51
|
Linda K, Fiuza C, Nadif Kasri N. The promise of induced pluripotent stem cells for neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:382-391. [PMID: 29128445 DOI: 10.1016/j.pnpbp.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
A major challenge in clinical genetics and medicine is represented by genetically and phenotypically highly diverse neurodevelopmental disorders, like for example intellectual disability and autism. Intellectual disability is characterized by substantial limitations in cognitive function and adaptive behaviour. At the cellular level, this is reflected by deficits in synaptic structure and plasticity and therefore has been coined as a synaptic disorder or "synaptopathy". In this review, we summarize the findings from recent studies in which iPSCs have been used to model specific neurodevelopmental syndromes, including Fragile X syndrome, Rett syndrome, Williams-Beuren syndrome and Phelan-McDermid syndrome. We discuss what we have learned from these studies and what key issues need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Katrin Linda
- Department of Human Genetics, Department of Cognitive Neuroscience, Radboudumc, 6500 HB, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Carol Fiuza
- Department of Human Genetics, Department of Cognitive Neuroscience, Radboudumc, 6500 HB, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Department of Cognitive Neuroscience, Radboudumc, 6500 HB, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
52
|
Yagasaki Y, Miyoshi G, Miyata M. Experience-dependent MeCP2 expression in the excitatory cells of mouse visual thalamus. PLoS One 2018; 13:e0198268. [PMID: 29847590 PMCID: PMC5976183 DOI: 10.1371/journal.pone.0198268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Loss or gain of copy number of the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2) leads to neurodevelopmental disorders (Rett and MeCP2 duplication syndrome), indicating that precisely regulated MeCP2 expression during development is critical for mental health. Consistent with this idea, MeCP2 null mutants exhibit synaptic regression in the dorsal lateral geniculate nucleus (dLGN), the visual relay center in the thalamus, a phenotype resembling that of animals reared in the dark during the visual sensitive period. It remains unclear how MeCP2 expression is regulated during circuit formation and maturation, especially in excitatory and inhibitory populations of neurons. We found that, concomitant with the initiation of the dark-rearing sensitive period, MeCP2 protein levels were elevated in glutamatergic but not GABAergic neurons of the dLGN. Moreover, MeCP2 expression in glutamatergic populations was selectively reduced by dark-rearing. Therefore, we propose that visual experience-dependent MeCP2 induction in glutamatergic populations is essential for synaptic maturation within the dLGN.
Collapse
Affiliation(s)
- Yuki Yagasaki
- Department of Physiology I (Neurophysiology), Tokyo Women’s Medical University, School of Medicine, 8–1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
- Division of Women Health Care Professionals and Researchers Support, Tokyo Women’s Medical University, 8–1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Goichi Miyoshi
- Department of Physiology I (Neurophysiology), Tokyo Women’s Medical University, School of Medicine, 8–1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Mariko Miyata
- Department of Physiology I (Neurophysiology), Tokyo Women’s Medical University, School of Medicine, 8–1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
53
|
Zhong X, Li H, Kim J, Chang Q. Regulation of neural differentiation, synaptic scaling and animal behavior by MeCP2 phophorylation. Neurobiol Learn Mem 2018; 165:106859. [PMID: 29698767 DOI: 10.1016/j.nlm.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/11/2018] [Accepted: 04/22/2018] [Indexed: 01/02/2023]
Abstract
Highly expressed in the mammalian brain and widely distributed across the genome, MeCP2 is a key player in recognizing modified DNA and interpreting the epigenetic information encoded in different DNA methylation/hydroxymethylation patterns. Alterations in sequence or copy number of the X-linked human MECP2 gene cause either Rett syndrome (RTT) or MECP2 duplication syndrome. Alterations in MECP2 levels have also been identified in patients with autism. To fully understand the significant role of MECP2 in regulating the development and function of the nervous system, it is important to study all aspects of MeCP2 function. Stimulus-induced MeCP2 phosphorylation has been shown to influence the proliferation and differentiation of neural progenitor cells, synaptic scaling, excitatory synaptogenesis, and animal behavior. However, all of the previous functional evidence is from studying phospho-dead mutations. In addition, the relationship between phosphorylation events at multiple sites on the MeCP2 protein is not well understood. Here, we report the generation of a phospho-mimic knockin Mecp2 mouse line. At the synaptic and behavioral levels, the phospho-mimic Mecp2 mice show phenotypes opposite to those observed in phospho-dead mutation at the same phosphorylation site. Moreover, we report opposite phenotypes between phospho-mutants of two sites on the MeCP2 protein. Our new data further confirm the functional significance of specific MeCP2 phosphorylation event and support the opposing regulatory role between different MeCP2 phosphorylation events.
Collapse
Affiliation(s)
- Xiaofen Zhong
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Hongda Li
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States
| | - Jason Kim
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States; Department of Medical Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States; Department of Neurology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, United States.
| |
Collapse
|
54
|
Dong Q, Liu Q, Li R, Wang A, Bu Q, Wang KH, Chang Q. Mechanism and consequence of abnormal calcium homeostasis in Rett syndrome astrocytes. eLife 2018; 7:33417. [PMID: 29595472 PMCID: PMC5902163 DOI: 10.7554/elife.33417] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Astrocytes play an important role in Rett syndrome (RTT) disease progression. Although the non-cell-autonomous effect of RTT astrocytes on neurons was documented, cell-autonomous phenotypes and mechanisms within RTT astrocytes are not well understood. We report that spontaneous calcium activity is abnormal in RTT astrocytes in vitro, in situ, and in vivo. Such abnormal calcium activity is mediated by calcium overload in the endoplasmic reticulum caused by abnormal store operated calcium entry, which is in part dependent on elevated expression of TRPC4. Furthermore, the abnormal calcium activity leads to excessive activation of extrasynaptic NMDA receptors (eNMDARs) on neighboring neurons and increased network excitability in Mecp2 knockout mice. Finally, both the abnormal astrocytic calcium activity and the excessive activation of eNMDARs are caused by Mecp2 deletion in astrocytes in vivo. Our findings provide evidence that abnormal calcium homeostasis is a key cell-autonomous phenotype in RTT astrocytes, and reveal its mechanism and consequence.
Collapse
Affiliation(s)
- Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, United States
| | - Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, United States
| | - Ronghui Li
- Waisman Center, University of Wisconsin-Madison, Madison, United States
| | - Anxin Wang
- Waisman Center, University of Wisconsin-Madison, Madison, United States
| | - Qian Bu
- Waisman Center, University of Wisconsin-Madison, Madison, United States
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, United States
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, United States.,Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
55
|
MeCP2 Deficiency Leads to Loss of Glial Kir4.1. eNeuro 2018; 5:eN-NWR-0194-17. [PMID: 29464197 PMCID: PMC5818552 DOI: 10.1523/eneuro.0194-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 01/05/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder usually caused by mutations in methyl-CpG-binding protein 2 (MeCP2). RTT is typified by apparently normal development until 6-18 mo of age, when motor and communicative skills regress and hand stereotypies, autonomic symptoms, and seizures present. Restoration of MeCP2 function selectively to astrocytes reversed several deficits in a murine model of RTT, but the mechanism of this rescue is unknown. Astrocytes carry out many essential functions required for normal brain functioning, including extracellular K+ buffering. Kir4.1, an inwardly rectifying K+ channel, is largely responsible for the channel-mediated K+ regulation by astrocytes. Loss-of-function mutations in Kir4.1 in human patients result in a severe neurodevelopmental disorder termed EAST or SESAME syndrome. Here, we evaluated astrocytic Kir4.1 expression in a murine model of Rett syndrome. We demonstrate by chromatin immunoprecipitation analysis that Kir4.1 is a direct molecular target of MeCP2. Astrocytes from Mecp2-deficient mice express significantly less Kir4.1 mRNA and protein, which translates into a >50% deficiency in Ba2+-sensitive Kir4.1-mediated currents, and impaired extracellular potassium dynamics. By examining astrocytes in isolation, we demonstrate that loss of Kir4.1 is cell autonomous. Assessment through postnatal development revealed that Kir4.1 expression in Mecp2-deficient animals never reaches adult, wild-type levels, consistent with a neurodevelopmental disorder. These are the first data implicating a direct MeCP2 molecular target in astrocytes and provide novel mechanistic insight explaining a potential mechanism by which astrocytic dysfunction may contribute to RTT.
