51
|
Zorrilla Zubilete MA, Guelman LR, Maur DG, Caceres LG, Rios H, Zieher LM, Genaro AM. Partial neuroprotection by 17-β-estradiol in neonatal γ-irradiated rat cerebellum. Neurochem Int 2010; 58:273-80. [PMID: 21163312 DOI: 10.1016/j.neuint.2010.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 11/07/2010] [Accepted: 11/25/2010] [Indexed: 11/28/2022]
Abstract
Acute and long-term complications can occur in patients receiving radiation therapy. It has been suggested that cytoprotection might decrease the incidence and severity of therapy-related toxicity in these patients. Developing cerebellum is highly radiosensitive and for that reason it is a useful structure to test potential neuroprotective substances to prevent radiation induced abnormalities. Recent studies have shown that estrogen can rapidly modulate intracellular signalling pathways involved in cell survival. Thus, it has been demonstrated that estrogens mediate neuroprotection by promoting growth, cell survival and by preventing axonal pruning. The aim of this work was to evaluate the effect of the treatment with 17-β-estradiol on the motor, structural and biochemical changes induced by neonatal ionizing radiation exposure, and to investigate the participation of nitric oxide and protein kinase C, two important intracellular messengers involved in neuronal activity. Our results show that perinatal chronic 17-β-estradiol treatment partially protects against radiation-induced cerebellar disorganization and motor abnormalities. PKC and NOS activities could be implicated in its neuroprotective mechanisms. These data provide new evidence about the mechanisms underlying estrogen neuroprotection, which could have therapeutic relevance for patients treated with radiotherapy.
Collapse
Affiliation(s)
- Maria A Zorrilla Zubilete
- 1ª Cátedra de Farmacología-Centro de Investigaciones Farmacológicas y Botánicas Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, Piso 15, 1121 Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
52
|
Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer's disease. J Control Release 2010; 152:208-31. [PMID: 21134407 DOI: 10.1016/j.jconrel.2010.11.033] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/29/2010] [Indexed: 12/15/2022]
Abstract
A rapid increase in incidence of neurodegenerative disorders has been observed with the aging of the population. Alzheimer's disease (AD) is the most common neurodegenerative disorder among the elderly. It is characterized by memory dysfunction, loss of lexical access, spatial and temporal disorientation and impairment of judgement clinically. Unfortunately, clinical development of drugs for the symptomatic and disease-modifying treatment of AD has resulted in both promise and disappointment. Indeed, a large number of drugs with differing targets and mechanisms of action were investigated with only a few of them being clinically available. The targeted drug delivery to the central nervous system (CNS), for the diagnosis and treatment of neurodegenerative disorders such as AD, is restricted due to the limitations posed by the blood-brain barrier (BBB) as well as due to opsonization by plasma proteins in the systemic circulation and peripheral side-effects. Over the last decade, nanoparticle-mediated drug delivery represents one promising strategy to successfully increase the CNS penetration of several therapeutic moieties. Different nanocarriers are being investigated to treat and diagnose AD by delivering at a constant rate a host of therapeutics over times extending up to days, weeks or even months. This review provides a concise incursion on the current pharmacotherapies for AD besides reviewing and discussing the literature on the different drug molecules that have been successfully encapsulated in nanoparticles (NPs). Some of them have been shown to cross the BBB and have been tested either for diagnosis or treatment of AD. Finally, the route of NPs administration and the future prospects will be discussed.
Collapse
Affiliation(s)
- Jasjeet Kaur Sahni
- INRS-Institut Armand-Frappier, 531, boul. des Prairies, H7V 1B7 Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
53
|
Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 2010; 13:1051-85. [PMID: 20136499 DOI: 10.1089/ars.2009.2825] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hormones, growth factors, electrical stimulation, and cell-cell interactions regulate numerous cellular processes by altering the levels of second messengers, thus influencing biochemical reactions inside the cells. The Protein Kinase C family (PKCs) is a group of serine/threonine kinases that are dependent on calcium (Ca(2+)), diacylglycerol, and phospholipids. Signaling pathways that induce variations on the levels of PKC activators have been implicated in the regulation of diverse cellular functions and, in turn, PKCs are key regulators of a plethora of cellular processes, including proliferation, differentiation, and tumorigenesis. Importantly, PKCs contain regions, both in the N-terminal regulatory domain and in the C-terminal catalytic domain, that are susceptible to redox modifications. In several pathophysiological conditions when the balance between oxidants, antioxidants, and alkylants is compromised, cells undergo redox stress. PKCs are cell-signaling proteins that are particularly sensitive to redox stress because modification of their redox-sensitive regions interferes with their activity and, thus, with their biological effects. In this review, we summarize the involvement of PKCs in health and disease and the importance of redox signaling in the regulation of this family of kinases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), BioPharmaNet, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Ha JS, Lim HM, Park SS. Extracellular hydrogen peroxide contributes to oxidative glutamate toxicity. Brain Res 2010; 1359:291-7. [PMID: 20816674 DOI: 10.1016/j.brainres.2010.08.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/26/2022]
Abstract
Oxidative glutamate toxicity is characterized by the inhibition of cystine uptake, the depletion of intracellular glutathione, and increased levels of intracellular reactive oxygen species, factors that lead to neuronal injury. We found that the presence of extracellular catalase protected cultured neuronal cells, such as HT22, SH-SY5Y and PC12 cells, from glutamate-induced cytotoxicity. Extracellular hydrogen peroxide (H₂O₂) accumulated in a time- and concentration-dependent manner in HT22 cells during prolonged exposure to glutamate. To investigate the involvement of NADPH oxidase in glutamate-induced H₂O₂ generation, we used small interference RNA (siRNA). Knockdown of Nox2 and Nox4 expression reduced H₂O₂ accumulation and increased cell survival. siRNA specific for Nox4 reduced the production of H₂O₂ by ~74% compared with control siRNA. Furthermore, H₂O₂ accumulation was also suppressed by U0126, a MEK/ERK inhibitor, in a concentration-dependent manner. These results suggest that glutamate triggers the Nox-dependent generation of extracellular H₂O₂ via ERK1/2 activation, which contributes to oxidative glutamate toxicity.
Collapse
Affiliation(s)
- Jong Seong Ha
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | |
Collapse
|
55
|
Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, Chen NH. Overexpression of alpha-synuclein down-regulates BDNF expression. Cell Mol Neurobiol 2010; 30:939-46. [PMID: 20405200 DOI: 10.1007/s10571-010-9523-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 04/08/2010] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative movement disorder characterized by the selective loss of nigrostriatal dopaminergic neurons. However, the molecular pathways leading to the dopaminergic neuron degeneration have remained obscure until recently. Reports demonstrated that reduction of brain-derived neurotrophic factor (BDNF) was involved in the etiology and pathogenesis of PD, but its mechanism has not been elucidated. alpha-Synuclein has a causal role in Parkinson's disease, and could interfere with transcriptional regulation of dopamine neurons. In this study, alpha-synuclein overexpression was found to decrease the expression of BDNF, and also to suppress the transactivation of nuclear factors of activated T-cells (NFAT) and cAMP response element binding protein (CREB), both of which regulate BDNF expression. Furthermore, overexpressed alpha-synuclein could associate with protein kinase C (PKC) and impair its activity. Meanwhile glycogen synthase kinase-3beta (GSK3beta) was activated and extracellular signal-regulated protein kinase (ERK) activity was inhibited by overexpression of alpha-synuclein; both of them were downstream kinases of PKC. Therefore, the impaired PKC signal pathway caused by alpha-synuclein overexpression might account at least partially for the down-regulation of BDNF.
Collapse
Affiliation(s)
- Yuhe Yuan
- Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
56
|
Alcohol withdrawal and brain injuries: beyond classical mechanisms. Molecules 2010; 15:4984-5011. [PMID: 20657404 PMCID: PMC6257660 DOI: 10.3390/molecules15074984] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 01/12/2023] Open
Abstract
Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol) adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW) provokes the intense generation of reactive oxygen species (ROS) and the activation of stress-responding protein kinases, which are the focus of this review article. EW also inflicts mitochondrial membranes/membrane potential, perturbs redox balance, and suppresses mitochondrial enzymes, all of which impair a fundamental function of mitochondria. Moreover, EW acts as an age-provoking stressor. The vulnerable age to EW stress is not necessarily the oldest age and varies depending upon the target molecule of EW. A major female sex steroid, 17β-estradiol (E2), interferes with the EW-induced alteration of oxidative signaling pathways and thereby protects neurons, mitochondria, and behaviors. The current review attempts to provide integrated information at the levels of oxidative signaling mechanisms by which EW provokes brain injuries and E2 protects against it.
Collapse
|
57
|
Sphingosine kinase-1 (SphK-1) regulates Mycobacterium smegmatis infection in macrophages. PLoS One 2010; 5:e10657. [PMID: 20498849 PMCID: PMC2871783 DOI: 10.1371/journal.pone.0010657] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 04/22/2010] [Indexed: 12/22/2022] Open
Abstract
Sphingosine kinase-1 is known to mediate Mycobacterium smegmatis induced inflammatory responses in macrophages, but its role in controlling infection has not been reported to date. We aimed to unravel the significance of SphK-1 in controlling M. smegmatis infection in RAW 264.7 macrophages. Our results demonstrated for the first time that selective inhibition of SphK-1 by either D, L threo dihydrosphingosine (DHS; a competitive inhibitor of Sphk-1) or Sphk-1 siRNA rendered RAW macrophages sensitive to M. smegmatis infection. This was due to the reduction in the expression of iNOs, p38, pp-38, late phagosomal marker, LAMP-2 and stabilization of the RelA (pp-65) subunit of NF-kappaB. This led to a reduction in the generation of NO and secretion of TNF-alpha in infected macrophages. Congruently, overexpression of SphK-1 conferred resistance in macrophages to infection which was due to enhancement in the generation of NO and expression of iNOs, pp38 and LAMP-2. In addition, our results also unraveled a novel regulation of p38MAPK by SphK-1 during M. smegmatis infection and generation of NO in macrophages. Enhanced NO generation and expression of iNOs in SphK-1++ infected macrophages demonstrated their M-1(bright) phenotype of these macrophages. These findings thus suggested a novel antimycobacterial role of SphK-1 in macrophages.
