) has generated wide concerns about their potential residues in aquatic environments. The uptake and translocation of fourteen OPFRs by wheat (Triticum aestivum L.) were studied under hydroponic conditions. The results revealed that OPFRs were removed from hydroponic solution by wheat, and the removal processes followed first-order kinetics. After 10 days, the removal efficiencies were in a range of 57.9 ± 3.8%-63.8 ± 5.6%. The potential for translocation of these OPFRs from the roots to foliage was also assessed. OPFRs with relatively higher hydrophobicity were more likely taken up by roots, and OPFRs with lower hydrophobicity were more prone to be translocated. Root concentration factors (RCFs), transpiration stream concentration factors (TSCFs), and foliage/root concentration factors (FRCFs) were calculated. Furthermore, significant correlations were found between RCF, FRCF or TSCF values of OPFRs and log Kow (p < 0.05), and translocation of OPFRs depended on their physicochemical properties. The findings of this study develop better understanding of accumulation and translocation of OPFRs in plants, which is valuable for environmental and human health assessments of such kind of contaminants.
Collapse
Affiliation(s)
- Qingzhi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ling Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
97
|
A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). Int J Mol Sci 2019; 20:ijms20122874. [PMID: 31212857 PMCID: PMC6627825 DOI: 10.3390/ijms20122874] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
Organophosphate flame retardants (OPFRs) have been detected in various environmental matrices and have been identified as emerging contaminants (EC). Given the adverse influence of OPFRs, many researchers have focused on the absorption, bioaccumulation, metabolism, and internal exposure processes of OPFRs in animals and humans. This paper first reviews the evolution of various types of flame retardants (FRs) and the environmental pollution of OPFRs, the different absorption pathways of OPFRs by animals and humans (such as inhalation, ingestion, skin absorption and absorption), and then summarizes the environmental impacts of OPFRs, including their biological toxicity, bioaccumulation, persistence, migration, endocrine disruption and carcinogenicity. Based on limited available data and results, this study also summarizes the bioaccumulation and biomagnification potential of OPFRs in different types of biological and food nets. In addition, a new governance idea for the replacement of existing OPFRs from the source is proposed, seeking environmentally friendly alternatives to OPFRs in order to provide new ideas and theoretical guidance for the removal of OPFRs.
Collapse
|
98
|
Zheng Z, Peters GM, Arp HPH, Andersson PL. Combining in Silico Tools with Multicriteria Analysis for Alternatives Assessment of Hazardous Chemicals: A Case Study of Decabromodiphenyl Ether Alternatives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6341-6351. [PMID: 31081616 DOI: 10.1021/acs.est.8b07163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Alternatives assessment is applied for minimizing the risk of unintentionally replacing a hazardous chemical with another hazardous chemical. Central challenges are the diversity of properties to consider and the lack of high-quality experimental data. To address this, a novel alternatives assessment procedure was developed based on in silico data and multicriteria decision analysis (MCDA) methods. As a case study, 16 alternatives to the flame retardant decabromodiphenyl ether were considered. The hazard properties included persistence (P), bioaccumulation potential (B), toxicities (T), and mobility in water (M). Databases were consulted and 2866 experimental data points were collected for the target chemicals; however, these were mostly replicate data points for some hazard criteria for a subset of alternatives. Therefore, in silico data and three MCDA strategies were tested including heat mapping, multiattribute utility theory (MAUT), and Elimination Et Choix Traduisant la REalité (ELECTRE III). The heat map clearly showed that none of the target chemicals are hazard-free, whereas MAUT and ELECTRE III agreed on ranking the "least worst" choices. This study identified several challenges and the complexity in the alternatives assessment processes motivating more case studies combining in silico and MCDA approaches.