Collapse
|
56
|
Thurm A, Powell EM, Neul JL, Wagner A, Zwaigenbaum L. Loss of skills and onset patterns in neurodevelopmental disorders: Understanding the neurobiological mechanisms. Autism Res 2018; 11:212-222. [PMID: 29226600 PMCID: PMC5825269 DOI: 10.1002/aur.1903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/19/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022]
Abstract
Patterns of onset in Autism Spectrum Disorder, including a pattern that includes loss of previously acquired skills, have been identified since the first reports of the disorder. However, attempts to study such "regression" have been limited to clinical studies, that until recently mostly involved retrospective reports. The current report reflects discussion that occurred at an NIMH convened meeting in 2016 with the purpose of bridging clinical autism research with basic and translational work in this area. This summary describes the state of the field with respect to clinical studies, describing gaps in knowledge based on limited methods and prospective data collected. Biological mechanisms that have been shown to account for regression early in development in specific conditions are discussed, as well as potential mechanisms that have not yet been explored. Suggestions include use of model systems during the developmental period and cutting-edge methods, including non-invasive imaging that may afford opportunities for a better understanding of the neurobiological pathways that result in loss of previously-attained skills. Autism Res 2018, 11: 212-222. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Loss of previously acquired skills, or regression, has been reported in Autism Spectrum Disorder since Kanner's reports in the 1950's. The current report reflects discussion from an NIMH convened meeting in 2016 with the purpose of bridging clinical autism research with basic and translational work in this area. This summary describes the state of the field regarding clinical studies and suggests use of model systems during the developmental period and cutting-edge methods, for a better understanding of the neurobiological pathways that result in loss of previously-attained skills.
Collapse
Affiliation(s)
- Audrey Thurm
- Office of the Clinical Director, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| | - Elizabeth M. Powell
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey L. Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ann Wagner
- Division of Translational Research, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| | - Lonnie Zwaigenbaum
- Autism Research Center, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
57
|
Jena PK, Sheng L, Di Lucente J, Jin LW, Maezawa I, Wan YJY. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J 2018; 32:2866-2877. [PMID: 29401580 DOI: 10.1096/fj.201700984rr] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to identify the intrinsic links that explain the effect of a Western diet (WD) on cognitive dysfunction. Specific pathogen-free, wild-type mice were fed either a control diet (CD) or a high-fat, high-sucrose WD after weaning and were euthanized at 10 mo of age to study the pathways that affect cognitive health. The results showed that long-term WD intake reduced hippocampal synaptic plasticity and the level of brain-derived neurotrophic factor mRNA in the brain and isolated microglia. A WD also activated ERK1/2 and reduced postsynaptic density-95 in the brain, suggesting postsynaptic damage. Moreover, WD-fed mice had increased inflammatory signaling in the brain, ileum, liver, adipose tissue, and spleen, which was accompanied by microglia activation. In the brain, as well as in the digestive tract, a WD reduced signaling regulated by retinoic acid and bile acids (BAs), whose receptors form heterodimers to control metabolism and inflammation. Furthermore, a WD intake caused dysbiosis and dysregulated BA synthesis with reduced endogenous ligands for BA receptors, i.e., farnesoid X receptor and G-protein-coupled bile acid receptor in the liver and brain. Together, dysregulated BA synthesis and dysbiosis were accompanied by systemic inflammation, microglial activation, and reduced neuroplasticity induced by WD.-Jena, P. K., Sheng, L., Di Lucente, J., Jin, L.-W., Maezawa, I., Wan, Y.-J. Y. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here, we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. RECENT FINDINGS Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, post-mortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. SUMMARY To understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders.
Collapse
|
59
|
Rakela B, Brehm P, Mandel G. Astrocytic modulation of excitatory synaptic signaling in a mouse model of Rett syndrome. eLife 2018; 7:31629. [PMID: 29313799 PMCID: PMC5771668 DOI: 10.7554/elife.31629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Studies linking mutations in Methyl CpG Binding Protein 2 (MeCP2) to physiological defects in the neurological disease, Rett syndrome, have focused largely upon neuronal dysfunction despite MeCP2 ubiquitous expression. Here we explore roles for astrocytes in neuronal network function using cortical slice recordings. We find that astrocyte stimulation in wild-type mice increases excitatory synaptic activity that is absent in male mice lacking MeCP2 globally. To determine the cellular basis of the defect, we exploit a female mouse model for Rett syndrome that expresses wild-type MeCP2-GFP in a mosaic distribution throughout the brain, allowing us to test all combinations of wild-type and mutant cells. We find that the defect is dependent upon MeCP2 expression status in the astrocytes and not in the neurons. Our findings highlight a new role for astrocytes in regulation of excitatory synaptic signaling and in the neurological defects associated with Rett syndrome.
Collapse
Affiliation(s)
- Benjamin Rakela
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Paul Brehm
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Gail Mandel
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
60
|
Gorshkov K, Aguisanda F, Thorne N, Zheng W. Astrocytes as targets for drug discovery. Drug Discov Today 2018; 23:673-680. [PMID: 29317338 PMCID: PMC5937927 DOI: 10.1016/j.drudis.2018.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/08/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
Abstract
Recent studies have illuminated the crucial role of astrocytes in maintaining proper neuronal health and function. Abnormalities in astrocytic functions have now been implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Historically, drug development programs for neurodegenerative diseases generally target only neurons, overlooking the contributions of astrocytes. Therefore, targeting both disease neurons and astrocytes offers a new approach for drug development for the treatment of neurological diseases. Looking forward, the co-culturing of human neurons with astrocytes could be the next evolutionary step in drug discovery for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francis Aguisanda
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha Thorne
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
61
|
Sharma K, Singh J, Frost EE, Pillai PP. MeCP2 in central nervous system glial cells: current updates. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
62
|
Gonzalez DM, Gregory J, Brennand KJ. The Importance of Non-neuronal Cell Types in hiPSC-Based Disease Modeling and Drug Screening. Front Cell Dev Biol 2017; 5:117. [PMID: 29312938 PMCID: PMC5742170 DOI: 10.3389/fcell.2017.00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Current applications of human induced pluripotent stem cell (hiPSC) technologies in patient-specific models of neurodegenerative and neuropsychiatric disorders tend to focus on neuronal phenotypes. Here, we review recent efforts toward advancing hiPSCs toward non-neuronal cell types of the central nervous system (CNS) and highlight their potential use for the development of more complex in vitro models of neurodevelopment and disease. We present evidence from previous works in both rodents and humans of the importance of these cell types (oligodendrocytes, microglia, astrocytes) in neurological disease and highlight new hiPSC-based models that have sought to explore these relationships in vitro. Lastly, we summarize efforts toward conducting high-throughput screening experiments with hiPSCs and propose methods by which new screening platforms could be designed to better capture complex relationships between neural cell populations in health and disease.
Collapse
Affiliation(s)
- David M Gonzalez
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Developmental and Stem Cell Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jill Gregory
- Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J Brennand
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
63
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|
64
|
Jin XR, Chen XS, Xiao L. MeCP2 Deficiency in Neuroglia: New Progress in the Pathogenesis of Rett Syndrome. Front Mol Neurosci 2017; 10:316. [PMID: 29046627 PMCID: PMC5632713 DOI: 10.3389/fnmol.2017.00316] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disease predominantly caused by mutations of the methyl-CpG-binding protein 2 (MeCP2) gene. Generally, RTT has been attributed to neuron-centric dysfunction. However, increasing evidence has shown that glial abnormalities are also involved in the pathogenesis of RTT. Mice that are MeCP2-null specifically in glial cells showed similar behavioral and/or neuronal abnormalities as those found in MeCP2-null mice, a mouse model of RTT. MeCP2 deficiency in astrocytes impacts the expression of glial intermediate filament proteins such as fibrillary acidic protein (GFAP) and S100 and induces neuron toxicity by disturbing glutamate metabolism or enhancing microtubule instability. MeCP2 deficiency in oligodendrocytes (OLs) results in down-regulation of myelin gene expression and impacts myelination. While MeCP2-deficient microglia cells fail in response to environmental stimuli, release excessive glutamate, and aggravate impairment of the neuronal circuit. In this review, we mainly focus on the progress in determining the role of MeCP2 in glial cells involved in RTT, which may provide further insight into a therapeutic intervention for RTT.
