51
|
Shakya R, Chongthammakun S. 17β-Estradiol attenuates the influence of chronic activated microglia on SH-SY5Y cell proliferation via canonical WNT signaling pathway. Neurosci Lett 2019; 692:174-180. [PMID: 30391546 DOI: 10.1016/j.neulet.2018.10.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/21/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
The decline in circulating estrogen following menopause or aging is likely to initiate chronic inflammatory disorders, leading to neurodegenerative disease. Though, WNT1 paracrine molecules are crucial in embryonic neuroblastoma cell proliferation, very less is known about its role in adult brain that is associated with estrogen as preventive therapeutic strategy. The present study evidenced for the first time that 17β-estradiol (E2), a potent form of estrogen, could compensate the chronic neuroinflammation-associated loss of neurons by upregulating canonical WNT signaling pathway. Lipopolysaccharide was used to induce inflammatory responses in microglial cell line. The increased secretion of IL-6 cytokine was confirmed as a marker of chronic microglial activation. LPS-conditioned microglial media significantly reduced the viable cells and proliferative markers, BrdU and CyclinD1 in SH-SY5Y. It also decreased the expression of canonical WNT signaling components; WNT1 and β-catenin, which were significantly rescued with pre- and co-treatment of 10 nM E2. Furthermore, estrogen antagonist ICI 182,780 abolished the E2-mediated recovery in WNT1 expression. Whereas, canonical WNT receptor antagonist, Dkk1 was able to inhibit E2-mediated recovery in the expression of downstream component, β-catenin. It suggests a promising role of canonical WNT signaling pathway in estrogen mediated prevention of neuronal cell loss under chronic neuroinflammatory condition.
Collapse
Affiliation(s)
- Rubina Shakya
- Anatomy and Structural Biology Graduate Program, Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sukumal Chongthammakun
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
52
|
Medeiros ADM, Silva RH. Sex Differences in Alzheimer’s Disease: Where Do We Stand? J Alzheimers Dis 2019; 67:35-60. [DOI: 10.3233/jad-180213] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- André de Macêdo Medeiros
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Center of Health and Biological Sciences, Universidade Federal Rural do Semiárido, Mossoró, Brazil
| | - Regina Helena Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
53
|
Busceti CL, Di Menna L, Bianchi F, Mastroiacovo F, Di Pietro P, Traficante A, Bozza G, Niehrs C, Battaglia G, Bruno V, Fornai F, Volpe M, Rubattu S, Nicoletti F. Dickkopf-3 Causes Neuroprotection by Inducing Vascular Endothelial Growth Factor. Front Cell Neurosci 2018; 12:292. [PMID: 30258353 PMCID: PMC6143799 DOI: 10.3389/fncel.2018.00292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
Dickkopf-3 (Dkk3) is an atypical member of the Dkk family of Wnt inhibitors, which has been implicated in the pathophysiology of neurodegenerative disorders. However, the role of Dkk3 in mechanisms of cell degeneration and protection is unknown. We used Dkk3 knockout mice to examine how endogenous Dkk3 influences ischemic brain damage. In addition, we used primary cultures of astrocytes or mixed cultures of astrocytes and neurons to investigate the action of Dkk3 on cell damage and dissect the underlying molecular mechanisms. In a model of focal brain ischemia induced by permanent middle cerebral artery (MCA) occlusion (MCAO) Dkk3−/− mice showed a significantly greater infarct size with respect to their wild-type counterparts at all time points investigated (1, 3 and 7 days after MCAO). Immunohistochemical analysis showed that Dkk3 expression was enhanced at the borders of the ischemic focus, and was predominantly detected in astrocytes. This raised the possibility that Dkk3 produced by astrocytes acted as a protective molecule. We tested this hypothesis using either primary cultures of cortical astrocytes or mixed cortical cultures containing both neurons and astrocytes. Genetic deletion of Dkk3 was permissive to astrocyte damage induced by either oxidative stress or glucose deprivation. In addition, application of human recombinant Dkk3 (hrDkk3) was highly protective against oxidative stress in cultured astrocytes. We tested the hypothesis that the protective activity of Dkk3 was mediated byvascular endothelial growth factor (VEGF). Interestingly, glucose deprivation up-regulated both Dkk3 and VEGF in cultured astrocytes prepared from wild-type mice. VEGF induction was not observed in astrocytes lacking Dkk3 (i.e., in cultures prepared from Dkk3−/− mice). In mixed cultures of cortical cells, excitotoxic neuronal death induced by a brief pulse with N-methyl-D-aspartate (NMDA) was significantly enhanced when Dkk3 was lacking in astrocytes, whereas post-NMDA addition of hrDkk3 was neuroprotective. Neuroprotection by hrDkk3 was significantly reduced by pharmacological blockade of type-2 VEGF receptors and was mimicked by hrVEGF. These data offer the first evidence that Dkk3 protects both neurons and astrocytes against a variety of toxic insults, and at least in culture, protection involves VEGF induction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Massimo Volpe
- IRCCS Neuromed, Pozzilli, Italy.,Clinical and Molecular Medicine, University Sapienza, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy.,Clinical and Molecular Medicine, University Sapienza, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| |
