51
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
52
|
Pace SA, Christensen C, Schackmuth MK, Wallace T, McKlveen JM, Beischel W, Morano R, Scheimann JR, Wilson SP, Herman JP, Myers B. Infralimbic cortical glutamate output is necessary for the neural and behavioral consequences of chronic stress. Neurobiol Stress 2020; 13:100274. [PMID: 33344727 PMCID: PMC7739189 DOI: 10.1016/j.ynstr.2020.100274] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
Exposure to prolonged stress is a major risk-factor for psychiatric disorders such as generalized anxiety and major depressive disorder. Human imaging studies have identified structural and functional abnormalities in the prefrontal cortex of subjects with depression and anxiety disorders, particularly Brodmann's area 25 (BA25). Further, deep brain stimulation of BA25 reduces symptoms of treatment-resistant depression. The rat homolog of BA25 is the infralimbic cortex (IL), which is critical for cognitive appraisal, executive function, and physiological stress reactivity. Previous studies indicate that the IL undergoes stress-induced changes in excitatory/inhibitory balance culminating in reduced activity of glutamate output neurons. However, the regulatory role of IL glutamate output in mood-related behaviors after chronic variable stress (CVS) is unknown. Here, we utilized a lentiviral-packaged small-interfering RNA to reduce translation of vesicular glutamate transporter 1 (vGluT1 siRNA), thereby constraining IL glutamate output. This viral-mediated gene transfer was used in conjunction with a quantitative anatomical analysis of cells expressing the stable immediate-early gene product FosB/ΔFosB, which accumulates in response to repeated neural activation. Through assessment of FosB/ΔFosB-expressing neurons across the frontal lobe in adult male rats, we mapped regions altered by chronic stress and determined the coordinating role of the IL in frontal cortical plasticity. Specifically, CVS-exposed rats had increased density of FosB/ΔFosB-expressing cells in the IL and decreased density in the insula. The latter effect was dependent on IL glutamate output. Next, we examined the interaction of CVS and reduced IL glutamate output in behavioral assays examining coping, anxiety-like behavior, associative learning, and nociception. IL glutamate knockdown decreased immobility during the forced swim test compared to GFP controls, both in rats exposed to CVS as well as rats without previous stress exposure. Further, vGluT1 siRNA prevented CVS-induced avoidance behaviors, while also reducing risk aversion and passive coping. Ultimately, this study identifies the necessity of IL glutamatergic output for regulating frontal cortical neural activity and behavior following chronic stress. These findings also highlight how disruption of excitatory/inhibitory balance within specific frontal cortical cell populations may impact neurobehavioral adaptation and lead to stress-related disorders.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica M. McKlveen
- National Institutes of Health, National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | - Will Beischel
- Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Morano
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jessie R. Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Steven P. Wilson
- Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - James P. Herman
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
53
|
Alshammari TK, Alghamdi HM, Alduhailan HE, Saja MF, Alrasheed NM, Alshammari MA. Examining the central effects of chronic stressful social isolation on rats. Biomed Rep 2020; 13:56. [PMID: 33123370 PMCID: PMC7583698 DOI: 10.3892/br.2020.1363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022] Open
Abstract
Stress-related disorders are extremely complex and current treatment strategies have limitations. The present study investigated alternative pathological mechanisms using a combination of multiple environmental approaches with biochemical and molecular tools. The aim of the present study was to evaluate blood-brain-barrier (BBB) integrity in socially manipulated animal housing conditions. Multiple environmentally-related models were employed in the current study. The main model proposed (chronically isolated rats) was biochemically validated using the level of peripheral corticosterone. The current study examined and compared the mRNA levels of certain inflammatory and BBB markers in the hippocampal tissue of chronically isolated rats, including claudin-5 (cldn5) and tight junction protein (tjp). Animals were divided into four groups: i) Standard housed rats (controls); ii) chronically isolated rats; iii) control rats treated with fluoxetine, which is a standard selective serotonin reuptake inhibitor; and iv) isolated rats treated with fluoxetine. To further examine the effect of environmental conditions on BBB markers, the current study assessed BBB markers in enriched environmental (EE) housing and short-term isolation conditions. The results demonstrated a significant increase in cldn5 and tjp levels in the chronically isolated group. Despite some anomalous results, alterations in mRNA levels were further confirmed in EE housing conditions compared with chronically isolated rats. This trend was also observed in rats subjected to short-term isolation compared with paired controls. Additionally, levels of IL-6, an inflammatory marker associated with neuroinflammation, were markedly increased in the isolated group. However, treatment with fluoxetine treatment reversed these effects. The results indicated that BBB integrity may be compromised in stress-related disorders, highlighting a need for further functional studies on the kinetics of BBB in stress-related models.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Hajar M Alghamdi
- Pharmacology and Toxicology Graduate Program, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Hessa E Alduhailan
- Department of Pharmacology and Toxicology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Maha F Saja
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Nouf M Alrasheed
- Department of Pharmacology and Toxicology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
54
|
Fournier AP, Baudron E, Wagnon I, Aubert P, Vivien D, Neunlist M, Bardou I, Docagne F. Environmental enrichment alleviates the deleterious effects of stress in experimental autoimmune encephalomyelitis. Mult Scler J Exp Transl Clin 2020; 6:2055217320959806. [PMID: 33101703 PMCID: PMC7550951 DOI: 10.1177/2055217320959806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
Background Clinical observations support the hypothesis that stressful events increase
relapse occurrence in multiple sclerosis patients, while stress-reduction
strategies can modulate this effect. However, a direct cause-effect
relationship between stress level and relapse cannot be firmly established
from these data. Objectives The purpose of this work was to address whether modulation of stress could
interfere with symptom relapse in an animal model of multiple sclerosis with
relapsing-remitting course. Methods Mice bred in standard or enriched environment were subjected to repeated
acute stress during the remission phase of relapsing-remitting PLP-induced
experimental autoimmune encephalomyelitis. Results We report that repeated acute stress induced a twofold increase in relapse
incidence in experimental autoimmune encephalomyelitis. On the other hand,
environmental enrichment reduced relapse incidence and severity, and
reversed the effects of repeated acute stress. Conclusion These data provide the platform for further studies on the biological
processes that link stress and multiple sclerosis relapses in a suitable
animal model.
Collapse
Affiliation(s)
- Antoine Philippe Fournier
- Normandie Univ, Unicaen, Inserm, Physiopathology and Imaging of Neurological Disorders, Cyceron Centre, Institut Blood and Brain@Caen-Normandie, Caen, France
| | - Erwan Baudron
- Normandie Univ, Unicaen, Inserm, Physiopathology and Imaging of Neurological Disorders, Cyceron Centre, Institut Blood and Brain@Caen-Normandie, Caen, France
| | - Isabelle Wagnon
- Normandie Univ, Unicaen, Inserm, Physiopathology and Imaging of Neurological Disorders, Cyceron Centre, Institut Blood and Brain@Caen-Normandie, Caen, France
| | - Philippe Aubert
- Université de Nantes, Inserm, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Denis Vivien
- Normandie Univ, Unicaen, Inserm, Physiopathology and Imaging of Neurological Disorders, Cyceron Centre, Institut Blood and Brain@Caen-Normandie, Caen, France
| | - Michel Neunlist
- Université de Nantes, Inserm, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Isabelle Bardou
- Normandie Univ, Unicaen, Inserm, Physiopathology and Imaging of Neurological Disorders, Cyceron Centre, Institut Blood and Brain@Caen-Normandie, Caen, France
| | - Fabian Docagne
- Normandie Univ, Unicaen, Inserm, Physiopathology and Imaging of Neurological Disorders, Cyceron Centre, Institut Blood and Brain@Caen-Normandie, Caen, France
| |
Collapse
|
55
|
Stazi M, Wirths O. Physical activity and cognitive stimulation ameliorate learning and motor deficits in a transgenic mouse model of Alzheimer's disease. Behav Brain Res 2020; 397:112951. [PMID: 33027669 DOI: 10.1016/j.bbr.2020.112951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Epidemiological studies suggest that physical exercise or cognitive stimulation might contribute to lower the risk of developing dementia disorders such as Alzheimer's disease (AD). Here, we used the well-established enrichment environment (EE) paradigm to study the impact of prolonged physical activity and cognitive stimulation in a mouse model of AD overexpressing only Aβ4-42 peptides. These mice display age-dependent memory and motor deficits, in the absence of human amyloid precursor protein (APP) overexpression. We demonstrate that housing under EE conditions leads to an entire preservation of recognition and spatial memory, as well as a rescue of motor deficits in this mouse model. Moreover, we find that Tg4-42hom mice present a typical floating phenotype in the Morris water maze task that could be completely ameliorated upon long-term EE housing. Our findings are in line with epidemiological studies suggesting that physical activity and cognitive stimulation might represent efficient strategies to prevent age-related neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Martina Stazi
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany.
| |
Collapse
|
56
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
57
|
Poon CH, Heng BC, Lim LW. New insights on brain-derived neurotrophic factor epigenetics: from depression to memory extinction. Ann N Y Acad Sci 2020; 1484:9-31. [PMID: 32808327 DOI: 10.1111/nyas.14458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Advances in characterizing molecular profiles provide valuable insights and opportunities for deciphering the neuropathology of depression. Although abnormal brain-derived neurotrophic factor (BDNF) expression in depression has gained much support from preclinical and clinical research, how it mediates behavioral alterations in the depressed state remains largely obscure. Environmental factors contribute significantly to the onset of depression and produce robust epigenetic changes. Epigenetic regulation of BDNF, as one of the most characterized gene loci in epigenetics, has recently emerged as a target in research on memory and psychiatric disorders. Specifically, epigenetic alterations of BDNF exons are heavily involved in mediating memory functions and antidepressant effects. In this review, we discuss key research on stress-induced depression from both preclinical and clinical studies, which revealed that differential epigenetic regulation of specific BDNF exons is associated with depression pathophysiology. Considering that BDNF has a central role in depression, we argue that memory extinction, an adaptive response to fear exposure, is dependent on BDNF modulation and holds promise as a prospective target for alleviating or treating depression and anxiety disorders.