Collapse
Affiliation(s)
- Xu-Rui Jin
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China.,The Cadet Brigade of Clinic Medicine, Third Military Medical University, Chongqing, China
| | - Xing-Shu Chen
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| |
Collapse
|
65
|
Valacchi G, Pecorelli A, Cervellati C, Hayek J. 4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation. Free Radic Biol Med 2017; 111:270-280. [PMID: 28063942 DOI: 10.1016/j.freeradbiomed.2016.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/24/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
In the last 15 years a strong correlation between oxidative stress (OxS) and Rett syndrome (RTT), a rare neurodevelopmental disorder known to be caused in 95% of the cases, by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, has been well documented. Here, we revised, summarized and discussed the current knowledge on the role of lipid peroxidation byproducts, with special emphasis on 4-hydroxynonenal (4HNE), in RTT pathophysiology. The posttranslational modifications of proteins via 4HNE, known as 4HNE protein adducts (4NHE-PAs), causing detrimental effects on protein functions, appear to contribute to the clinical severity of the syndrome, since their levels increase significantly during the subsequent 4 clinical stages, reaching the maximum degree at stage 4, represented by a late motor deterioration. In addition, 4HNE-PA are only partially removed due to the compromised functionality of the proteasome activity, contributing therefore to the cellular damage in RTT. All this will lead to a characteristic subclinical inflammation, defined "OxInflammation", derived by a positive feedback loop between OxS byproducts and inflammatory mediators that in a long run further aggravates the clinical features of RTT patients. Therefore, in a pathology completely orphan of any therapy, aiming 4HNE as a therapeutic target could represent a coadjuvant treatment with some beneficial impact in these patients..
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, NC State University, NC Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, NC State University, NC Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Viale Mario Bracci, 53100 Siena, Italy
| |
Collapse
|
66
|
Hu Y, Le L, Qi LX, Zhao Y, Fu H, Duan C, Wang XY, Hu KP. Comprehensive Evaluation on Effect of IMPX977 on Expression of Methyl-CpG-binding Protein 2 in Rats. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
67
|
Allemang-Grand R, Ellegood J, Spencer Noakes L, Ruston J, Justice M, Nieman BJ, Lerch JP. Neuroanatomy in mouse models of Rett syndrome is related to the severity of Mecp2 mutation and behavioral phenotypes. Mol Autism 2017; 8:32. [PMID: 28670438 PMCID: PMC5485541 DOI: 10.1186/s13229-017-0138-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/26/2017] [Indexed: 01/25/2023] Open
Abstract
Background Rett syndrome (RTT) is a neurodevelopmental disorder that predominantly affects girls. The majority of RTT cases are caused by de novo mutations in methyl-CpG-binding protein 2 (MECP2), and several mouse models have been created to further understand the disorder. In the current literature, many studies have focused their analyses on the behavioral abnormalities and cellular and molecular impairments that arise from Mecp2 mutations. However, limited efforts have been placed on understanding how Mecp2 mutations disrupt the neuroanatomy and networks of the brain. Methods In this study, we examined the neuroanatomy of male and female mice from the Mecp2tm1Hzo, Mecp2tm1.1Bird/J, and Mecp2tm2Bird/J mouse lines using high-resolution magnetic resonance imaging (MRI) paired with deformation-based morphometry to determine the brain regions susceptible to Mecp2 disruptions. Results We found that many cortical and subcortical regions were reduced in volume within the brains of mutant mice regardless of mutation type, highlighting regions that are susceptible to Mecp2 disruptions. We also found that the volume within these regions correlated with behavioral metrics. Conversely, regions of the cerebellum were differentially affected by the type of mutation, showing an increase in volume in the mutant Mecp2tm1Hzo brain relative to controls and a decrease in the Mecp2tm1.1Bird/J and Mecp2tm2Bird/J lines. Conclusions Our findings demonstrate that the direction and magnitude of the neuroanatomical differences between control and mutant mice carrying Mecp2 mutations are driven by the severity of the mutation and the stage of behavioral impairments.
Collapse
Affiliation(s)
- Rylan Allemang-Grand
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, 101 College Street, Suite 15-701, Toronto, M5G 1L7 Ontario Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada
| | - Leigh Spencer Noakes
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Physiology and Experimental Medicine, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada
| | - Julie Ruston
- Genetics and Genome Biology, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada
| | - Monica Justice
- Genetics and Genome Biology, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada
| | - Brian J Nieman
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, 101 College Street, Suite 15-701, Toronto, M5G 1L7 Ontario Canada.,Ontario Institute of Cancer Research, 661 University Ave, Toronto, Suite 510, M5G 0A3 Ontario Canada
| | - Jason P Lerch
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, 101 College Street, Suite 15-701, Toronto, M5G 1L7 Ontario Canada
| |
Collapse
|
68
|
The Crucial Role of DNA Methylation and MeCP2 in Neuronal Function. Genes (Basel) 2017; 8:genes8050141. [PMID: 28505093 PMCID: PMC5448015 DOI: 10.3390/genes8050141] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
A neuron is unique in its ability to dynamically modify its transcriptional output in response to synaptic activity while maintaining a core gene expression program that preserves cellular identity throughout a lifetime that is longer than almost every other cell type in the body. A contributing factor to the immense adaptability of a neuron is its unique epigenetic landscape that elicits locus-specific alterations in chromatin architecture, which in turn influences gene expression. One such epigenetic modification that is sensitive to changes in synaptic activity, as well as essential for maintaining cellular identity, is DNA methylation. The focus of this article is on the importance of DNA methylation in neuronal function, summarizing recent studies on critical players in the establishment of (the “writing”), the modification or erasure of (the “editing”), and the mediation of (the “reading”) DNA methylation in neurodevelopment and neuroplasticity. One “reader” of DNA methylation in particular, methyl-CpG-binding protein 2 (MeCP2), is highlighted, given its undisputed importance in neuronal function.
Collapse
|
69
|
Lamonica JM, Kwon DY, Goffin D, Fenik P, Johnson BS, Cui Y, Guo H, Veasey S, Zhou Z. Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. J Clin Invest 2017; 127:1889-1904. [PMID: 28394263 DOI: 10.1172/jci90967] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/09/2017] [Indexed: 12/27/2022] Open
Abstract
Mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome (RTT), a neurological disorder affecting cognitive development, respiration, and motor function. Genetic restoration of MeCP2 expression reverses RTT-like phenotypes in mice, highlighting the need to search for therapeutic approaches. Here, we have developed knockin mice recapitulating the most common RTT-associated missense mutation, MeCP2 T158M. We found that the T158M mutation impaired MECP2 binding to methylated DNA and destabilized MeCP2 protein in an age-dependent manner, leading to the development of RTT-like phenotypes in these mice. Genetic elevation of MeCP2 T158M expression ameliorated multiple RTT-like features, including motor dysfunction and breathing irregularities, in both male and female mice. These improvements were accompanied by increased binding of MeCP2 T158M to DNA. Further, we found that the ubiquitin/proteasome pathway was responsible for MeCP2 T158M degradation and that proteasome inhibition increased MeCP2 T158M levels. Together, these findings demonstrate that increasing MeCP2 T158M protein expression is sufficient to mitigate RTT-like phenotypes and support the targeting of MeCP2 T158M expression or stability as an alternative therapeutic approach.
Collapse
|
70
|
Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié AL. Dysfunctional mTORC1 Signaling: A Convergent Mechanism between Syndromic and Nonsyndromic Forms of Autism Spectrum Disorder? Int J Mol Sci 2017; 18:ijms18030659. [PMID: 28335463 PMCID: PMC5372671 DOI: 10.3390/ijms18030659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Whereas autism spectrum disorder (ASD) exhibits striking heterogeneity in genetics and clinical presentation, dysfunction of mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has been identified as a molecular feature common to several well-characterized syndromes with high prevalence of ASD. Additionally, recent findings have also implicated mTORC1 signaling abnormalities in a subset of nonsyndromic ASD, suggesting that defective mTORC1 pathway may be a potential converging mechanism in ASD pathology across different etiologies. However, the mechanistic evidence for a causal link between aberrant mTORC1 pathway activity and ASD neurobehavioral features varies depending on the ASD form involved. In this review, we first discuss six monogenic ASD-related syndromes, including both classical and potentially novel mTORopathies, highlighting their contribution to our understanding of the neurobiological mechanisms underlying ASD, and then we discuss existing evidence suggesting that aberrant mTORC1 signaling may also play a role in nonsyndromic ASD.
