51
|
Que Z, Olivero-Acosta MI, Chen I, Zhang J, Wettschurack K, Wu J, Xiao T, Otterbacher CM, Wang M, Harlow H, Cui N, Chen X, Deming B, Halurkar M, Zhao Y, Rochet JC, Xu R, Brewster AL, Wu LJ, Yuan C, Skarnes WC, Yang Y. Human iPSC-derived microglia sense and dampen hyperexcitability of cortical neurons carrying the epilepsy-associated SCN2A-L1342P mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563426. [PMID: 37961213 PMCID: PMC10634902 DOI: 10.1101/2023.10.26.563426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Neuronal hyperexcitability is a hallmark of seizures. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interacts with human neurons to regulate hyperexcitability mediated by epilepsy-causing genetic mutation found in human patients remains unknown. The SCN2A genetic locus is responsible for encoding the voltage-gated sodium channel Nav1.2, recognized as one of the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-L1342P mutation identified in patients with epilepsy leads to hyperexcitability in a hiPSC-derived cortical neuron model from a male donor. While microglia play an important role in the brain, these cells originate from a different lineage (yolk sac) and thus are not naturally present in hiPSCs-derived neuronal culture. To study how microglia respond to diseased neurons and influence neuronal excitability, we established a co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display altered morphology with increased branch length and enhanced calcium signal when co-cultured with neurons carrying the Nav1.2-L1342P mutation. Moreover, the presence of microglia significantly lowers the action potential firing of neurons carrying the mutation. Interestingly, we further demonstrated that the current density of sodium channels in neurons carrying the epilepsy-associated mutation was reduced in the presence of microglia. Taken together, our work reveals a critical role of human iPSCs-derived microglia in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation present in human neurons, highlighting the importance of neuron-microglia interactions in human pathophysiology.
Collapse
Affiliation(s)
- Zhefu Que
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Maria I. Olivero-Acosta
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Ian Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Jingliang Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Kyle Wettschurack
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Jiaxiang Wu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Tiange Xiao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - C. Max Otterbacher
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Muhan Wang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Hope Harlow
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Ningren Cui
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Xiaoling Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Brody Deming
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Manasi Halurkar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Yuanrui Zhao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Ranjie Xu
- Purdue University College of Veterinary Medicine, West Lafayette, IN 47907
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas TX 75205
| | - Long-jun Wu
- Department of Neurology at Mayo Clinic, Rochester MN 55905
| | - Chongli Yuan
- Department of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | | | - Yang Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| |
Collapse
|
52
|
Weilinger NL, Yang K, Choi HB, Groten CJ, Wendt S, Murugan M, Wicki-Stordeur LE, Bernier LP, Velayudhan PS, Zheng J, LeDue JM, Rungta RL, Tyson JR, Snutch TP, Wu LJ, MacVicar BA. Pannexin-1 opening in neuronal edema causes cell death but also leads to protection via increased microglia contacts. Cell Rep 2023; 42:113128. [PMID: 37742194 PMCID: PMC10824275 DOI: 10.1016/j.celrep.2023.113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.
Collapse
Affiliation(s)
- Nicholas L Weilinger
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kai Yang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Leigh E Wicki-Stordeur
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Louis-Philippe Bernier
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Prashanth S Velayudhan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey M LeDue
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ravi L Rungta
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Stomatology and Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - John R Tyson
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P Snutch
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
53
|
Okojie AK, Uweru JO, Coburn MA, Li S, Cao-Dao VD, Eyo UB. Distinguishing the effects of systemic CSF1R inhibition by PLX3397 on microglia and peripheral immune cells. J Neuroinflammation 2023; 20:242. [PMID: 37865779 PMCID: PMC10590528 DOI: 10.1186/s12974-023-02924-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Microglia, the primary immune cells of the central nervous system (CNS), are derived from the yolk sac and populate the brain during development. Once microglia migrate to the CNS, they are self-renewing and require CSF1R signaling for their maintenance. Pexidartinib (PLX3397, PLX), a small molecule inhibitor of the CSF1R, has been shown to effectively deplete microglia since microglial maintenance is CSF1R-dependent. There have, however, been several conflicting reports that have shown the potential off-target effects of PLX on peripheral immune cells particularly those of lymphoid origin. Given this controversy in the use of the PLX family of drugs, it has become important to ascertain to what extent PLX affects the peripheral immune profile in lymphoid (spleen, and bone marrow) and non-lymphoid (kidney, lungs, and heart) organs. PLX3397 chow treatment at 660 mg/kg for 7 days significantly reduced CD45+ macrophages, CX3CR1-GFP cells, CD11b+CD45intermediate cells, and P2RY12 expression in the brain. However, there were minimal effects on peripheral immune cells from both lymphoid and non-lymphoid organs except in the heart where there was a significant decrease in CD3+ cells, inflammatory and patrolling monocytes, and CD11b+Ly6G+ neutrophils. We then stimulated the immune system with 1 mg/kg of LPS which resulted in a significant reduction in the number of innate immune cells. In this context, PLX did not alter the cytokine profile in the serum and the brain of naïve mice but did so in the LPS-stimulated group resulting in a significant reduction in TNFα, IL-1α, IFN-γ and IL-1β. Furthermore, PLX did not alter locomotor activity in the open field test suggesting that microglia do not contribute to LPS-induced sickness behavior. Our results provide an assessment of immune cell populations with PLX3397 treatment on brain, lymphoid and non-lymphoid organs without and during LPS treatment that can serve as a resource for understanding consequences of such approaches.
Collapse
Affiliation(s)
- Akhabue K Okojie
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Joseph O Uweru
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Morgan A Coburn
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sihan Li
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Vivian D Cao-Dao
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
54
|
Xie M, Pallegar PN, Parusel S, Nguyen AT, Wu LJ. Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms. Mol Neurodegener 2023; 18:75. [PMID: 37858176 PMCID: PMC10585818 DOI: 10.1186/s13024-023-00665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, resulting in muscle weakness, atrophy, paralysis, and eventually death. Motor cortical hyperexcitability is a common phenomenon observed at the presymptomatic stage of ALS. Both cell-autonomous (the intrinsic properties of motor neurons) and non-cell-autonomous mechanisms (cells other than motor neurons) are believed to contribute to cortical hyperexcitability. Decoding the pathological relevance of these dynamic changes in motor neurons and glial cells has remained a major challenge. This review summarizes the evidence of cortical hyperexcitability from both clinical and preclinical research, as well as the underlying mechanisms. We discuss the potential role of glial cells, particularly microglia, in regulating abnormal neuronal activity during the disease progression. Identifying early changes such as neuronal hyperexcitability in the motor system may provide new insights for earlier diagnosis of ALS and reveal novel targets to halt the disease progression.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Praveen N Pallegar
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Sebastian Parusel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
55
|
Das M, Mao W, Voskobiynyk Y, Necula D, Lew I, Petersen C, Zahn A, Yu GQ, Yu X, Smith N, Sayed FA, Gan L, Paz JT, Mucke L. Alzheimer risk-increasing TREM2 variant causes aberrant cortical synapse density and promotes network hyperexcitability in mouse models. Neurobiol Dis 2023; 186:106263. [PMID: 37591465 PMCID: PMC10681293 DOI: 10.1016/j.nbd.2023.106263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
The R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2) increases the risk of Alzheimer's disease (AD). To investigate potential mechanisms, we analyzed knockin mice expressing human TREM2-R47H from one mutant mouse Trem2 allele. TREM2-R47H mice showed increased seizure activity in response to an acute excitotoxin challenge, compared to wildtype controls or knockin mice expressing the common variant of human TREM2. TREM2-R47H also increased spontaneous thalamocortical epileptiform activity in App knockin mice expressing amyloid precursor proteins bearing autosomal dominant AD mutations and a humanized amyloid-β sequence. In mice with or without such App modifications, TREM2-R47H increased the density of putative synapses in cortical regions without amyloid plaques. TREM2-R47H did not affect synaptic density in hippocampal regions with or without plaques. We conclude that TREM2-R47H increases AD-related network hyperexcitability and that it may do so, at least in part, by causing an imbalance in synaptic densities across brain regions.