Collapse
Affiliation(s)
- Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.,Department of Biological Sciences, Sunway University, Selangor, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Selangor, Malaysia
| |
Collapse
|
58
|
Wu Y, Mitra R. Prefrontal-hippocampus plasticity reinstated by an enriched environment during stress. Neurosci Res 2020; 170:360-363. [PMID: 32710912 DOI: 10.1016/j.neures.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
Chronic stress causes dendritic atrophy of neurons within the hippocampus and medial prefrontal cortex. In this report, we show that chronic stress leads to reduced long-term potentiation in the pathway from the hippocampus to the medial prefrontal cortex of rats; and that such reduction is rescued by enriched housing environment. Connectivity between the hippocampus and medial prefrontal cortex is proposed to be an essential substrate that is often compromised in several psychiatric disorders. Our observations suggest that a short period of complexity in the housing environment has the potential to protect the functional integrity of this important connection.
Collapse
Affiliation(s)
- You Wu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755 Singapore
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755 Singapore.
| |
Collapse
|
59
|
Delanogare E, de Souza RM, Rosa GK, Guanabara FG, Rafacho A, Moreira ELG. Enriched environment ameliorates dexamethasone effects on emotional reactivity and metabolic parameters in mice. Stress 2020; 23:466-473. [PMID: 32107952 DOI: 10.1080/10253890.2020.1735344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Convincing evidence shows that stress is associated with the development and course of psychiatric and metabolic disorders. The hypothalamic-pituitary-adrenal (HPA) axis mediates the stress response, a cascade of events that culminate in the release of glucocorticoids from the adrenal cortex. Chronic hypercortisolism typically characterizes stress-related illnesses, such as depression, anxiety, and metabolic syndrome. Considering previous studies pointing that environmental enrichment (EE) mitigates the deleterious effects of stress on neurobiological systems, we hypothesized that EE can confer resiliency against prolonged glucocorticoid administration-induced behavioral and metabolic alterations in mice. In this regard, three-month-old male Swiss mice were exposed to a four-week period of standard environment (SE) or EE. After this period, still in the respective environments, dexamethasone was administered intraperitoneally (i.p.) at a dose of 4 mg/kg, for 21 consecutive days, in order to generate the emotional-related behavioral outcomes, as previously described. It is demonstrated herein that EE prevents the dexamethasone-induced anxiety-like and passive stress-coping behaviors, as observed in the open field and tail suspension tests. Moreover, EE mitigated the hyperproteinemia and body weight loss induced by excess dexamethasone and decreased basal glucose levels. Taken together, these results support the hypothesis that EE attenuates the effects of chronic administration of synthetic glucocorticoids in mice, a strategy that may be translated to the clinical perspective.
Collapse
Affiliation(s)
- Eslen Delanogare
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Raul Marin de Souza
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Giovana Karoline Rosa
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Fernando Garcia Guanabara
- Hospital Universitário Polydoro Ernani de São Thiago, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Eduardo Luiz Gasnhar Moreira
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianopolis, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
60
|
Orock A, Louwies T, Yuan T, Greenwood-Van Meerveld B. Environmental enrichment prevents chronic stress-induced brain-gut axis dysfunction through a GR-mediated mechanism in the central nucleus of the amygdala. Neurogastroenterol Motil 2020; 32:e13826. [PMID: 32084303 PMCID: PMC7906280 DOI: 10.1111/nmo.13826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cognitive behavioral therapy (CBT) improves quality of life of patients with irritable bowel syndrome (IBS), a disorder characterized by chronic visceral pain and abnormal bowel habits. Whether CBT can actually improve visceral pain in IBS patients is still unknown. The aim of this study is to evaluate whether environment enrichment (EE), the animal analog of CBT, can prevent stress-induced viscero-somatic hypersensitivity through changes in glucocorticoid receptor (GR) signaling within the central nucleus of the amygdala (CeA). METHODS Rats were housed in either standard housing (SH) or EE for 7 days before and during daily water avoidance stress (WAS) exposure (1-h/d for 7 days). In the first cohort, visceral and somatic sensitivity were assessed via visceromotor response to colorectal distention and von Frey Anesthesiometer 24 hous and 21 days after WAS. In another cohort, the CeA was isolated for GR mRNA quantification. KEY RESULTS Environment enrichment for 7 days before and during the 7 days of WAS persistently attenuated visceral and somatic hypersensitivity when compared to rats placed in SH. Environment enrichment exposure also prevented the WAS-induced decrease in GR expression in the CeA. CONCLUSION & INFERENCES Pre-exposure to short-term EE prevents the stress-induced downregulation of GR, and inhibits visceral and somatic hypersensitivity induced by chronic stress. These results suggest that a positive environment can ameliorate stress-induced pathology and provide a non-pharmacological therapeutic option for disorders such as IBS.
Collapse
Affiliation(s)
- A Orock
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - T Louwies
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - T Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK,,Department of Veterans Affairs Health Care System, Oklahoma City, OK.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
61
|
Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 2020; 10:132. [PMID: 32376819 PMCID: PMC7203017 DOI: 10.1038/s41398-020-0806-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Although the etiology and expression of psychiatric disorders are complex, mammals show biologically preserved behavioral and neurobiological responses to valent stimuli which underlie the use of rodent models of post-traumatic stress disorder (PTSD). PTSD is a complex phenotype that is difficult to model in rodents because it is diagnosed by patient interview and influenced by both environmental and genetic factors. However, given that PTSD results from traumatic experiences, rodent models can simulate stress induction and disorder development. By manipulating stress type, intensity, duration, and frequency, preclinical models reflect core PTSD phenotypes, measured through various behavioral assays. Paradigms precipitate the disorder by applying physical, social, and psychological stressors individually or in combination. This review discusses the methods used to trigger and evaluate PTSD-like phenotypes. It highlights studies employing each stress model and evaluates their translational efficacies against DSM-5, validity criteria, and criteria proposed by Yehuda and Antelman's commentary in 1993. This is intended to aid in paradigm selection by informing readers about rodent models, their benefits to the clinical community, challenges associated with the translational models, and opportunities for future work. To inform PTSD model validity and relevance to human psychopathology, we propose that models incorporate behavioral test batteries, individual differences, sex differences, strain and stock differences, early life stress effects, biomarkers, stringent success criteria for drug development, Research Domain Criteria, technological advances, and cross-species comparisons. We conclude that, despite the challenges, animal studies will be pivotal to advances in understanding PTSD and the neurobiology of stress.
Collapse
Affiliation(s)
- Alexander Verbitsky
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
62
|
Gutzeit VA, Ahuna K, Santos TL, Cunningham AM, Sadsad Rooney M, Muñoz Zamora A, Denny CA, Donaldson ZR. Optogenetic reactivation of prefrontal social neural ensembles mimics social buffering of fear. Neuropsychopharmacology 2020; 45:1068-1077. [PMID: 32035426 PMCID: PMC7162965 DOI: 10.1038/s41386-020-0631-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Social buffering occurs when the presence of a companion attenuates the physiological and/or behavioral effects of a stressful or fear-provoking event. It represents a way in which social interactions can immediately and potently modulate behavior. As such, social buffering is one mechanism by which strong social support increases resilience to mental illness. Although the behavioral and neuroendocrine impacts of social buffering are well studied in multiple species, including humans, the neuronal underpinnings of this behavioral phenomenon remain largely unexplored. Previous work has shown that the infralimbic prefrontal cortex (IL-PFC) is important for processing social information and, in separate studies, for modulating fear and anxiety. Thus, we hypothesized that socially active cells within the IL-PFC may integrate social information to modulate fear responsivity. To test this hypothesis, we employed social buffering paradigms in male and female mice. Similar to prior studies in rats, we found that the presence of a cagemate reduced freezing in fear- and anxiety-provoking contexts. In accordance with previous work, we demonstrated that interaction with a novel or familiar conspecific induces activity in the IL-PFC as evidenced by increased immediate early gene (IEG) expression. We then utilized an activity-dependent tagging murine line, the ArcCreERT2 mice, to express channelrhodopsin (ChR2) in neurons active during the social encoding of a new cagemate. We found that optogenetic reactivation of these socially active neuronal ensembles phenocopied the effects of cagemate presence in male and female mice in learned and innate fear contexts without being inherently rewarding or altering locomotion. These data suggest that a social neural ensemble within the IL-PFC may contribute to social buffering of fear. These neurons may represent a novel therapeutic target for fear and anxiety disorders.
Collapse
Affiliation(s)
- Vanessa A. Gutzeit
- 000000041936877Xgrid.5386.8Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065 USA
| | - Kylia Ahuna
- 0000000096214564grid.266190.aDepartment of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Tabia L. Santos
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549 USA
| | - Ashley M. Cunningham
- 0000 0001 0670 2351grid.59734.3cMt. Sinai School of Medicine, New York, NY 10029 USA
| | | | - Andrea Muñoz Zamora
- 0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY 10032 USA ,0000 0000 8499 1112grid.413734.6Division of Systems Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032 USA
| | - Christine A. Denny
- 0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY 10032 USA ,0000 0000 8499 1112grid.413734.6Division of Systems Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032 USA
| | - Zoe R. Donaldson
- 0000000096214564grid.266190.aDepartment of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309 USA ,0000000096214564grid.266190.aDepartment of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|
63
|
Almeida FB, Nin MS, Barros HMT. The role of allopregnanolone in depressive-like behaviors: Focus on neurotrophic proteins. Neurobiol Stress 2020; 12:100218. [PMID: 32435667 PMCID: PMC7231971 DOI: 10.1016/j.ynstr.2020.100218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Allopregnanolone (3α,5α-tetrahydroprogesterone; pharmaceutical formulation: brexanolone) is a neurosteroid that has recently been approved for the treatment of postpartum depression, promising to fill part of a long-lasting gap in the effectiveness of pharmacotherapies for depressive disorders. In this review, we explore the experimental research that characterized the antidepressant-like effects of allopregnanolone, with a particular focus on the neurotrophic adaptations induced by this neurosteroid in preclinical studies. We demonstrate that there is a consistent decrease in allopregnanolone levels in limbic brain areas in rodents submitted to stress-induced models of depression, such as social isolation and chronic unpredictable stress. Further, both the drug-induced upregulation of allopregnanolone or its direct administration reduce depressive-like behaviors in models such as the forced swim test. The main drugs of interest that upregulate allopregnanolone levels are selective serotonin reuptake inhibitors (SSRIs), which present the neurosteroidogenic property even in lower, non-SSRI doses. Finally, we explore how these antidepressant-like behaviors are related to neurogenesis, particularly in the hippocampus. The protagonist in this mechanism is likely the brain-derived neurotrophic factor (BFNF), which is decreased in animal models of depression and may be restored by the normalization of allopregnanolone levels. The role of an interaction between GABA and the neurotrophic mechanisms needs to be further investigated.