Collapse
|
54
|
Liu CC, Ho PC, Lee IT, Chen YA, Chu CH, Teng CC, Wu SN, Sze CI, Chiang MF, Chang NS. WWOX Phosphorylation, Signaling, and Role in Neurodegeneration. Front Neurosci 2018; 12:563. [PMID: 30158849 PMCID: PMC6104168 DOI: 10.3389/fnins.2018.00563] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Homozygous null mutation of tumor suppressor WWOX/Wwox gene leads to severe neural diseases, metabolic disorders and early death in the newborns of humans, mice and rats. WWOX is frequently downregulated in the hippocampi of patients with Alzheimer’s disease (AD). In vitro analysis revealed that knockdown of WWOX protein in neuroblastoma cells results in aggregation of TRAPPC6AΔ, TIAF1, amyloid β, and Tau in a sequential manner. Indeed, TRAPPC6AΔ and TIAF1, but not tau and amyloid β, aggregates are present in the brains of healthy mid-aged individuals. It is reasonable to assume that very slow activation of a protein aggregation cascade starts sequentially with TRAPPC6AΔ and TIAF1 aggregation at mid-ages, then caspase activation and APP de-phosphorylation and degradation, and final accumulation of amyloid β and Tau aggregates in the brains at greater than 70 years old. WWOX binds Tau-hyperphosphorylating enzymes (e.g., GSK-3β) and blocks their functions, thereby supporting neuronal survival and differentiation. As a neuronal protective hormone, 17β-estradiol (E2) binds WWOX at an NSYK motif in the C-terminal SDR (short-chain alcohol dehydrogenase/reductase) domain. In this review, we discuss how WWOX and E2 block protein aggregation during neurodegeneration, and how a 31-amino-acid zinc finger-like Zfra peptide restores memory loss in mice.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
55
|
Hodges SL, Lugo JN. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 2018; 146:9-16. [PMID: 30053675 DOI: 10.1016/j.eplepsyres.2018.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Epilepsy is one of the most common neurological disorders, and yet many afflicted individuals are resistant to all available therapeutic treatments. Existing pharmaceutical treatments function primarily to reduce hyperexcitability and prevent seizures, but fail to influence the underlying pathophysiology of the disorder. Recently, research efforts have focused on identifying alternative mechanistic targets for anti-epileptogenic therapies that can prevent the development of chronic epilepsy. The Wnt/β-catenin pathway, one possible target, has been demonstrated to be disrupted in both acute and chronic phases of epilepsy. Wnt/β-catenin signaling can regulate many seizure-induced changes in the brain, including neurogenesis and neuronal death, as well as can influence seizure susceptibility and potentially the development of chronic epilepsy. Several genome-wide studies and in vivo knockout animal models have provided evidence for an association between disrupted Wnt/β-catenin signaling and epilepsy. Furthermore, approved pharmaceutical drugs and other small molecule compounds that target components of the β-catenin destruction complex or antagonize endogenous inhibitors of the pathway have shown to be protective following seizures. However, additional studies are needed to determine the optimal time period in which modulation of the pathway may be most beneficial. Overall, disrupted molecular networks such as Wnt/β-catenin signaling, could be a promising anti-epileptogenic target for future epilepsy therapies.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
56
|
Kulanuwat S, Jungtrakoon P, Tangjittipokin W, Yenchitsomanus PT, Plengvidhya N. Fanconi anemia complementation group C protection against oxidative stress‑induced β‑cell apoptosis. Mol Med Rep 2018; 18:2485-2491. [PMID: 29901137 DOI: 10.3892/mmr.2018.9163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/25/2018] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) and other glucose metabolism abnormalities are commonly observed in individuals with Fanconi anemia (FA). FA causes an impaired response to DNA damage due to genetic defects in a cluster of genes encoded proteins involved in DNA repair. However, the mechanism by which FA is associated with DM has not been clearly elucidated. Fanconi anemia complementation group C (FANCC) is a component of FA nuclear clusters. Evidence suggests that cytoplasmic FANCC has a role in protection against oxidative stress‑induced apoptosis. As oxidative stress‑mediated β‑cell dysfunction is one of the contributors to DM pathogenesis, the present study aimed to investigate the role of FANCC in pancreatic β‑cell response to oxidative stress. Small interfering RNA‑mediated FANCC suppression caused a loss of protection against oxidative stress‑induced apoptosis, and that overexpression of FANCC reduced this effect in the human 1.1B4 β‑cell line. These findings were confirmed by Annexin V‑FITC/PI staining, caspase 3/7 activity assay, and expression levels of anti‑apoptotic and pro‑apoptotic genes. Insulin and glucokinase mRNA expression were also decreased in FANCC‑depleted 1.1B4 cells. The present study demonstrated the role of FANCC in protection against oxidative stress‑induced β‑cell apoptosis and established another mechanism that associates FANCC deficiency with β‑cell dysfunction. The finding that FANCC overexpression reduced β‑cell apoptosis advances the potential for an alternative approach to the treatment of DM caused by FANCC defects.