Collapse
Affiliation(s)
- Melanie Das
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Wenjie Mao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Deanna Necula
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Irene Lew
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Cathrine Petersen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Allie Zahn
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nicholas Smith
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Faten A Sayed
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
56
|
Fan J, Dong X, Tang Y, Wang X, Lin D, Gong L, Chen C, Jiang J, Shen W, Xu A, Zhang X, Xie Y, Huang X, Zeng L. Preferential pruning of inhibitory synapses by microglia contributes to alteration of the balance between excitatory and inhibitory synapses in the hippocampus in temporal lobe epilepsy. CNS Neurosci Ther 2023; 29:2884-2900. [PMID: 37072932 PMCID: PMC10493672 DOI: 10.1111/cns.14224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND A consensus has formed that neural circuits in the brain underlie the pathogenesis of temporal lobe epilepsy (TLE). In particular, the synaptic excitation/inhibition balance (E/I balance) has been implicated in shifting towards elevated excitation during the development of TLE. METHODS Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to generate a model of TLE. Next, electroencephalography (EEG) recording was applied to verify the stability and detectability of spontaneous recurrent seizures (SRS) in rats. Moreover, hippocampal slices from rats and patients with mesial temporal lobe epilepsy (mTLE) were assessed using immunofluorescence to determine the alterations of excitatory and inhibitory synapses and microglial phagocytosis. RESULTS We found that KA induced stable SRSs 14 days after status epilepticus (SE) onset. Furthermore, we discovered a continuous increase in excitatory synapses during epileptogenesis, where the total area of vesicular glutamate transporter 1 (vGluT1) rose considerably in the stratum radiatum (SR) of cornu ammonis 1 (CA1), the stratum lucidum (SL) of CA3, and the polymorphic layer (PML) of the dentate gyrus (DG). In contrast, inhibitory synapses decreased significantly, with the total area of glutamate decarboxylase 65 (GAD65) in the SL and PML diminishing enormously. Moreover, microglia conducted active synaptic phagocytosis after the formation of SRSs, especially in the SL and PML. Finally, microglia preferentially pruned inhibitory synapses during recurrent seizures in both rat and human hippocampal slices, which contributed to the synaptic alteration in hippocampal subregions. CONCLUSIONS Our findings elaborately characterize the alteration of neural circuits and demonstrate the selectivity of synaptic phagocytosis mediated by microglia in TLE, which could strengthen the comprehension of the pathogenesis of TLE and inspire potential therapeutic targets for epilepsy treatment.
Collapse
Affiliation(s)
- Jianchen Fan
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xinyan Dong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Yejiao Tang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xuehui Wang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Donghui Lin
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Lifen Gong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Chen Chen
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Jie Jiang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Anyu Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
| | - Yicheng Xie
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Xin Huang
- Department of NeurosurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Linghui Zeng
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
57
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
58
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
59
|
Abstract
The adenosine A2A receptor (A2AR) is abundantly expressed in the brain, including both neurons and glial cells. While the expression of A2AR is relative low in glia, its levels elevate robustly in astrocytes and microglia under pathological conditions. Elevated A2AR appears to play a detrimental role in a number of disease states, by promoting neuroinflammation and astrocytic reaction to contribute to the progression of neurodegenerative and psychiatric diseases.
Collapse
Affiliation(s)
- Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, West Wenyi Road, Hangzhou, P.R. China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
60
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
61
|
Wang Q, Wang YY, Pu WJ, Ma X, Ni RJ. Dynamic changes in microglia in the mouse hippocampus during administration and withdrawal of the CSF1R inhibitor PLX3397. J Anat 2023; 243:394-403. [PMID: 37038887 PMCID: PMC10439370 DOI: 10.1111/joa.13874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Pexidartinib (PLX3397), a colony-stimulating factor-1 receptor (CSF1R) inhibitor, is currently in phase 1-3 clinical trials as a treatment for a variety of tumours. CSF1R signalling regulates the development, survival and maintenance of microglia, the resident brain innate immune cells. In this study, we examined the effects of PLX3397 in the drinking water of mice on microglia in the hippocampus using ionized calcium-binding adapter molecule 1 (Iba1, a microglial marker) immunocytochemistry. A high concentration of PLX3397 (1 mg/mL) significantly decreased the density of Iba1-immunoreactive cells after 7 days of exposure, but a low concentration of PLX3397 (0.5 mg/mL) did not. In addition, both low and high concentrations of PLX3397 significantly increased the intersection number, total length and maximum length of microglial processes in male mice. PLX3397 administered for 21 days eliminated microglia with 78% efficiency in males and 84% efficiency in females. Significant increases in microglial processes were found after both seven and 21 days of PLX3397 exposure in males, whereas decreases in microglial processes were observed after both 14 and 21 days of exposure in females. After PLX3397 withdrawal following its administration for 14 days in males, the soma size quickly returned to normal levels within a week. However, the microglial density, intersection number and total length of microglial processes after 3 days of recovery stabilized to untreated levels. In summary, these findings provide detailed insight into the dynamic changes in microglial number and morphology in the hippocampus in a dose- and time-dependent manner after PLX3397 treatment and withdrawal.
Collapse
Affiliation(s)
- Qirun Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yi-Yan Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Wen-Jun Pu
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| |
Collapse
|
62
|
Martins TG, Soliman R, Cordero-Maldonado ML, Donato C, Ameli C, Mombaerts L, Skupin A, Peri F, Crawford AD. Seizure-induced increase in microglial cell population in the developing zebrafish brain. Epilepsy Res 2023; 195:107203. [PMID: 37572541 DOI: 10.1016/j.eplepsyres.2023.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked and recurrent seizures, of which 60% are of unknown etiology. Recent studies implicate microglia in the pathophysiology of epilepsy. However, their role in this process, in particular following early-life seizures, remains poorly understood due in part to the lack of suitable experimental models allowing the in vivo imaging of microglial activity. Given the advantage of zebrafish larvae for minimally-invasive imaging approaches, we sought for the first time to describe the microglial responses after acute seizures in two different zebrafish larval models: a chemically-induced epileptic model by the systemic injection of kainate at 3 days post-fertilization, and the didys552 genetic epilepsy model, which carries a mutation in scn1lab that leads to spontaneous epileptiform discharges. Kainate-treated larvae exhibited transient brain damage as shown by increased numbers of apoptotic nuclei as early as one day post-injection, which was followed by an increase in the number of microglia in the brain. A similar microglial phenotype was also observed in didys552-/- mutants, suggesting that microglia numbers change in response to seizure-like activity in the brain. Interestingly, kainate-treated larvae also displayed a decreased seizure threshold towards subsequent pentylenetetrazole-induced seizures, as shown by higher locomotor and encephalographic activity in comparison with vehicle-injected larvae. These results are comparable to kainate-induced rodent seizure models and suggest the suitability of these zebrafish seizure models for future studies, in particular to elucidate the links between epileptogenesis and microglial dynamic changes after seizure induction in the developing brain, and to understand how these modulate seizure susceptibility.
Collapse
Affiliation(s)
- Teresa G Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Remon Soliman
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Cristina Donato
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Corrado Ameli
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Francesca Peri
- Developmental Biology Group, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Institute for Orphan Drug Discovery, Bremerhaven, Germany.
| |
Collapse
|
63
|
Arbabi K, Jiang Y, Howard D, Nigam A, Inoue W, Gonzalez-Burgos G, Felsky D, Tripathy SJ. Investigating microglia-neuron crosstalk by characterizing microglial contamination in human and mouse patch-seq datasets. iScience 2023; 26:107329. [PMID: 37520693 PMCID: PMC10374462 DOI: 10.1016/j.isci.2023.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Microglia are cells with diverse roles, including the regulation of neuronal excitability. We leveraged Patch-seq to assess the presence and effects of microglia in the local microenvironment of recorded neurons. We first quantified the amounts of microglial transcripts in three Patch-seq datasets of human and mouse neocortical neurons, observing extensive contamination. Variation in microglial contamination was explained foremost by donor identity, particularly in human samples, and additionally by neuronal cell type identity in mice. Gene set enrichment analysis suggests that microglial contamination is reflective of activated microglia, and that these transcriptional signatures are distinct from those captured via single-nucleus RNA-seq. Finally, neurons with greater microglial contamination differed markedly in their electrophysiological characteristics, including lowered input resistances and more depolarized action potential thresholds. Our results generalize beyond Patch-seq to suggest that activated microglia may be widely present across brain slice preparations and contribute to neuron- and donor-related electrophysiological variability in vitro.