Collapse
Key Words
- 3α,5α-tetrahydroprogesterone
- BDNF
- BDNF, brain-derived neurotrophic factor
- Brexanolone
- CSF, cerebrospinal fluid
- CUS, chronic unpredictable stress
- Depression
- EKR, extracellular signal-regulated kinase
- FST, forced swim test
- GABA, γ-aminobutyric acid
- GABAAR, GABA type A receptor
- HSD, hydroxysteroid dehydrogenase
- NGF, nerve growth factor
- Neurosteroid
- PTSD, post-traumatic stress disorder
- PXR, pregnane xenobiotic receptor
- SBSS, selective brain steroidogenic stimulant
- SSRI, selective serotonin reuptake inhibitor
- Selective brain steroidogenic stimulant
- THP, tetrahydroprogesterone
- TSPO, 18 kDa translocator protein
- TrkB, tropomyosin receptor kinase B
- USV, ultrasonic vocalization
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| | - Maurício Schüler Nin
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil.,Centro Universitário Metodista do IPA, 90420-060, Porto Alegre, RS, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul (UFRGS), 90040-060, Porto Alegre, RS, Brazil
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
64
|
Carnevali L, Montano N, Tobaldini E, Thayer JF, Sgoifo A. The contagion of social defeat stress: Insights from rodent studies. Neurosci Biobehav Rev 2020; 111:12-18. [DOI: 10.1016/j.neubiorev.2020.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/03/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
|
65
|
Teissier A, Gaspar P. [How early life impacts emotional behaviour in adulthood]. Med Sci (Paris) 2020; 36:218-221. [PMID: 32228838 DOI: 10.1051/medsci/2020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anne Teissier
- Institut du Fer à Moulin, Inserm UMRS 839 /Sorbonne Université, Paris, France - Institut de Psychiatrie et Neurosciences de Paris, Inserm UMRS 1266, Paris, France - Institut du Cerveau et de la Moelle épinière, CHU Pitié-Salpêtrière, 75013 Paris, France
| | - Patricia Gaspar
- Institut du Fer à Moulin, Inserm UMRS 839 /Sorbonne Université, Paris, France - Institut de Psychiatrie et Neurosciences de Paris, Inserm UMRS 1266, Paris, France - Institut du Cerveau et de la Moelle épinière, CHU Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
66
|
Li R, Wang X, Lin F, Song T, Zhu X, Lei H. Mapping accumulative whole-brain activities during environmental enrichment with manganese-enhanced magnetic resonance imaging. Neuroimage 2020; 210:116588. [PMID: 32004718 DOI: 10.1016/j.neuroimage.2020.116588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
An enriched environment (EE) provides multi-dimensional stimuli to the brain. EE exposure for days to months induces functional and structural neuroplasticity. In this study, manganese-enhanced magnetic resonance imaging (MEMRI) was used to map the accumulative whole-brain activities associated with a 7-day EE exposure in freely-moving adult male mice, followed by c-Fos immunochemical assessments. Relative to the mice residing in a standard environment (SE), the mice subjected to EE treatment had significantly enhanced regional MEMRI signal intensities in the prefrontal cortex, somatosensory cortices, basal ganglia, amygdala, motor thalamus, lateral hypothalamus, ventral hippocampus and midbrain dopaminergic areas at the end of the 7-day exposure, likely attributing to enhanced Mn2+ uptake/transport associated with brain activities at both the regional and macroscale network levels. Some of, but not all, the brain regions in the EE-treated mice showing enhanced MEMRI signal intensity had accompanying increases in c-Fos expression. The EE-treated mice were also found to have significantly increased overall amount of food consumption, decreased body weight gain and upregulated tyrosine hydroxylase (TH) expression in the midbrain dopaminergic areas. Taken together, these results demonstrated that the 7-day EE exposure was associated with elevated cumulative activities in the nigrostriatal, mesolimbic and corticostriatal circuits underpinning reward, motivation, cognition, motor control and appetite regulation. Such accumulative activities might have served as the substrate of EE-related neuroplasticity and the beneficial effects of EE treatment on neurological/psychiatric conditions including drug addiction, Parkinson's disease and eating disorder.
Collapse
Affiliation(s)
- Ronghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Tao Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xutao Zhu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
67
|
Victoriano G, Santos-Costa N, Mascarenhas DC, Nunes-de-Souza RL. Inhibition of the left medial prefrontal cortex (mPFC) prolongs the social defeat-induced anxiogenesis in mice: Attenuation by NMDA receptor blockade in the right mPFC. Behav Brain Res 2020; 378:112312. [PMID: 31629003 DOI: 10.1016/j.bbr.2019.112312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Chemical inhibition and nitrergic stimulation of the left and right medial prefrontal cortex (L and RmPFC), respectively, provoke anxiety in mice. Moreover, LmPFC inhibition immediately followed by a single social defeat stress (SDS) led to anxiogenesis in mice exposed to the elevated plus maze (EPM) 24 h later. Given that glutamate NMDA (N-methyl-D-aspartate) receptors are densely present in the mPFC, we investigated (i) the time course of LmPFC inhibition + SDS-induced anxiogenesis and (ii) the effects of intra-RmPFC injection of AP-7 (a NMDA receptor antagonist) on this long-lasting anxiety. Male Swiss mice received intra-LmPFC injection of CoCl2 (1 mM) and 10 min later were subjected to a single SDS episode and then (i) exposed to the EPM 2, 5, or 10 days later or (ii) 2 days later, received intra-RmPFC injection of AP-7 (0.05 nmol) and were exposed to the EPM to observe the percentage of open arm entries and time (%OE; %OT) and frequency of closed arm entries (CE). Dorsal but not ventral LmPFC inhibition + SDS reduced open arm exploration 2, 5, and 10 days later relative to that of saline-treated or non-defeated mice. Moreover, this effect is not due to locomotor impairment as assessed using the general activity. Intra-RmPFC AP-7 injection 2 days after LmPFC inhibition + SDS prevented this type of anxiogenesis. These results suggest that the integrity of the LmPFC is important for mice to properly cope with SDS, and that NMDA receptor blockade in the RmPFC facilitates resilience to SDS-induced anxiogenesis in mice.
Collapse
Affiliation(s)
- Gabriel Victoriano
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Nathália Santos-Costa
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Diego Cardozo Mascarenhas
- School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil.
| |
Collapse
|
68
|
Worley NB, Varela JA, Gaillardetz GP, Hill MN, Christianson JP. Monoacylglycerol lipase alpha inhibition alters prefrontal cortex excitability and blunts the consequences of traumatic stress in rat. Neuropharmacology 2020; 166:107964. [PMID: 31954713 DOI: 10.1016/j.neuropharm.2020.107964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/03/2020] [Accepted: 01/11/2020] [Indexed: 02/01/2023]
Abstract
Neural activity within the ventromedial prefrontal cortex (vmPFC) is a critical determinant of stressor-induced anxiety. Pharmacological activation of the vmPFC during stress protects against stress-induced social anxiety suggesting that altering the excitatory/inhibitory (E/I) tone in the vmPFC may promote stress resilience. E/I balance is maintained, in part, by endogenous cannabinoid (eCB) signaling with the calcium dependent retrograde release of 2-arachidonoylglycerol (2-AG) suppressing presynaptic neurotransmitter release. We hypothesized that raising 2-AG levels, via inhibition of its degradation enzyme monoacylglycerol lipase (MAGL) with KML29, would shift vmPFC E/I balance and promote resilience. In acute slice experiments, bath application of KML29 (100 nM) augmented evoked excitatory neurotransmission as evidenced by a left-shift in fEPSP I/O curve, and decreased sIPSC amplitude. In whole-cell recordings, KML29 increased resting membrane potential but reduced the after depolarization, bursting rate, membrane time constant and slow after hyperpolarization. Intra-vmPFC administration of KML29 (200ng/0.5μL/hemisphere) prior to inescapable stress (IS) exposure (25, 5s tail shocks) prevented stress induced anxiety as measured by juvenile social exploration 24 h after stressor exposure. Conversely, systemic administration of KML29 (40 mg/kg, i.p.) 2 h before IS exacerbated stress induced anxiety. MAGL inhibition in the vmPFC may promote resilience by augmenting the output of neurons that project to brainstem and limbic structures that mediate stress responses.
Collapse
Affiliation(s)
- N B Worley
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA.