Collapse
|
58
|
The phosphatidylinositol-3 kinase/Akt pathway mediates geranylgeranylacetone-induced neuroprotection against cerebral infarction in rats. Brain Res 2010; 1330:151-7. [PMID: 20206146 DOI: 10.1016/j.brainres.2010.02.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 11/20/2022]
Abstract
Previous studies demonstrated the cytoprotective effect of geranylgeranylacetone (GGA), a heat shock protein inducer, against ischemic insult. Phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is thought to be an important factor that mediates neuroprotection. However, the signaling pathways in the brain in vivo after oral GGA administration remain unclear. We measured and compared infarction volumes to investigate the effect of GGA on cerebral infarction induced by permanent middle cerebral artery occlusion in rats. We evaluated the effects of pretreatment with 5-hydroxydecanoate (5HD), a specific mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel inhibitor; diazoxide (DZX), a selective mitoK(ATP) channel opener and wortmannin (Wort), a specific PI3K inhibitor of GGA-induced neuroprotection against infarction volumes. To clarify the relationship between PI3K/Akt activation and neuroprotection, we used immunoblot analysis to determine the amount of p-Akt proteins present after GGA administration with or without Wort treatment. Neuroprotective effects of GGA (pretreatment with a single oral GGA dose (800 mg/kg) 48 h before ischemia) were prevented by 5HD, DZX and Wort pretreatment, which indicates that the selective mitoK(ATP) channel and the PI3K/Akt pathway may mediate GGA-dependent protection. Oral GGA-induced p-Akt and GGA pretreatment enhanced ischemia-induced p-Akt, both of which were prevented by Wort pretreatment. These results suggest that a single oral dose of GGA induces p-Akt and that GGA plays an important role in neuroprotection against cerebral ischemia through the mitoK(ATP) channel opening.
Collapse
|
59
|
Sun MK, Alkon DL. Protein kinase C activators as synaptogenic and memory therapeutics. Arch Pharm (Weinheim) 2010; 342:689-98. [PMID: 19899099 DOI: 10.1002/ardp.200900050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The last decade has witnessed a rapid progress in understanding of the molecular cascades that may underlie memory and memory disorders. Among the critical players, activity of protein kinase C (PKC) isoforms is essential for many types of learning and memory and their dysfunction, and is critical in memory disorders. PKC inhibition and functional deficits lead to an impairment of various types of learning and memory, consistent with the observations that neurotoxic amyloid inhibits PKC activity and that transgenic animal models with PKCbeta deficit exhibit impaired capacity in cognition. In addition, PKC isozymes play a regulatory role in amyloid production and accumulation. Restoration of the impaired PKC signal pathway pharmacologically results in an enhanced memory capacity and synaptic remodeling / repair and synaptogenesis, and, therefore, represents a potentially important strategy for the treatment of memory disorders, including Alzheimer's dementia. The PKC activators, especially those that are isozyme-specific, are a new class of drug candidates that may be developed as future memory therapeutics.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Rockville, MD 20850, USA.
| | | |
Collapse
|
60
|
Lewerenz J, Dargusch R, Maher P. Lactacidosis modulates glutathione metabolism and oxidative glutamate toxicity. J Neurochem 2010; 113:502-14. [PMID: 20132475 DOI: 10.1111/j.1471-4159.2010.06621.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lactate and acidosis increase infarct size in humans and in animal models of cerebral ischemia but the mechanisms by which they exert their neurotoxic effects are poorly understood. Oxidative glutamate toxicity is a form of nerve cell death, wherein glutamate inhibits cystine uptake via the cystine/glutamate antiporter system leading to glutathione depletion, accumulation of reactive oxygen species and, ultimately, programmed cell death. Using the hippocampal cell line, HT22, we show that lactate and acidosis exacerbate oxidative glutamate toxicity and further decrease glutathione levels. Acidosis but not lactate inhibits system , whereas both acidosis and lactate inhibit the enzymatic steps of glutathione synthesis downstream of cystine uptake. In contrast, when glutathione synthesis is completely inhibited by cystine-free medium, acidosis partially protects against glutathione depletion and cell death. Both effects of acidosis are also present in primary neuronal and astrocyte cultures. Furthermore, we show that some neuroprotective compounds are much less effective in the presence of lactacidosis. Our findings indicate that lactacidosis modulates glutathione metabolism and neuronal cell death. Furthermore, lactacidosis may interfere with the action of some neuroprotective drugs rendering these less likely to be therapeutically effective in cerebral ischemia.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department for Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
61
|
Bar-Am O, Weinreb O, Amit T, Youdim MBH. The neuroprotective mechanism of 1-(R)-aminoindan, the major metabolite of the anti-parkinsonian drug rasagiline. J Neurochem 2009; 112:1131-7. [PMID: 20002521 DOI: 10.1111/j.1471-4159.2009.06542.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The anti-parkinsonian drug, rasagiline [N-propargyl-1-(R)-aminoindan; Azilect(R)], is a secondary cyclic benzylamine and indane derivative, which provides irreversible, potent monoamine oxidase-B (MAO-B) inhibition and possesses neuroprotective and neurorestorative activities. A prospective clinical trial has shown that rasagiline confers significant symptomatic improvement and demonstrated alterations in Parkinson's disease progression. Rasagiline is primarily metabolized by hepatic cytochrome P-450 to form its major metabolite, 1-(R)-aminoindan, a non-amphetamine, weak reversible MAO-B inhibitor compound. Recent studies indicated the potential neuroprotective effect of 1-(R)-aminoindan, suggesting that it may contribute to the overall neuroprotective and antiapoptotic effects of its parent compound, rasagiline. This review article briefly highlights the molecular mechanisms underlying the neuroprotective properties of the active metabolite of rasagiline, 1-(R)-aminoindan, supporting the valuable potential of rasagiline for disease modification.
Collapse
Affiliation(s)
- Orit Bar-Am
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | |
Collapse
|
62
|
Weinreb O, Amit T, Mandel S, Youdim MBH. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. GENES AND NUTRITION 2009; 4:283-96. [PMID: 19756809 DOI: 10.1007/s12263-009-0143-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 08/03/2009] [Indexed: 01/08/2023]
Abstract
Tea, the major source of dietary flavonoids, particularly the epicatechins, signifies the second most frequently consumed beverage worldwide, which varies its status from a simple ancient cultural drink to a nutrient component, endowed possible beneficial neuro-pharmacological actions. Accumulating evidence suggests that oxidative stress, resulting in reactive oxygen species generation, plays a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers and metal chelating agents, such as natural tea polyphenols, for therapy. Vast epidemiology data indicate a correlation between occurrence of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, and green tea consumption. In particular, recent literature strengthens the perception that diverse molecular signaling pathways, participating in the neuroprotective activity of the major green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), renders this natural compound as potential agent to reduce the risk of various neurodegenerative diseases. In the current review, we discuss the studies concerning the mechanisms of action implicated in EGCG-induced neuroprotection and discuss the vision to translate these findings into a lifestyle arena.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Technion-Faculty of Medicine, Haifa, Israel.
| | | | | | | |
Collapse
|
63
|
A role for galanin in human and experimental inflammatory demyelination. Proc Natl Acad Sci U S A 2009; 106:15466-71. [PMID: 19717462 DOI: 10.1073/pnas.0903360106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neuropeptide galanin is widely expressed by many differing subsets of neurons in the nervous system. There is a marked upregulation in the levels of the peptide in a variety of nerve injury models and in the basal forebrain of humans with Alzheimer's disease. Here we demonstrate that galanin expression is specifically and markedly upregulated in microglia both in multiple sclerosis (MS) lesions and shadow plaques. Galanin expression is also upregulated in the experimental autoimmune encephalomyelitis (EAE) model of MS, although solely in oligodendrocytes. To study whether the observed increase in expression of galanin in inflammatory demyelination might modulate disease activity, we applied the EAE model to a panel of galanin transgenic lines. Over-expression of galanin in transgenic mice (Gal-OE) abolishes disease in the EAE model, whilst loss-of-function mutations in galanin or galanin receptor-2 (GalR2) increase disease severity. The pronounced effects of altered endogenous galanin or GalR2 expression on EAE disease activity may reflect a direct neuroprotective effect of the neuropeptide via activation of GalR2, similar to that previously described in a number of neuronal injury paradigms. Irrespective of the mechanism(s) by which galanin alters EAE disease activity, our findings imply that galanin/GalR2 agonists may have future therapeutic implications for MS.