Collapse
Affiliation(s)
- Keon Arbabi
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yiyue Jiang
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Derek Howard
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anukrati Nigam
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Daniel Felsky
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shreejoy J. Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
64
|
Bollinger JL, Dadosky DT, Flurer JK, Rainer IL, Woodburn SC, Wohleb ES. Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences. Neuropsychopharmacology 2023; 48:1347-1357. [PMID: 36517583 PMCID: PMC10354016 DOI: 10.1038/s41386-022-01519-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Chronic unpredictable stress (CUS) drives microglia-mediated neuronal remodeling and synapse loss in the prefrontal cortex (PFC), contributing to deficits in cognition and behavior. However, it remains unclear what mechanisms guide microglia-neuron interactions in stress. Evidence indicates that neuronal activity-dependent purinergic signaling directs microglial processes and synaptic engagement via P2Y12, a purinergic receptor exclusively expressed by microglia in the brain. Stress alters excitatory neurotransmission in the PFC, thus we aimed to determine if P2Y12 signaling promotes functional changes in microglia in chronic stress. Here we used genetic ablation of P2Y12 (P2ry12-/-) or pharmacological blockade (clopidogrel, ticagrelor) to examine the role of purinergic signaling in stress-induced microglia-neuron interaction. Multiple behavioral, physiological, and cytometric endpoints were analyzed. Deletion of P2Y12 led to a number of fundamental alterations in the PFC, including the heightened microglial number and increased dendritic spine density. Flow cytometry revealed that microglia in P2ry12-/- mice had shifts in surface levels of CX3CR1, CSF1R, and CD11b, suggesting changes in synaptic engagement and phagocytosis in the PFC. In line with this, pharmacological blockade of P2Y12 prevented CUS-induced increases in the proportion of microglia with neuronal inclusions, limited dendritic spine loss in the PFC, and attenuated alterations in stress coping behavior and working memory function. Overall, these findings indicate that microglial P2Y12 is a critical mediator of stress-induced synapse loss in the PFC and subsequent behavioral deficits.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David T Dadosky
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ivanka L Rainer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
65
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
66
|
Abstract
Epilepsy is a neurological disorder caused by the pathological hyper-synchronization of neuronal discharges. The fundamental research of epilepsy mechanisms and the targets of drug design options for its treatment have focused on neurons. However, approximately 30% of patients suffering from epilepsy show resistance to standard anti-epileptic chemotherapeutic agents while the symptoms of the remaining 70% of patients can be alleviated but not completely removed by the current medications. Thus, new strategies for the treatment of epilepsy are in urgent demand. Over the past decades, with the increase in knowledge on the role of glia in the genesis and development of epilepsy, glial cells are receiving renewed attention. In a normal brain, glial cells maintain neuronal health and in partnership with neurons regulate virtually every aspect of brain function. In epilepsy, however, the supportive roles of glial cells are compromised, and their interaction with neurons is altered, which disrupts brain function. In this review, we will focus on the role of glia-related processes in epileptogenesis and their contribution to abnormal neuronal activity, with the major focus on the dysfunction of astroglial potassium channels, water channels, gap junctions, glutamate transporters, purinergic signaling, synaptogenesis, on the roles of microglial inflammatory cytokines, microglia-astrocyte interactions in epilepsy, and on the oligodendroglial potassium channels and myelin abnormalities in the epileptic brain. These recent findings suggest that glia should be considered as the promising next-generation targets for designing anti-epileptic drugs that may improve epilepsy and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Jelena Bogdanović Pristov
- Department of Life Sciences, University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Paola Nobili
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ljiljana Nikolić
- Department of Neurophysiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
67
|
Gibbs-Shelton S, Benderoth J, Gaykema RP, Straub J, Okojie KA, Uweru JO, Lentferink DH, Rajbanshi B, Cowan MN, Patel B, Campos-Salazar AB, Perez-Reyes E, Eyo UB. Microglia play beneficial roles in multiple experimental seizure models. Glia 2023; 71:1699-1714. [PMID: 36951238 DOI: 10.1002/glia.24364] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
Seizure disorders are common, affecting both the young and the old. Currently available antiseizure drugs are ineffective in a third of patients and have been developed with a focus on known neurocentric mechanisms, raising the need for investigations into alternative and complementary mechanisms that contribute to seizure generation or its containment. Neuroinflammation, broadly defined as the activation of immune cells and molecules in the central nervous system (CNS), has been proposed to facilitate seizure generation, although the specific cells involved in these processes remain inadequately understood. The role of microglia, the primary inflammation-competent cells of the brain, is debated since previous studies were conducted using approaches that were less specific to microglia or had inherent confounds. Using a selective approach to target microglia without such side effects, we show a broadly beneficial role for microglia in limiting chemoconvulsive, electrical, and hyperthermic seizures and argue for a further understanding of microglial contributions to contain seizures.
Collapse
Affiliation(s)
- Synphane Gibbs-Shelton
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jordan Benderoth
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth A Okojie
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph O Uweru
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis H Lentferink
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Binita Rajbanshi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Maureen N Cowan
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Brij Patel
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony Brayan Campos-Salazar
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
68
|
Whitelaw BS, Stoessel MB, Majewska AK. Movers and shakers: Microglial dynamics and modulation of neural networks. Glia 2023; 71:1575-1591. [PMID: 36533844 PMCID: PMC10729610 DOI: 10.1002/glia.24323] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Microglia are multifaceted cells that act as immune sentinels, with important roles in pathological events, but also as integral contributors to the normal development and function of neural circuits. In the last decade, our understanding of the contributions these cells make to synaptic health and dysfunction has expanded at a dizzying pace. Here we review the known mechanisms that govern the dynamics of microglia allowing these motile cells to interact with synapses, and recruit microglia to specific sites on neurons. We then review the molecular signals that may underlie the function of microglia in synaptic remodeling. The emerging picture from the literature suggests that microglia are highly sensitive cells, reacting to neuronal signals with dynamic and specific actions tuned to the need of specific synapses and networks.
Collapse
Affiliation(s)
- Brendan Steven Whitelaw
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Mark Blohm Stoessel
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Ania Katarzyna Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| |
Collapse
|
69
|
Umpierre AD, Li B, Ayasoufi K, Zhao S, Xie M, Thyen G, Hur B, Zheng J, Liang Y, Wu Z, Yu X, Sung J, Johnson AJ, Li Y, Wu LJ. Microglial P2Y 6 calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544691. [PMID: 37398001 PMCID: PMC10312639 DOI: 10.1101/2023.06.12.544691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microglial calcium signaling is rare in a baseline state but shows strong engagement during early epilepsy development. The mechanism and purpose behind microglial calcium signaling is not known. By developing an in vivo UDP fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP signals to the microglial P2Y6 receptor for broad increases in calcium signaling during epileptogenesis. UDP-P2Y6 signaling is necessary for lysosome upregulation across limbic brain regions and enhances production of pro-inflammatory cytokines-TNFα and IL-1β. Failures in lysosome upregulation, observed in P2Y6 KO mice, can also be phenocopied by attenuating microglial calcium signaling in Calcium Extruder ("CalEx") mice. In the hippocampus, only microglia with P2Y6 expression can perform full neuronal engulfment, which substantially reduces CA3 neuron survival and impairs cognition. Our results demonstrate that calcium activity, driven by UDP-P2Y6 signaling, is a signature of phagocytic and pro-inflammatory function in microglia during epileptogenesis.
Collapse
Affiliation(s)
- Anthony D. Umpierre
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- These authors contributed equally
| | - Bohan Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
- These authors contributed equally
| | | | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Grace Thyen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Neuroscience Track, Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905
| | - Aaron J. Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Department of Molecular Medicine, Mayo Clinic, Rochester MN 55905
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Peking University School of Life Sciences, Beijing, CN 100871
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Lead contact
| |
Collapse
|
70
|
Harbin NH, Lustberg DJ, Hurst C, Pare J, Crotty KM, Waters AL, Yeligar SM, Smith Y, Seyfried NT, Weinshenker D, Hepler JR. RGS14 limits seizure-induced mitochondrial oxidative stress and pathology in hippocampus. Neurobiol Dis 2023; 181:106128. [PMID: 37075948 PMCID: PMC10259180 DOI: 10.1016/j.nbd.2023.106128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. In these neurons, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies showed that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity, possibly affording protection to CA2 PCs. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show that the loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Our proteomics data show that the loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro. As a readout of oxidative stress, we found that RGS14 KO dramatically increased 3- nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we unexpectedly found no differences in neuronal injury in CA2 PCs. However, we observed a striking and surprising lack of microgliosis in CA1 and CA2 of RGS14 KO compared to WT. Together, our data demonstrate a newly appreciated role for RGS14 in limiting intense seizure activity and pathology in hippocampus. Our findings are consistent with a model where RGS14 limits seizure onset and mortality and, after seizure, is upregulated to support mitochondrial function, prevent oxidative stress in CA2 PCs, and promote microglial activation in hippocampus.
Collapse
Affiliation(s)
- N H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| | - D J Lustberg
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, United States
| | - C Hurst
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, 4001 Rollins Research Center, Atlanta, GA 30322, United States.
| | - J Pare
- Emory National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30329, United States.
| | - K M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, 1364 Clifton Road NE, Suite H-153, Atlanta, GA 30322, United States; Atlanta Veterans Affairs Health Care System, 1670 Clairmont Road, Decatur, GA 30033, United States.
| | - A L Waters
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| | - S M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, 1364 Clifton Road NE, Suite H-153, Atlanta, GA 30322, United States; Atlanta Veterans Affairs Health Care System, 1670 Clairmont Road, Decatur, GA 30033, United States.
| | - Y Smith
- Emory National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30329, United States; Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA, 30322, United States.
| | - N T Seyfried
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, 4001 Rollins Research Center, Atlanta, GA 30322, United States.
| | - D Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, United States.
| | - J R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| |
Collapse
|
71
|
Sun Y, Che J, Zhang J. Emerging non-proinflammatory roles of microglia in healthy and diseased brains. Brain Res Bull 2023; 199:110664. [PMID: 37192719 DOI: 10.1016/j.brainresbull.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Microglia, the resident myeloid cells of the central nervous system, are the first line of defense against foreign pathogens, thereby confining the extent of brain injury. However, the role of microglia is not limited to macrophage-like functions. In addition to proinflammatory response mediation, microglia are involved in neurodevelopmental remodeling and homeostatic maintenance in the absence of disease. An increasing number of studies have also elucidated microglia-mediated regulation of tumor growth and neural repair in diseased brains. Here, we review the non-proinflammatory roles of microglia, with the aim of promoting a deeper understanding of the functions of microglia in healthy and diseased brains and contributing to the development of novel therapeutics that target microglia in neurological disorders.