| | - J A Varela
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - G P Gaillardetz
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - M N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - J P Christianson
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
69
|
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D. Serotonergic Plasticity in the Dorsal Raphe Nucleus Characterizes Susceptibility and Resilience to Anhedonia. J Neurosci 2020; 40:569-584. [PMID: 31792153 PMCID: PMC6961996 DOI: 10.1523/jneurosci.1802-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic stress induces anhedonia in susceptible but not resilient individuals, a phenomenon observed in humans as well as animal models, but the molecular mechanisms underlying susceptibility and resilience are not well understood. We hypothesized that the serotonergic system, which is implicated in stress, reward, and antidepressant therapy, may play a role. We found that plasticity of the serotonergic system contributes to the differential vulnerability to stress displayed by susceptible and resilient animals. Stress-induced anhedonia was assessed in adult male rats using social defeat and intracranial self-stimulation, while changes in serotonergic phenotype were investigated using immunohistochemistry and in situ hybridization. Susceptible, but not resilient, rats displayed an increased number of neurons expressing the biosynthetic enzyme for serotonin, tryptophan-hydroxylase-2 (TPH2), in the ventral subnucleus of the dorsal raphe nucleus (DRv). Further, a decrease in the number of DRv glutamatergic (VGLUT3+) neurons was observed in all stressed rats. This neurotransmitter plasticity is activity-dependent, as was revealed by chemogenetic manipulation of the central amygdala, a stress-sensitive nucleus that forms a major input to the DR. Activation of amygdalar corticotropin-releasing hormone (CRH)+ neurons abolished the increase in DRv TPH2+ neurons and ameliorated stress-induced anhedonia in susceptible rats. These findings show that activation of amygdalar CRH+ neurons induces resilience, and suppresses the gain of serotonergic phenotype in the DRv that is characteristic of susceptible rats. This molecular signature of vulnerability to stress-induced anhedonia and the active nature of resilience could be targeted to develop new treatments for stress-related disorders like depression.SIGNIFICANCE STATEMENT Depression and other mental disorders can be induced by chronic or traumatic stressors. However, some individuals are resilient and do not develop depression in response to chronic stress. A complete picture of the molecular differences between susceptible and resilient individuals is necessary to understand how plasticity of limbic circuits is associated with the pathophysiology of stress-related disorders. Using a rodent model, our study identifies a novel molecular marker of susceptibility to stress-induced anhedonia, a core symptom of depression, and a means to modulate it. These findings will guide further investigation into cellular and circuit mechanisms of resilience, and the development of new treatments for depression.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Christiana J Stark
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Maria N Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Lily Luo
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
70
|
Calpe-López C, García-Pardo MP, Martínez-Caballero MA, Santos-Ortíz A, Aguilar MA. Behavioral Traits Associated With Resilience to the Effects of Repeated Social Defeat on Cocaine-Induced Conditioned Place Preference in Mice. Front Behav Neurosci 2020; 13:278. [PMID: 31998090 PMCID: PMC6962131 DOI: 10.3389/fnbeh.2019.00278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022] Open
Abstract
The relationship between stress and drug use is well demonstrated. Stress-induced by repeated social defeat (RSD) enhances the conditioned place preference (CPP) induced by cocaine in mice. The phenomenon of resilience understood as the ability of subjects to overcome the negative effects of stress is the focus of increasing interest. Our aim is to characterize the behavior of resilient animals with respect to the effects of RSD on the CPP induced by cocaine. To this end, 25 male C57BL/6 mice were exposed to stress by RSD during late adolescence, while other 15 male mice did not undergo stress (controls). On the 2 days following the last defeat, all the animals carried out the elevated plus maze (EPM) and Hole Board, Social Interaction, Tail Suspension and Splash tests. Three weeks later, all the animals performed the CPP paradigm with a low dose of cocaine (1 mg/kg). Exposure to RSD decreased all measurements related to the open arms of the EPM. It also reduced social interaction, immobility in the tail suspension test (TST) and grooming in the splash test. RSD exposure also increased the sensitivity of the mice to the rewarding effects of cocaine, since only defeated animals acquired CPP. Several behavioral traits were related to resilience to the potentiating effect of RSD on cocaine CPP. Mice that showed less submission during defeat episodes, a lower percentage of time in the open arms of the EPM, low novelty-seeking, high social interaction, greater immobility in the TST and a higher frequency of grooming were those that were resilient to the long-term effects of social defeat on cocaine reward since they behaved like controls and did not develop CPP. These results suggest that the behavioral profile of resilient defeated mice is characterized by an active coping response during episodes of defeat, a greater concern for potential dangers, less reactivity in a situation of inevitable moderate stress and fewer depressive-like symptoms after stress. Determining the neurobehavioral substrates of resilience is the first step towards developing behavioral or pharmacological interventions that increase resilience in individuals at a high risk of suffering from stress.
Collapse
Affiliation(s)
- Claudia Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Pilar García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - Maria Angeles Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Alejandra Santos-Ortíz
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Asunción Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| |
Collapse
|
71
|
Watanasriyakul WT, Normann MC, Akinbo OI, Colburn W, Dagner A, Grippo AJ. Protective neuroendocrine effects of environmental enrichment and voluntary exercise against social isolation: evidence for mediation by limbic structures. Stress 2019; 22:603-618. [PMID: 31134849 PMCID: PMC6690777 DOI: 10.1080/10253890.2019.1617691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Previous research indicates that loneliness and social isolation may contribute to behavioral disorders and neurobiological dysfunction. Environmental enrichment (EE), including both cognitive and physical stimulation, may prevent some behavioral, endocrine, and cardiovascular consequences of social isolation; however, specific neural mechanisms for these benefits are still unclear. Therefore, this study examined potential neuroendocrine protective effects of both EE and exercise. Adult female prairie voles were randomly assigned to one of four experimental conditions: paired control, social isolation/sedentary, social isolation/EE, and social isolation/voluntary exercise. All isolated animals were housed individually for 8 weeks, while paired animals were housed with their respective sibling for 8 weeks. Animals in the EE and voluntary exercise conditions received EE items (including a running wheel) and a running wheel only, respectively, at week 4 of the isolation period. At the end of the experiment, plasma and brains were collected from all animals for corticosterone and FosB and delta FosB (FosB/ΔFosB) - immunoreactivity in stress-related brain regions. Overall, social isolation increased neuroendocrine stress responses, as reflected by the elevation of corticosterone levels and increased FosB/ΔFosB-immunoreactivity in the basolateral amygdala (BLA) compared to paired animals; EE and voluntary exercise attenuated these increases. EE and exercise also increased FosB/ΔFosB-immunoreactivity in the medial prefrontal cortex (mPFC) compared to other conditions. Limbic structures statistically mediated hypothalamic immunoreactivity in EE and exercise animals. This research has translational value for socially isolated individuals by informing our understanding of neural mechanisms underlying responses to social stressors. Highlights Prolonged social isolation increased basal corticosterone levels and basolateral amygdala immunoreactivity. Environmental enrichment and exercise buffered corticosterone elevations and basolateral amygdala hyperactivity. Protective effects of environmental enrichment and exercise may be mediated by medial prefrontal cortex and limbic structures.
Collapse
Affiliation(s)
| | - Marigny C Normann
- a Department of Psychology, Northern Illinois University , DeKalb , IL , USA
| | - Oreoluwa I Akinbo
- a Department of Psychology, Northern Illinois University , DeKalb , IL , USA
| | - William Colburn
- a Department of Psychology, Northern Illinois University , DeKalb , IL , USA
| | - Ashley Dagner
- a Department of Psychology, Northern Illinois University , DeKalb , IL , USA
| | - Angela J Grippo
- a Department of Psychology, Northern Illinois University , DeKalb , IL , USA
| |
Collapse
|
72
|
Highland JN, Zanos P, Georgiou P, Gould TD. Group II metabotropic glutamate receptor blockade promotes stress resilience in mice. Neuropsychopharmacology 2019; 44:1788-1796. [PMID: 30939596 PMCID: PMC6785136 DOI: 10.1038/s41386-019-0380-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/14/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Stress is a leading risk factor for the onset and recurrence of major depression. Enhancing stress resilience may be a therapeutic strategy to prevent the development of depression in at-risk populations or its recurrence in depressed patients. Group II metabotropic glutamate receptor (mGlu2/3) antagonists have been recognized for antidepressant-like actions in preclinical models, but have not been evaluated for prophylactic effects. We assessed the role of mGlu2/3 in modulating stress resilience using subtype-specific knockout mice lacking mGlu2 (Grm2-/-) or mGlu3 (Grm3-/-), and pharmacological manipulations of mGlu2/3 activity during or prior to the induction and reinstatement of stress-induced behavioral deficits. Grm2-/-, but not Grm3-/-, mice exhibited reduced forced-swimming test immobility time and were resilient to developing inescapable shock (IES)-induced escape deficits. Grm2-/- mice were also resilient to developing corticosterone (CORT)-induced escape deficits and chronic social defeat stress-induced anhedonia. Pharmacological blockade of mGlu2/3 with the antagonist LY341495 during stress prevented the development of IES- and CORT-induced escape deficits, while activation with the agonist LY379268 increased susceptibility to escape deficits. Prophylactic treatment with the LY341495, both systemically and via microinjection into the medial prefrontal cortex (mPFC), up to 7 days before IES, prevented both the induction of escape deficits and their reinstatement by brief re-exposure to IES up to 20 days after treatment. Overall, blockade of mGlu2/3 enhanced stress resilience and deletion of mGlu2, but not mGlu3, conferred a stress-resilient phenotype, indicating that prophylactic treatments reducing mGlu2 activity may protect against stress-induced changes underlying the development or recurrence of stress-induced disorders, including depression.
Collapse
Affiliation(s)
- Jaclyn N. Highland
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA ,0000 0001 2175 4264grid.411024.2Program in Toxicology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Panos Zanos
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Polymnia Georgiou
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Todd D. Gould
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA ,0000 0001 2175 4264grid.411024.2Program in Toxicology, University of Maryland School of Medicine, Baltimore, MD USA ,0000 0001 2175 4264grid.411024.2Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD USA ,0000 0001 2175 4264grid.411024.2Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD USA ,0000 0000 9558 9225grid.417125.4Veterans Affairs Maryland Health Care System, Baltimore, MD USA
| |
Collapse
|
73
|
Bonnefil V, Dietz K, Amatruda M, Wentling M, Aubry AV, Dupree JL, Temple G, Park HJ, Burghardt NS, Casaccia P, Liu J. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. eLife 2019; 8:40855. [PMID: 31407664 PMCID: PMC6692108 DOI: 10.7554/elife.40855] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Exposure to stress increases the risk of developing mood disorders. While a subset of individuals displays vulnerability to stress, others remain resilient, but the molecular basis for these behavioral differences is not well understood. Using a model of chronic social defeat stress, we identified region-specific differences in myelination between mice that displayed social avoidance behavior (‘susceptible’) and those who escaped the deleterious effect to stress (‘resilient’). Myelin protein content in the nucleus accumbens was reduced in all mice exposed to stress, whereas decreased myelin thickness and internodal length were detected only in the medial prefrontal cortex (mPFC) of susceptible mice, with fewer mature oligodendrocytes and decreased heterochromatic histone marks. Focal demyelination in the mPFC was sufficient to decrease social preference, which was restored following new myelin formation. Together these data highlight the functional role of mPFC myelination as critical determinant of the avoidance response to traumatic social experiences. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). High levels of stress do not have the same effect on everybody: some individuals can show resilience and recover quickly, while other struggle to cope. Scientists have started to investigate how these differences may find their origin in biological processes, mainly by focusing on the role of neurons. However, neurons represent only one type of brain cells, and there is increasing evidence that interactions between neuronal and non-neuronal cells play an important role in the response to stress. Oligodendrocytes are a common type of non-neuronal cells which shield and feed nerve cells. In particular, their membrane constitutes the myelin sheath, a protective coating that insulates neurons and allows them to better communicate with each other using electric signals. Bonnefil et al. explored whether differences in oligodendrocytes could affect how mice responded to social stress. The rodents were exposed to repeated attacks from an aggressive mouse five minutes a day for ten days. After this period, ‘susceptible’ mice then avoided future contact with any other mice, while resilient animals remained interested in socializing. Comparing the brain areas of resilient and susceptible mice revealed differences in the oligodendrocytes of the medial prefrontal cortex, the part of the brain that controls emotions and thinking. Susceptible animals had fewer mature oligodendrocytes and their neurons were covered in thinner and shorter segments of myelin sheaths. There was also evidence that, in these animals, the genes that regulate the maturation of oligodendrocytes were more likely to be switched off. Taken together, these results may suggest that, in certain animals, social stress disrupts the genetic program that controls how oligodendrocytes develop, potentially leading to neurons communicating less well. To explore whether reduced amounts of myelin could be linked to decreased social behavior, Bonnefil et al. then damaged the myelin in the medial prefrontal cortex in another group of rodents. The mice were then less willing to interact with other animals until new sheaths had formed. The results by Bonnefil et al. undercover how changes in non-neuronal cells can at least in part explain differences in the way individuals respond to stress. Ultimately, this knowledge may be useful to design new strategies to foster resilience.