Collapse
Affiliation(s)
- Juliana Magdalon
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Sandra M Sánchez-Sánchez
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Andréa L Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| |
Collapse
|
71
|
Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain. Sci Rep 2017; 7:42790. [PMID: 28211484 PMCID: PMC5314398 DOI: 10.1038/srep42790] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023] Open
Abstract
Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system.
Collapse
|
72
|
Gokoolparsadh A, Fang Z, Braidy N, Voineagu I. Topoisomerase I inhibition leads to length-dependent gene expression changes in human primary astrocytes. GENOMICS DATA 2017; 11:113-115. [PMID: 28119819 PMCID: PMC5238604 DOI: 10.1016/j.gdata.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022]
Abstract
Topoisomerase I is required for the proper expression of long genes (> 100 kb) in mouse and human cortical neurons, including many candidate genes for autism spectrum disorder (ASD) [1]. Given the important role of astrocytes in brain development [2], we investigated whether long genes, including autism susceptibility genes, also require topoisomerase I expression in human primary astrocytes. We carried genome-wide expression profiling of cultured human primary astrocytes following treatment with the topoisomerase I inhibitor Topotecan, using Illumina microarrays. We identified several thousands of differentially expressed genes and confirmed that topoisomerase I inhibition affects gene expression in human primary astrocytes in a length-dependent manner. We also identified over 20 ASD-associated genes that show topoisomerase-dependent gene expression in human primary astrocytes but have not been previously reported as topoisomerase-I-dependent in neurons. The microarray data have been deposited in NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE90052. Topoisomerase I inhibition leads to length-dependent gene expression changes in human primary astrocytes. Long genes are found to be down-regulated in astrocytes, consistent with previous evidence from cortical neurons. Over 20 ASD-associated genes show topoisomerase-dependent expression in astrocytes.
Collapse
Affiliation(s)
- Akira Gokoolparsadh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Zhiming Fang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
73
|
Maezawa I, Zou B, Di Lucente J, Cao WS, Pascual C, Weerasekara S, Zhang M, Xie XS, Hua DH, Jin LW. The Anti-Amyloid-β and Neuroprotective Properties of a Novel Tricyclic Pyrone Molecule. J Alzheimers Dis 2017; 58:559-574. [PMID: 28482635 PMCID: PMC5438482 DOI: 10.3233/jad-161175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
There is an urgent unmet need for new therapeutics for Alzheimer's disease (AD), the most common cause of dementia in the elderly. Therapeutic approaches targeting amyloid-β (Aβ) and its downstream toxicities have become major strategies in AD drug development. We have taken a rational design approach and synthesized a class of tricyclic pyrone (TP) compounds that show anti-Aβ and other neuroprotective actions. The in vivo efficacy of a lead TP named CP2 to ameliorate AD-like pathologies has been shown in mouse models. Here we report the selection and initial characterization of a new lead TP70, which exhibited an anti-Aβ therapeutic index even higher than CP2. Moreover, TP70 was able to reduce oxidative stress, inhibit acyl-coenzyme A:cholesterol acyltransferase (ACAT), and upregulate the expression of ATP-binding cassette subfamily A, member 1 (ABCA1), actions considered neuroprotective in AD. TP70 further showed excellent pharmacokinetic properties, including brain penetration and oral availability. When administered to 5xFAD mice via intraperitoneal or oral route, TP70 enhanced the overall solubility and decreased the level of cerebral Aβ, including both fibrillary and soluble Aβ species. Interestingly, TP70 enhanced N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potential (EPSP) in the hippocampal CA1 area, increased the magnitude of NMDA-dependent hippocampal long-term potentiation (LTP), a cellular model of learning and memory, and prevented the Aβ oligomer-impaired LTP. Significantly, a single dose of TP70 administered to aged 5xFAD mice was effective in mitigating the impaired LTP induction, recorded at 24 h after administration. Our results support a potential of TP70 in clinical development for AD in view of its synergistic neuroprotective actions, ability to positively modulate NMDA receptor-mediated hippocampal plasticity, and favorable pharmacokinetic properties in rodents.
Collapse
Affiliation(s)
- Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Bende Zou
- AfaSci Research Laboratory, Redwood City, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | - Man Zhang
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | | | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- Alzheimer’s Disease Center, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
74
|
Expression of Phospho-MeCP2s in the Developing Rat Brain and Function of Postnatal MeCP2 in Cerebellar Neural Cell Development. Neurosci Bull 2016; 33:1-16. [PMID: 27995568 DOI: 10.1007/s12264-016-0086-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022] Open
Abstract
Abnormal expression and dysfunction of methyl-CpG binding protein 2 (MeCP2) cause Rett syndrome (RTT). The diverse phosphorylation modifications modulate MeCP2 function in neural cells. Using western blot and immunohistochemistry, we examined the expression patterns of MeCP2 and three phospho-MeCP2s (pMeCP2s) in the developing rat brain. The expression of MeCP2 and phospho-S80 (pS80) MeCP2 increased while pS421 MeCP2 and pS292 MeCP2 decreased with brain maturation. In contrast to the nuclear localization of MeCP2 and pS80 MeCP2, pS421 MeCP2 and pS292 MeCP2 were mainly expressed in the cytoplasmic compartment. Apart from their distribution in neurons, they were also detected at a low level in astrocytes. Postnatally-initiated MeCP2 deficiency affected cerebellar neural cell development, as determined by the abnormal expression of GFAP, DCX, Tuj1, MAP-2, and calbindin-D28k. Together, these results demonstrate that MeCP2 and diverse pMeCP2s have distinct features of spatio-temporal expression in the rat brain, and that the precise levels of MeCP2 in the postnatal period are vital to cerebellar neural cell development.
Collapse
|
75
|
Garay PM, Wallner MA, Iwase S. Yin-yang actions of histone methylation regulatory complexes in the brain. Epigenomics 2016; 8:1689-1708. [PMID: 27855486 PMCID: PMC5289040 DOI: 10.2217/epi-2016-0090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of histone methylation has emerged as a major driver of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. Histone methyl writer and eraser enzymes generally act within multisubunit complexes rather than in isolation. However, it remains largely elusive how such complexes cooperate to achieve the precise spatiotemporal gene expression in the developing brain. Histone H3K4 methylation (H3K4me) is a chromatin signature associated with active gene-regulatory elements. We review a body of literature that supports a model in which the RAI1-containing H3K4me writer complex counterbalances the LSD1-containing H3K4me eraser complex to ensure normal brain development. This model predicts H3K4me as the nexus of previously unrelated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Patricia Marie Garay
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Shigeki Iwase
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
76
|
Pecorelli A, Cervellati C, Hayek J, Valacchi G. OxInflammation in Rett syndrome. Int J Biochem Cell Biol 2016; 81:246-253. [DOI: 10.1016/j.biocel.2016.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
|
77
|
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci 2016; 10:566. [PMID: 27877121 PMCID: PMC5099170 DOI: 10.3389/fnhum.2016.00566] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Stephen C. Noctor
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND InstituteSacramento, CA, USA
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Elly M. Hol
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
78
|
Immature Neurons and Radial Glia, But Not Astrocytes or Microglia, Are Altered in Adult Cntnap2 and Shank3 Mice, Models of Autism. eNeuro 2016; 3:eN-CFN-0196-16. [PMID: 27785461 PMCID: PMC5066262 DOI: 10.1523/eneuro.0196-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorder (ASD) is often associated with cognitive deficits and excessive anxiety. Neuroimaging studies have shown atypical structure and neural connectivity in the hippocampus, medial prefrontal cortex (mPFC), and striatum, regions associated with cognitive function and anxiety regulation. Adult hippocampal neurogenesis is involved in many behaviors that are disrupted in ASD, including cognition, anxiety, and social behaviors. Additionally, glial cells, such as astrocytes and microglia, are important for modulating neural connectivity during development, and glial dysfunction has been hypothesized to be a key contributor to the development of ASD. Cells with astroglial characteristics are known to serve as progenitor cells in the developing and adult brain. Here, we examined adult neurogenesis in the hippocampus, as well as astroglia and microglia in the hippocampus, mPFC, and striatum of two models that display autism-like phenotypes, Cntnap2-/- and Shank3+/ΔC transgenic mice. We found a substantial decrease in the number of immature neurons and radial glial progenitor cells in the ventral hippocampus of both transgenic models compared with wild-type controls. No consistent differences were detected in the number or size of astrocytes or microglia in any other brain region examined. Future work is needed to explore the functional contribution of adult neurogenesis to autism-related behaviors as well as to temporally characterize glial plasticity as it is associated with ASD.