Collapse
Affiliation(s)
- Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China; Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai China.
| |
Collapse
|
72
|
Chen X, Wang Q, Yang J, Zhang L, Liu TT, Liu J, Deng BL, Liu J. Diagnostic and therapeutic value of P2Y12R in epilepsy. Front Pharmacol 2023; 14:1179028. [PMID: 37234715 PMCID: PMC10206044 DOI: 10.3389/fphar.2023.1179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
There lacks biomarkers in current epilepsy diagnosis, and epilepsy is thus exposed to inadequate treatment, making it necessarily important to conduct search on new biomarkers and drug targets. The P2Y12 receptor is primarily expressed on microglia in the central nervous system, and acts as intrinsic immune cells in the central nervous system mediating neuroinflammation. In previous studies, P2Y12R in epilepsy has been found capable of controlling neuroinflammation and regulating neurogenesis as well as immature neuronal projections, and its expression is altered. P2Y12R is involved in microglia inhibition of neuronal activity and timely termination of seizures in acute seizures. In status epilepticus, the failure of P2Y12R in the process of "brake buffering" may not terminate the neuronal hyperexcitability timely. In chronic epilepsy, neuroinflammation causes seizures, which can in turn induce neuroinflammation, while on the other hand, neuroinflammation leads to neurogenesis, thereby causing abnormal neuronal discharges that give rise to seizures. In this case, targeting P2Y12R may be a novel strategy for the treatment of epilepsy. The detection of P2Y12R and its expression changes can contribute to the diagnosis of epilepsy. Meanwhile, the P2Y12R single-nucleotide polymorphism is associated with epilepsy susceptibility and endowed with the potential to individualize epilepsy diagnosis. To this end, functions of P2Y12R in the central nervous system were hereby reviewed, the effects of P2Y12R in epilepsy were explored, and the potential of P2Y12R in the diagnosis and treatment of epilepsy was further demonstrated.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Yang
- Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Electrophysiology Unit, Department of Neurology, Chengdu Fourth People’s Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People’s Hospital, Chengdu, China
| | - Bin-Lu Deng
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
73
|
Cao K, Qiu L, Lu X, Wu W, Hu Y, Cui Z, Jiang C, Luo Y, Shao Y, Xi W, Zeng LH, Xu H, Ma H, Zhang Z, Peng J, Duan S, Gao Z. Microglia modulate general anesthesia through P2Y 12 receptor. Curr Biol 2023:S0960-9822(23)00529-8. [PMID: 37167975 DOI: 10.1016/j.cub.2023.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/01/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
General anesthesia (GA) is an unconscious state produced by anesthetic drugs, which act on neurons to cause overall suppression of neuronal activity in the brain. Recent studies have revealed that GA also substantially enhances the dynamics of microglia, the primary brain immune cells, with increased process motility and territory surveillance. However, whether microglia are actively involved in GA modulation remains unknown. Here, we report a previously unrecognized role for microglia engaging in multiple GA processes. We found that microglial ablation reduced the sensitivity of mice to anesthetics and substantially shortened duration of loss of righting reflex (LORR) or unconsciousness induced by multiple anesthetics, thereby promoting earlier emergence from GA. Microglial repopulation restored the regular anesthetic recovery, and chemogenetic activation of microglia prolonged the duration of LORR. In addition, anesthesia-accompanying analgesia and hypothermia were also attenuated after microglial depletion. Single-cell RNA sequencing analyses showed that anesthesia prominently affected the transcriptional levels of chemotaxis and migration-related genes in microglia. By pharmacologically targeting different microglial motility pathways, we found that blocking P2Y12 receptor (P2Y12R) reduced the duration of LORR of mice. Moreover, genetic ablation of P2Y12R in microglia also promoted quicker recovery in mice from anesthesia, verifying the importance of microglial P2Y12R in anesthetic regulation. Our work presents the first evidence that microglia actively participate in multiple processes of GA through P2Y12R-mediated signaling and expands the non-immune roles of microglia in the brain.
Collapse
Affiliation(s)
- Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Liyao Qiu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xuan Lu
- Spine Lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weiying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yaling Hu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhicheng Cui
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chao Jiang
- Spine Lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuxiang Luo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yujin Shao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Han Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Huan Ma
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhi Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiyun Peng
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
74
|
Aloi MS, Prater KE, Sánchez REA, Beck A, Pathan JL, Davidson S, Wilson A, Keene CD, de la Iglesia H, Jayadev S, Garden GA. Microglia specific deletion of miR-155 in Alzheimer's disease mouse models reduces amyloid-β pathology but causes hyperexcitability and seizures. J Neuroinflammation 2023; 20:60. [PMID: 36879321 PMCID: PMC9990295 DOI: 10.1186/s12974-023-02745-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's Disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) as well as CNS and systemic inflammation. Microglia, the myeloid cells resident in the CNS, use microRNAs to rapidly respond to inflammatory signals. MicroRNAs (miRNAs) modulate inflammatory responses in microglia, and miRNA profiles are altered in Alzheimer's disease (AD) patients. Expression of the pro-inflammatory miRNA, miR-155, is increased in the AD brain. However, the role of miR-155 in AD pathogenesis is not well-understood. We hypothesized that miR-155 participates in AD pathophysiology by regulating microglia internalization and degradation of Aβ. We used CX3CR1CreER/+ to drive-inducible, microglia-specific deletion of floxed miR-155 alleles in two AD mouse models. Microglia-specific inducible deletion of miR-155 in microglia increased anti-inflammatory gene expression while reducing insoluble Aβ1-42 and plaque area. Yet, microglia-specific miR-155 deletion led to early-onset hyperexcitability, recurring spontaneous seizures, and seizure-related mortality. The mechanism behind hyperexcitability involved microglia-mediated synaptic pruning as miR-155 deletion altered microglia internalization of synaptic material. These data identify miR-155 as a novel modulator of microglia Aβ internalization and synaptic pruning, influencing synaptic homeostasis in the setting of AD pathology.
Collapse
Affiliation(s)
- Macarena S Aloi
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Katherine E Prater
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | | | - Asad Beck
- Department of Biology, University of Washington, Seattle, WA, 98109, USA
| | - Jasmine L Pathan
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Stephanie Davidson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Angela Wilson
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | | | - Suman Jayadev
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Gwenn A Garden
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, 170 Manning Drive, Chapel Hill, NC, 27517, USA.
| |
Collapse
|
75
|
Shelton-Gibbs S, Benderoth J, Gaykema RP, Straub J, Okojie KA, Uweru JO, Lentferink DH, Rajbanshi B, Cowan MN, Patel B, Campos-Salazar AB, Perez-Reyes E, Eyo UB. Microglia play beneficial roles in multiple experimental seizure models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.531090. [PMID: 36945556 PMCID: PMC10028974 DOI: 10.1101/2023.03.04.531090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Seizure disorders are common, affecting both the young and the old. Currently available antiseizure drugs are ineffective in a third of patients and have been developed with a focus on known neurocentric mechanisms, raising the need for investigations into alternative and complementary mechanisms that contribute to seizure generation or its containment. Neuroinflammation, broadly defined as the activation of immune cells and molecules in the central nervous system (CNS), has been proposed to facilitate seizure generation, although the specific cells involved in these processes remain inadequately understood. The role of microglia, the primary inflammation-competent cells of the brain, is debated since previous studies were conducted using approaches that were less specific to microglia or had inherent confounds. Using a selective approach to target microglia without such side effects, we show a broadly beneficial role for microglia in limiting chemoconvulsive, electrical, and hyperthermic seizures and argue for a further understanding of microglial contributions to contain seizures.