Collapse
Affiliation(s)
- Valentina Bonnefil
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Karen Dietz
- Department of Neuroscience, Icahn School of Medicine, New York, United States.,Friedman Brain Institute, Icahn School of Medicine, New York, United States
| | - Mario Amatruda
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Maureen Wentling
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Antonio V Aubry
- Department of Psychology, Hunter College, City University, New York, United States
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, United States
| | - Gary Temple
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Hye-Jin Park
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Nesha S Burghardt
- Department of Psychology, Hunter College, City University, New York, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States.,Department of Neuroscience, Icahn School of Medicine, New York, United States.,Friedman Brain Institute, Icahn School of Medicine, New York, United States
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| |
Collapse
|
74
|
Gubert C, Hannan AJ. Environmental enrichment as an experience-dependent modulator of social plasticity and cognition. Brain Res 2019; 1717:1-14. [DOI: 10.1016/j.brainres.2019.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/11/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
|
75
|
Díez-León M, Kitchenham L, Duprey R, Bailey CDC, Choleris E, Lewis M, Mason G. Neurophysiological correlates of stereotypic behaviour in a model carnivore species. Behav Brain Res 2019; 373:112056. [PMID: 31288059 DOI: 10.1016/j.bbr.2019.112056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Stereotypic behaviour (SB) is common in animals housed in farm, zoo or laboratory conditions, including captive Carnivora (e.g. wild ursids and felids). Neurobiological data on housing-induced SBs come from four species (macaques, two rodent species, and horses), and suggest basal ganglia (BG) dysfunction. We investigated whether similar patterns occur in Carnivora via a model, American mink, because their SB is distinctive in form and timing. We raised 32 males in non-enriched (NE) or enriched (E) cages for 2 years, and assessed two forms of SB: 1) Carnivora-typical locomotor-and-whole-body ('loco') SBs (e.g. pacing, weaving); 2) scrabbling with the forepaws. Neuronal activity was analysed via cytochrome oxidase (CO) staining of the dorsal striatum (caudate; putamen), globus pallidus (externus, GPe; internus, GPi), STN, and nucleus accumbens (NAc); and the GPe:GPi ratio (GPr) calculated to assess relative activation of direct and indirect pathways. NE mink stereotyped more, and had lower GPr CO-staining indicating relatively lower indirect pathway activation. However, no single BG area was affected by housing and nor did GPr values covary with SB. Independent of housing, elevated NAc CO-staining predicted more loco SB, while scrabbling, probably because it negatively correlated with loco SB, negatively covaried with NAc CO-staining in NE subjects. These results thus implicate the NAc in individual differences in mink SB. However, because they cannot explain why NE subjects showed more SB, they provide limited support for the BG dysfunction hypothesis for this species' housing-induced SB. More research is therefore needed to understand how barren housing causes SB in captive Carnivora.
Collapse
Affiliation(s)
- M Díez-León
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, UK.
| | - L Kitchenham
- Department of Animal Biosciences, University of Guelph, Canada
| | - R Duprey
- Department of Psychiatry, University of Florida, USA
| | - C D C Bailey
- Department of Biomedical Sciences, University of Guelph, Canada
| | - E Choleris
- Department of Psychology, University of Guelph, Canada
| | - M Lewis
- Department of Psychiatry, University of Florida, USA
| | - G Mason
- Department of Animal Biosciences, University of Guelph, Canada
| |
Collapse
|
76
|
The Behavioral Sequelae of Social Defeat Require Microglia and Are Driven by Oxidative Stress in Mice. J Neurosci 2019; 39:5594-5605. [PMID: 31085604 DOI: 10.1523/jneurosci.0184-19.2019] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic social defeat (CSD) in male mice can produce anxiety and aberrant socialization. Animals susceptible to CSD show activation of microglia, which have elevated levels of oxidative stress markers. We hypothesized that microglia and reactive oxygen species (ROS) production contribute to the CSD stress-induced changes in affective behavior. First, we selectively depleted microglia (99%) by administering the CSF1R (colony-stimulating factor 1 receptor) antagonist PLX5622 before and during the 14 d CSD procedure. Microglia-depleted mice in contrast to nondepleted mice were protected from the stress effects measured by light/dark and social interaction tests. ROS production, measured histochemically following dihydroethidium administration, was elevated by CSD, and the production was reduced to basal levels in mice lacking microglia. The deleterious stress effects were also blocked in nondepleted mice by continuous intracerebral administration of N-acetylcysteine (NAC), a ROS inhibitor. In a second experiment, at the end of the CSD period, PLX5622 was discontinued to allow microglial repopulation. After 14 d, the brain had a full complement of newly generated microglia. At this time, the mice that had previously been protected now showed behavioral deficits, and their brain ROS production was elevated, both in all brain cells and in repopulated microglia. NAC administration during repopulation prevented the behavioral decline in the repopulated mice, and it supported behavioral recovery in nondepleted stressed mice. The data suggest that microglia drive elevated ROS production during and after stress exposure. This elevated ROS activity generates a central state supporting dysregulated affect, and it hinders the restoration of behavioral and neurochemical homeostasis after stress cessation.SIGNIFICANCE STATEMENT Chronic psychosocial stress is associated with psychiatric disorders such as depression and anxiety. Understanding the details of CNS cellular contributions to stress effects could lead to the development of intervention strategies. Inflammation and oxidative stress are positively linked to depression severity, but the cellular nature of these processes is not clear. The chronic social defeat (CSD) paradigm in mice produces mood alterations and microglial activation characterized by elevated reactive oxygen species (ROS) production. The depletion of microglia or ROS inhibition prevented adverse stress effects. Microglial repopulation of the brain post-CSD reintroduced adverse stress effects, and ROS inhibition in this phase protected against the effects. The results suggest that stress-induced microglial ROS production drives a central state that supports dysregulated affective behavior.
Collapse
|
77
|
Moreno-Jiménez EP, Jurado-Arjona J, Ávila J, Llorens-Martín M. The Social Component of Environmental Enrichment Is a Pro-neurogenic Stimulus in Adult c57BL6 Female Mice. Front Cell Dev Biol 2019; 7:62. [PMID: 31080799 PMCID: PMC6497743 DOI: 10.3389/fcell.2019.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
In rodents, the hippocampal dentate gyrus gives rise to newly generated dentate granule cells (DGCs) throughout life. This process, named adult hippocampal neurogenesis (AHN), converges in the functional integration of mature DGCs into the trisynaptic hippocampal circuit. Environmental enrichment (EE) is one of the most potent positive regulators of AHN. This paradigm includes the combination of three major stimulatory components, namely increased physical activity, constant cognitive stimulation, and higher social interaction. In this regard, the pro-neurogenic effects of physical activity and cognitive stimulation have been widely addressed in adult rodents. However, the pro-neurogenic potential of the social aspect of EE has been less explored to date. Here we tackled this question by specifically focusing on the effects of a prolonged period of social enrichment (SE) in adult female C57BL6 mice. To this end, 7-week-old mice were housed in groups of 12 per cage for 8 weeks. These mice were compared with others housed under control housing (2–3 mice per cage) or EE (12 mice per cage plus running wheels and toys) conditions during the same period. We analyzed the number and morphology of Doublecortin-expressing (DCX+) cells. Moreover, using RGB retroviruses that allowed the labeling of three populations of newborn DGCs of different ages in the same mouse, we performed morphometric, immunohistochemical, and behavioral determinations. Both SE and EE increased the number and maturation of DCX+ cells, and caused an increase in dendritic maturation in certain populations of newborn DGCs. Moreover, both manipulations increased exploratory behavior in the Social Interaction test. Unexpectedly, our data revealed the potent neurogenesis-stimulating potential of SE in the absence of any further cognitive stimulation or increase in physical activity. Given that an increase in physical activity is strongly discouraged under certain circumstances, our findings may be relevant in the context of enhancing AHN via physical activity-independent mechanisms.
Collapse
Affiliation(s)
- Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jerónimo Jurado-Arjona
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
78
|
Sudo N. Role of gut microbiota in brain function and stress-related pathology. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2019; 38:75-80. [PMID: 31384518 PMCID: PMC6663509 DOI: 10.12938/bmfh.19-006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
Gut microbiota are responsible for a variety of metabolic activities including food digestion and production of biologically active substances. Moreover, several recent works, including our own, have also shown that gut microbiota play an important role not only in the development of brain function but also in the pathology of stress-related diseases and neurodevelopmental disorders. In this review, we focus on the interaction between gut microbes and the brain-gut axis and introduce some basic concepts and recent developments in this area of research.
Collapse
Affiliation(s)
- Nobuyuki Sudo
- 1Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
79
|
Exposure to enriched environment rescues anxiety-like behavior and miRNA deregulated expression induced by perinatal malnutrition while altering oligodendrocyte morphology. Neuroscience 2019; 408:115-134. [PMID: 30904666 DOI: 10.1016/j.neuroscience.2019.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Maternal malnutrition is one of the major early-life adversities affecting the development of newborn's brain and is associated with an increased risk to acquire cognitive and emotional deficiencies later in life. Studies in rodents have demonstrated that exposure to an enriched environment (EE) can reverse the negative consequences of early adversities. However, rescue of emotional disorders caused by perinatal malnutrition and the mechanisms involved has not been determined. We hypothesized that exposure to an EE may attenuate the anxiety-like disorders observed in mice subjected to perinatal protein malnutrition and that this could be mediated by epigenetic mechanisms. Male CF-1 mice were subject to perinatal protein malnutrition until weaning and then exposed to an EE for 5 weeks after which small RNA-seq was performed. In parallel, dark-light box and elevated plus maze tests were conducted to evaluate anxiety traits. We found that exposure to an EE reverses the anxiety-like behavior in malnourished mice. This reversal is paralleled by the expression of three miRNAs that become dysregulated by perinatal malnutrition (miR-187-3p, miR-369-3p and miR-132-3p). The predicted mRNA targets of these miRNAs are mostly related to axon guidance pathway. Accordingly, we also found that perinatal malnutrition leads to reduction in the cingulum size and altered oligodendrocyte morphology. These results suggest that EE-rescue of anxiety disorders derived from perinatal malnutrition is mediated by the modulation of miRNAs associated with the regulation of genes involved in axonal guidance.