Collapse
Affiliation(s)
- Sirikul Kulanuwat
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prapaporn Jungtrakoon
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattachet Plengvidhya
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
57
|
Jullienne A, Salehi A, Affeldt B, Baghchechi M, Haddad E, Avitua A, Walsworth M, Enjalric I, Hamer M, Bhakta S, Tang J, Zhang JH, Pearce WJ, Obenaus A. Male and Female Mice Exhibit Divergent Responses of the Cortical Vasculature to Traumatic Brain Injury. J Neurotrauma 2018; 35:1646-1658. [PMID: 29648973 DOI: 10.1089/neu.2017.5547] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that traumatic brain injuries (TBI) alter the cerebrovasculature near the injury site in rats, followed by revascularization over a 2-week period. Here, we tested our hypothesis that male and female adult mice have differential cerebrovascular responses following a moderate controlled cortical impact (CCI). Using in vivo magnetic resonance imaging (MRI), a new technique called vessel painting, and immunohistochemistry, we found no differences between males and females in lesion volume, neurodegeneration, blood-brain barrier (BBB) alteration, and microglia activation. However, females exhibited more astrocytic hypertrophy and heme-oxygenase-1 (HO-1) induction at 1 day post-injury (dpi), whereas males presented with increased endothelial activation and expression of β-catenin, shown to be involved in angiogenesis. At 7 dpi, we observed an increase in the number of vessels and an enhancement in vessel complexity in the injured cortex of males compared with females. Cerebrovasculature recovers differently after CCI, suggesting biological sex should be considered when designing new therapeutic agents.
Collapse
Affiliation(s)
- Amandine Jullienne
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Arjang Salehi
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Bethann Affeldt
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mohsen Baghchechi
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Elizabeth Haddad
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Angela Avitua
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mark Walsworth
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Isabelle Enjalric
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mary Hamer
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Sonali Bhakta
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Jiping Tang
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California
| | - John H Zhang
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California.,3 Department of Anesthesiology, University of California Irvine , Irvine, California.,4 Department of Neurosurgery, University of California Irvine , Irvine, California
| | - William J Pearce
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California.,5 Center for Perinatal Biology, Loma Linda University , Loma Linda, California
| | - André Obenaus
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California.,6 Department of Pediatrics, University of California Irvine , Irvine, California
| |
Collapse
|
58
|
Céspedes Rubio ÁE, Pérez-Alvarez MJ, Lapuente Chala C, Wandosell F. Sex steroid hormones as neuroprotective elements in ischemia models. J Endocrinol 2018; 237:R65-R81. [PMID: 29654072 DOI: 10.1530/joe-18-0129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Among sex steroid hormones, progesterone and estradiol have a wide diversity of physiological activities that target the nervous system. Not only are they carried by the blood stream, but also they are locally synthesized in the brain and for this reason, estradiol and progesterone are considered 'neurosteroids'. The physiological actions of both hormones range from brain development and neurotransmission to aging, illustrating the importance of a deep understanding of their mechanisms of action. In this review, we summarize key roles that estradiol and progesterone play in the brain. As numerous reports have confirmed a substantial neuroprotective role for estradiol in models of neurodegenerative disease, we focus this review on traumatic brain injury and stroke models. We describe updated data from receptor and signaling events triggered by both hormones, with an emphasis on the mechanisms that have been reported as 'rapid' or 'cytoplasmic actions'. Data showing the therapeutic effects of the hormones, used alone or in combination, are also summarized, with a focus on rodent models of middle cerebral artery occlusion (MCAO). Finally, we draw attention to evidence that neuroprotection by both hormones might be due to a combination of 'cytoplasmic' and 'nuclear' signaling.
Collapse
Affiliation(s)
- Ángel Enrique Céspedes Rubio
- Departamento de Sanidad AnimalGrupo de Investigación en Enfermedades Neurodegenerativas, Universidad del Tolima, Ibagué, Colombia
| | - Maria José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal)Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Catalina Lapuente Chala
- Grupo de Investigación en Enfermedades NeurodegenerativasInvestigador Asociado Universidad del Tolima, Ibagué, Colombia
| | - Francisco Wandosell
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
59
|