Collapse
Affiliation(s)
- Synphane Shelton-Gibbs
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jordan Benderoth
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ronald P. Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth A. Okojie
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Joseph O. Uweru
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis H. Lentferink
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Binita Rajbanshi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Maureen N. Cowan
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Brij Patel
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Anthony Brayan Campos-Salazar
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B. Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
76
|
Khan D, Bedner P, Müller J, Lülsberg F, Henning L, Prinz M, Steinhäuser C, Muhammad S. TGF-β Activated Kinase 1 (TAK1) Is Activated in Microglia After Experimental Epilepsy and Contributes to Epileptogenesis. Mol Neurobiol 2023; 60:3413-3422. [PMID: 36862288 PMCID: PMC10122619 DOI: 10.1007/s12035-023-03290-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
Increasing evidence suggests that inflammation promotes epileptogenesis. TAK1 is a central enzyme in the upstream pathway of NF-κB and is known to play a central role in promoting neuroinflammation in neurodegenerative diseases. Here, we investigated the cellular role of TAK1 in experimental epilepsy. C57Bl6 and transgenic mice with inducible and microglia-specific deletion of Tak1 (Cx3cr1CreER:Tak1fl/fl) were subjected to the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE). Immunohistochemical staining was performed to quantify different cell populations. The epileptic activity was monitored by continuous telemetric electroencephalogram (EEG) recordings over a period of 4 weeks. The results show that TAK1 was activated predominantly in microglia at an early stage of kainate-induced epileptogenesis. Tak1 deletion in microglia resulted in reduced hippocampal reactive microgliosis and a significant decrease in chronic epileptic activity. Overall, our data suggest that TAK1-dependent microglial activation contributes to the pathogenesis of chronic epilepsy.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Fabienne Lülsberg
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany. .,Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
77
|
Wang Q, Shi NR, Lv P, Liu J, Zhang JZ, Deng BL, Zuo YQ, Yang J, Wang X, Chen X, Hu XM, Liu TT, Liu J. P2Y12 receptor gene polymorphisms are associated with epilepsy. Purinergic Signal 2023; 19:155-162. [PMID: 35175489 PMCID: PMC9984642 DOI: 10.1007/s11302-022-09848-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022] Open
Abstract
The basic research indicated that microglial P2Y12 receptors (P2Y12Rs) are involved in the pathophysiology of epilepsy through regulated microglial-neuronal interactions, aberrant neurogenesis, or immature neuronal projections. However, whether the clinic case of epilepsy would be associated with P2Y12 receptor gene polymorphisms is presented with few data. In our study, a total of 176 patients with epilepsy and 50 healthy controls were enrolled. Two single-nucleotide polymorphisms, namely rs1491974 and rs6798347, were selected for analysis. The results revealed that carriers of the G allele of rs1491974 G>A or rs6798347 G>A may be associated with an increased risk of epilepsy (OR = 0.576, 95% CI = 0.368-0.901, p = 0.015; OR = 0.603, 95% CI = 0.367-0.988, p = 0.043). Interestingly, we found that the rs1491974 G>A genotype and allele frequencies have only a significant difference in female instead of male case (p = 0.004 for genotype; p = 0.001 for allele). The subgroup analysis demonstrated that individuals with the rs1491974 G>A genotype might have more frequent seizure (OR = 0.476, 95% CI = 0.255-0.890; p = 0.019). These data implied that both rs1491974 and rs6798347 polymorphisms of P2Y12R would be able to play import roles in epilepsy susceptibility, whereas the rs1491974 polymorphism may be specifically related to seizure frequency.
Collapse
Affiliation(s)
- Qi Wang
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Nan-Rui Shi
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Peng Lv
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Juan Liu
- School of Sports Medicine and Health, Sports Medicine Key Laboratory of Sichuan Province, Chengdu Sport University, Chengdu, 610041, China
| | - Ji-Zhou Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Bin-Lu Deng
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yan-Qin Zuo
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xin Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Xiang Chen
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Xiu-Min Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Ting-Ting Liu
- Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jie Liu
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China. .,Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
78
|
Cao K, Hu Y, Gao Z. Sense to Tune: Engaging Microglia with Dynamic Neuronal Activity. Neurosci Bull 2023; 39:553-556. [PMID: 36577882 PMCID: PMC10043096 DOI: 10.1007/s12264-022-01010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/27/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Kelei Cao
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University Medical Center, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yaling Hu
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University Medical Center, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University Medical Center, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
79
|
Woodburn SC, Asrat HS, Flurer JK, Schwierling HC, Bollinger JL, Vollmer LL, Wohleb ES. Depletion of microglial BDNF increases susceptibility to the behavioral and synaptic effects of chronic unpredictable stress. Brain Behav Immun 2023; 109:127-138. [PMID: 36681359 PMCID: PMC10023455 DOI: 10.1016/j.bbi.2023.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In the medial prefrontal cortex (PFC), chronic stress reduces synaptic expression of glutamate receptors, leading to decreased excitatory signaling from layer V pyramidal neurons and working memory deficits. One key element driving these changes is a reduction in brain-derived neurotrophic factor (BDNF) signaling. BDNF is a potent mediator of synaptic growth and deficient BDNF signaling has been linked to stress susceptibility. Prior studies indicated that neurons are the primary source of BDNF, but more recent work suggests that microglia are also an important source of BDNF. Adding to this, our work showed that 14 days of chronic unpredictable stress (CUS) reduced Bdnf transcript in PFC microglia, evincing its relevance in the effects of stress. To explore this further, we utilized transgenic mice with microglia-specific depletion of BDNF (Cx3cr1Cre/+:Bdnffl/fl) and genotype controls (Cx3cr1Cre/+:Bdnf+/+). In the following experiments, mice were exposed to a shortened CUS paradigm (7 days) to determine if microglial Bdnf depletion promotes stress susceptibility. Analyses of PFC microglia revealed that Cx3cr1Cre/+:Bdnffl/fl mice had shifts in phenotypic markers and gene expression. In a separate cohort, synaptoneurosomes were collected from the PFC and western blotting was performed for synaptic markers. These experiments showed that Cx3cr1Cre/+:Bdnffl/fl mice had baseline deficits in GluN2B, and that 7 days of CUS additionally reduced GluN2A levels in Cx3cr1Cre/+:Bdnffl/fl mice, but not genotype controls. Behavioral and cognitive testing showed that this coincided with exacerbated stress effects on temporal object recognition in Cx3cr1Cre/+:Bdnffl/fl mice. These results indicate that microglial BDNF promotes glutamate receptor expression in the PFC. As such, mice with deficient microglial BDNF had increased susceptibility to the behavioral and cognitive consequences of stress.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Helina S Asrat
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hana C Schwierling
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren L Vollmer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
80
|
Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol Dis 2023; 178:106027. [PMID: 36736598 DOI: 10.1016/j.nbd.2023.106027] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
A large set of inflammatory molecules and their receptors are induced in epileptogenic foci of patients with pharmacoresistant epilepsies of structural etiologies or with refractory status epilepticus. Studies in animal models mimicking these clinical conditions have shown that the activation of specific inflammatory signallings in forebrain neurons or glial cells may modify seizure thresholds, thus contributing to both ictogenesis and epileptogenesis. The search for mechanisms underlying these effects has highlighted that inflammatory mediators have CNS-specific neuromodulatory functions, in addition to their canonical activation of immune responses for pathogen recognition and clearance. This review reports the neuromodulatory effects of inflammatory mediators and how they contribute to alter the inhibitory/excitatory balance in neural networks that underlie seizures. In particular, we describe key findings related to the ictogenic role of prototypical inflammatory cytokines (IL-1β and TNF) and danger signals (HMGB1), their modulatory effects of neuronal excitability, and the mechanisms underlying these effects. It will be discussed how harnessing these neuromodulatory properties of immune mediators may lead to novel therapies to control drug-resistant seizures.
Collapse
|
81
|
Harbin NH, Lustberg DJ, Hurst C, Pare JF, Crotty KM, Waters AL, Yeligar SM, Smith Y, Seyfried NT, Weinshenker D, Hepler JR. RGS14 is neuroprotective against seizure-induced mitochondrial oxidative stress and pathology in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526349. [PMID: 36778349 PMCID: PMC9915580 DOI: 10.1101/2023.02.01.526349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. There, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies show that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Utilizing proteomics, we saw loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro . As a readout of oxidative stress, we found RGS14 KO dramatically increased 3-nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we observed worse neuronal injury in area CA3 (but none in CA2 or CA1), and a lack of microgliosis in CA1 and CA2 compared to WT. Together, our data demonstrates a newly appreciated neuroprotective role for RGS14 against intense seizure activity in hippocampus. Our findings are consistent with a model where, after seizure, RGS14 is upregulated to support mitochondrial function and prevent oxidative stress in CA2 PCs, limit seizure onset and hippocampal neuronal injury, and promote microglial activation in hippocampus.