Collapse
|
80
|
Peña CJ, Nestler EJ, Bagot RC. Environmental Programming of Susceptibility and Resilience to Stress in Adulthood in Male Mice. Front Behav Neurosci 2019; 13:40. [PMID: 30881296 PMCID: PMC6405694 DOI: 10.3389/fnbeh.2019.00040] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Epidemiological evidence identifies early life adversity as a significant risk factor for the development of mood disorders. Much evidence points to the role of early life experience in susceptibility and, to a lesser extent, resilience, to stress in adulthood. While many models of these phenomena exist in the literature, results are often conflicting and a systematic comparison of multiple models is lacking. Here, we compare effects of nine manipulations spanning the early postnatal through peri-adolescent periods, both at baseline and following exposure to chronic social defeat stress in adulthood, in male mice. By applying rigorous criteria across three commonly used measures of depression- and anxiety-like behavior, we identify manipulations that increase susceptibility to subsequent stress in adulthood and other pro-resilient manipulations that mitigate the deleterious consequences of adult stress. Our findings point to the importance of timing of early life stress and provide the foundation for future studies to probe the neurobiological mechanisms of risk and resilience conferred by variation in the early life environment.
Collapse
Affiliation(s)
- Catherine Jensen Peña
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rosemary C Bagot
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
81
|
Ventral CA3 Activation Mediates Prophylactic Ketamine Efficacy Against Stress-Induced Depressive-like Behavior. Biol Psychiatry 2018; 84:846-856. [PMID: 29615190 PMCID: PMC6107435 DOI: 10.1016/j.biopsych.2018.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND We previously reported that a single injection of ketamine prior to stress protects against the onset of depressive-like behavior and attenuates learned fear. However, the molecular pathways and brain circuits underlying ketamine-induced stress resilience are still largely unknown. METHODS Here, we tested whether prophylactic ketamine administration altered neural activity in the prefrontal cortex and/or hippocampus. Mice were injected with saline or ketamine (30 mg/kg) 1 week before social defeat. Following behavioral tests assessing depressive-like behavior, mice were sacrificed and brains were processed to quantify ΔFosB expression. In a second set of experiments, mice were stereotaxically injected with viral vectors into ventral CA3 (vCA3) in order to silence or overexpress ΔFosB prior to prophylactic ketamine administration. In a third set of experiments, ArcCreERT2 mice, a line that allows for the indelible labeling of neural ensembles activated by a single experience, were used to quantify memory traces representing a contextual fear conditioning experience following prophylactic ketamine administration. RESULTS Prophylactic ketamine administration increased ΔFosB expression in the ventral dentate gyrus and vCA3 of social defeat mice but not of control mice. Transcriptional silencing of ΔFosB activity in vCA3 inhibited prophylactic ketamine efficacy, while overexpression of ΔFosB mimicked and occluded ketamine's prophylactic effects. In ArcCreERT2 mice, ketamine administration altered memory traces representing the contextual fear conditioning experience in vCA3 but not in the ventral dentate gyrus. CONCLUSIONS Our data indicate that prophylactic ketamine may be protective against a stressor by altering neural activity, specifically the neural ensembles representing an individual stressor in vCA3.
Collapse
|
82
|
Dulka BN, Bress KS, Grizzell JA, Cooper MA. Social Dominance Modulates Stress-induced Neural Activity in Medial Prefrontal Cortex Projections to the Basolateral Amygdala. Neuroscience 2018; 388:274-283. [PMID: 30075245 DOI: 10.1016/j.neuroscience.2018.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Stress is a contributing factor in the etiology of several mood and anxiety disorders, and social defeat models are used to investigate the biological basis of stress-related psychopathologies. Male Syrian hamsters are highly aggressive and territorial, but after social defeat they exhibit a conditioned defeat (CD) response which is characterized by increased submissive behavior and a failure to defend their home territory against a smaller, non-aggressive intruder. Hamsters with dominant social status show increased c-Fos expression in the infralimbic (IL) cortex following social defeat and display a reduced CD response at testing compared to subordinates and controls. In this study, we tested the prediction that dominants would show increased defeat-induced neural activity in IL, but not prelimbic (PL) or ventral hippocampus (vHPC), neurons that send efferent projections to the basolateral amygdala (BLA) compared to subordinates. We performed dual immunohistochemistry for c-Fos and cholera toxin B (CTB) and found that dominants display a significantly greater proportion of double-labeled c-Fos + CTB cells in both the IL and PL. Furthermore, dominants display more c-Fos-positive cells in both the IL and PL, but not vHPC, compared to subordinates. These findings suggest that dominant hamsters selectively activate IL and PL, but not vHPC, projections to the amygdala during social defeat, which may be responsible for their reduced CD response. This project extends our understanding of the neural circuits underlying resistance to social stress, which is an important step toward delineating a circuit-based approach for the prevention and treatment of stress-related psychopathologies.
Collapse
Affiliation(s)
- Brooke N Dulka
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States.
| | - Kimberly S Bress
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| | - J Alex Grizzell
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| | - Matthew A Cooper
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| |
Collapse
|
83
|
Mul JD, Soto M, Cahill ME, Ryan RE, Takahashi H, So K, Zheng J, Croote DE, Hirshman MF, la Fleur SE, Nestler EJ, Goodyear LJ. Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens ΔFosB. Neuropsychopharmacology 2018; 43:1934-1942. [PMID: 29875450 PMCID: PMC6046059 DOI: 10.1038/s41386-018-0103-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/26/2018] [Accepted: 05/16/2018] [Indexed: 11/09/2022]
Abstract
Elucidating mechanisms by which physical exercise promotes resilience, the brain's ability to cope with prolonged stress exposure while maintaining normal psychological functioning, is a major research challenge given the high prevalence of stress-related mental disorders, including major depressive disorder. Chronic voluntary wheel running (VWR), a rodent model that mimics aspects of human physical exercise, induces the transcription factor ΔFosB in the nucleus accumbens (NAc), a key reward-related brain area. ΔFosB expression in NAc modulates stress susceptibility. Here, we explored whether VWR induction of NAc ΔFosB promotes resilience to chronic social defeat stress (CSDS). Male young-adult C57BL/6J mice were single housed for up to 21 d with or without running wheels and then subjected to 10 d of CSDS. Stress-exposed sedentary mice developed a depressive-like state, characterized by anhedonia and social avoidance, whereas stress-exposed mice that had been wheel running showed resilience. Functional inhibition of NAc ΔFosB during VWR, by viral-mediated overexpression of a transcriptionally inactive JunD mutant, reinstated susceptibility to CSDS. Within the NAc, VWR induction of ΔFosB was CREB-dependent, associated with altered dendritic morphology, and medium spiny neuron (MSN) subtype specific in the NAc core and shell subregions. Finally, when mice performed VWR following the onset of CSDS-induced social avoidance, VWR normalized such behavior. These data indicate that VWR promoted resilience to CSDS, and suggest that sustained induction of ΔFosB in the NAc underlies, at least in part, the stress resilience mediated by VWR. These findings provide a potential framework for the development of treatments for stress-associated mental illnesses based on physical exercise.
Collapse
Affiliation(s)
- Joram D Mul
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Amsterdam, The Netherlands.
| | - Marion Soto
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Michael E Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rebecca E Ryan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Hirokazu Takahashi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kawai So
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jia Zheng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Denise E Croote
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, 1105 AZ, Amsterdam, The Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Medicine, Brigham, and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
84
|
Lehmann ML, Weigel TK, Cooper HA, Elkahloun AG, Kigar SL, Herkenham M. Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Sci Rep 2018; 8:11240. [PMID: 30050134 PMCID: PMC6062609 DOI: 10.1038/s41598-018-28737-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023] Open
Abstract
An animal's ability to cope with or succumb to deleterious effects of chronic psychological stress may be rooted in the brain's immune responses manifested in microglial activity. Mice subjected to chronic social defeat (CSD) were categorized as susceptible (CSD-S) or resilient (CSD-R) based on behavioral phenotyping, and their microglia were isolated and analyzed by microarray. Microglia transcriptomes from CSD-S mice were enriched for pathways associated with inflammation, phagocytosis, oxidative stress, and extracellular matrix remodeling. Histochemical experiments confirmed the array predictions: CSD-S microglia showed elevated phagocytosis and oxidative stress, and the brains of CSD-S but not CSD-R or non-stressed control mice showed vascular leakage of intravenously injected fluorescent tracers. The results suggest that the inflammatory profile of CSD-S microglia may be precipitated by extracellular matrix degradation, oxidative stress, microbleeds, and entry and phagocytosis of blood-borne substances into brain parenchyma. We hypothesize that these CNS-centric responses contribute to the stress-susceptible behavioral phenotype.
Collapse
Affiliation(s)
- Michael L Lehmann
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA.
| | - Thaddeus K Weigel
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Hannah A Cooper
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Abdel G Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stacey L Kigar
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
85
|
Shimizu T, Minami C, Mitani A. Effect of electrical stimulation of the infralimbic and prelimbic cortices on anxiolytic-like behavior of rats during the elevated plus-maze test, with particular reference to multiunit recording of the behavior-associated neural activity. Behav Brain Res 2018; 353:168-175. [PMID: 30057351 DOI: 10.1016/j.bbr.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Abstract
Fear and anxiety affect the activities of daily living and require concerted management, such as coping strategies, to preserve quality of life. The infralimbic (IL) and prelimbic (PL) medial prefrontal cortices have been implicated in the regulation of fear- and anxiety-like behavior, but their roles in overcoming fear- and anxiety-like behavior remain unknown. We investigated the anxiolytic-like effects of electrical stimulation of the IL and PL cortices in rats during the elevated plus-maze test. IL stimulation led to a significantly higher percentage of time spent and entries in the open arms, whereas PL stimulation did not have any significant behavioral effects. Subsequently, we recorded multiunit activity from the IL and PL cortices in rats using a wireless telemetry device, to determine whether activation of the IL occurs when rats enter the open arms in the elevated plus-maze test. The firing rate of IL neurons increased 1-3 s prior to entry from the closed arm to the open arm, whereas there were no corresponding changes in the firing rate of PL neurons. Taken together, the present findings suggest that the IL plays a key role in exerting active action to overcome anxiety-like behavior.