Thakkar R, Wang R, Wang J, Vadlamudi RK, Brann DW. 17 β-Estradiol Regulates Microglia Activation and Polarization in the Hippocampus Following Global Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4248526. [PMID: 29849895 PMCID: PMC5932444 DOI: 10.1155/2018/4248526] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective hormone, but its role in regulation of neuroinflammation is less understood. Recently, our lab demonstrated that E2 could regulate the NLRP3 (NOD-like receptor protein 3) inflammasome pathway in the hippocampus following global cerebral ischemia (GCI). Here, we examined the ability of E2 to regulate activation and polarization of microglia phenotype in the hippocampus after global cerebral ischemia (GCI). Our in vivo study in young adult ovariectomized rats showed that exogenous low-dose E2 profoundly suppressed microglia activation and quantitatively shifted microglia from their "activated," amoeboid morphology to a "resting," ramified morphology after GCI. Further studies using M1 "proinflammatory" and M2 "anti-inflammatory" phenotype markers showed that E2 robustly suppressed the "proinflammatory" M1 phenotype, while enhancing the "anti-inflammatory" M2 microglia phenotype in the hippocampus after GCI. These effects of E2 may be mediated directly upon microglia, as E2 suppressed the M1 while enhancing the M2 microglia phenotype in LPS- (lipopolysaccharide-) activated BV2 microglia cells in vitro. E2 also correspondingly suppressed proinflammatory while enhancing anti-inflammatory cytokine gene expression in the LPS-treated BV2 microglia cells. Finally, E2 treatment abolished the LPS-induced neurotoxic effects of BV2 microglia cells upon hippocampal HT-22 neurons. Collectively, our study findings suggest a novel E2-mediated neuroprotective effect via regulation of microglia activation and promotion of the M2 "anti-inflammatory" phenotype in the brain.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, USA
| | - Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
60
|
Abstract
Hypoxic-ischemic (HI) encephalopathy is a leading cause of dire mortality and morbidity in neonates. Unfortunately, no effective therapies have been developed as of yet. Oxidative stress plays a critical role in pathogenesis and progression of neonatal HI. Previously, as a Nrf2 activator, tert-butylhydroquinone (TBHQ) has been demonstrated to exert neuroprotection on brain trauma and ischemic stroke models, as well as oxidative stress-induced cytotoxicity in neurons. It is, however, still unknown whether TBHQ administration can protect against oxidative stress in neonatal HI brain injury. This study was undertaken to determine the neuroprotective effects and mechanisms of TBHQ post-treatment on neonatal HI brain damage. Using a neonatal HI rat model, we demonstrated that TBHQ markedly abated oxidative stress compared to the HI group, as evidenced by decreased oxidative stress indexes, enhanced Nrf2 nuclear accumulation and DNA binding activity, and up-regulated expression of Nrf2 downstream antioxidative genes. Administration of TBHQ likewise significantly suppressed reactive gliosis and release of inflammatory cytokines, and inhibited apoptosis and neuronal degeneration in the neonatal rat cerebral cortex. In addition, infarct size and neuronal damage were attenuated distinctly. These beneficial effects were accompanied by improved neurological reflex and motor coordination as well as amelioration of spatial learning and memory deficits. Overall, our results provide the first documentation of the beneficial effects of TBHQ in neonatal HI model, in part conferred by activation of Nrf2 mediated antioxidative signaling pathways.
Collapse
|
61
|
Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, Guo P, Qi S. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology 2018; 135:11-21. [PMID: 29510185 DOI: 10.1016/j.neuropharm.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
It is well known that Wnt5a activation plays a pivotal role in brain injury and β-arrestin2 induces c-Jun N-terminal kinase (JNK3) activation is involved in neuronal cell death. Nonetheless, the relationship between Wnt5a and JNK3 remains unexplored during cerebral ischemia/reperfusion (I/R). In the present study, we tested the hypothesis that Wnt5a-mediated JNK3 activation via the Wnt5a-Dvl-1-β-arrestin2-JNK3 signaling pathway was correlated with I/R brain injury. We found that cerebral I/R could enhance the assembly of the Dvl-1-β-arrestin2-JNK3 signaling module, Dvl-1 phosphorylation and JNK3 activation. Activated JNK3 could phosphorylate the transcription factor c-Jun, prompt caspase-3 activation and ultimately lead to neuronal cell death. To further explore specifically Wnt5a mediated JNK3 pathway activation in neuronal injury, we used Foxy-5 (a peptide that mimics the effects of Wnt5a) and Box5 (a Wnt5a antagonist) both in vitro and in vivo. AS-β-arrestin2 (an antisense oligonucleotide against β-arrestin2) and RRSLHL (a small peptide that competes with β-arrestin2 for binding to JNK3) were applied to confirm the positive signal transduction effect of the Dvl-1-β-arrestin2-JNK3 signaling module during cerebral I/R. Furthermore, Box5 and the RRSLHL peptide were found to play protective roles in neuronal death both in vivo global and focal cerebral I/R rat models and in vitro oxygen glucose deprivation (OGD) neural cells. In summary, our results indicate that Wnt5a-mediated JNK3 activation participates in I/R brain injury by targeting the Dvl-1-β-arrestin2/JNK3 interaction. Our results also point to the possibility that disrupting Wnt5a-JNK3 signaling pathway may provide a new approach for stroke therapy.
Collapse
Affiliation(s)
- Xuewen Wei
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - JuanJuan Gong
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Juyun Ma
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Taiyu Zhang
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Yihang Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China.