Collapse
|
82
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
83
|
Henning L, Antony H, Breuer A, Müller J, Seifert G, Audinat E, Singh P, Brosseron F, Heneka MT, Steinhäuser C, Bedner P. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2023; 71:168-186. [PMID: 36373840 DOI: 10.1002/glia.24265] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Henrike Antony
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Breuer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
84
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
85
|
Pascoal VDB, Marchesini RB, Athié MCP, Matos AHB, Conte FF, Pereira TC, Secolin R, Gilioli R, Malheiros JM, Polli RS, Tannús A, Covolan L, Pascoal LB, Vieira AS, Cavalheiro EA, Cendes F, Lopes-Cendes I. Modulating Expression of Endogenous Interleukin 1 Beta in the Acute Phase of the Pilocarpine Model of Epilepsy May Change Animal Survival. Cell Mol Neurobiol 2023; 43:367-380. [PMID: 35061107 DOI: 10.1007/s10571-022-01190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
The pilocarpine-induced (PILO) model has helped elucidate the electrophysiological and molecular aspects related to mesial temporal lobe epilepsy. It has been suggested that the extensive cell death and edema observed in the brains of these animals could be induced by increased inflammatory responses, such as the rapid release of the inflammatory cytokine interleukin 1 beta (Il1b). In this study, we investigate the role of endogenous Il1b in the acute phase of the PILO model. Our aim is twofold. First, we want to determine whether it is feasible to silence Il1b in the central nervous system using a non-invasive procedure. Second, we aim to investigate the effect of silencing endogenous Il1b and its antagonist, Il1rn.We used RNA interference applied non-invasively to knockdown Il1b and its endogenous antagonist Il1rn. We found that knocking down Il1b prior to pilocarpine injection increased the mortality rate of treated animals. Furthermore, we observed that, when exposing the animals to more Il1b by silencing its endogenous antagonist Il1rn, there was a better response to status epilepticus with decreased animal mortality in the acute phase of the PILO model. Thus, we show the feasibility of using a novel, less invasive approach to study genes involved in the inflammatory response in the central nervous system. Furthermore, our results provide suggestive evidence that modulating endogenous Il1b improves animal survival in the acute phase of the PILO model and may have effects that extend into the chronic phase.
Collapse
Affiliation(s)
- V D B Pascoal
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - R B Marchesini
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - M C P Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - A H B Matos
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - F F Conte
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - T C Pereira
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil
| | - R Secolin
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - R Gilioli
- Multidisciplinary Centre for Biological Investigation (CEMIB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - J M Malheiros
- Centro de Imagens e Espectroscopia por Ressonancia Magnetica (CIERMag), Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - R S Polli
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - A Tannús
- Centro de Imagens e Espectroscopia por Ressonancia Magnetica (CIERMag), Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
| | - L Covolan
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - L B Pascoal
- Laboratory of Cell Signaling, School of Medical Sciences, University of Campinas - (UNICAMP), Campinas, SP, Brazil
| | - A S Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - (UNICAMP), Campinas, SP, Brazil
| | - E A Cavalheiro
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, (UNIFESP), Sao Paulo, SP, Brazil
| | - F Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas - (UNICAMP); and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - I Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil.
| |
Collapse
|
86
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
87
|
Dayananda KK, Ahmed S, Wang D, Polis B, Islam R, Kaffman A. Early life stress impairs synaptic pruning in the developing hippocampus. Brain Behav Immun 2023; 107:16-31. [PMID: 36174883 PMCID: PMC10497209 DOI: 10.1016/j.bbi.2022.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 02/08/2023] Open
Abstract
Early life adversity impairs normal hippocampal function and connectivity in various mammalian species, including humans and rodents. According to the 'cumulative model' the number of early adversities can be summed up to determine the risk for developing psychopathology later in life. In contrast, the 'dimensional model' argues that 'Deprivation' and 'Threat' impact different developmental processes that should not be added in determining clinical outcomes. Here we examine these predictions in male and female mice exposed to a single adversity - limited bedding (LB) - versus mice exposed to multiple adversities - unpredictable postnatal stress (UPS) - focusing on microglia-mediated synaptic pruning in the developing hippocampus. Exposure to both LB and UPS reduced the ramification of microglia, impaired their ability to phagocytose synaptic material in vivo and ex vivo, and decreased expression of TREM2. Abnormal phagocytic activity was associated with increased spine density in CA1 pyramidal neurons that was seen in 17-day-old groups and persisted in peri-pubescent 29-day-old LB and UPS mice. Exposure to LB caused more severe impairment in microglial ramification and synaptic engulfment compared to UPS, outcomes that were accompanied by a UPS-specific increase in the expression of several genes implicated in synaptic pruning. We propose that despite being a single stressor, LB represents a more severe form of early deprivation, and that appropriate levels of hippocampal stimulation during the second and third weeks of life are necessary to support normal microglial ramification and synaptic pruning. Further, impaired synaptic pruning during this critical period of hippocampal development contributes to the abnormal hippocampal function and connectivity seen in UPS and LB later in life.
Collapse
Affiliation(s)
- Kiran K Dayananda
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Sahabuddin Ahmed
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Daniel Wang
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Baruh Polis
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Rafiad Islam
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| |
Collapse
|
88
|
Nebeling FC, Poll S, Justus LC, Steffen J, Keppler K, Mittag M, Fuhrmann M. Microglial motility is modulated by neuronal activity and correlates with dendritic spine plasticity in the hippocampus of awake mice. eLife 2023; 12:83176. [PMID: 36749020 PMCID: PMC9946443 DOI: 10.7554/elife.83176] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Microglia, the resident immune cells of the brain, play a complex role in health and disease. They actively survey the brain parenchyma by physically interacting with other cells and structurally shaping the brain. Yet, the mechanisms underlying microglial motility and significance for synapse stability, especially in the hippocampus during adulthood, remain widely unresolved. Here, we investigated the effect of neuronal activity on microglial motility and the implications for the formation and survival of dendritic spines on hippocampal CA1 neurons in vivo. We used repetitive two-photon in vivo imaging in the hippocampus of awake and anesthetized mice to simultaneously study the motility of microglia and their interaction with dendritic spines. We found that CA3 to CA1 input is sufficient to modulate microglial process motility. Simultaneously, more dendritic spines emerged in mice after awake compared to anesthetized imaging. Interestingly, the rate of microglial contacts with individual dendritic spines and dendrites was associated with the stability, removal, and emergence of dendritic spines. These results suggest that microglia might sense neuronal activity via neurotransmitter release and actively participate in synaptic rewiring of the hippocampal neural network during adulthood. Further, this study has profound relevance for hippocampal learning and memory processes.
Collapse
Affiliation(s)
| | - Stefanie Poll
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| | - Lena Christine Justus
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| | - Julia Steffen
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| | - Kevin Keppler
- Light Microscopy Facility, German Center for Neurodegenerative DiseasesBonnGermany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| |
Collapse
|
89
|
Kagitani-Shimono K, Kato H, Soeda F, Iwatani Y, Mukai M, Ogawa K, Tominaga K, Nabatame S, Taniike M. Extension of microglial activation is associated with epilepsy and cognitive dysfunction in Tuberous sclerosis complex: A TSPO-PET study. Neuroimage Clin 2022; 37:103288. [PMID: 36521371 PMCID: PMC9758490 DOI: 10.1016/j.nicl.2022.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Neuroinflammation contributes to the severity of various neurological disorders, including epilepsy. Tuberous sclerosis complex (TSC) is a condition that results in the overactivation of the mammalian target of rapamycin (mTOR) pathway, which has been linked to the activation of microglia responsible for neuroinflammation. To clarify the involvement of neuroinflammation in the neuropathophysiology of TSC, we performed a positron emission tomography (PET) study using the translocator protein (TSPO) radioligand, [11C] DPA713, and investigated microglial activation in relation to neurological manifestations, especially epilepsy and cognitive function. METHODS This cross-sectional study included 18 patients with TSC (6 in the no-seizure group, 6 in the refractory seizure group, and 6 in the mTOR-inhibitor [mTOR-i] group). All participants underwent [11C] DPA713-PET. PET results were superimposed with a 3D T2-weighted fluid-attenuated inversion-recovery (FLAIR) and T1-weighted image (T1WI) to evaluate the location of cortical tubers. Microglial activation was assessed using the standardized uptake value ratio (SUVr) of DPA713 binding. The volume ratio of the DPA713-positive area to the intracranial volume (volume ratio of DPA713/ICV) was calculated to evaluate the extent of microglial activation. A correlation analysis was performed to examine the relationship between volume ratio of DPA713/ICV and severity of epilepsy and cognitive function. RESULTS Most cortical tubers with hyperintensity on FLAIR and hypo- or isointensity on T1WI showed microglial activation. The extent of microglial activation was significantly greater in the refractory seizure group than in the no-seizure or mTOR-i groups (p < 0.001). The extent of microglial activation in subjects without mTOR-i treatment correlated positively with epilepsy severity (r = 0.822, P = 0.001) and negatively with cognitive function (r = -0.846, p = 0.001), but these correlations were not present in the mTOR-i group (r = 0.232, P = 0.658, r = 0.371, P = 0.469, respectively). CONCLUSION Neuroinflammation is associated with the severity of epilepsy and cognitive dysfunction in brains with TSC. mTOR-i may suppress the extent of neuroinflammation in TSC. Investigating the spread of microglial activation using TSPO-PET in these patients may help to predict the progression of neuropathy by assessing the degree of neuroinflammation and therefore be useful for determining how aggressive the treatment should be and in assessing the effectiveness of such treatment in patients with TSC.