Collapse
Affiliation(s)
- Tomoko Shimizu
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chihiro Minami
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Mitani
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
86
|
Chen CC, Lu J, Yang R, Ding JB, Zuo Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol Psychiatry 2018; 23:1614-1625. [PMID: 28761082 PMCID: PMC5794672 DOI: 10.1038/mp.2017.159] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Stress, a prevalent experience in modern society, is a major risk factor for many psychiatric disorders. Although sensorimotor abnormalities are often present in these disorders, little is known about how stress affects the sensory cortex. Combining behavioral analyses with in vivo synaptic imaging, we show that stressful experiences lead to progressive, clustered loss of dendritic spines along the apical dendrites of layer (L) 5 pyramidal neurons (PNs) in the mouse barrel cortex, and such spine loss closely associates with deteriorated performance in a whisker-dependent texture discrimination task. Furthermore, the activity of parvalbumin-expressing inhibitory interneurons (PV+ INs) decreases in the stressed mouse due to reduced excitability of these neurons. Importantly, both behavioral defects and structural changes of L5 PNs are prevented by selective pharmacogenetic activation of PV+INs in the barrel cortex during stress. Finally, stressed mice raised under environmental enrichment (EE) maintain normal activation of PV+ INs, normal texture discrimination, and L5 PN spine dynamics similar to unstressed EE mice. Our findings suggest that the PV+ inhibitory circuit is crucial for normal synaptic dynamics in the mouse barrel cortex and sensory function. Pharmacological, pharmacogenetic and environmental approaches to prevent stress-induced maladaptive behaviors and synaptic malfunctions converge on the regulation of PV+ IN activity, pointing to a potential therapeutic target for stress-related disorders.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA,Correspondence: Dr. Yi Zuo, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA, , Phone: +1-831-459-3812, Fax: +1-831-459-3139
| |
Collapse
|
87
|
Lopes DA, Souza TM, de Andrade JS, Silva MF, Antunes HK, Sueur-Maluf LL, Céspedes IC, Viana MB. Environmental enrichment decreases avoidance responses in the elevated T-maze and delta FosB immunoreactivity in anxiety-related brain regions. Behav Brain Res 2018; 344:65-72. [DOI: 10.1016/j.bbr.2018.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 01/16/2023]
|
88
|
Scala F, Nenov MN, Crofton EJ, Singh AK, Folorunso O, Zhang Y, Chesson BC, Wildburger NC, James TF, Alshammari MA, Alshammari TK, Elfrink H, Grassi C, Kasper JM, Smith AE, Hommel JD, Lichti CF, Rudra JS, D'Ascenzo M, Green TA, Laezza F. Environmental Enrichment and Social Isolation Mediate Neuroplasticity of Medium Spiny Neurons through the GSK3 Pathway. Cell Rep 2018; 23:555-567. [PMID: 29642012 PMCID: PMC6150488 DOI: 10.1016/j.celrep.2018.03.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/05/2018] [Accepted: 03/14/2018] [Indexed: 11/29/2022] Open
Abstract
Resilience and vulnerability to neuropsychiatric disorders are linked to molecular changes underlying excitability that are still poorly understood. Here, we identify glycogen-synthase kinase 3β (GSK3β) and voltage-gated Na+ channel Nav1.6 as regulators of neuroplasticity induced by environmentally enriched (EC) or isolated (IC) conditions-models for resilience and vulnerability. Transcriptomic studies in the nucleus accumbens from EC and IC rats predicted low levels of GSK3β and SCN8A mRNA as a protective phenotype associated with reduced excitability in medium spiny neurons (MSNs). In vivo genetic manipulations demonstrate that GSK3β and Nav1.6 are molecular determinants of MSN excitability and that silencing of GSK3β prevents maladaptive plasticity of IC MSNs. In vitro studies reveal direct interaction of GSK3β with Nav1.6 and phosphorylation at Nav1.6T1936 by GSK3β. A GSK3β-Nav1.6T1936 competing peptide reduces MSNs excitability in IC, but not EC rats. These results identify GSK3β regulation of Nav1.6 as a biosignature of MSNs maladaptive plasticity.
Collapse
Affiliation(s)
- Federico Scala
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Biophysics Graduate Program, Institute of Human Physiology, Università Cattolica, Rome, Italy
| | - Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Elizabeth J Crofton
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Yafang Zhang
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Brent C Chesson
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Norelle C Wildburger
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thomas F James
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA; Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA; Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - Hannah Elfrink
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Bench Tutorials Program: Scientific Research and Design, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - James M Kasper
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Ashley E Smith
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA; Cell Biology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Cheryl F Lichti
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jai S Rudra
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Thomas A Green
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
89
|
Abstract
OBJECTIVE Stress is linked to negative cardiovascular consequences and increases in depressive behaviors. Environmental enrichment (EE) involves exposure to novel items that provide physical and cognitive stimulation. EE has behavioral, cognitive, and neurobiological effects that may improve stress responses in humans and animal models. This study investigated the potential protective effects of EE on behavior and cardiovascular function in female prairie voles after a social stressor. METHODS Radiotelemetry transmitters were implanted into female prairie voles to measure heart rate (HR) and heart rate variability (HRV) throughout the study. All females were paired with a male partner for 5 days, followed by separation from their partner for 5 additional days, and a 10-day treatment period. Treatment consisted of continued isolation, isolation with EE, or re-pairing with the partner (n = 9 per group). After treatment, animals were observed in the forced swim test (FST) for measures of stress coping behaviors. RESULTS Isolation elevated HR and reduced HRV relative to baseline for all groups (p < .001). HR and HRV returned to baseline in the EE and re-paired groups, but not in the continued isolation group (p < .001). Animals in the EE and re-paired groups displayed significantly lower immobility time (p < .001) and HR (p < .03) during the FST, with a shorter latency for HR to return to baseline levels after the FST, relative to the continued isolation group (p < .001). CONCLUSIONS EE and re-pairing reversed the negative behavioral and cardiovascular consequences associated with social isolation.
Collapse
|
90
|
Mul JD. Voluntary exercise and depression-like behavior in rodents: are we running in the right direction? J Mol Endocrinol 2018; 60:R77-R95. [PMID: 29330149 DOI: 10.1530/jme-17-0165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Acute or chronic exposure to stress can increase the risk to develop major depressive disorder, a severe, recurrent and common psychiatric condition. Depression places an enormous social and financial burden on modern society. Although many depressed patients are treated with antidepressants, their efficacy is only modest, underscoring the necessity to develop clinically effective pharmaceutical or behavioral treatments. Exercise training produces beneficial effects on stress-related mental disorders, indicative of clinical potential. The pro-resilient and antidepressant effects of exercise training have been documented for several decades. Nonetheless, the underlying molecular mechanisms and the brain circuitries involved remain poorly understood. Preclinical investigations using voluntary wheel running, a frequently used rodent model that mimics aspects of human exercise training, have started to shed light on the molecular adaptations, signaling pathways and brain nuclei underlying the beneficial effects of exercise training on stress-related behavior. In this review, I highlight several neurotransmitter systems that are putative mediators of the beneficial effects of exercise training on mental health, and review recent rodent studies that utilized voluntary wheel running to promote our understanding of exercise training-induced central adaptations. Advancements in our mechanistic understanding of how exercise training induces beneficial neuronal adaptations will provide a framework for the development of new strategies to treat stress-associated mental illnesses.
Collapse
Affiliation(s)
- Joram D Mul
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of EndocrinologyDepartment of Clinical Chemistry, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| |
Collapse
|
91
|
Novel approaches to alcohol rehabilitation: Modification of stress-responsive brain regions through environmental enrichment. Neuropharmacology 2018; 145:25-36. [PMID: 29477298 DOI: 10.1016/j.neuropharm.2018.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
Relapse remains the most prominent hurdle to successful rehabilitation from alcoholism. The neural mechanisms underlying relapse are complex, but our understanding of the brain regions involved, the anatomical circuitry and the modulation of specific nuclei in the context of stress and cue-induced relapse have improved significantly in recent years. In particular, stress is now recognised as a significant trigger for relapse, adding to the well-established impact of chronic stress to escalate alcohol consumption. It is therefore unsurprising that the stress-responsive regions of the brain have also been implicated in alcohol relapse, such as the nucleus accumbens, amygdala and the hypothalamus. Environmental enrichment is a robust experimental paradigm which provides a non-pharmacological tool to alter stress response and, separately, alcohol-seeking behaviour and symptoms of withdrawal. In this review, we examine and consolidate the preclinical evidence that alcohol seeking behaviour and stress-induced relapse are modulated by environmental enrichment, and these are primarily mediated by modification of neural activity within the key nodes of the addiction circuitry. Finally, we discuss the limited clinical evidence that stress-reducing approaches such as mindfulness could potentially serve as adjunctive therapy in the treatment of alcoholism. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
|
92
|
Sampedro-Piquero P, Álvarez-Suárez P, Begega A. Coping with Stress During Aging: The Importance of a Resilient Brain. Curr Neuropharmacol 2018; 16:284-296. [PMID: 28925881 PMCID: PMC5843980 DOI: 10.2174/1570159x15666170915141610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/12/2017] [Accepted: 01/01/1970] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Resilience is the ability to achieve a positive outcome when we are in the face of adversity. It supposes an active resistance to adversity by coping mechanisms in which genetic, molecular, neural and environmental factors are involved. Resilience has been usually studied in early ages and few is known about it during aging. METHODS In this review, we will address the age-related changes in the brain mechanisms involved in regulating the stress response. Furthermore, using the EE paradigm, we analyse the resilient potential of this intervention and its neurobiological basis. In this case, we will focus on identifying the characteristics of a resilient brain (modifications in HPA structure and function, neurogenesis, specific neuron types, glia, neurotrophic factors, nitric oxide synthase or microRNAs, among others). RESULTS The evidence suggests that a healthy lifestyle has a crucial role to promote a resilient brain during aging. Along with the behavioral changes described, a better regulation of HPA axis, enhanced levels of postmitotic type-3 cells or changes in GABAergic neurotransmission are some of the brain mechanisms involved in resilience. CONCLUSION Future research should identify different biomarkers that increase the resistance to develop mood disorders and based on this knowledge, develop new potential therapeutic targets.