Collapse
|
64
|
Biraboneye AC, Madonna S, Laras Y, Krantic S, Maher P, Kraus JL. Potential Neuroprotective Drugs in Cerebral Ischemia: New Saturated and Polyunsaturated Lipids Coupled to Hydrophilic Moieties: Synthesis and Biological Activity. J Med Chem 2009; 52:4358-69. [DOI: 10.1021/jm900227u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alain César Biraboneye
- Laboratoire de Chimie Biomoléculaire, CNRS, IBDML-UMR-6216, Campus de Luminy Case 907 13288, Marseille Cedex 09, France
| | - Sébastien Madonna
- Laboratoire de Chimie Biomoléculaire, CNRS, IBDML-UMR-6216, Campus de Luminy Case 907 13288, Marseille Cedex 09, France
| | - Younes Laras
- Laboratoire de Chimie Biomoléculaire, CNRS, IBDML-UMR-6216, Campus de Luminy Case 907 13288, Marseille Cedex 09, France
| | - Slavica Krantic
- INMED-INSERM U29 Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy-BP 13 13273, Marseille Cedex 09, France
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037
| | - Jean-Louis Kraus
- Laboratoire de Chimie Biomoléculaire, CNRS, IBDML-UMR-6216, Campus de Luminy Case 907 13288, Marseille Cedex 09, France
| |
Collapse
|
65
|
Chen J, Liu Y, Soh JW, Aguilera G. Antiapoptotic effects of vasopressin in the neuronal cell line H32 involve protein kinase Calpha and beta. J Neurochem 2009; 110:1310-20. [PMID: 19519660 DOI: 10.1111/j.1471-4159.2009.06219.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activation of V1 vasopressin (VP) receptors prevents serum deprivation-induced apoptosis in neuronal H32 cells, partially through mitogen-activated protein kinase (MAPK) mediated Bad phosphorylation. In this study, we investigated the role of protein kinases C (PKC) and B (PKB) mediating VP-induced antiapoptosis in H32 cells. Serum deprivation increased PKCdelta but not PKCalpha or PKCbeta activity, while VP increased PKCalpha and PKCbeta without affecting PKCdelta activity. Inhibition of PKCdelta prevented caspase 3 activation, indicating that PKCdelta mediates the pro-apoptotic actions of serum deprivation. Simultaneous inhibition of PKCalpha and beta and MAPK abolished VP-induced Bad phosphorylation, but it only partially prevented caspase 3 inhibition. Complete abolition of the protective effect of VP on serum deprivation-induced caspase 3 activity required additional blockade of phosphoinositide 3 kinase (PI3K)/protein kinase B. The data demonstrate that VP exerts antiapoptosis through multiple pathways; while PKCalpha and beta together with extracellular signal-regulated kinases/MAPK activation mediates Bad phosphorylation (inactivation), the full protective action of VP requires additional activation of PKB (PI3K/protein kinase B) pathway.
Collapse
Affiliation(s)
- Jun Chen
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
66
|
Tiwari V, Kuhad A, Chopra K. Suppression of neuro-inflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats. Behav Brain Res 2009; 203:296-303. [PMID: 19464322 DOI: 10.1016/j.bbr.2009.05.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/10/2009] [Accepted: 05/14/2009] [Indexed: 01/30/2023]
Abstract
Chronic alcohol intake is known to induce the selective neuronal damage associated with increase oxidative-nitrosative stress and activation of inflammatory cascade finally resulting in neuronal apoptosis and thus dementia. In the present study, we investigated the comparative effect of both the isoforms of vitamin E, alpha-tocopherol and tocotrienol against chronic alcohol-induced cognitive dysfunction in rats. Male Wistar rats were given ethanol (10g/kg; oral gavage) for 10 weeks, and treated with alpha-tocopherol and tocotrienol for the same duration. The learning and memory behavior was assessed using Morris water maze and elevated plus maze test. The rats were sacrificed at the end of 10th week and cytoplasmic fractions of cerebral cortex and hippocampus were prepared for the quantification of acetylcholinesterase activity, oxidative-nitrosative stress parameters, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). From the 6th week onwards, ethanol-treated rats showed significant increase in transfer latency in both the behavioral paradigms which was coupled with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, TNF-alpha and IL-1beta levels in different brain regions of ethanol-treated rats. Co-administration of alpha-tocopherol as well as tocotrienol significantly and dose-dependently prevented these behavioral, biochemical and molecular changes in the brains of ethanol-treated rats. However, the effects were more pronounced with tocotrienol. The current study thus demonstrates the possible involvement of oxidative-nitrosative stress mediated activation of inflammatory cascade in chronic alcohol-induced cognitive dysfunction and also suggests the effectiveness of vitamin E isoforms, of which tocotrienol being more potent, in preventing the cognitive deficits associated with chronic alcohol consumption.
Collapse
Affiliation(s)
- Vinod Tiwari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences UGC Center of Advanced Study, Panjab University, Chandigarh 160 014, India
| | | | | |
Collapse
|
67
|
Maher P, Lewerenz J, Lozano C, Torres JL. A novel approach to enhancing cellular glutathione levels. J Neurochem 2008; 107:690-700. [PMID: 18702664 DOI: 10.1111/j.1471-4159.2008.05620.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GSH and GSH-associated metabolism provide the major line of defense for the protection of cells from oxidative and other forms of toxic stress. Of the three amino acids that comprise GSH, cysteine is limiting for GSH synthesis. As extracellularly cysteine is readily oxidized to form cystine, cystine transport mechanisms are essential to provide cells with cysteine. Cystine uptake is mediated by system x(c)(-), a Na(+)-independent cystine/glutamate antiporter. Inhibition of system x(c)(-) by millimolar concentrations of glutamate, a pathway termed oxidative glutamate toxicity, results in GSH depletion and nerve cell death. Recently, we described a series of compounds derived from the conjugation of epicatechin (EC) with cysteine and cysteine derivatives that protected nerve cells in culture from oxidative glutamate toxicity by maintaining GSH levels. In this study, we characterize an additional EC conjugate, cysteamine-EC, that is 5- to 10-fold more potent than the earlier conjugates. In addition, we show that these EC conjugates maintain GSH levels by enhancing the uptake of cystine into cells through induction of a disulfide exchange reaction, thereby uncoupling the uptake from system x(c)(-). Thus, these novel EC conjugates have the potential to enhance GSH synthesis under a wide variety of forms of toxic stress.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
68
|
Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4855-73. [PMID: 18557624 DOI: 10.1021/jf0735073] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polyphenols are the most abundant antioxidants in diet. Indeed, fruits, vegetables, beverages (tea, wine, juices), plants, and some herbs are loaded with powerful antioxidant polyphenols. Despite their wide distribution, research on human health benefits truly began in the mid-1990s (Scalbert, A.; Johnson, I. T.; Saltmarsh, M. Am. J. Clin. Nutr. 2005, 81, S15S-217S). Phenolic compounds have been receiving increasing interest from consumers and manufacturers because numerous epidemiological studies have suggested associations between consumption of polyphenol-rich foods or beverages and the prevention of certain chronic diseases such as cancers and cardiovascular diseases (Manach, C.; Mazur, A.; Scalbert, A. Curr. Opin. Lipidol. 2005, 16, 77-84; Duthie, S. J. Mol. Nutr. Food Res. 2007, 51, 665-674). Furthermore, in the past 10 years, research on the neuroprotective effects of dietary polyphenols has developed considerably. These compounds are able to protect neuronal cells in various in vivo and in vitro models through different intracellular targets (Ramassamy, C. Eur. J. Pharmacol. 2006, 545, 51-64). However, it is not at all clear whether these compounds reach the brain in sufficient concentrations and in a biologically active form to exert beneficial effects. On the other hand, it has become clear that the mechanisms of action of these polyphenols go beyond their antioxidant activity and the attenuation of oxidative stress. Therefore, there is a need for more research on their intracellular and molecular targets as special pathways underlying distinct polyphenol-induced neuroprotection. The focus of this review is aimed at presenting the role of some polyphenols from fruits, vegetables, and beverages in neuroprotection and particularly in Alzheimer's disease and the research challenges in this area.