Collapse
Affiliation(s)
- Kuriko Kagitani-Shimono
- Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiko Soeda
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Iwatani
- Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masashi Mukai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsuhiro Ogawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Tominaga
- Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Taniike
- Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
90
|
Rodrigues RJ, Figueira AS, Marques JM. P2Y1 Receptor as a Catalyst of Brain Neurodegeneration. NEUROSCI 2022; 3:604-615. [PMID: 39483765 PMCID: PMC11523754 DOI: 10.3390/neurosci3040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/03/2024] Open
Abstract
Different brain disorders display distinctive etiologies and pathogenic mechanisms. However, they also share pathogenic events. One event systematically occurring in different brain disorders, both acute and chronic, is the increase of the extracellular ATP levels. Accordingly, several P2 (ATP/ADP) and P1 (adenosine) receptors, as well as the ectoenzymes involved in the extracellular catabolism of ATP, have been associated to different brain pathologies, either with a neuroprotective or neurodegenerative action. The P2Y1 receptor (P2Y1R) is one of the purinergic receptors associated to different brain diseases. It has a widespread regional, cellular, and subcellular distribution in the brain, it is capable of modulating synaptic function and neuronal activity, and it is particularly important in the control of astrocytic activity and in astrocyte-neuron communication. In diverse brain pathologies, there is growing evidence of a noxious gain-of-function of P2Y1R favoring neurodegeneration by promoting astrocyte hyperactivity, entraining Ca2+-waves, and inducing the release of glutamate by directly or indirectly recruiting microglia and/or by increasing the susceptibility of neurons to damage. Here, we review the current evidence on the involvement of P2Y1R in different acute and chronic neurodegenerative brain disorders and the underlying mechanisms.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana S. Figueira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Joana M. Marques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
91
|
Molecular and spatial heterogeneity of microglia in Rasmussen encephalitis. Acta Neuropathol Commun 2022; 10:168. [PMID: 36411471 PMCID: PMC9677917 DOI: 10.1186/s40478-022-01472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare childhood neurological disease characterized by progressive unilateral loss of function, hemispheric atrophy and drug-resistant epilepsy. Affected brain tissue shows signs of infiltrating cytotoxic T-cells, microglial activation, and neuronal death, implicating an inflammatory disease process. Recent studies have identified molecular correlates of inflammation in RE, but cell-type-specific mechanisms remain unclear. We used single-nucleus RNA-sequencing (snRNA-seq) to assess gene expression across multiple cell types in brain tissue resected from two children with RE. We found transcriptionally distinct microglial populations enriched in RE compared to two age-matched individuals with unaffected brain tissue and two individuals with Type I focal cortical dysplasia (FCD). Specifically, microglia in RE tissues demonstrated increased expression of genes associated with cytokine signaling, interferon-mediated pathways, and T-cell activation. We extended these findings using spatial proteomic analysis of tissue from four surgical resections to examine expression profiles of microglia within their pathological context. Microglia that were spatially aggregated into nodules had increased expression of dynamic immune regulatory markers (PD-L1, CD14, CD11c), T-cell activation markers (CD40, CD80) and were physically located near distinct CD4+ and CD8+ lymphocyte populations. These findings help elucidate the complex immune microenvironment of RE.
Collapse
|
92
|
Fröhlich A, Olde Heuvel F, Rehman R, Krishnamurthy SS, Li S, Li Z, Bayer D, Conquest A, Hagenston AM, Ludolph A, Huber-Lang M, Boeckers T, Knöll B, Morganti-Kossmann MC, Bading H, Roselli F. Neuronal nuclear calcium signaling suppression of microglial reactivity is mediated by osteoprotegerin after traumatic brain injury. J Neuroinflammation 2022; 19:279. [PMCID: PMC9675197 DOI: 10.1186/s12974-022-02634-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Traumatic brain injury (TBI) is characterized by massive changes in neuronal excitation, from acute excitotoxicity to chronic hyper- or hypoexcitability. Nuclear calcium signaling pathways are involved in translating changes in synaptic inputs and neuronal activity into discrete transcriptional programs which not only affect neuronal survival and synaptic integrity, but also the crosstalk between neurons and glial cells. Here, we report the effects of blunting neuronal nuclear calcium signals in the context of TBI. Methods We used AAV vectors to express the genetically encoded and nuclear-targeted calcium buffer parvalbumin (PV.NLS.mCherry) or the calcium/calmodulin buffer CaMBP4.mCherry in neurons only. Upon TBI, the extent of neuroinflammation, neuronal death and synaptic loss were assessed by immunohistochemistry and targeted transcriptome analysis. Modulation of the overall level of neuronal activity was achieved by PSAM/PSEM chemogenetics targeted to parvalbumin interneurons. The functional impact of neuronal nuclear calcium buffering in TBI was assessed by quantification of spontaneous whisking. Results Buffering neuronal nuclear calcium unexpectedly resulted in a massive and long-lasting increase in the recruitment of reactive microglia to the injury site, which was characterized by a disease-associated and phagocytic phenotype. This effect was accompanied by a substantial surge in synaptic loss and significantly reduced whisking activity. Transcriptome analysis revealed a complex effect of TBI in the context of neuronal nuclear calcium buffering, with upregulation of complement factors, chemokines and interferon-response genes, as well as the downregulation of synaptic genes and epigenetic regulators compared to control conditions. Notably, nuclear calcium buffering led to a substantial loss in neuronal osteoprotegerin (OPG), whereas stimulation of neuronal firing induced OPG expression. Viral re-expression of OPG resulted in decreased microglial recruitment and synaptic loss. OPG upregulation was also observed in the CSF of human TBI patients, underscoring its translational value. Conclusion Neuronal nuclear calcium signals regulate the degree of microglial recruitment and reactivity upon TBI via, among others, osteoprotegerin signals. Our findings support a model whereby neuronal activity altered after TBI exerts a powerful impact on the neuroinflammatory cascade, which in turn contributes to the overall loss of synapses and functional impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02634-4.
Collapse
Affiliation(s)
- Albrecht Fröhlich
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Florian Olde Heuvel
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Rida Rehman
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Sruthi Sankari Krishnamurthy
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | - Shun Li
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Zhenghui Li
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,Dept. of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - David Bayer
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | - Alison Conquest
- grid.1623.60000 0004 0432 511XNational Trauma Research Institute and Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia
| | - Anna M. Hagenston
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, Heidelberg, Germany
| | - Albert Ludolph
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Markus Huber-Lang
- grid.6582.90000 0004 1936 9748Institute for Clinical and Experimental Trauma Immunology, Ulm University, Ulm, Germany
| | - Tobias Boeckers
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Bernd Knöll
- grid.6582.90000 0004 1936 9748Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Maria Cristina Morganti-Kossmann
- grid.1623.60000 0004 0432 511XNational Trauma Research Institute and Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia ,grid.134563.60000 0001 2168 186XDepartment of Child Health, Barrow Neurological Institute at Phoenix Children’s Hospital, University of Arizona College of Medicine, Phoenix, Phoenix, AZ USA
| | - Hilmar Bading
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, Heidelberg, Germany
| | - Francesco Roselli
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany ,Present Address: Center for Biomedical Research, Helmholtzstrasse 8, 89081 Ulm, Germany
| |
Collapse
|
93
|
Ismail FS, Faustmann PM, Kümmel ML, Förster E, Faustmann TJ, Corvace F. Brivaracetam exhibits mild pro-inflammatory features in an in vitro astrocyte-microglia co-culture model of inflammation. Front Cell Neurosci 2022; 16:995861. [PMID: 36406753 PMCID: PMC9670320 DOI: 10.3389/fncel.2022.995861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/12/2022] [Indexed: 10/23/2024] Open
Abstract
Implications of glia in the pathophysiology of epilepsy raise the question of how these cells besides neurons are responsive to antiseizure medications (ASMs). Understanding ASM effects on glia and glia-mediated inflammation may help to explore astrocytes and microglia as potential targets for alternative anti-epileptogenic therapies. The aim of this study was to investigate the effects of the new generation ASM brivaracetam (BRV) in an astrocyte-microglia co-culture model of inflammation. Primary rat astrocytes co-cultures containing 5%-10% (M5, "physiological" conditions) or 30%-40% (M30, "pathological inflammatory" conditions) of microglia were treated with different concentrations of BRV (0.5, 2, 10, and 20 μg/ml) for 24 h. Glial cell viability was measured by MTT assay. Microglial activation states were analyzed by immunocytochemistry and astroglial connexin 43 (Cx43) expression by Western blot analysis and immunocytochemistry. Gap-junctional coupling was studied via Scrape Loading. Incubation with high, overdose concentration (20 μg/ml) of BRV significantly reduced the glial cell viability under physiological conditions (p < 0.01: **). Treatment with BRV in therapeutic concentrations (0.5 and 2 μg/ml) reduced the resting microglia (p < 0.05: *) and increased the microglial activation under inflammatory conditions (p < 0.01: **). Astroglial Cx43 expression was not affected. The gap-junctional coupling significantly increased only by 0.5 μg/ml BRV under physiological conditions (p < 0.05: *). Our findings suggest mild pro-inflammatory, in vitro features of BRV with regard to microglia morphology. BRV showed no effects on Cx43 expression and only limited effects on gap-junctional coupling. Reduction of glial viability by overdose BRV indicates possible toxic effects.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Pedro M. Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Marie-Luise Kümmel
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
94
|
Gu N, Yi MH, Murugan M, Xie M, Parusel S, Peng J, Eyo UB, Hunt CL, Dong H, Wu LJ. Spinal microglia contribute to sustained inflammatory pain via amplifying neuronal activity. Mol Brain 2022; 15:86. [PMID: 36289499 PMCID: PMC9609165 DOI: 10.1186/s13041-022-00970-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in inflammatory pain that could be used for potential therapeutic strategies.