Collapse
Affiliation(s)
- P. Sampedro-Piquero
- Departamento de Psicobiología y Metodología de las CC, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Spain
| | - P. Álvarez-Suárez
- Institute of Neuroscience of the Principality of Asturias (INEUROPA), Department of Psychology, University of Oviedo, Spain
| | - A. Begega
- Institute of Neuroscience of the Principality of Asturias (INEUROPA), Department of Psychology, University of Oviedo, Spain
| |
Collapse
|
93
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
94
|
Moskal JR, Burgdorf J. Ultrasonic Vocalizations in Rats as a Measure of Emotional Responses to Stress: Models of Anxiety and Depression. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00039-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
95
|
Hemsworth PH. Key determinants of pig welfare: implications of animal management and housing design on livestock welfare. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present review using the pig as a model has highlighted the importance of the design of the housing system on the welfare of farm animals. It has emphasised the need for research on animal welfare in new and modified housing systems, as well as current but contentious systems, to be attentive to the design contributions of these systems to animal welfare. The review has highlighted areas for future research to safeguard sow and piglet welfare, including the following: effective environmental enrichment for gestating sows in intensive, indoor and non-bedded systems; opportunities to increase foraging and feeding times in feed-restricted gestating sows; design features that allow both access to important resources, such as feed, water and a comfortable lying area, and escape opportunities to reduce aggression and minimise risks to the welfare of group-housed sows; and less confined farrowing and lactation systems. The review also shows that animal welfare problems may be less a function of the type of housing system than of how well it operates. The skills, knowledge and motivation of stockpeople to effectively care for and manage their animals are integral to the standard of welfare experienced by their animals. Attitudes influence not only the manner in which stockpeople handle animals, but also their motivation to care for their animals. Thus, training targeting technical skills and knowledge as well as the attitudes and behaviours of stockpeople should be a primary component of the human resource management practices at a farm. While public concerns and policy debates often focus on intensive housing systems, research indicates that the design and management of both indoor and outdoor housing systems is probably more important for animal welfare than is generally recognised.
Collapse
|
96
|
Piña JA, Namba MD, Leyrer-Jackson JM, Cabrera-Brown G, Gipson CD. Social Influences on Nicotine-Related Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:1-32. [DOI: 10.1016/bs.irn.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
97
|
Li M, Xu H, Wang W. An Improved Model of Physical and Emotional Social Defeat: Different Effects on Social Behavior and Body Weight of Adolescent Mice by Interaction With Social Support. Front Psychiatry 2018; 9:688. [PMID: 30618868 PMCID: PMC6297843 DOI: 10.3389/fpsyt.2018.00688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/27/2018] [Indexed: 01/29/2023] Open
Abstract
Social stress is a prevalent etiological environmental factor that can affect health, especially during adolescence. Either experiencing or witnessing a traumatic event during adolescence can increase the risk of psychiatric disorders, such as PTSD. The present study attempted to establish an improved social stress model to better distinguish the effects of physical and emotional social stress on the behavior and physiology of adolescent mice. In addition, we investigated how social support affected these stress-induced changes in social behavior. On PND 28, male littermates were exposed to either physical stress (PS) or emotional stress (ES), afterwards, half of them were paired-housed and the others were singly housed. The PS exposed mice were directly confronted with a violent aggressor using the social defeat stress (SDS) paradigm for 15 min/trial (with the total of 10 trials randomly administered over a week), while the ES exposed mice were placed in a neighboring compartment to witness the PS procedure. Our results indicate that both stressors induced an effective stress response in adolescent mice, but PS and ES had differential influence in the context of relevant social anxiety/fear and social interaction with peers. Additionally, social support following stress exposure exerted beneficial effects on the social anxiety/fear in ES exposed mice, but not on PS exposed mice, suggesting that the type of stressor may affect the intervention efficacy of social support. These findings provide extensive evidence that physical and emotional stressors induce different effects. Moreover, ES exposed mice, rather than PS exposed mice, seemed to benefit from social support. In summary, the study suggests that this paradigm will be helpful in investigating the effects of psychological intervention for the treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Man Li
- Department of Psychology, Tianjin Normal University, Tianjin, China.,Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
98
|
Torres-Reverón A, Rivera LL, Flores I, Appleyard CB. Environmental Manipulations as an Effective Alternative Treatment to Reduce Endometriosis Progression. Reprod Sci 2017; 25:1336-1348. [PMID: 29137551 DOI: 10.1177/1933719117741374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Treatments for endometriosis include pharmacological or surgical procedures that produce significant side effects. We aimed to determine how environmental enrichment (EE) could impact the progression of endometriosis using the autotransplantation rat model. Female rats were exposed to EE (endo-EE: toys and nesting materials, 4 rats per cage, larger area enclosure) or no enrichment (endo-NE: 2 rats per cage) starting on postnatal day 21. After 8 weeks, sham surgery or surgical endometriosis was induced by suturing uterine horn tissue next to the intestinal mesentery, then allowed to progress for 60 days during which EE or NE continued. At the time of killing, we measured anxiety behaviors, collected endometriotic vesicles and uterus, and processed for quantitative real-time polymerase chain reaction for corticotropin-releasing hormone (CRH), urocortin-1, CRH receptors type 1 and type 2, and glucocorticoid receptor (GR). Endometriosis did not affect anxiety-like behaviors, yet rats in enriched conditions showed lower basal anxiety behaviors than the nonenriched group. Importantly, the endo-EE group showed a 28% reduction in the number of endometriosis vesicles and the vesicles were significantly smaller compared to the endo-NE group. Endometriosis increased CRH and GR only in the vesicles of endo-NE, and this increase was dampened in the endo-EE. However, urocortin 1 was increased in the vesicles of the endo-EE group, suggesting different pathways of activation of CRH receptors in this group. Our results suggest that the use of multimodal complementary therapies that reduce stress in endometriosis could be an effective and safe treatment alternative, with minimal side effects.
Collapse
Affiliation(s)
- Annelyn Torres-Reverón
- 1 Division of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico.,2 Department of Biomedical Sciences, Division of Neuroscience, School of Medicine, University of Texas at Rio Grande Valley, Edinburg, TX, USA.,3 Department of Psychiatry and Neurology, School of Medicine, University of Texas at Rio Grande Valley, Edinburg, TX, USA
| | - Leslie L Rivera
- 2 Department of Biomedical Sciences, Division of Neuroscience, School of Medicine, University of Texas at Rio Grande Valley, Edinburg, TX, USA.,3 Department of Psychiatry and Neurology, School of Medicine, University of Texas at Rio Grande Valley, Edinburg, TX, USA
| | - Idhaliz Flores
- 1 Division of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico.,4 Department of Obstetrics and Gynecology, School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Caroline B Appleyard
- 1 Division of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico.,5 Department of Internal Medicine, School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
99
|
Cooper MA, Seddighi S, Barnes AK, Grizzell JA, Dulka BN, Clinard CT. Dominance status alters restraint-induced neural activity in brain regions controlling stress vulnerability. Physiol Behav 2017; 179:153-161. [PMID: 28606772 PMCID: PMC5581240 DOI: 10.1016/j.physbeh.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 01/29/2023]
Abstract
Understanding the cellular mechanisms that control resistance and vulnerability to stress is an important step toward identifying novel targets for the prevention and treatment of stress-related mental illness. In Syrian hamsters, dominant and subordinate animals exhibit different behavioral and physiological responses to social defeat stress, with dominants showing stress resistance and subordinates showing stress vulnerability. We previously found that dominant and subordinate hamsters show different levels of defeat-induced neural activity in brain regions that modulate coping with stress, although the extent to which status-dependent differences in stress vulnerability generalize to non-social stressors is unknown. In this study, dominant, subordinate, and control male Syrian hamsters were exposed to acute physical restraint for 30min and restraint-induced c-Fos immunoreactivity was quantified in select brain regions. Subordinate animals showed less restraint-induced c-Fos immunoreactivity in the infralimbic (IL), prelimbic (PL), and ventral medial amygdala (vMeA) compared to dominants, which is consistent with the status-dependent effects of social defeat stress. Subordinate animals did not show increased c-Fos immunoreactivity in the rostroventral dorsal raphe nucleus (rvDRN), which is in contrast to the effects of social defeat stress. These findings indicate that status-dependent changes in neural activity generalize from one stressor to another in a brain region-dependent manner. These findings further suggest that while some neural circuits may support a generalized form of stress resistance, others may provide resistance to specific stressors.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States.
| | - Sahba Seddighi
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Abigail K Barnes
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - J Alex Grizzell
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Brooke N Dulka
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Catherine T Clinard
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| |
Collapse
|
100
|
Ji MH, Tang H, Luo D, Qiu LL, Jia M, Yuan HM, Feng SW, Yang JJ. Environmental conditions differentially affect neurobehavioral outcomes in a mouse model of sepsis-associated encephalopathy. Oncotarget 2017; 8:82376-82389. [PMID: 29137271 PMCID: PMC5669897 DOI: 10.18632/oncotarget.19595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/18/2017] [Indexed: 12/21/2022] Open
Abstract
Brain dysfunction remains a common complication after sepsis development and is an independent risk factor for a poorer prognosis and an increased mortality. Here we tested the hypothesis that the behavioral outcomes after lipopolysaccharides (LPS) administration are exacerbated by an impoverished environment (IE) and alleviated by an enriched environment (EE), respectively. Mice were randomly allocated in a standard environment (SE), an EE, or an IE for 4 weeks after LPS or normal saline (NS) administration. Neurobehavioral alternations were assessed by the open field, novel objective recognition, and fear conditioning tests. The expressions of proinflammatory cytokines (tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10), ionized calcium-binding adaptor molecule-1 (IBA1)-positive cells as well as glial fibrillary acidic protein (GFAP)-positive cells, brain derived neurotrophic factor (BDNF), 5-bromo-2-deoxyuridine-labeled cells in the dentate gyrus of the hippocampus, and the number of dendritic spines in the hippocampal CA1 were determined. Our results showed that the some of the neurocognitive abnormalities induced by LPS administration can be aggravated by stressful conditions such as IE but alleviated by EE. These neurocognitive alternations were accompanied by significant changes in biomarkers of immune response and hippocampal synaptic plasticity. In summary, our study confirmed the negative impact of IE and the positive effects of EE on the cognitive function after LPS administration, with potential implications to the basis of sepsis-related cognitive impairments in the critically ill patients.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hui Tang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Dan Luo
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Li-Li Qiu
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hong-Mei Yuan
- Department of Anesthesiology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shan-Wu Feng
- Department of Anesthesiology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|