Collapse
Affiliation(s)
- Manjeet Singh
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | | | | | | | | |
Collapse
|
69
|
WEINREB ORLY, AMIT TAMAR, BAR-AM ORIT, CHILLAG-TALMOR ORLY, YOUDIM MOUSSABH. Novel Neuroprotective Mechanism of Action of Rasagiline Is Associated with Its Propargyl Moiety: Interaction of Bcl-2 Family Members with PKC Pathway. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00043.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
70
|
Maher P. Proteasome inhibitors prevent oxidative stress-induced nerve cell death by a novel mechanism. Biochem Pharmacol 2008; 75:1994-2006. [PMID: 18359006 PMCID: PMC2422833 DOI: 10.1016/j.bcp.2008.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 12/13/2022]
Abstract
The role of the proteasome in neurodegenerative diseases is controversial. On the one hand, there is evidence that a dysfunction of proteasome activity can lead to neurodegeneration but there is also data showing that proteasome inhibition can protect nerve cells from a variety of insults. In an attempt to clarify this issue, we studied the effects of four different proteasome inhibitors in a well characterized model of oxidative stress-induced nerve cell death. Consistent with the hypothesis that proteasome inhibition can be neuroprotective, we found that low concentrations of proteasome inhibitors were able to protect nerve cells from oxidative stress-induced death. Surprisingly, the neuroprotective effects of the proteasome inhibitors appeared to be at least partially mediated by the induction of NF-kappaB since protection was significantly reduced in cells expressing a specific NF-kappaB repressor. The activation of NF-kB by proteasome inhibitors was mediated by IkappaB alpha and IKK and was blocked by antioxidants and inhibitors of mitochondrial reactive oxygen species production. These data suggest that low concentrations of proteasome inhibitors induce a moderate level of mitochondrial oxidative stress which results in the activation of neuroprotective pathways.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
71
|
Uppington KM, Brown DR. Resistance of cell lines to prion toxicity aided by phospho-ERK expression. J Neurochem 2008; 105:842-52. [DOI: 10.1111/j.1471-4159.2007.05192.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
72
|
Maher P. The flavonoid fisetin promotes nerve cell survival from trophic factor withdrawal by enhancement of proteasome activity. Arch Biochem Biophys 2008; 476:139-44. [PMID: 18396148 DOI: 10.1016/j.abb.2008.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/19/2008] [Accepted: 03/21/2008] [Indexed: 12/18/2022]
Abstract
To explore the possibility that specific flavonoids can substitute for neurotrophic factors, we examined the ability of the flavonol fisetin and several related flavonoids to support the survival of low density, serum-free cultures of rat cortical neurons. Normally these cells die within 24h in the absence of trophic factors but in the presence of fisetin and several related flavonoids the cells survive and produce long neurites. While the survival-promoting effect of several of the fisetin-related flavonoids was partially dependent on ERK activation, the effect of fisetin was not. Fisetin can enhance glutathione synthesis but the survival-promoting effect of fisetin was also not dependent on glutathione. However, proteasome inhibitors almost completely blocked the ability of fisetin to promote survival. Consistent with this observation, fisetin increased proteasome activity. Together these results demonstrate a new activity for fisetin and tie this activity to its neurotrophic effects.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, Cellular Neurobiology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
73
|
Duplus E, Gras C, Soubeyre V, Vodjdani G, Lemaigre-Dubreuil Y, Brugg B. Phosphorylation and transcriptional activity regulation of retinoid-related orphan receptor alpha 1 by protein kinases C. J Neurochem 2008; 104:1321-32. [DOI: 10.1111/j.1471-4159.2007.05074.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
74
|
Kang SY, Kim YC. Neuroprotective coumarins from the root of Angelica gigas: structure-activity relationships. Arch Pharm Res 2008; 30:1368-73. [PMID: 18087802 DOI: 10.1007/bf02977358] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An n-butanol-soluble fraction of the root of Angelica gigas Nakai (Umbelliferae) exhibited significant protection against glutamate-induced toxicity in primary cultured rat cortical cells. Using neuroprotective activity-guided fractionation, nine coumarins; marmesinin (1), nodakenin (2), columbianetin-O-beta-D-glucopyranoside (3), (S)-peucedanol-7-O-beta-D-glucopyranoside (4), (S)-peucedanol-3'-O-beta-D-glucopyranoside (5), skimmin (6), apiosylskimmin (7), isoapiosylskimmin (8) and magnolioside (9), were isolated from the n-butanol fraction. Of these nine coumarins, three dihydrofuranocoumarins; 1, 2 and 3, exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viabilities of about 50% at concentrations ranging from 0.1 to 10 microM. To explore the structure-activity relationships of coumarins, sixteen previously isolated compounds; 10-25, were simultaneously evaluated in the same system. Our results revealed that cyclization of the isoprenyl group, such as dihydropyran or dihydrofuran, or the furan ring at the C-6 position of coumarin, as well as lipophilicity played an important role in the neuroprotective activity of coumarins.
Collapse
Affiliation(s)
- So Young Kang
- Division of Food Science and Aqualife Medicine, Chonnam National University, Yeosu, Chonnam 550-749, Korea.
| | | |
Collapse
|
75
|
Tian LL, Wang XJ, Sun YN, Li CR, Xing YL, Zhao HB, Duan M, Zhou Z, Wang SQ. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol 2008; 40:409-22. [PMID: 17884684 DOI: 10.1016/j.biocel.2007.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 11/17/2022]
Abstract
Oxidative stress caused by dopamine may play an important role in the pathogenesis of Parkinson's disease. Salvianolic acid B is an antioxidant derived from the Chinese herb, Salvia miltiorrhiza. In this study, we investigated the neuroprotective effect of salvianolic acid B against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C. These results indicate that the protective function of salvianolic acid B is dependent upon its antioxidative potential. Our results strongly suggest that salvianolic acid B may be effective in treating neurodegenerative diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Lin-Lin Tian
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine, 27# Taiping Road, Haidian District, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Yang HQ, Pan J, Ba MW, Sun ZK, Ma GZ, Lu GQ, Xiao Q, Chen SD. New protein kinase C activator regulates amyloid precursor protein processing in vitro by increasing alpha-secretase activity. Eur J Neurosci 2007; 26:381-91. [PMID: 17650113 DOI: 10.1111/j.1460-9568.2007.05648.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The beta amyloid (Abeta) cascade has been at the forefront of the hypothesis used to describe the pathogenesis of Alzheimer's disease (AD). It is generally accepted that drugs that can regulate the processing of the amyloid precursor protein (APP) toward the non-amyloidogenic pathway may have a therapeutic potential. Previous studies have shown that protein kinase C (PKC) hypofunction has an important role in AD pathophysiology. Therefore, the effects of a new PKC activator, alpha-APP modulator [(2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB)], on APP processing were investigated. Using PC12 cells and SH-SY5Y(APP695) cells, it was found that TPPB promoted the secretion of sAPPalpha without affecting full-length expression of APP. The increase in sAPPalpha by TPPB was blocked by inhibitors of PKC, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and tyrosine kinase, suggesting the involvement of these signal transduction pathways. TPPB increased alpha-secretase activity [a disintegrin and metalloproteinase (ADAM)10 and 17], as shown by direct fluorescence activity detection and Western blot analysis. TPPB-induced sAPPalpha release was blocked by the metalloproteinase inhibitor TAPI-2, furin inhibitor CMK and by the protein-trafficking inhibitor brefeldin. The results also showed that TPPB decreased beta-secretase activity, Abeta40 release and beta site APP-cleaving enzyme 1 (BACE1) expression, but did not significantly affect neprilysin (NEP) and insulin-degrading enzyme (IDE) expression. Our data indicate that TPPB could direct APP processing towards the non-amyloidogenic pathway by increasing alpha-secretase activity, and suggest its therapeutic potential in AD.
Collapse
Affiliation(s)
- Hong-Qi Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Venugopal SK, Chen J, Zhang Y, Clemens D, Follenzi A, Zern MA. Role of MAPK phosphatase-1 in sustained activation of JNK during ethanol-induced apoptosis in hepatocyte-like VL-17A cells. J Biol Chem 2007; 282:31900-8. [PMID: 17848570 DOI: 10.1074/jbc.m703729200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ethanol metabolism plays a central role in activating the mitogen-activated protein kinase (MAPK) cascade leading to inflammation and apoptosis. Sustained activation of c-Jun N-terminal kinase (JNK), one of the MAPKs, has been shown to induce apoptosis in hepatocytes. MAPK phosphatase-1 (MKP-1) has been shown to dephosphorylate MAPKs in several cells. The aim of the study is to evaluate the role of MKP-1 in sustained JNK activation as a mechanism to explain ethanol-induced hepatocyte apoptosis. VL-17A cells (HepG2 cells overexpressing alcohol dehydrogenase and cytochrome P450-2E1) were exposed to ethanol for different time periods. Western blots were performed for MKP-1, phospho-JNK, phosphotyrosine, and protein kinase Cdelta (PKCdelta). Electrophoretic mobility shift assays for AP-1 were performed. Apoptosis was measured by caspase-3 activity assay, TUNEL, and 4',6-diamidino-2-phenylindole staining. Reactive oxygen species were neutralized by overexpressing both superoxide dismutase-3 and catalase genes using lentiviral vectors in VL-17A cells. Ethanol incubation markedly decreased the MKP-1 protein levels to 15% of control levels and was associated with sustained phosphorylation of p46 JNK and p54 JNK, as well as increased apoptosis. VL-17A cells overexpressing superoxide dismutase-3 and catalase, treatment with a tyrosine kinase inhibitor, or incubation of the cells with PKCdelta small interference RNAs significantly inhibited the ethanol-induced MKP-1 degradation and apoptosis. Ethanol-induced oxidative stress enhanced the tyrosine phosphorylation of PKCdelta, which in turn caused the proteasomal degradation of MKP-1, leading to sustained JNK activation and increased apoptosis in VL-17A cells.