Collapse
|
79
|
Balachandar V, Dhivya V, Gomathi M, Mohanadevi S, Venkatesh B, Geetha B. A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investig 2016; 3:52. [PMID: 27777941 DOI: 10.21037/sci.2016.09.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are pluripotent stem cells generated from somatic cells by the introduction of a combination of pluripotency-associated genes such as OCT4, SOX2, along with either KLF4 and c-MYC or NANOG and LIN28 via retroviral or lentiviral vectors. Most importantly, hiPSCs are similar to human embryonic stem cells (hESCs) functionally as they are pluripotent and can potentially differentiate into any desired cell type when provided with the appropriate cues, but do not have the ethical issues surrounding hESCs. For these reasons, hiPSCs have huge potential in translational medicine such as disease modeling, drug screening, and cellular therapy. Indeed, patient-specific hiPSCs have been generated for a multitude of diseases, including many with a neurological basis, in which disease phenotypes have been recapitulated in vitro and proof-of-principle drug screening has been performed. As the techniques for generating hiPSCs are refined and these cells become a more widely used tool for understanding brain development, the insights they produce must be understood in the context of the greater complexity of the human genome and the human brain. Disease models using iPS from Rett syndrome (RTT) patient's fibroblasts have opened up a new avenue of drug discovery for therapeutic treatment of RTT. The analysis of X chromosome inactivation (XCI) upon differentiation of RTT-hiPSCs into neurons will be critical to conclusively demonstrate the isolation of pre-XCI RTT-hiPSCs in comparison to post-XCI RTT-hiPSCs. The current review projects on iPSC studies in RTT as well as XCI in hiPSC were it suggests for screening new potential therapeutic targets for RTT in future for the benefit of RTT patients. In conclusion, patient-specific drug screening might be feasible and would be particularly helpful in disorders where patients frequently have to try multiple drugs before finding a regimen that works.
Collapse
Affiliation(s)
- Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Venkatesan Dhivya
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Subramaniam Mohanadevi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Balasubramanian Venkatesh
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Bharathi Geetha
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| |
Collapse
|
80
|
Bednarczyk J, Dębski KJ, Bot AM, Lukasiuk K. MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy. Sci Rep 2016; 6:33736. [PMID: 27650712 PMCID: PMC5030630 DOI: 10.1038/srep33736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to examine involvement of MBD3 (methyl-CpG-binding domain protein 3), a protein involved in reading DNA methylation patterns, in epileptogenesis and epilepsy. We used a well-characterized rat model of temporal lobe epilepsy that is triggered by status epilepticus, evoked by electrical stimulation of the amygdala. Stimulated and sham-operated animals were sacrificed 14 days after stimulation. We found that MBD3 transcript was present in neurons, oligodendrocytes, and astrocytes in both control and epileptic animals. We detected the nuclear localization of MBD3 protein in neurons, mature oligodendrocytes, and a subpopulation of astrocytes but not in microglia. Amygdala stimulation significantly increased the level of MBD3 immunofluorescence. Immunoprecipitation followed by mass spectrometry and Western blot revealed that MBD3 in the adult brain assembles the NuRD complex, which also contains MTA2, HDAC2, and GATAD2B. Using chromatin immunoprecipitation combined with deep sequencing, we observed differences in the occupancy of DNA regions by MBD3 protein between control and stimulated animals. This was not followed by subsequent changes in the mRNA expression levels of selected MBD3 targets. Our data demonstrate for the first time alterations in the MBD3 expression and DNA occupancy in the experimental model of epilepsy.
Collapse
Affiliation(s)
- Joanna Bednarczyk
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Konrad J. Dębski
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna M. Bot
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
81
|
Kaufmann WE, Stallworth JL, Everman DB, Skinner SA. Neurobiologically-based treatments in Rett syndrome: opportunities and challenges. Expert Opin Orphan Drugs 2016; 4:1043-1055. [PMID: 28163986 PMCID: PMC5214376 DOI: 10.1080/21678707.2016.1229181] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022]
Abstract
Introduction: Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that primarily affects females, typically resulting in a period of developmental regression in early childhood followed by stabilization and severe chronic cognitive, behavioral, and physical disability. No known treatment exists beyond symptomatic management, and while insights into the genetic cause, pathophysiology, neurobiology, and natural history of RTT have been gained, many challenges remain. Areas covered: Based on a comprehensive survey of the primary literature on RTT, this article describes and comments upon the general and unique features of the disorder, genetic and neurobiological bases of drug development, and the history of clinical trials in RTT, with an emphasis on drug trial design, outcome measures, and implementation. Expert opinion: Neurobiologically based drug trials are the ultimate goal in RTT, and due to the complexity and global nature of the disorder, drugs targeting both general mechanisms (e.g., growth factors) and specific systems (e.g., glutamate modulators) could be effective. Trial design should optimize data on safety and efficacy, but selection of outcome measures with adequate measurement properties, as well as innovative strategies, such as those enhancing synaptic plasticity and use of biomarkers, are essential for progress in RTT and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Center for Translational Research, Greenwood Genetic Center, Greenwood, SC, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - David B Everman
- Center for Translational Research, Greenwood Genetic Center , Greenwood , SC , USA
| | - Steven A Skinner
- Center for Translational Research, Greenwood Genetic Center , Greenwood , SC , USA
| |
Collapse
|
82
|
Cronk JC, Derecki NC, Litvak V, Kipnis J. Unexpected cellular players in Rett syndrome pathology. Neurobiol Dis 2016; 92:64-71. [PMID: 25982834 PMCID: PMC4644494 DOI: 10.1016/j.nbd.2015.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome is a devastating neurodevelopmental disorder, primarily caused by mutations of methyl CpG-binding protein 2 (MeCP2). Although the genetic cause of disease was identified over a decade ago, a significant gap still remains in both our clinical and scientific understanding of its pathogenesis. Neurons are known to be primary players in pathology, with their dysfunction being the key in Rett syndrome. While studies in mice have demonstrated a clear causative - and potential therapeutic - role for neurons in Rett syndrome, recent work has suggested that other tissues also contribute significantly to progression of the disease. Indeed, Rett syndrome is known to present with several common peripheral pathologies, such as osteopenia, scoliosis, gastrointestinal problems including nutritional defects, and general growth deficit. Mouse models assessing the potential role of non-neuronal cell types have confirmed both roles in disease and potential therapeutic targets. A new picture is emerging in which neurons both initiate and drive pathology, while dysfunction of other cell types and peripheral tissues exacerbate disease, possibly amplifying further neurologic problems, and ultimately result in a positive feedback loop of progressively worsening symptoms. Here, we review what is known about neuronal and non-neuronal cell types, and discuss how this new, integrative understanding of the disease may allow for additional clinical and scientific pathways for treating and understanding Rett syndrome.
Collapse
Affiliation(s)
- James C Cronk
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Noel C Derecki
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Vladimir Litvak
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
83
|
Dallérac G, Rouach N. Astrocytes as new targets to improve cognitive functions. Prog Neurobiol 2016; 144:48-67. [PMID: 26969413 DOI: 10.1016/j.pneurobio.2016.01.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
Abstract
Astrocytes are now viewed as key elements of brain wiring as well as neuronal communication. Indeed, they not only bridge the gap between metabolic supplies by blood vessels and neurons, but also allow fine control of neurotransmission by providing appropriate signaling molecules and insulation through a tight enwrapping of synapses. Recognition that astroglia is essential to neuronal communication is nevertheless fairly recent and the large body of evidence dissecting such role has focused on the synaptic level by identifying neuro- and gliotransmitters uptaken and released at synaptic or extrasynaptic sites. Yet, more integrated research deciphering the impact of astroglial functions on neuronal network activity have led to the reasonable assumption that the role of astrocytes in supervising synaptic activity translates in influencing neuronal processing and cognitive functions. Several investigations using recent genetic tools now support this notion by showing that inactivating or boosting astroglial function directly affects cognitive abilities. Accordingly, brain diseases resulting in impaired cognitive functions have seen their physiopathological mechanisms revisited in light of this primary protagonist of brain processing. We here provide a review of the current knowledge on the role of astrocytes in cognition and in several brain diseases including neurodegenerative disorders, psychiatric illnesses, as well as other conditions such as epilepsy. Potential astroglial therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
84
|
Holt LM, Olsen ML. Novel Applications of Magnetic Cell Sorting to Analyze Cell-Type Specific Gene and Protein Expression in the Central Nervous System. PLoS One 2016; 11:e0150290. [PMID: 26919701 PMCID: PMC4769085 DOI: 10.1371/journal.pone.0150290] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
The isolation and study of cell-specific populations in the central nervous system (CNS) has gained significant interest in the neuroscience community. The ability to examine cell-specific gene and protein expression patterns in healthy and pathological tissue is critical for our understanding of CNS function. Several techniques currently exist to isolate cell-specific populations, each having their own inherent advantages and shortcomings. Isolation of distinct cell populations using magnetic sorting is a technique which has been available for nearly 3 decades, although rarely used in adult whole CNS tissue homogenate. In the current study we demonstrate that distinct cell populations can be isolated in rodents from early postnatal development through adulthood. We found this technique to be amendable to customization using commercially available membrane-targeted antibodies, allowing for cell-specific isolation across development and animal species. This technique yields RNA which can be utilized for downstream applications—including quantitative PCR and RNA sequencing—at relatively low cost and without the need for specialized equipment or fluorescently labeled cells. Adding to its utility, we demonstrate that cells can be isolated largely intact, retaining their processes, enabling analysis of extrasomatic proteins. We propose that magnetic cell sorting will prove to be a highly useful technique for the examination of cell specific CNS populations.