| |
Collapse
|
62
|
Ma MW, Wang J, Dhandapani KM, Brann DW. Deletion of NADPH oxidase 4 reduces severity of traumatic brain injury. Free Radic Biol Med 2018; 117:66-75. [PMID: 29391196 DOI: 10.1016/j.freeradbiomed.2018.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) contributes to over 30% of injury-related deaths and is a major cause of disability without effective clinical therapies. Oxidative stress contributes to neurodegeneration, neuroinflammation, and neuronal death to amplify the primary injury after TBI. NADPH oxidase (NOX) is a major source of reactive oxygen species following brain injury. Our current study addresses the functional role of the NOX4 isoform in the damaged cortex following TBI. Adult male C57BL/6 J and NOX4-/- mice received a controlled cortical impact and lesion size, NOX4 expression, oxidative stress, neurodegeneration, and cell death were assessed in the injured cerebral cortex. The results revealed that NOX4 mRNA and protein expression were significantly upregulated at 1-7 days post-TBI in the injured cerebral cortex. Expression of the oxidative stress markers, 8-OHdG, 4-HNE, and nitrotyrosine was upregulated at 2 and 4 days post-TBI in the WT injured cerebral cortex, and nitrotyrosine primarily colocalized with neurons. In the NOX4-/- mice, expression of these oxidative stress markers, 8-OHdG, 4-HNE, and nitrotyrosine were significantly attenuated at both timepoints. In addition, examination of NOX4-/- mice revealed a reduced number of apoptotic (TUNEL+) and degenerating (FJB+) cells in the perilesional cortex after TBI, as well as a smaller lesion size compared with the WT group. The results of this study implicate a functional role for NOX4 in TBI induced oxidative damage and neurodegeneration and raise the possibility that targeting NOX4 may have therapeutic efficacy in TBI.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
63
|
Park HK, Ilango S, Charriez CM, Checkoway H, Riley D, Standaert DG, Bordelon Y, Shprecher DR, Reich SG, Hall D, Kluger B, Marras C, Jankovic J, Dubinsky R, Litvan I. Lifetime exposure to estrogen and progressive supranuclear palsy: Environmental and Genetic PSP study. Mov Disord 2018; 33:468-472. [PMID: 29460982 PMCID: PMC5840026 DOI: 10.1002/mds.27336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/10/2017] [Accepted: 01/11/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Studies suggesting a protective effect of estrogen in neurodegenerative diseases prompted us to investigate this relationship in progressive supranuclear palsy (PSP). METHODS This case-control study evaluated the self-reported reproductive characteristics and estrogen of 150 women with PSP and 150 age-matched female controls who participated in the Environmental Genetic-PSP study. Conditional logistic regression models were generated to examine associations of PSP with estrogen. RESULTS There was no association between years of estrogen exposure duration and PSP. There was a suggestion of an inverse association between composite estrogen score and PSP that did not reach statistical significance (P = .06). Any exposure to estrogen replacement therapy halved the risk of PSP (odds ratio = 0.52; 95% confidence interval = 0.30-0.92; P = .03). Among PSP cases, earlier age at menarche was associated with better performance on Hoehn and Yahr stage (β = -0.60; SE = 0.26; P = .02) and Unified Parkinson's Disease Rating Scale II score (β = -5.19; SE = 2.48; P = .04) at clinical examination. CONCLUSIONS This case-control study suggests a protective role of lifetime estrogen exposure in PSP. Future studies will be needed to confirm this association. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hee Kyung Park
- Department of Neurology, Inje University Ilsan-Paik Hospital, Goyang, Korea
- Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Sindana Ilango
- Graduate School of Public Health, San Diego State University
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California, USA
| | - Christina M. Charriez
- Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California, USA
| | | | - David G. Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yvette Bordelon
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - David R. Shprecher
- Banner Sun Health Research Institute, Sun City, AZ
- Department of Neurology, University of Arizona College of Medicine, Phoenix, AZ
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stephen G. Reich
- Department of Neurology, University of Maryland, Baltimore, Maryland, USA
| | - Deborah Hall
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
- Department of Neurology, University of Colorado, Denver, Colorado, USA
| | - Benzi Kluger
- Department of Neurology, University of Colorado, Denver, Colorado, USA
| | - Connie Marras
- Morto and Gloria Shulman Movement Disorders Centre and the Edmond J. Saftra Program in Parkinson’s Research, Toronto Western Hospital, University of Toronto, Toronto, Ontario, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine
| | | | - Irene Litvan
- Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
- Division of Movement Disorders, Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
64
|
Wu Y, Feng D, Lin J, Qu Y, He S, Wang Y, Gao G, Zhao T. Downregulation of G‑protein‑coupled receptor 30 in the hippocampus attenuates the neuroprotection of estrogen in the critical period hypothesis. Mol Med Rep 2018; 17:5716-5725. [PMID: 29484405 PMCID: PMC5866014 DOI: 10.3892/mmr.2018.8618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the role of G-protein-coupled receptor 30 (GPR30) in long-term 17β-estradiol (E2) deprivation (LTED) in a rat model with global cerebral ischemia (GCI), and its therapeutic target for ischemic stroke in the clinical setting. Following bilateral ovariectomy, GCI was induced in rats 1 or 10 weeks post-surgery. To determine the protein and mRNA expression levels of GPR30 in the hippocampal CA1 region of LTED rats, short-term E2 deprivation (STED) rats and naturally aging rats, western blot analysis and reverse transcription-quantitative polymerase chain reaction were performed. The results of the present study demonstrated that E2 treatment revealed significant neuroprotection post-GCI in STED rats, but not in LTED rats, as well as a decrease in the expression levels of GPR30 in the hippocampal CA1 region. In LTED rats,. Notably, no effects were observed on the ubiquitination of GPR30 following investigation in STED or LTED rats. While the protein and mRNA expression levels of GPR30 were also decreased in the hippocampal CA1 region of female 24-month-old rats compared with 3-month-old rats. E2 treatment initiated for the entire ovariectomy period elevated GPR30 mRNA and protein expression levels, and attenuated the loss of hippocampal neurons in the GCI-induced CA1 region, indicating that E2 treatment exerted robust neuroprotection within LTED rats. However, the neuroprotective effect of E2 may be blocked by G15. The results of the present study revealed that downregulation of GPR30 expression may attenuate the neuroprotection of E2 within LTED conditions in rats post-ovariectomy by leading to neuronal insensitivity to E2 neuroprotection following cerebral ischemia. These results provide evidence that GPR30 may have potential as a novel therapeutic target for the treatment of clinical ischemic stroke.