Collapse
Affiliation(s)
- Senthil K Venugopal
- Department of Internal Medicine, Transplant Research Program, UC Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|
78
|
Mattson MP, Son TG, Camandola S. Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response 2007; 5:174-86. [PMID: 18648607 DOI: 10.2203/dose-response.07-004.mattson] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nervous system is of fundamental importance in the adaptive (hormesis) responses of organisms to all types of stress, including environmental "toxins". Phytochemicals present in vegetables and fruits are believed to reduce the risk of several major diseases including cardiovascular disease, cancers and neurodegenerative disorders. Although antioxidant properties have been suggested as the basis of health benefits of phytochemicals, emerging findings suggest a quite different mechanism of action. Many phytochemicals normally function as toxins that protect the plants against insects and other damaging organisms. However, at the relatively low doses consumed by humans and other mammals these same "toxic" phytochemicals activate adaptive cellular stress response pathways that can protect the cells against a variety of adverse conditions. Recent findings have elucidated hormetic mechanisms of action of phytochemicals (e.g., resveratrol, curcumin, sulforaphanes and catechins) using cell culture and animal models of neurological disorders. Examples of hormesis pathways activated by phytochemicals include the transcription factor Nrf-2 which activates genes controlled by the antioxidant response element, and histone deacetylases of the sirtuin family and FOXO transcription factors. Such hormetic pathways stimulate the production of antioxidant enzymes, protein chaperones and neurotrophic factors. In several cases neurohormetic phytochemicals have been shown to suppress the disease process in animal models relevant to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, and can also improve outcome following a stroke. We are currently screening a panel of biopesticides in order to establish hormetic doses, neuroprotective efficacy, mechanisms of action and therapeutic potential as dietary supplements.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
| | | | | |
Collapse
|
79
|
Bar-Am O, Amit T, Youdim MBH. Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. J Neurochem 2007; 103:500-8. [PMID: 17635668 DOI: 10.1111/j.1471-4159.2007.04777.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The anti-Parkinson, selective irreversible monoamine oxidase B inhibitor drug, rasagiline (Azilect), recently approved by the US Food and Drug Administration, has been shown to possess neuroprotective-neurorescue activities in in vitro and in vivo models. Recent preliminary studies indicated the potential neuroprotective effect of the major metabolite of rasagiline, 1-(R)-aminoindan. In the current study, the neuroprotective properties of 1-(R)-aminoindan were assessed employing a cytotoxic model of human neuroblastoma SK-N-SH cells in high-density culture-induced neuronal death. We show that aminoindan (0.1-1 mumol/L) significantly reduced the apoptosis-associated phosphorylated protein, H2A.X (Ser139), decreased the cleavage of caspase 9 and caspase 3, while increasing the anti-apoptotic proteins, Bcl-2 and Bcl-xl. Protein kinase C (PKC) inhibitor, GF109203X, prevented the neuroprotection, indicating the involvement of PKC in aminoindan-induced cell survival. Aminoindan markedly elevated pPKC(pan) and specifically that of the pro-survival PKC isoform, PKCepsilon. Additionally, hydroxyaminoindan, a metabolite of a novel bifunctional drug, ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], combining cholinesterase and monoamine oxidase inhibitor activity, exerted similar neuroprotective properties. Aminoindan and hydroxyaminoindan also protected rat pheochromacytoma PC-12 cells against the neurotoxin, 6-hydroxydopamine. Our findings suggest that both metabolites may contribute to the overall neuroprotective activity of their respective parent compounds, further implicating rasagiline and ladostigil as potentially valuable drugs for treatment of a wide variety of neurodegenerative disorders of aging.
Collapse
Affiliation(s)
- Orit Bar-Am
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel
| | | | | |
Collapse
|
80
|
Yun JY, Park KS, Kim JH, Do SH, Zuo Z. Propofol reverses oxidative stress-attenuated glutamate transporter EAAT3 activity: Evidence of protein kinase C involvement. Eur J Pharmacol 2007; 565:83-8. [PMID: 17382927 DOI: 10.1016/j.ejphar.2007.02.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 02/10/2007] [Accepted: 02/19/2007] [Indexed: 11/30/2022]
Abstract
The authors investigated the effects of propofol on EAAT3 (excitatory amino acid transporter 3) activity under oxidative stress induced by tert-butyl hydroperoxide (t-BHP), and the mediation of these effects by protein kinase C (PKC). Rat EAAT3 was expressed in Xenopus oocytes and L-glutamate (30 microM)-induced membrane currents were measured using the two-electrode voltage clamp technique. Exposure of these oocytes to t-BHP (1-20 mM) for 10 min dose-dependently decreased EAAT3 activity, and t-BHP (5 mM) significantly decreased the Vmax, but not the Km of EAAT3 for glutamate, and propofol (1-100 microM) dose-dependently reversed this t-BHP-attenuated EAAT3 activity. Phorbol-12-myristate-13-acetate (a PKC activator), also abolished this t-BHP-induced reduction in EAAT3 activity, whereas staurosporine (a PKC inhibitor), significantly decreased EAAT3 activity. However, as compared with staurosporine or t-BHP alone, t-BHP and staurosporine in combination did not further reduce EAAT3 activity. A similar pattern was observed for chelerythrine (also a PKC inhibitor). In oocytes pretreated with combinations of t-BHP and PMA (or staurosporine), propofol failed to change EAAT3 activity. Our results suggest that propofol restores oxidative stress-reduced EAAT3 activity and that these effects of propofol may be PKC-mediated.
Collapse
Affiliation(s)
- Jung-Yeon Yun
- Department of Anesthesiology, Research Institute and Hospital, National Cancer Center, Gyeonggi -do, and Seoul National University Hospital, South Korea
| | | | | | | | | |
Collapse
|
81
|
Elliott-Hunt CR, Pope RJP, Vanderplank P, Wynick D. Activation of the galanin receptor 2 (GalR2) protects the hippocampus from neuronal damage. J Neurochem 2007; 100:780-9. [PMID: 17263796 PMCID: PMC2705497 DOI: 10.1111/j.1471-4159.2006.04239.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expression of the neuropeptide galanin is up-regulated in many brain regions following nerve injury and in the basal forebrain of patients with Alzheimer's disease. We have previously demonstrated that galanin modulates hippocampal neuronal survival, although it was unclear which receptor subtype(s) mediates this effect. Here we report that the protective role played by galanin in hippocampal cultures is abolished in animals carrying a loss-of-function mutation in the second galanin receptor subtype (GalR2-MUT). Exogenous galanin stimulates the phosphorylation of the serine/threonine kinase Akt and extracellular signal-regulated kinase (ERK) in wild-type (WT) cultures by 435 +/- 5% and 278 +/- 2%, respectively. The glutamate-induced activation of Akt was abolished in cultures from galanin knockout animals, and was markedly attenuated in GalR2-MUT animals, compared with WT controls. In contrast, similar levels of glutamate-induced ERK activation were observed in both loss-of-function mutants, but were further increased in galanin over-expressing animals. Using specific inhibitors of either ERK or Akt confirms that a GalR2-dependent modulation in the activation of the Akt and ERK signalling pathways contributes to the protective effects of galanin. These findings imply that the rise in endogenous galanin observed either after brain injury or in various disease states is an adaptive response that reduces apoptosis by the activation of GalR2, and hence Akt and ERK.
Collapse
MESH Headings
- Animals
- Brain Damage, Chronic/genetics
- Brain Damage, Chronic/metabolism
- Brain Damage, Chronic/physiopathology
- Cytoprotection/drug effects
- Cytoprotection/genetics
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Extracellular Signal-Regulated MAP Kinases/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Galanin/metabolism
- Galanin/pharmacology
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Male
- Mice
- Mice, Knockout
- Nerve Degeneration/genetics
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/metabolism
- Neurodegenerative Diseases/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Organ Culture Techniques
- Proto-Oncogene Proteins c-akt/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Galanin, Type 2/agonists
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Caroline R Elliott-Hunt
- Departments of Pharmacology and Clinical Sciences South Bristol, Bristol University, Bristol, UK
| | | | | | | |
Collapse
|
82
|
Sahin M, Saxena A, Joost P, Lewerenz J, Methner A. Induction of Bcl-2 by functional regulation of G-protein coupled receptors protects from oxidative glutamate toxicity by increasing glutathione. Free Radic Res 2007; 40:1113-23. [PMID: 17050165 DOI: 10.1080/10715760600838191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutamate treatment depletes hippocampal HT22 cells of glutathione, which renders the cells incapable to reduce reactive oxygen species and ultimately cumulates in cell death by oxidative stress. HT22 cells resistant to glutamate displayed increased phosphorylation of cAMP-response-element binding (CREB) and decreased ERK1/2 suggestive of differences in signal transmission. We investigated the amount of candidate G-protein-coupled receptors involved in this resistance and found an increase in mRNA for receptors activated by the vasoactive intestinal peptide VIP (VPAC2, 12.6-fold) and glutamate like the metabotropic glutamate receptor mGlu1 (5.3-fold). Treating cells with VIP and glutamate led to the same changes in protein phosphorylation observed in resistant cells and induced the proto-oncogene Bcl-2. Bcl-2 overexpression protected by increasing the amount of intracellular glutathione and Bcl-2 knockdown by small interfering RNAs (siRNA) increased glutamate susceptibility of resistant cells. Other receptors upregulated in this paradigm might represent useful targets in the treatment of neurological diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Mert Sahin
- Department of Neurology, Heinrich Heine Universität Düsseldorf, Moorenstreet 5, 40225, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
83
|
Jeong HS, Jang S, Jang MJ, Lee SG, Kim TS, Lee JH, Jun JY, Park JS. Effects of (--)-epigallocatechin-3-gallate on the activity of substantia nigra dopaminergic neurons. Brain Res 2007; 1130:114-8. [PMID: 17174286 DOI: 10.1016/j.brainres.2006.10.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 09/01/2006] [Accepted: 10/20/2006] [Indexed: 12/01/2022]
Abstract
Despite many studies on the biological and pharmacological properties of (-)-epigallocatechin-3-gallate (EGCG), an active component of green tea, information on neuronal modulation by EGCG is limited. This study was designed to investigate the effects of EGCG on the electrical activity of rat substantia nigra dopaminergic neurons using whole-cell patch clamp recordings. The spike frequency was increased to 6.33+/-0.23 (p<0.05) and 7.15+/-0.29 (p<0.05) by 5 and 10 microM EGCG, respectively, from the control level of 5.49+/-0.19 spikes/second, respectively (n=18). The resting membrane potential of the cells was decreased to -45.66+/-0.45 and -43.99+/-0.87 (p<0.05), by 5 and 10 microM EGCG, respectively, from -47.82+/-0.57 mV. The amplitude of afterhyperpolarization was decreased to 12.73+/-0.45 (p<0.05) and 11.60+/-0.57 (p<0.05) by 5 and 10 microM EGCG, respectively, from 13.80+/-0.31 mV. The neuronal activity of dopaminergic neurons is closely linked to dopamine release. When neurons switch from a single-spike firing to bursts of action potentials, the release of dopamine increases. The above experimental results suggest that EGCG increases the neuronal activity via inhibition of calcium-dependent potassium currents underlying the afterhyperpolarization, and it could act as a facilitating factor that elicits NMDA-dependent bursts of action potentials like apamin or bicuculline methiodide.