Collapse
Affiliation(s)
- Leanne Melissa Holt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michelle Lynne Olsen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
85
|
Petrelli F, Pucci L, Bezzi P. Astrocytes and Microglia and Their Potential Link with Autism Spectrum Disorders. Front Cell Neurosci 2016; 10:21. [PMID: 26903806 PMCID: PMC4751265 DOI: 10.3389/fncel.2016.00021] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/19/2016] [Indexed: 01/09/2023] Open
Abstract
The cellular mechanism(s) underlying autism spectrum disorders (ASDs) are not fully understood although it has been shown that various genetic and environmental factors contribute to their etiology. As increasing evidence indicates that astrocytes and microglial cells play a major role in synapse maturation and function, and there is evidence of deficits in glial cell functions in ASDs, one current hypothesis is that glial dysfunctions directly contribute to their pathophysiology. The aim of this review is to summarize microglia and astrocyte functions in synapse development and their contributions to ASDs.
Collapse
Affiliation(s)
| | | | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
86
|
Vacca M, Tripathi KP, Speranza L, Aiese Cigliano R, Scalabrì F, Marracino F, Madonna M, Sanseverino W, Perrone-Capano C, Guarracino MR, D'Esposito M. Effects of Mecp2 loss of function in embryonic cortical neurons: a bioinformatics strategy to sort out non-neuronal cells variability from transcriptome profiling. BMC Bioinformatics 2016; 17 Suppl 2:14. [PMID: 26821710 PMCID: PMC4959389 DOI: 10.1186/s12859-015-0859-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Mecp2 null mice model Rett syndrome (RTT) a human neurological disorder affecting females after apparent normal pre- and peri-natal developmental periods. Neuroanatomical studies in cerebral cortex of RTT mouse models revealed delayed maturation of neuronal morphology and autonomous as well as non-cell autonomous reduction in dendritic complexity of postnatal cortical neurons. However, both morphometric parameters and high-resolution expression profile of cortical neurons at embryonic developmental stage have not yet been studied. Here we address these topics by using embryonic neuronal primary cultures from Mecp2 loss of function mouse model. Results We show that embryonic primary cortical neurons of Mecp2 null mice display reduced neurite complexity possibly reflecting transcriptional changes. We used RNA-sequencing coupled with a bioinformatics comparative approach to identify and remove the contribution of variable and hard to quantify non-neuronal brain cells present in our in vitro cell cultures. Conclusions Our results support the need to investigate both Mecp2 morphological as well as molecular effect in neurons since prenatal developmental stage, long time before onset of Rett symptoms. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0859-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcella Vacca
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR)-80131, Naples, Italy.
| | - Kumar Parijat Tripathi
- Laboratory for Genomics, Transcriptomics and Proteomics (LAB-GTP), High Performance Computing and Networking Institute (ICAR), National Research Council (CNR)-80131, Naples, Italy.
| | - Luisa Speranza
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR)-80131, Naples, Italy.
| | | | | | | | | | - Walter Sanseverino
- Sequentia Biotech SL, Calle Comte D'Urgell, 240 08036, Barcelona, Spain.
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR)-80131, Naples, Italy. .,Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Mario Rosario Guarracino
- Laboratory for Genomics, Transcriptomics and Proteomics (LAB-GTP), High Performance Computing and Networking Institute (ICAR), National Research Council (CNR)-80131, Naples, Italy.
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR)-80131, Naples, Italy. .,IRCCS Neuromed, via dell'Elettronica, Pozzilli (Is), Italy.
| |
Collapse
|
87
|
Tidball AM, Parent JM. Concise Review: Exciting Cells: Modeling Genetic Epilepsies with Patient-Derived Induced Pluripotent Stem Cells. Stem Cells 2016; 34:27-33. [PMID: 26373465 PMCID: PMC4958411 DOI: 10.1002/stem.2203] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 11/12/2022]
Abstract
Human induced pluripotent stem cell (iPSC) models of epilepsy are becoming a revolutionary platform for mechanistic studies and drug discovery. The skyrocketing pace of epilepsy gene discovery is vastly outstripping the development of in vivo animal models. Currently, antiepileptic drug prescribing to patients with specific genetic epilepsies is based on small-scale clinical trials and empiricism; however, rapid production of patient-derived iPSC models will allow for precision therapy. We review iPSC-based studies that have already afforded novel discoveries in diseases with epileptic phenotypes, as well as challenges to using iPSC-based neurological disease models. We also discuss iPSC-derived cardiomyocyte studies of arrhythmia-inducing ion channelopathies that exemplify novel drug discovery and use of multielectrode array technology that can be translated to epilepsy research. Beyond initial studies of Rett, Timothy, Phelan-McDermid, and Dravet syndromes, the stage is set for groundbreaking iPSC-based mechanistic and therapeutic discoveries in genetic epilepsies with the potential to impact patient treatment and quality of life.
Collapse
Affiliation(s)
- Andrew M. Tidball
- Department of Neurology, University of Michigan Medical Center and Ann Arbor VA Health System, Ann Arbor, Michigan, USA
| | - Jack M. Parent
- Department of Neurology, University of Michigan Medical Center and Ann Arbor VA Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
88
|
Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat Rev Drug Discov 2015; 15:110-24. [DOI: 10.1038/nrd.2015.14] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
89
|
Delépine C, Meziane H, Nectoux J, Opitz M, Smith AB, Ballatore C, Saillour Y, Bennaceur-Griscelli A, Chang Q, Williams EC, Dahan M, Duboin A, Billuart P, Herault Y, Bienvenu T. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. Hum Mol Genet 2015; 25:146-57. [PMID: 26604147 DOI: 10.1093/hmg/ddv464] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2(308/y) male mice. These findings represent a first step toward the validation of an innovative treatment for RTT.
Collapse
Affiliation(s)
- Chloé Delépine
- Inserm, U1016, Institut Cochin, Paris, France, Cnrs, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hamid Meziane
- Institut Clinique de la Souris (ICS), PHENOMIN, GIE CERBM, Illkirch, France, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France, Université de Strasbourg, Illkirch, France
| | - Juliette Nectoux
- Inserm, U1016, Institut Cochin, Paris, France, Cnrs, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France, Laboratoire de Biologie et Génétique Moléculaires, HUPC, Hôpital Cochin, Paris, France
| | - Matthieu Opitz
- Inserm, U1016, Institut Cochin, Paris, France, Cnrs, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlo Ballatore
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA, Center of Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoann Saillour
- Inserm, U1016, Institut Cochin, Paris, France, Cnrs, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Qiang Chang
- Department of Genetics and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Maxime Dahan
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, UPMC, Paris, France and
| | - Aurélien Duboin
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, UPMC, Paris, France and ALVEOLE, Paris, France
| | - Pierre Billuart
- Inserm, U1016, Institut Cochin, Paris, France, Cnrs, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yann Herault
- Institut Clinique de la Souris (ICS), PHENOMIN, GIE CERBM, Illkirch, France, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France, Université de Strasbourg, Illkirch, France
| | - Thierry Bienvenu
- Inserm, U1016, Institut Cochin, Paris, France, Cnrs, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France, Laboratoire de Biologie et Génétique Moléculaires, HUPC, Hôpital Cochin, Paris, France,
| |
Collapse
|
90
|
Gadalla KKE, Ross PD, Hector RD, Bahey NG, Bailey MES, Cobb SR. Gene therapy for Rett syndrome: prospects and challenges. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rett syndrome (RTT) is a neurological disorder that affects females and is caused by loss-of-function mutations in the X-linked gene MECP2. Deletion of Mecp2 in mice results in a constellation of neurological features that resemble those seen in RTT patients. Experiments in mice have demonstrated that restoration of MeCP2, even at adult stages, reverses several aspects of the RTT-like pathology suggesting that the disorder may be inherently treatable. This has provided an impetus to explore several therapeutic approaches targeting RTT at the level of the gene, including gene therapy, activation of MECP2 on the inactive X chromosome and read-through and repair of RTT-causing mutations. Here, we review these different strategies and the challenges of gene-based approaches in RTT.