Collapse
Affiliation(s)
- Yingxi Wu
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiaji Lin
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Shiming He
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
65
|
Lu Y, Dong Y, Tucker D, Wang R, Ahmed ME, Brann D, Zhang Q. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease. J Alzheimers Dis 2018; 56:1469-1484. [PMID: 28157094 DOI: 10.3233/jad-160869] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.
Collapse
|
66
|
Thakkar R, Sareddy GR, Zhang Q, Wang R, Vadlamudi RK, Brann D. PELP1: a key mediator of oestrogen signalling and actions in the brain. J Neuroendocrinol 2018; 30:10.1111/jne.12484. [PMID: 28485080 PMCID: PMC5785553 DOI: 10.1111/jne.12484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an oestrogen receptor (ER) coregulator protein identified by our collaborative group. Work from our laboratory and others has shown that PELP1 is a scaffold protein that interacts with ERs and kinase signalling factors, as well as proteins involved in chromatin remodelling and DNA repair. Its role in mediating 17β-oestradiol (E2 ) signalling and actions has been studied in detail in cancer cells, although only recently has attention turned to its role in the brain. In this review, we discuss the tissue, cellular and subcellular localisation of PELP1 in the brain. We also discuss recent evidence from PELP1 forebrain-specific knockout mice demonstrating a critical role of PELP1 in mediating both extranuclear and nuclear ER signalling in the brain, as well as E2 -induced neuroprotection, anti-inflammatory effects and regulation of cognitive function. Finally, the PELP1 interactome and unique gene network regulated by PELP1 in the brain is discussed, especially because it provides new insights into PELP1 biology, protein interactions and mechanisms of action in the brain. As a whole, the findings discussed in the present review indicate that PELP1 functions as a critical ER coregulator in the brain to mediate E2 signalling and actions.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Corresponding Author: Dr. Darrell Brann, Regents’ Professor and Vice Chair, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15 Street, CA-4004, Augusta, GA 30912, USA. Phone: 1-706-721-7779
| |
Collapse
|
67
|
Fernandes V, Sharma D, Vaidya S, P A S, Guan Y, Kalia K, Tiwari V. Cellular and molecular mechanisms driving neuropathic pain: recent advancements and challenges. Expert Opin Ther Targets 2018; 22:131-142. [PMID: 29285962 DOI: 10.1080/14728222.2018.1420781] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Current pharmacotherapeutics for neuropathic pain offer only symptomatic relief without treating the underlying pathophysiology. Additionally, they are associated with various dose-limiting side effects. Pain research in the past few decades has revolved around the role of oxidative-nitrosative stress, protein kinases, glial cell activation, and inflammatory signaling cascades but has failed to produce specific and effective therapies. Areas covered: This review focuses on recent advances in cellular and molecular mechanisms of neuropathic pain that may be translated into future therapies. We discuss emerging targets such as WNT signaling mechanisms, the tetrahydrobiopterin pathway, Mrg receptors, endogenous lipid mediators, micro-RNAs and their roles in pain regulation. Recent evidence is also presented regarding genetic and epigenetic mechanisms of pain modulation. Expert opinion: During chronic neuropathic pain, maladaptation occurs in the peripheral and central nervous systems, including a shift in microglial phenotype from a surveillance state to an activated state. Microglial activation leads to an altered expression of cell surface proteins, growth factors, and intracellular signaling molecules that contribute to development of a neuroinflammatory cascade and chronic pain sensitization. Specific targeting of these cellular and molecular mechanisms may provide the key to development of effective neuropathic pain therapies that have minimal side effects.