Collapse
Affiliation(s)
- Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju 501-190, Korea
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Yang HQ, Ba MW, Ren RJ, Zhang YH, Ma JF, Pan J, Lu GQ, Chen SD. Mitogen activated protein kinase and protein kinase C activation mediate promotion of sAPPα secretion by deprenyl. Neurochem Int 2007; 50:74-82. [PMID: 16973242 DOI: 10.1016/j.neuint.2006.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/29/2006] [Accepted: 07/10/2006] [Indexed: 12/14/2022]
Abstract
The beta amyloid cascade plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Therefore, drugs that regulate amyloid precursor protein (APP) processing toward the nonamyloidgenic pathway may have therapeutic potential. Many anti-dementia drugs can regulate APP processing in addition to their pharmacological properties. Deprenyl is a neuroprotective agent used to treat some neurodegenerative diseases, including AD. In the present study, the effects of deprenyl on APP processing were investigated. Using SK-N-SH and PC12 cells, it was demonstrated that deprenyl stimulated the release of the nonamyloidogenic alpha-secretase form of soluble APP (sAPPalpha) in a dose-dependent manner without affecting cellular APP expression. The increase of sAPPalpha secretion by deprenyl was blocked by the mitogen activated protein (MAP) kinase inhibitor U0126 and PD98059, and by the protein kinase C (PKC) inhibitor GF109203X and staurosporine, suggesting the involvement of these signal transduction pathways. Deprenyl induced phosphorylation of p42/44 MAP kinase, which was abolished by specific inhibitors of MAP kinase and PKC. Deprenyl also phosphorylated PKC and its major substrate, and myristoylated alanine-rich C kinase (MARCKS) at specific amino acid residues. The data also indicated that 10microM deprenyl successfully induced two PKC isoforms involved in the pathogenesis of AD, PKCalpha and PKCepsilon, to translocate from the cytosolic to the membrane fraction. This phenomenon was substantiated by immunocytochemistry staining. These data suggest a novel pharmacological mechanism in which deprenyl regulates the processing of APP via activation of the MAP kinase and PKC pathways, and that this mechanism may underlie the clinical efficacy of the drug in some AD patients.
Collapse
Affiliation(s)
- Hong-Qi Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Suh HW, Kang S, Kwon KS. Curcumin attenuates glutamate-induced HT22 cell death by suppressing MAP kinase signaling. Mol Cell Biochem 2006; 298:187-94. [PMID: 17131042 DOI: 10.1007/s11010-006-9365-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/25/2006] [Indexed: 01/07/2023]
Abstract
Glutamate induces cell death by upsetting the cellular redox homeostasis, termed oxidative glutamate toxicity, in a mouse hippocampal cell line, HT22. Extracellular signal-regulated kinases (ERK) 1/2 are known key players in this process. Here we characterized the roles of both MAP kinases and cell cycle regulators in mediating oxidative glutamate toxicity and the neuroprotective mechanisms of curcumin in HT22 cells. c-Jun N-terminal kinase (JNK) and p38 kinase were activated during the glutamate-induced HT22 cell death, but at a later stage than ERK activation. Treatment with a JNK inhibitor, SP600125, or a p38 kinase inhibitor, SB203580, partly attenuated this cell death. Curcumin, a natural inhibitor of JNK signaling, protected the HT22 cells from glutamate-induced death at nanomolar concentrations more efficiently than SP600125. These doses of curcumin affected neither the level of intracellular glutathione nor the level of reactive oxygen species, but inactivated JNK and p38 significantly. Moreover, curcumin markedly upregulated a cell-cycle inhibitory protein, p21cip1, and downregulated cyclin D1 levels, which might help the cell death prevention. Our results suggest that curcumin has a neuroprotective effect against oxidative glutamate toxicity by inhibiting MAP kinase signaling and influencing cell-cycle regulation.
Collapse
Affiliation(s)
- Hyun-Woo Suh
- Laboratory of Functional Proteomics, Korea Research Institute of Bioscience and Biotechnology, 52 Oun-dong, Yusong, Taejon, 305-333, Korea
| | | | | |
Collapse
|
86
|
Abstract
The redox environment within neural cells is dependent on a series of redox couples. The glutathione disulfide/ glutathione (GSSG/GSH) redox pair forms the major redox couple in cells and as such plays a critical role in regulating redox-dependent cellular functions. Not only does GSH act as an antioxidant but it also can modulate the activity of a variety of different proteins via S-glutathionylation of cysteine sulfhydryl groups. The thioredoxin system also makes a significant contribution to the redox environment by reducing inter- and intrachain protein disulfide bonds as well as maintaining the activity of important antioxidant enzymes such as peroxiredoxins and methionine sulfoxide reductases. The redox environment affects the activity and function of a number of different protein phosphatases, protein kinases, and transcription factors. The sum of these effects will determine how changes in the redox environment alter overall cellular function, thereby playing a fundamental role in regulating neural cell fate and physiology.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
87
|
Pease JE. Tails of the unexpected - an atypical receptor for the chemokine RANTES/CCL5 expressed in brain. Br J Pharmacol 2006; 149:460-2. [PMID: 17001302 PMCID: PMC2014672 DOI: 10.1038/sj.bjp.0706910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chemokines and their receptors play a central role in the trafficking of leukocytes within the body, a process which is amenable to antagonism by small molecules and which holds promise as a treatment for clinically important diseases. In the issue of the British Journal of Pharmacology accompanying this commentary, Ignatov and colleagues describe an unexpected role for the chemokine RANTES/CCL5, namely an ability to signal via the orphan G protein-coupled receptor named GPR75. This receptor bears little homology to other chemokine receptors, most strikingly within the putative intracellular domains, with the third loop and C-terminal tail dwarfing those of other known chemokine receptors. This most likely accounts for the atypical pertussis toxin-insensitive signalling induced by RANTES. Intriguingly, this signalling is neuro-protective, inducing the survival of a hippocampal cell line following insult with the neurotoxic amyloid-beta peptide. Since this peptide is implicated in the pathogenesis of Alzheimer's disease, it may be that exploitation of this signalling pathway presents itself as a future therapeutic treatment.
Collapse
Affiliation(s)
- J E Pease
- Leukocyte Biology Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, South Kensington Campus, London, UK.
| |
Collapse
|
88
|
Fujiki M, Hikawa T, Abe T, Uchida S, Morishige M, Sugita K, Kobayashi H. Role of Protein Kinase C in Neuroprotective Effect of Geranylgeranylacetone, a Noninvasive Inducing Agent of Heat Shock Protein, on Delayed Neuronal Death Caused by Transient Ischemia in Rats. J Neurotrauma 2006; 23:1164-78. [PMID: 16866628 DOI: 10.1089/neu.2006.23.1164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We evaluated the neuroprotective effect of geranylgeranylacetone (GGA), an antiulcer agent and inducing agent of heat-shock protein (HSP), against the delayed death of hippocampal neurons induced by transient bilateral occlusion of the common carotid artery (CCA) and hypotension (40 mm Hg) lasting for 10 min. To test the hypothesis that orally administered GGA would induce protein kinase C (PKC), leading to the expression of HSP70 and protection against delayed neuronal death (DND), we gave GGA orally to rats in various regimens prior to bilateral occlusion of the CCA, and quantitatively assessed the extent of DND in region CA1 of the hippocampus at 7 days after transient ischemia. Pretreatment with a single oral dose of GGA of 800 mg/kg at 48 h before ischemia significantly attenuated DND (20.0 +/- 3.81 vs. 321.0 +/- 11.01 mm(3); p < 0.05). A similar degree of neuron sparing occurred when GGA was given 2, 4, or 8 days before ischemia. These neuroprotective effects of GGA were prevented by pretreatment with chelerythrine (CHE), a specific inhibitor of PKC, indicating that PKC may mediate GGA-dependent protection against ischemic DND. Oral GGA-induced expression of HSP70 elicited the expression of PKCdelta, and pretreatment with GGA enhanced the ischemia-induced expression of HSP70, both of which effects were prevented by pretreatment with CHE. These results suggest that a single oral dose of GGA induces the expression of PKCdelta and promotes the expression of HSP70 in the brain, and that GGA plays an important role in neuroprotection against DND. Pretreatment with a single oral dose of GGA provides an important tool for exploring the mechanisms of neuroprotection against DND of hippocampal neurons after transient ischemia.