Collapse
Affiliation(s)
- Kamal KE Gadalla
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Egypt
| | - Paul D Ross
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Ralph D Hector
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Noha G Bahey
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Histology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mark ES Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stuart R Cobb
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| |
Collapse
|
91
|
Lee KM, Chiu KB, Didier PJ, Baker KC, MacLean AG. Naltrexone treatment reverses astrocyte atrophy and immune dysfunction in self-harming macaques. Brain Behav Immun 2015; 50:288-297. [PMID: 26191654 PMCID: PMC4631668 DOI: 10.1016/j.bbi.2015.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/30/2015] [Accepted: 07/16/2015] [Indexed: 01/19/2023] Open
Abstract
The role of glia in the development and treatment of behavioral abnormalities is understudied. Recent reports have observed glial activation in several disorders, including depression, autism spectrum disorders and self-injurious behaviors (SIB). In the current study, we examined SIB in the physiologically and anatomically relevant nonhuman primate (NHP) model. At the Tulane National Primate Research Center (TNPRC), approximately 5% of singly housed macaques develop symptoms of SIB. We have previously demonstrated that naltrexone hydrochloride can be effective in reducing SIB. We have also demonstrated that the astrocytes of animals with SIB are distinctly atrophic and display heightened innate immune activation compared with control animals. We have added a third group of animals (five macaques identified with SIB and treated with oral naltrexone at a dose of 3.2mg/kg) to the previous cohort (six macaques with a history of SIB but not treated, and nine animals with no history of SIB) for this study. Gray and white matter astrocytes from frontal cortical tissue were examined following necropsy. Innate immune activation of astrocytes, which was increased in SIB animals, was markedly decreased in animals receiving naltrexone, as was atrophy of both grey and white matter astrocytes. This was concomitant with improved behavioral correlates. Preventing astrocyte activation in select areas of the brain to reduce injurious behavior is an innovative concept with implications for mental health studies. Differences in multiple areas of primate brain would help determine how self-injurious behavior develops. These studies suggest a stronger role for astrocytes in the cellular events associated with self-injurious behaviors.
Collapse
Affiliation(s)
- Kim M. Lee
- Tulane National Primate Research Center, Covington, LA, USA,Tulane Program in Biomedical Science, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kevin B. Chiu
- Tulane National Primate Research Center, Covington, LA, USA,Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Kate C. Baker
- Tulane National Primate Research Center, Covington, LA, USA,Department of Psychology, Tulane University, New Orleans, LA, USA,Tulane Program in Neuroscience, Tulane University, New Orleans, LA, USA
| | - Andrew G. MacLean
- Tulane National Primate Research Center, Covington, LA, USA,Tulane Program in Biomedical Science, Tulane University School of Medicine, New Orleans, LA, USA,Tulane Program in Neuroscience, Tulane University, New Orleans, LA, USA,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA,Corresponding author: Andrew G. MacLean, Tulane National Primate Research Center, Covington, LA, 70433. ‘phone: 985-871-6489
| |
Collapse
|
92
|
McGowan H, Pang ZP. Regulatory functions and pathological relevance of the MECP2 3'UTR in the central nervous system. CELL REGENERATION 2015; 4:9. [PMID: 26516454 PMCID: PMC4625459 DOI: 10.1186/s13619-015-0023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022]
Abstract
Methyl-CpG-binding protein 2 (MeCP2), encoded by the gene MECP2, is a transcriptional regulator and chromatin-remodeling protein, which is ubiquitously expressed and plays an essential role in the development and maintenance of the central nervous system (CNS). Highly enriched in post-migratory neurons, MeCP2 is needed for neuronal maturation, including dendritic arborization and the development of synapses. Loss-of-function mutations in MECP2 cause Rett syndrome (RTT), a debilitating neurodevelopmental disorder characterized by a phase of normal development, followed by the progressive loss of milestones and cognitive disability. While a great deal has been discovered about the structure, function, and regulation of MeCP2 in the time since its discovery as the genetic cause of RTT, including its involvement in a number of RTT-related syndromes that have come to be known as MeCP2-spectrum disorders, much about this multifunctional protein remains enigmatic. One unequivocal fact that has become apparent is the importance of maintaining MeCP2 protein levels within a narrow range, the limits of which may depend upon the cell type and developmental time point. As such, MeCP2 is amenable to complex, multifactorial regulation. Here, we summarize the role of the MECP2 3' untranslated region (UTR) in the regulation of MeCP2 protein levels and how mutations in this region contribute to autism and other non-RTT neuropsychiatric disorders.
Collapse
Affiliation(s)
- Heather McGowan
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University Robert Wood Johnson Medical School, 89 French Street, Room 3277, New Brunswick, NJ 08901 USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University Robert Wood Johnson Medical School, 89 French Street, Room 3277, New Brunswick, NJ 08901 USA
| |
Collapse
|
93
|
Pecorelli A, Cervellati F, Belmonte G, Montagner G, Waldon P, Hayek J, Gambari R, Valacchi G. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients. Cytokine 2015; 77:180-8. [PMID: 26471937 DOI: 10.1016/j.cyto.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 12/25/2022]
Abstract
A potential role for immune dysfunction in autism spectrum disorders (ASD) has been well established. However, immunological features of Rett syndrome (RTT), a genetic neurodevelopmental disorder closely related to autism, have not been well addressed yet. By using multiplex Luminex technology, a panel of 27 cytokines and chemokines was evaluated in serum from 10 RTT patients with confirmed diagnosis of MECP2 mutation (typical RTT), 12 children affected by classic autistic disorder and 8 control subjects. The cytokine/chemokine gene expression was assessed by real time PCR on mRNA of isolated peripheral blood mononuclear cells (PBMCs). Moreover, ultrastructural analysis of PBMCs was performed using transmission electron microscopy (TEM). Significantly higher serum levels of interleukin-8 (IL-8), IL-9, IL-13 were detected in RTT compared to control subjects, and IL-15 shows a trend toward the upregulation in RTT. In addition, IL-1β and VEGF were the only down-regulated cytokines in autistic patients with respect to RTT. No difference in cytokine/chemokine profile between autistic and control groups was detected. These data were also confirmed by ELISA real time PCR. At the ultrastructural level, the most severe morphological abnormalities were observed in mitochondria of both RTT and autistic PBMCs. In conclusion, our study shows a deregulated cytokine/chemokine profile together with morphologically altered immune cells in RTT. Such abnormalities were not quite as evident in autistic subjects. These findings indicate a possible role of immune dysfunction in RTT making the clinical features of this pathology related also to the immunology aspects, suggesting, therefore, novel possible therapeutic interventions for this disorder.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Belmonte
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montagner
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
94
|
Cuddapah VA, Sinifunanya EN, Percy AK, Olsen ML. MeCP2 in the regulation of neural activity: Rett syndrome pathophysiological perspectives. Degener Neurol Neuromuscul Dis 2015; 5:103-116. [PMID: 32669918 PMCID: PMC7337177 DOI: 10.2147/dnnd.s61269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
Rett syndrome (RTT), an X-linked neurodevelopment disorder, occurs in approximately one out of 10,000 females. Individuals afflicted by RTT display a constellation of signs and symptoms, affecting nearly every organ system. Most striking are the neurological manifestations, including regression of language and motor skills, increased seizure activity, autonomic dysfunction, and aberrant regulation of breathing patterns. The majority of girls with RTT have mutations in the gene encoding for methyl-CpG binding protein 2 (MeCP2). Since the discovery of this genetic cause of RTT in 1999, there has been an accelerated pace of research seeking to understand the role of MeCP2 in the brain in the hope of developing a disease-modifying therapy for RTT. In this study, we review the clinical features of RTT and then explore the latest mechanistic studies in order to explain how a mutation in MeCP2 leads to these unique features. We cover in detail studies examining the role of MeCP2 in neuronal physiology, as well as recent evidence that implicates a key role for glia in the pathogenesis of RTT. In the past 20 years, these basic and clinical studies have yielded an extraordinary understanding of RTT; as such, we end this narrative review considering the translation of these studies into clinical trials for the treatment of RTT.