Collapse
Affiliation(s)
- Valencia Fernandes
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Dilip Sharma
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Shivani Vaidya
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Shantanu P A
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Yun Guan
- b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Kiran Kalia
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Vinod Tiwari
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India.,b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
68
|
Zhao N, Liang P, Zhuo X, Su C, Zong X, Guo B, Han D, Yan X, Hu S, Zhang Q, Tie X. After Treatment with Methylene Blue is Effective against Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. Basic Clin Pharmacol Toxicol 2017; 122:470-480. [PMID: 29151273 DOI: 10.1111/bcpt.12940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022]
Abstract
Delayed encephalopathy after acute carbon monoxide (CO) poisoning (DEACMP) is the most severe and clinically intractable complication that occurs following acute CO poisoning. Unfortunately, the mechanism of DEACMP is still vague. Growing evidence indicates that delayed cerebral damage after CO poisoning is related to oxidative stress, abnormal neuro-inflammation, apoptosis and immune-mediated injury. Our recent report indicated that methylene blue (MB) may be a promising therapeutic agent in the prevention of neuronal cell death and cognitive deficits after transient global cerebral ischaemia (GCI). In this study, we aimed to investigate the potential of MB therapy to ameliorate the signs and symptoms of DEACMP. Rats were exposed to 1000 ppm CO for 40 min. in the first step; CO was then increased to 3000 ppm, which was maintained for another 20 min. The rats were implanted with 7-day release Alzet osmotic mini-pumps subcutaneously under the back skin, which provided MB at a dose of 0.5 mg/kg/day 1 hr after CO exposure. The results showed that MB significantly suppressed oxidative damage and expression of pro-inflammatory factors, including tumour necrosis factor-α and interleukin (IL)-1β. MB treatment also suitably modulated mitochondrial fission and fusion, which is helpful in the preservation of mitochondrial function. Furthermore, MB dramatically attenuated apoptosis and neuronal death. Lastly, behavioural studies revealed that MB treatment preserved spatial learning and memory in the Barnes maze test. Our findings indicated that MB may have protective effects against DEACMP.
Collapse
Affiliation(s)
- Ningjun Zhao
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Pengchong Liang
- Department of Emergency Medicine, Central Hospital of Baoji City, Baoji, Shanxi, China
| | - Xiaoying Zhuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Chenglei Su
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Xuemei Zong
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Bingnan Guo
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Dong Han
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Xianliang Yan
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Shuqun Hu
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Quanguang Zhang
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Xu Tie
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| |
Collapse
|
69
|
Smith LA, McMahon LL. Deficits in synaptic function occur at medial perforant path-dentate granule cell synapses prior to Schaffer collateral-CA1 pyramidal cell synapses in the novel TgF344-Alzheimer's Disease Rat Model. Neurobiol Dis 2017; 110:166-179. [PMID: 29199135 DOI: 10.1016/j.nbd.2017.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) pathology begins decades prior to onset of clinical symptoms, and the entorhinal cortex and hippocampus are among the first and most extensively impacted brain regions. The TgF344-AD rat model, which more fully recapitulates human AD pathology in an age-dependent manner, is a next generation preclinical rodent model for understanding pathophysiological processes underlying the earliest stages of AD (Cohen et al., 2013). Whether synaptic alterations occur in hippocampus prior to reported learning and memory deficit is not known. Furthermore, it is not known if specific hippocampal synapses are differentially affected by progressing AD pathology, or if synaptic deficits begin to appear at the same age in males and females in this preclinical model. Here, we investigated the time-course of synaptic changes in basal transmission, paired-pulse ratio, as an indirect measure of presynaptic release probability, long-term potentiation (LTP), and dendritic spine density at two hippocampal synapses in male and ovariectomized female TgF344-AD rats and wildtype littermates, prior to reported behavioral deficits. Decreased basal synaptic transmission begins at medial perforant path-dentate granule cell (MPP-DGC) synapses prior to Schaffer-collateral-CA1 (CA3-CA1) synapses, in the absence of a change in paired-pulse ratio (PPR) or dendritic spine density. N-methyl-d-aspartate receptor (NMDAR)-dependent LTP magnitude is unaffected at CA3-CA1 synapses at 6, 9, and 12months of age, but is significantly increased at MPP-DGC synapses in TgF344-AD rats at 6months only. Sex differences were only observed at CA3-CA1 synapses where the decrease in basal transmission occurs at a younger age in males versus females. These are the first studies to define presymptomatic alterations in hippocampal synaptic transmission in the TgF344-AD rat model. The time course of altered synaptic transmission mimics the spread of pathology through hippocampus in human AD and provides support for this model as a valuable preclinical tool in elucidating pathological mechanisms of early synapse dysfunction in AD.
Collapse
Affiliation(s)
- Lindsey A Smith
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, USA
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, USA.