Collapse
Affiliation(s)
- Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| | | | | | | | | | | | | |
Collapse
|
89
|
Aharoni-Simon M, Reifen R, Tirosh O. ROS-production-mediated activation of AP-1 but not NFkappaB inhibits glutamate-induced HT4 neuronal cell death. Antioxid Redox Signal 2006; 8:1339-49. [PMID: 16910781 DOI: 10.1089/ars.2006.8.1339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aside from their deleterious effect, reactive oxygen species (ROS) can function as small messenger molecules during physiologic processes. ROS have been shown to activate the transcription nuclear factor kappa B (NFkappaB) and activator protein 1 (AP-1). Exposure of HT4 neuronal cells to 10 mM glutamate results in cell death after 12 h. Here we show that glutamate treatment leads to an increase in ROS production and activation of AP-1, but not NFkappaB. 12-O-Tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C and an inducer of NFkappaB and AP-1, protected the cells. This protective effect was preceded by increased production of ROS compared with glutamate alone, which was accompanied by a synergistic increase in AP-1, but not NFkappaB activity. We used all-trans-retinoic acid (ATRA), overexpression of retinoic acid receptor alpha (RARalpha) and a decoy oligonucleotide inclusion assay to suppress AP-1 activity. NFkappaB was inhibited by using a super suppressor (IkappaBalphaDeltaN-transfected cells). Inhibition of AP-1, but not NFkappaB resulted in increased cellular vulnerability to glutamate. Inhibition of AP-1 activity was coincident with a decrease in ROS production. Thus, although ROS are significant to the cell-death effect induced by glutamate, they also activate protective pathways mediated by increasing AP-1 activity, and not that of NFkappaB.
Collapse
Affiliation(s)
- Michal Aharoni-Simon
- The School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
90
|
Abstract
Symptoms of ethanol withdrawal include heightened responses to sensory stimuli, as well as tremors and convulsions. We tested the hypothesis that repeated episodes of ethanol intake and withdrawal exacerbate the symptoms of alcohol-induced peripheral neuropathy. In contrast to the hyperalgesia produced when an alcohol (6.5%)-containing diet was fed continuously to male rats which took 4 weeks to develop (Dina et al., 2000), feeding alcohol (6.5%) in repeated cycles of 4 days of alcohol followed by 3 days without alcohol resulted in a withdrawal-induced hyperalgesia that began at the end of one weekly cycle and reached a maximum during the fourth cycle. For ethanol withdrawal to produce hyperalgesia, ethanol consumption needed to be terminated for a period of 2 days. Paradoxically, as the amount of alcohol consumed decreased, the hyperalgesia induced by withdrawal developed more rapidly, being maximal between 1.4 and 1.6% ethanol. These results suggest that continued exposure to ethanol also has a neuroprotective effect. Withdrawal-induced hyperalgesia, similar to the hyperalgesia induced by continuous, chronic alcohol intake, was inhibited reversibly by intrathecal administration of an antisense oligodeoxynucleotide to protein kinase C (PKC)epsilon.
Collapse
Affiliation(s)
- Olayinka A Dina
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, CA 94143, USA
| | | | | |
Collapse
|
91
|
Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 2006; 545:51-64. [PMID: 16904103 DOI: 10.1016/j.ejphar.2006.06.025] [Citation(s) in RCA: 430] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 06/13/2006] [Indexed: 01/15/2023]
Abstract
Aging is the major risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A large body of evidence indicates that oxidative stress is involved in the pathophysiology of these diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. Thus antioxidants have been studied for their effectiveness in reducing these deleterious effects and neuronal death in many in vitro and in vivo studies. Increasing number of studies demonstrated the efficacy of polyphenolic antioxidants from fruits and vegetables to reduce or to block neuronal death occurring in the pathophysiology of these disorders. These studies revealed that other mechanisms than the antioxidant activities could be involved in the neuroprotective effect of these phenolic compounds. We will review some of these mechanisms and particular emphasis will be given to polyphenolic compounds from green tea, the Ginkgo biloba extract EGb 761, blueberries extracts, wine components and curcumin.
Collapse
Affiliation(s)
- Charles Ramassamy
- INRS-Institut Armand-Frappier, 245 Hymus Boulevard, Pointe-claire, Québec, H9R 1G6/ INAF, Univ. Laval. Québec, QC, Canada.
| |
Collapse
|
92
|
Zhou L, Miller CA. Mitogen-Activated Protein Kinase Signaling, Oxygen Sensors and Hypoxic Induction of Neurogenesis. NEURODEGENER DIS 2006; 3:50-5. [PMID: 16909037 DOI: 10.1159/000092093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the adult nervous system, neuronal subpopulations sustain a hierarchical pattern of selective vulnerability to hypoxia. Hypoxia also activates quiescent neural progenitor cells (NPCs) resulting in their amplification and subsequent differentiation into neurons and glia. Use of rat organotypic hippocampal cultures facilitates examination of early signaling events in response to hypoxia and reoxygenation that result in neurogenesis. Cultures were exposed to hypoxia for up to 6 h followed by reoxygenation. CA1 neurons showed focal nuclear condensation by 2 h of hypoxia, but CA2 and CA3 neurons were spared. JNKs and c-Jun reached peak activation by 4 h, returning to basal levels by 6 h. Expression of oxygen sensors, hemoxygenase 2 and HIF1, were elevated by 30 min and 2 h, respectively. By 24 h of reoxygenation, there was proliferation of nestin-positive NPCs. With U0126, an upstream inhibitor of ERK activation, BrdU labeling was markedly reduced immunohistochemically as well as PCNA protein expression, suggesting a role for ERKs in the proliferation response. Immunohistochemically, antinestin detected NPCs and on Western blots reached peak levels by 24-48 h of reoxygenation. Proliferation and differentiation of endogenous NPCs in the area of neuronal loss further suggests that mechanisms potentially exist in vitro for replacement with functional neurons.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
93
|
NICHOLAS AH, HYSON RL. Afferent regulation of oxidative stress in the chick cochlear nucleus. Neuroscience 2006; 140:1359-68. [PMID: 16650604 PMCID: PMC1847353 DOI: 10.1016/j.neuroscience.2006.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/28/2006] [Accepted: 03/12/2006] [Indexed: 11/21/2022]
Abstract
The chick auditory brain stem has been a useful model system for examining the afferent-dependent signals that regulate postsynaptic neurons. Like other sensory systems, compromised afferent input results in rapid death and atrophy of postsynaptic neurons. The present paper explores the possible contributions of an oxidative stress pathway in determining neuronal fate following deafferentation. Levels of reactive oxygen species, lipid damage measured by 4-hydroxynonenal formation, and a compensatory reactive oxygen species-induced response regulated by glutathione s transferase M1 and the reactive oxygen species-sensitive transcriptional factor, nuclear respiratory factor 1 were examined. Unilateral cochlea removal surgery was performed on young posthatch chicks. Labeling in the cochlear nucleus, nucleus magnocellularis, on opposite sides of the same tissue sections were compared by densitometry. The results showed a dramatic increase in reactive oxygen species in the deafferented nucleus magnocellularis by 6 h following cochlea removal. This increase in reactive oxygen species was accompanied by lipid damage and a compensatory upregulation of both glutathione s transferase M1 and nuclear respiratory factor 1. Double-labeling revealed that glutathione s transferase M1 expression was highest in neurons that were likely to survive deafferentation, as assessed immunocytochemically with Y10b, a marker for ribosomal integrity. Together, these data suggest reactive oxygen species are generated and a compensatory detoxifying pathway is upregulated in the first few hours following deafferentation. This is consistent with the hypothesis that oxidative stress plays a role in determining whether a given neuron survives following deafferentation.
Collapse
Affiliation(s)
| | - R. L. HYSON
- *Corresponding author. Tel: +1-850-644-5824; fax: +1-850-644-7739. E-mail address: (R. L. Hyson)
| |
Collapse
|
94
|
Hui AS, Bauer AL, Striet JB, Schnell PO, Czyzyk-Krzeska MF. Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J 2006; 20:466-75. [PMID: 16507764 DOI: 10.1096/fj.05-5086com] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxia-inducible factors (HIFs) are ubiquitous transcription factors that mediate adaptation to hypoxia by inducing specific sets of target genes. It is well accepted that hypoxia induces accumulation and activity of HIFs by causing stabilization of their alpha subunits. We have demonstrated that hypoxia stimulates translation of HIF-1alpha and -2alpha proteins by distributing HIF-alpha mRNAs to larger polysome fractions. This requires influx of extracellular calcium, stimulation of classical protein kinase C-alpha (cPKC-alpha), and the activity of mammalian target of rapamycin, mTOR. The translational component contributes to approximately 40-50% of HIF-alpha proteins accumulation after 3 h of 1% O2. Hypoxia also inhibits general protein synthesis and mTOR activity; however, cPKC-alpha inhibitors or rapamycin reduce mTOR activity and total protein synthesis beyond the effects of hypoxia alone. These data show that during general inhibition of protein synthesis by hypoxia, cap-mediated translation of selected mRNAs is induced through the mTOR pathway. We propose that calcium-induced activation of cPKC-alpha hypoxia partially protects an activity of mTOR from hypoxic inhibition. These results provide an important physiologic insight into the mechanism by which hypoxia-stimulated influx of calcium selectively induces the translation of mRNAs necessary for adaptation to hypoxia under conditions repressing general protein synthesis.