Collapse
Affiliation(s)
- Nan Gu
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.417295.c0000 0004 1799 374XDepartment of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 PR China
| | - Min-Hee Yi
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Madhuvika Murugan
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Manling Xie
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Sebastian Parusel
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jiyun Peng
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Ukpong B. Eyo
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Christine L. Hunt
- grid.417467.70000 0004 0443 9942Department of Pain Medicine, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Hailong Dong
- grid.417295.c0000 0004 1799 374XDepartment of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 PR China
| | - Long-Jun Wu
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
95
|
Hristovska I, Robert M, Combet K, Honnorat J, Comte JC, Pascual O. Sleep decreases neuronal activity control of microglial dynamics in mice. Nat Commun 2022; 13:6273. [PMID: 36271013 PMCID: PMC9586953 DOI: 10.1038/s41467-022-34035-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Microglia, the brain-resident immune cells, are highly ramified with dynamic processes transiently contacting synapses. These contacts have been reported to be activity-dependent, but this has not been thoroughly studied yet, especially in physiological conditions. Here we investigate neuron-microglia contacts and microglia morphodynamics in mice in an activity-dependent context such as the vigilance states. We report that microglial morphodynamics and microglia-spine contacts are regulated by spontaneous and evoked neuronal activity. We also found that sleep modulates microglial morphodynamics through Cx3cr1 signaling. At the synaptic level, microglial processes are attracted towards active spines during wake, and this relationship is hindered during sleep. Finally, microglial contact increases spine activity, mainly during NREM sleep. Altogether, these results indicate that microglial function at synapses is dependent on neuronal activity and the vigilance states, providing evidence that microglia could be important for synaptic homeostasis and plasticity.
Collapse
Affiliation(s)
- I. Hristovska
- INSERM U1314, CNRS UMR5284, MeLiS, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France
| | - M. Robert
- INSERM U1314, CNRS UMR5284, MeLiS, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.414243.40000 0004 0597 9318French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677 Bron, Cedex France
| | - K. Combet
- INSERM U1314, CNRS UMR5284, MeLiS, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France
| | - J. Honnorat
- INSERM U1314, CNRS UMR5284, MeLiS, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.414243.40000 0004 0597 9318French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677 Bron, Cedex France
| | - J-C Comte
- grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.461862.f0000 0004 0614 7222INSERM U1028, CNRS UMR5292, Lyon, France ,Centre de Recherche en Neuroscience de Lyon, Lyon, France
| | - O. Pascual
- INSERM U1314, CNRS UMR5284, MeLiS, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
96
|
Guedes JR, Ferreira PA, Costa JM, Cardoso AL, Peça J. Microglia-dependent remodeling of neuronal circuits. J Neurochem 2022; 163:74-93. [PMID: 35950924 PMCID: PMC9826178 DOI: 10.1111/jnc.15689] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Microglia are tissue-resident macrophages responsible for the surveillance, neuronal support, and immune defense of the brain parenchyma. Recently, the role played by microglia in the formation and function of neuronal circuits has garnered substantial attention. During development, microglia have been shown to engulf neuronal precursors and participate in pruning mechanisms while, in the mature brain, they influence synaptic signaling, provide trophic support and shape synaptic plasticity. Recently, studies have unveiled different microglial characteristics associated with specific brain regions. This emerging view suggests that the maturation and function of distinct neuronal circuits may be potentially associated with the molecular identity microglia adopts across the brain. Here, we review and summarize the known role of these cells in the thalamus, hippocampus, cortex, and cerebellum. We focus on in vivo studies to highlight the characteristics of microglia that may be important in the remodeling of these neuronal circuits and in relation to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Joana R. Guedes
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute of Interdisciplinary Research (IIIUC), University of CoimbraCoimbraPortugal
| | - Pedro A. Ferreira
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Department of Life SciencesUniversity of CoimbraCoimbraPortugal
| | - Jéssica M. Costa
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute of Interdisciplinary Research (IIIUC), University of CoimbraCoimbraPortugal
| | - Ana L. Cardoso
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute of Interdisciplinary Research (IIIUC), University of CoimbraCoimbraPortugal
| | - João Peça
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Department of Life SciencesUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
97
|
Beeken J, Kessels S, Rigo JM, Alpizar YA, Nguyen L, Brône B. p27 kip1 Modulates the Morphology and Phagocytic Activity of Microglia. Int J Mol Sci 2022; 23:10432. [PMID: 36142366 PMCID: PMC9499407 DOI: 10.3390/ijms231810432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.
Collapse
Affiliation(s)
- Jolien Beeken
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Sofie Kessels
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| | | | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Bert Brône
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| |
Collapse
|
98
|
Seillier C, Lesept F, Toutirais O, Potzeha F, Blanc M, Vivien D. Targeting NMDA Receptors at the Neurovascular Unit: Past and Future Treatments for Central Nervous System Diseases. Int J Mol Sci 2022; 23:ijms231810336. [PMID: 36142247 PMCID: PMC9499580 DOI: 10.3390/ijms231810336] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The excitatory neurotransmission of the central nervous system (CNS) mainly involves glutamate and its receptors, especially N-methyl-D-Aspartate receptors (NMDARs). These receptors have been extensively described on neurons and, more recently, also on other cell types. Nowadays, the study of their differential expression and function is taking a growing place in preclinical and clinical research. The diversity of NMDAR subtypes and their signaling pathways give rise to pleiotropic functions such as brain development, neuronal plasticity, maturation along with excitotoxicity, blood-brain barrier integrity, and inflammation. NMDARs have thus emerged as key targets for the treatment of neurological disorders. By their large extracellular regions and complex intracellular structures, NMDARs are modulated by a variety of endogenous and pharmacological compounds. Here, we will present an overview of NMDAR functions on neurons and other important cell types involved in the pathophysiology of neurodegenerative, neurovascular, mental, autoimmune, and neurodevelopmental diseases. We will then discuss past and future development of NMDAR targeting drugs, including innovative and promising new approaches.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
| | - Flavie Lesept
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Olivier Toutirais
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU, 14000 Caen, France
| | - Fanny Potzeha
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Manuel Blanc
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, 14000 Caen, France
- Correspondence:
| |
Collapse
|
99
|
Pan Y, Monje M. Neuron-Glial Interactions in Health and Brain Cancer. Adv Biol (Weinh) 2022; 6:e2200122. [PMID: 35957525 PMCID: PMC9845196 DOI: 10.1002/adbi.202200122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Indexed: 01/28/2023]
Abstract
Brain tumors are devastating diseases of the central nervous system. Brain tumor pathogenesis depends on both tumor-intrinsic oncogenic programs and extrinsic microenvironmental factors, including neurons and glial cells. Glial cells (oligodendrocytes, astrocytes, and microglia) make up half of the cells in the brain, and interact with neurons to modulate neurodevelopment and plasticity. Many brain tumor cells exhibit transcriptomic profiles similar to macroglial cells (oligodendrocytes and astrocytes) and their progenitors, making them likely to subvert existing neuron-glial interactions to support tumor pathogenesis. For example, oligodendrocyte precursor cells, a putative glioma cell of origin, can form bona fide synapses with neurons. Such synapses are recently identified in gliomas and drive glioma pathophysiology, underscoring how brain tumor cells can take advantage of neuron-glial interactions to support cancer progression. In this review, it is briefly summarized how neurons and their activity normally interact with glial cells and glial progenitors, and it is discussed how brain tumor cells utilize neuron-glial interactions to support tumor initiation and progression. Unresolved questions on these topics and potential avenues to therapeutically target neuron-glia-cancer interactions in the brain are also pointed out.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center,co-corresponding: ;
| | - Michelle Monje
- Department of Neurology, Stanford University,Howard Hughes Medical Institute, Stanford University,co-corresponding: ;
| |
Collapse
|
100
|
Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci Bull 2022; 39:368-378. [PMID: 35976535 PMCID: PMC10043090 DOI: 10.1007/s12264-022-00937-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 10/15/2022] Open
Abstract
Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.
Collapse
|