Collapse
Affiliation(s)
| | | | - Alan K Percy
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
95
|
Varadinova M, Boyadjieva N. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders. Pharmacol Res 2015; 102:71-80. [PMID: 26408203 DOI: 10.1016/j.phrs.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 01/26/2023]
Abstract
The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Miroslava Varadinova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| | - Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| |
Collapse
|
96
|
Stout RF, Snapp EL, Spray DC. Connexin Type and Fluorescent Protein Fusion Tag Determine Structural Stability of Gap Junction Plaques. J Biol Chem 2015; 290:23497-514. [PMID: 26265468 DOI: 10.1074/jbc.m115.659979] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJs) are made up of plaques of laterally clustered intercellular channels and the membranes in which the channels are embedded. Arrangement of channels within a plaque determines subcellular distribution of connexin binding partners and sites of intercellular signaling. Here, we report the discovery that some connexin types form plaque structures with strikingly different degrees of fluidity in the arrangement of the GJ channel subcomponents of the GJ plaque. We uncovered this property of GJs by applying fluorescence recovery after photobleaching to GJs formed from connexins fused with fluorescent protein tags. We found that connexin 26 (Cx26) and Cx30 GJs readily diffuse within the plaque structures, whereas Cx43 GJs remain persistently immobile for more than 2 min after bleaching. The cytoplasmic C terminus of Cx43 was required for stability of Cx43 plaque arrangement. We provide evidence that these qualitative differences in GJ arrangement stability reflect endogenous characteristics, with the caveat that the sizes of the GJs examined were necessarily large for these measurements. We also uncovered an unrecognized effect of non-monomerized fluorescent protein on the dynamically arranged GJs and the organization of plaques composed of multiple connexin types. Together, these findings redefine our understanding of the GJ plaque structure and should be considered in future studies using fluorescent protein tags to probe dynamics of highly ordered protein complexes.
Collapse
Affiliation(s)
- Randy F Stout
- From the Dominick P. Purpura Department of Neuroscience and
| | - Erik Lee Snapp
- the Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David C Spray
- From the Dominick P. Purpura Department of Neuroscience and
| |
Collapse
|
97
|
Delépine C, Nectoux J, Letourneur F, Baud V, Chelly J, Billuart P, Bienvenu T. Astrocyte Transcriptome from the Mecp2(308)-Truncated Mouse Model of Rett Syndrome. Neuromolecular Med 2015. [PMID: 26208914 DOI: 10.1007/s12017-015-8363-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutations in the gene encoding the transcriptional modulator methyl-CpG binding protein 2 (MeCP2) are responsible for the neurodevelopmental disorder Rett syndrome which is one of the most frequent sources of intellectual disability in women. Recent studies showed that loss of Mecp2 in astrocytes contributes to Rett-like symptoms and restoration of Mecp2 can rescue some of these defects. The goal of this work is to compare gene expression profiles of wild-type and mutant astrocytes from Mecp2(308/y) mice (B6.129S-MeCP2<tm1Heto>/J) by using Affymetrix mouse 2.0 microarrays. Results were confirmed by quantitative real-time RT-PCR and by Western blot analysis. Gene set enrichment analysis utilizing Ingenuity Pathways was employed to identify pathways disrupted by Mecp2 deficiency. A total of 2152 genes were statistically differentially expressed between wild-type and mutated samples, including 1784 coding transcripts. However, only 257 showed fold changes >1.2. We confirmed our data by replicative studies in independent primary cultures of cortical astrocytes from Mecp2-deficient mice. Interestingly, two genes known to encode secreted proteins, chromogranin B and lipocalin-2, showed significant dysregulation. These proteins secreted from Mecp2-deficient glia may exert negative non-cell autonomous effects on neuronal properties, including dendritic morphology. Moreover, transcriptional profiling revealed altered Nr2f2 expression which may explain down- and upregulation of several target genes in astrocytes such as Ccl2, Lcn2 and Chgb. Unraveling Nr2f2 involvement in Mecp2-deficient astrocytes could pave the way for a better understanding of Rett syndrome pathophysiology and offers new therapeutic perspectives.
Collapse
Affiliation(s)
- Chloé Delépine
- Inserm, U1016, Faculté de Médecine, Laboratoire de Génétique et de Physiopathologie des Maladies Mentales, Institut Cochin, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Juliette Nectoux
- Inserm, U1016, Faculté de Médecine, Laboratoire de Génétique et de Physiopathologie des Maladies Mentales, Institut Cochin, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Groupe Universitaire Paris Centre, Site Cochin, Laboratoire de Biochimie et Génétique Moléculaire, Assistance Publique - Hôpitaux de Paris, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Franck Letourneur
- Inserm, U1016, Faculté de Médecine, Laboratoire de Génétique et de Physiopathologie des Maladies Mentales, Institut Cochin, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Véronique Baud
- Inserm, U1016, Faculté de Médecine, Laboratoire de Génétique et de Physiopathologie des Maladies Mentales, Institut Cochin, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jamel Chelly
- Inserm, U1016, Faculté de Médecine, Laboratoire de Génétique et de Physiopathologie des Maladies Mentales, Institut Cochin, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre Billuart
- Inserm, U1016, Faculté de Médecine, Laboratoire de Génétique et de Physiopathologie des Maladies Mentales, Institut Cochin, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thierry Bienvenu
- Inserm, U1016, Faculté de Médecine, Laboratoire de Génétique et de Physiopathologie des Maladies Mentales, Institut Cochin, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Groupe Universitaire Paris Centre, Site Cochin, Laboratoire de Biochimie et Génétique Moléculaire, Assistance Publique - Hôpitaux de Paris, 27 rue du Faubourg Saint Jacques, 75014, Paris, France.
| |
Collapse
|
98
|
Koyama Y. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci 2015. [PMID: 26217185 PMCID: PMC4491615 DOI: 10.3389/fncel.2015.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University Tondabayashi, Osaka, Japan
| |
Collapse
|
99
|
Acab A, Muotri AR. The Use of Induced Pluripotent Stem Cell Technology to Advance Autism Research and Treatment. Neurotherapeutics 2015; 12:534-45. [PMID: 25851569 PMCID: PMC4489954 DOI: 10.1007/s13311-015-0354-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders sharing a core set of symptoms, including impaired social interaction, language deficits, and repetitive behaviors. While ASDs are highly heritable and demonstrate a clear genetic component, the cellular and molecular mechanisms driving ASD etiology remain undefined. The unavailability of live patient-specific neurons has contributed to the difficulty in studying ASD pathophysiology. The recent advent of induced pluripotent stem cells (iPSCs) has provided the ability to generate patient-specific human neurons from somatic cells. The iPSC field has quickly grown, as researchers have demonstrated the utility of this technology to model several diseases, especially neurologic disorders. Here, we review the current literature around using iPSCs to model ASDs, and discuss the notable findings, and the promise and limitations of this technology. The recent report of a nonsyndromic ASD iPSC model and several previous ASD models demonstrating similar results points to the ability of iPSC to reveal potential novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Allan Acab
- School of Medicine, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, MC 0695, La Jolla, CA 92093 USA
| | - Alysson Renato Muotri
- School of Medicine, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, MC 0695, La Jolla, CA 92093 USA
| |
Collapse
|
100
|
Fernandes TG, Duarte ST, Ghazvini M, Gaspar C, Santos DC, Porteira AR, Rodrigues GMC, Haupt S, Rombo DM, Armstrong J, Sebastião AM, Gribnau J, Garcia-Cazorla À, Brüstle O, Henrique D, Cabral JMS, Diogo MM. Neural commitment of human pluripotent stem cells under defined conditions recapitulates neural development and generates patient-specific neural cells. Biotechnol J 2015; 10:1578-88. [DOI: 10.1002/biot.201400751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/09/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022]
|