Collapse
Affiliation(s)
- Ziye Zheng
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Gregory M Peters
- Division of Environmental Systems Analysis , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
- School of Civil and Environmental Engineering , University of New South Wales , AU-2052 Sydney , Australia
| | - Hans Peter H Arp
- Department of Environmental Engineering , Norwegian Geotechnical Institute , Ullevaal Stadion , NO-0806 Oslo , Norway
- Department of Chemistry , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| | | |
Collapse
|
99
|
Dembsey NA, Brokaw FM, Stapleton HM, Dodson RE, Onasch J, Jazan E, Carignan CC. Intervention to reduce gymnast exposure to flame retardants from pit foam: A case study. ENVIRONMENT INTERNATIONAL 2019; 127:868-875. [PMID: 30922522 DOI: 10.1016/j.envint.2019.01.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/22/2023]
Abstract
Gymnasts can have high exposures to flame retardants (FRs), which are used in gymnastics safety equipment such as the loose foam pit. Therefore, we aimed to reduce gymnast exposure to FRs by replacing the foam in the pit using foam free of additive FR and measuring personal exposure during practice using hand-wipes. To assure maintenance of fire safety we first conducted a flammability study and facilitated a fire inspection for our partner gym. The FR-treated cubes had similar heat release rates to the non-FR treated cubes, required a 11 cm larger flame size applied for 6 s longer to ignite, and took 4 min longer to reach peak flame height. Based on these findings and the presence of other fire safety measures including smoke detectors and a sprinkler system, the local fire and building departments approved replacement of the foam pit with FR-free foam. We then replaced foam in the gym's pit, verified it was free of any additive FRs, and quantified common halogenated and organophosphate FRs on hand-wipes collected from ten collegiate gymnasts before and after practice, pre- and post-intervention. We observed a 5-fold decline in the median mass of FRs found in pit foam that accumulated on hand-wipes during practice among gymnasts who used the foam pit (p = 0.02), indicating that replacing the foam in a pit using materials free of FRs can reduce gymnast exposure to these chemicals during practice.
Collapse
Affiliation(s)
- Nicholas A Dembsey
- Department of Fire Protection Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Frederick M Brokaw
- Department of Fire Protection Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | | | | | - Joy Onasch
- Toxics Use Reduction Institute, University of Massachusetts at Lowell, Lowell, MA, USA.
| | - Elisa Jazan
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA.
| | - Courtney C Carignan
- Department Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
100
|
Weber R, Bell L, Watson A, Petrlik J, Paun MC, Vijgen J. Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:703-715. [PMID: 30933768 DOI: 10.1016/j.envpol.2019.03.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/10/2018] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Persistent organic pollutants (POPs) including PCDD/Fs, PCBs and organochlorine pesticides (OCPs) are among the most important and hazardous pollutants of soil. Food producing animals such as chicken, beef, sheep and goats can take up soil while grazing or living outdoors (free-range) and this can result in contamination. In recent decades, large quantities of brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), short-chain chlorinated paraffins (SCCPs) and per- and polyfluorinated alkylated substances (PFAS) have been produced and released into the environment and this has resulted in widespread contamination of soils and other environmental matrices. These POPs also bioaccumulate and can contaminate food of animal origin resulting in indirect exposure of humans. Recent assessments of chicken and beef have shown that surprisingly low concentrations of PCBs and PCDD/Fs in soil can result in exceedances of regulatory limits in food. Soil contamination limits have been established in a number of countries for PCDD/Fs but it has been shown that the contamination levels which result in regulatory limits in food (the maximum levels in the European Union) being exceeded, are below all the existing soil regulatory limits. 'Safe' soil levels are exceeded in many areas around emission sources of PCDD/Fs and PCBs. On the other hand, PCDD/F and dioxin-like PCB levels in soil in rural areas, without a contamination source, are normally safe for food producing animals housed outdoors resulting in healthy food (e.g. meat, eggs, milk). For the majority of POPs (e.g. PBDEs, PFOS, PFOA, SCCP) no regulatory limits in soils exist. There is, therefore, an urgent need to develop appropriate and protective soil standards minimising human exposure from food producing animals housed outdoors. Furthermore, there is an urgent need to eliminate POPs pollution sources for soils and to control, secure and remediate contaminated sites and reservoirs, in order to reduce exposure and guarantee food safety.
Collapse
Affiliation(s)
- R Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany; International HCH and Pesticide Association, Holte, Denmark.
| | - L Bell
- International POPs Elimination Network (IPEN), Gothenburg, Sweden
| | - A Watson
- Public Interest Consultants, Swansea, Wales, UK
| | - J Petrlik
- International POPs Elimination Network (IPEN), Gothenburg, Sweden; Arnika, Toxics and Waste Programme, Prague, Czech Republic
| | - M C Paun
- Ministry of Environment, Bucharest, Romania
| | - J Vijgen
- International HCH and Pesticide Association, Holte, Denmark
| |
Collapse
|