Collapse
Affiliation(s)
- Anna S Hui
- Department of Genome Science, Genome Research Institute, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0505, USA
| | | | | | | | | |
Collapse
|
95
|
Luo Y, DeFranco DB. Opposing roles for ERK1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK1/2 action at early versus late phases of oxidative stress. J Biol Chem 2006; 281:16436-42. [PMID: 16621802 DOI: 10.1074/jbc.m512430200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate-induced oxidative toxicity is mediated by glutathione depletion in the HT22 mouse hippocampal cell line. Previous results with pharmacological agents implicated the extracellular signal-regulated kinases-1/2 (ERK1/2) in glutamate toxicity in HT22 cells and immature embryonic rat cortical neurons. In this report, we definitively establish a role for ERK1/2 in oxidative toxicity using dominant negative MEK1 expression in transiently transfected HT22 cells to block glutamate-induced cell death. In contrast, chronic activation of ERK (i.e. brought about by transfection of constitutively active ERK2 chimera) is not sufficient to trigger HT22 cell death demonstrating that ERK1/2 activation is not sufficient for toxicity. Activation of ERK1/2 in HT22 cells has a distinct kinetic profile with an initial peak occurring between 30 min and 1 h of glutamate treatment and a second peak typically emerging after 6 h. We demonstrate here that the initial phase of ERK1/2 induction is because of activation of metabotropic glutamate receptor type I (mGluRI). ERK1/2 activation by mGluRI contributes to an HT22 cell adaptive response to oxidative stress as glutamate-induced toxicity is enhanced upon pharmacological inhibition of mGluRI. The protective effect of ERK1/2 activation at early times after glutamate treatment is mediated by a restoration of glutathione (GSH) levels that are reduced because of depletion of intracellular cysteine pools. Thus, ERK1/2 appears to play dual roles in HT22 cells acting as part of a cellular adaptive response during the initial phases of glutamate-induced oxidative stress and contributing to toxicity during later stages of stress.
Collapse
Affiliation(s)
- Yue Luo
- Center for Neuroscience and Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
96
|
Uchida S, Fujiki M, Nagai Y, Abe T, Kobayashi H. Geranylgeranylacetone, a noninvasive heat shock protein inducer, induces protein kinase C and leads to neuroprotection against cerebral infarction in rats. Neurosci Lett 2006; 396:220-4. [PMID: 16406313 DOI: 10.1016/j.neulet.2005.11.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 11/22/2022]
Abstract
Previous studies demonstrated the cytoprotective effect of geranylgeranylacetone (GGA), a heat shock protein (HSP) inducer, against ischemic insult. Protein kinase C (PKC) is thought to be an important factor that mediates the expression of heat shock protein 70 (HSP70) in vitro. However, the signaling pathways in the brain in vivo after oral GGA administration remain unclear. We measured and compared infarction volumes to investigate the effect of GGA on cerebral infarction induced by permanent middle cerebral artery (MCA) occlusion in rats. To clarify the relationship between PKC induction and HSP70 expression, we determined the amounts of HSP70 and PKC proteins after GGA administration by immunoblotting. We evaluated the effects of pretreatment with chelerythrine (CHE), a specific PKC inhibitor, on expressions of PKC and HSP70 proteins with immunoblotting. Neuroprotective effects of GGA (pretreatment with a single oral GGA dose (800 mg/kg) 48 h before ischemia) were prevented by CHE pretreatment, which indicates that PKC may mediate the GGA-dependent protection. Oral GGA-induced HSP70 expression induced PKC delta, and GGA pretreatment enhanced ischemia-induced HSP70, both of which were prevented by CHE pretreatment. These results suggest that a single oral dose of GGA induces PKC delta and promotes HSP70 expression in the brain and that GGA plays an important role in neuroprotection against cerebral ischemia.
Collapse
Affiliation(s)
- Susumu Uchida
- Department of Neurosurgery, School of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, 879-5593, Japan
| | | | | | | | | |
Collapse
|
97
|
Choi BH, Hur EM, Lee JH, Jun DJ, Kim KT. Protein kinase Cδ-mediated proteasomal degradation of MAP kinase phosphatase-1 contributes to glutamate-induced neuronal cell death. J Cell Sci 2006; 119:1329-40. [PMID: 16537649 DOI: 10.1242/jcs.02837] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a dual-specificity phosphatase that is involved in the regulation of cell survival, differentiation and apoptosis through inactivating MAPKs by dephosphorylation. Here, we provide evidence for a role of MKP-1 in the glutamate-induced cell death of HT22 hippocampal cells and primary mouse cortical neurons. We suggest that, during glutamate-induced oxidative stress, protein kinase C (PKC) δ becomes activated and induces sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) through a mechanism that involves degradation of MKP-1. Glutamate-induced activation of ERK1/2 was blocked by inhibition of PKCδ, confirming that ERK1/2 is regulated by PKCδ. Prolonged exposure to glutamate caused reduction in the protein level of MKP-1, which correlated with the sustained activation of ERK1/2. Furthermore, knockdown of endogenous MKP-1 by small interfering (si)RNA resulted in pronounced enhancement of ERK1/2 phosphorylation accompanied by increased cytotoxicity under glutamate exposure. In glutamate-treated cells, MKP-1 was polyubiquitylated and proteasome inhibitors markedly blocked the degradation of MKP-1. Moreover, inhibition of glutamate-induced PKCδ activation suppressed the downregulation and ubiquitylation of MKP-1. Taken together, these results demonstrate that activation of PKCδ triggers degradation of MKP-1 through the ubiquitin-proteasome pathway, thereby contributing to persistent activation of ERK1/2 under glutamate-induced oxidative toxicity.
Collapse
Affiliation(s)
- Bo-Hwa Choi
- System-Biodynamics NCRC, National Research Laboratory of Molecular Neurophysiology and Division of Molecular and Life Science, Pohang University of Science and Technology, Hyoja dong, San31, Pohang, 790-784, South Korea
| | | | | | | | | |
Collapse
|
98
|
Kimura Y, Dargusch R, Schubert D, Kimura H. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 2006; 8:661-70. [PMID: 16677109 DOI: 10.1089/ars.2006.8.661] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hydrogen sulfide (H2S) is a neuromodulator in the brain and a relaxant for smooth muscle. H2S protects primary cortical neurons from oxidative stress by increasing the intracellular concentrations of glutathione, the major antioxidant in cells. However, changes in glutathione alone are not sufficient to account for full protection in all types of nerve cells. H2S is here shown to protect an immortalized mouse hippocampal cell line from oxidative glutamate toxicity by activating ATP-dependent K+ (KATP) and Cl- channels, in addition to increasing the levels of glutathione. The present study therefore identifies a novel pathway for H2S protection from oxidative stress.
Collapse
Affiliation(s)
- Yuka Kimura
- National Institute of Neuroscience, Tokyo, Japan
| | | | | | | |
Collapse
|
99
|
Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 2006; 78:2073-80. [PMID: 16445946 DOI: 10.1016/j.lfs.2005.12.006] [Citation(s) in RCA: 489] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Can drinking several cups of green tea a day keep the doctor away? This certainly seems so, given the popularity of this practice in East Asian culture and the increased interest in green tea in the Western world. Several epidemiological studies have shown beneficial effects of green tea in cancer, cardiovascular, and neurological diseases. The health benefits associated with green tea consumption have also been corroborated in animal studies of cancer chemoprevention, hypercholesterolemia, artherosclerosis, Parkinson's disease, Alzheimer's disease, and other aging-related disorders. However, the use of green tea as a cancer chemopreventive or for other health benefits has been confounded by the low oral bioavailability of its active polyphenolic catechins, particularly epigallocatechin-3-gallate (EGCG), the most active catechin. This review summarizes the purported beneficial effects of green tea and EGCG in various animal models of human diseases. Dose-related differences in the effects of EGCG in cancer versus neurodegenerative and cardiovascular diseases, as well as discrepancies between doses used in in vitro studies and achievable plasma understanding of the in vivo effects of green tea catechins in humans, before the use of green tea is widely adopted as health-promoting measure.
Collapse
Affiliation(s)
- Nurulain T Zaveri
- Drug Discovery Program, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
100
|
Lallemend F, Hadjab S, Hans G, Moonen G, Lefebvre PP, Malgrange B. Activation of protein kinase CbetaI constitutes a new neurotrophic pathway for deafferented spiral ganglion neurons. J Cell Sci 2006; 118:4511-25. [PMID: 16179609 DOI: 10.1242/jcs.02572] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In mammals, degeneration of peripheral auditory neurons constitutes one of the main causes of sensorineural hearing loss. Unfortunately, to date, pharmacological interventions aimed at counteracting this condition have not presented complete effectiveness in protecting the integrity of cochlear neural elements. In this context, the protein kinase C (PKC) family of enzymes are important signalling molecules that play a role in preventing neurodegeneration after nervous system injury. The present study demonstrates, for the first time, that the PKC signalling pathway is directly neurotrophic to axotomised spiral ganglion neurons (SGNs). We found that PKCbetaI was strictly expressed by postnatal and adult SGNs both in situ and in vitro. In cultures of SGNs, we observed that activators of PKC, such as phorbol esters and bryostatin 1, induced neuronal survival and neurite regrowth in a manner dependent on the activation of PKCbetaI. The neuroprotective effects of PKC activators were suppressed by pre-treatment with LY294002 (a PI3K inhibitor) and with U0126 (a MEK inhibitor), indicating that PKC activators promote the survival and neurite outgrowth of SGNs by both PI3K/Akt and MEK/ERK-dependent mechanisms. In addition, whereas combining the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) was shown to provide only an additive effect on SGN survival, the interaction between PKC and neurotrophin signalling gave rise to a synergistic increase in SGN survival. Taken together, the data indicate that PKCbetaI activation represents a key factor for the protection of the integrity of neural elements in the cochlea.
Collapse
Affiliation(s)
- François Lallemend
- Research Centre for Cellular and Molecular Neurobiology, Developmental Neurobiology Unit, University of Liège, Av. de l'Hopital 1 B36, 4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|