| |
Collapse
|
70
|
Pike CJ. Sex and the development of Alzheimer's disease. J Neurosci Res 2017; 95:671-680. [PMID: 27870425 DOI: 10.1002/jnr.23827] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Men and women exhibit differences in the development and progression of Alzheimer's disease (AD). The factors underlying the sex differences in AD are not well understood. This Review emphasizes the contributions of sex steroid hormones to the relationship between sex and AD. In women, events that decrease lifetime exposure to estrogens are generally associated with increased AD risk, whereas estrogen-based hormone therapy administered near the time of menopause may reduce AD risk. In men, estrogens do not exhibit age-related reduction and are not significantly associated with AD risk. Rather, normal age-related depletions of testosterone in plasma and brain predict enhanced vulnerability to AD. Both estrogens and androgens exert numerous protective actions in the adult brain that increase neural functioning and resilience as well as specifically attenuating multiple aspects of AD-related neuropathology. Aging diminishes the activational effects of sex hormones in sex-specific manners, which is hypothesized to contribute to the relationship between aging and AD. Sex steroid hormones may also drive sex differences in AD through their organizational effects during developmental sexual differentiation of the brain. Specifically, sex hormone actions during early development may confer inherent vulnerability of the female brain to development of AD in advanced age. The combined effects of organizational and activational effects of sex steroids yield distinct sex differences in AD pathogenesis, a significant variable that must be more rigorously considered in future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christian J Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| |
Collapse
|
71
|
Matsukawa T, Morita K, Omizu S, Kato S, Koriyama Y. Mechanisms of RhoA inactivation and CDC42 and Rac1 activation during zebrafish optic nerve regeneration. Neurochem Int 2017; 112:71-80. [PMID: 29129556 DOI: 10.1016/j.neuint.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
When axons of the mammalian central nervous system (CNS) are injured, they fail to regenerate, while those of lower vertebrates undergo regeneration after injury. Wingless-type MMTV integration site family (Wnt) proteins play important roles in the CNS, and are reported to be activated after mammalian spinal cord or brain injury. Moreover, for axon growth to proceed, it is thought that small G-proteins, such as CDC42 and Rac1, need to be activated, whereas RhoA must be inactivated. However, the cell and molecular mechanisms involved in optic nerve regeneration remain unclear. In this study, we investigated axonal regeneration after injury using the zebrafish optic nerve as a model system. We sought to clarify the role of Wnt proteins and the mechanisms involved in the activation and inactivation of small G-proteins in nerve regeneration. After optic nerve injury, mRNA levels of Wnt5b, TAX1BP3 and ICAT increased in the retina, while those of Wnt10a decreased. These changes were associated with a reduction in β-catenin in nuclei. We found that Wnt5b activated CDC42 and Rac1, leading to the inactivation of RhoA, which appeared to be dependent on increased TAX1BP3 mRNA levels. Furthermore, we found that mRNA levels of Daam1a and ARHGEF16 decreased. We speculate that the decrease in β-catenin levels, which also further reduces levels of active RhoA, might contribute to regeneration in the zebrafish. Collectively, our novel results suggest that Wnt5b, Wnt10a, ICAT and TAX1BP3 participate in the activation and inactivation of small G-proteins, such as CDC42, Rac1 and RhoA, during the early stage of optic nerve regeneration in the zebrafish.
Collapse
Affiliation(s)
- Toru Matsukawa
- Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa, Osaka, 572-8508, Japan.
| | - Kazune Morita
- Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Shou Omizu
- Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Satoru Kato
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 920-0942, Japan
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, 513-8670, Japan
| |
Collapse
|
72
|
Bao J, Mahaman YAR, Liu R, Wang JZ, Zhang Z, Zhang B, Wang X. Sex Differences in the Cognitive and Hippocampal Effects of Streptozotocin in an Animal Model of Sporadic AD. Front Aging Neurosci 2017; 9:347. [PMID: 29163130 PMCID: PMC5671606 DOI: 10.3389/fnagi.2017.00347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023] Open
Abstract
More than 95% of Alzheimer's disease (AD) belongs to sporadic AD (sAD), and related animal models are the important research tools for investigating the pathogenesis and developing new drugs for sAD. An intracerebroventricular infusion of streptozotocin (ICV-STZ) is commonly employed to generate sporadic AD animal model. Moreover, the potential impact of sex on brain function is now emphasized in the field of AD. However, whether sex differences exist in AD animal models remains unknown. Here we reported that ICV-STZ remarkably resulted in learning and memory impairment in the Sprague-Dawley male rats, but not in the female rats. We also found tau hyperphosphorylation, an increase of Aβ40/42 as well as increase in both GSK-3β and BACE1 activities, while a loss of dendritic and synaptic plasticity was observed in the male STZ rats. However, STZ did not induce above alterations in the female rats. Furthermore, estradiol levels of serum and hippocampus of female rats were much higher than that of male rats. In conclusion, sex differences exist in this sporadic AD animal model (Sprague-Dawley rats induced by STZ), and this should be considered in future AD research.
Collapse
Affiliation(s)
- Jian Bao
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou A R Mahaman
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhiguo Zhang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaochuan Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
73
|
Yao Y, Chen X, Bao Y, Wu Y. Puerarin inhibits β‑amyloid peptide 1‑42‑induced tau hyperphosphorylation via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2017; 16:9081-9085. [PMID: 28990074 DOI: 10.3892/mmr.2017.7702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 07/18/2017] [Indexed: 11/05/2022] Open
Abstract
Excessive tau protein phosphorylation is important in the pathogenesis and early abnormal signal transduction of Alzheimer's disease. Excessive phosphorylation of microtubules is associated with tau accumulation, which induces the formation of neurofibrillary tangles in neurons, leading to synaptic damage and ultimately, neurodegeneration. The present study aimed to investigate the possible mechanism underlying the inhibitory effects of puerarin on β‑amyloid peptide (Aβ)1‑42‑induced tau protein hyperphosphorylation in SH‑SY5Y cells. Following various treatments, the viability of SH‑SY5Y cells was determined using the MTT assay, and cell morphology was observed under an inverted fluorescence microscope. Western blotting was used to detect tau phosphorylation, and the protein expression levels of glycogen synthase kinase (GSK)‑3β, phosphorylated (p)‑GSK‑3β (Ser9), β‑catenin and cyclin D1, which are the key factors mediating the Wnt/β‑catenin signaling pathway in SH‑SY5Y cells. The results demonstrated that puerarin reversed the Aβ1‑42‑induced decrease in SH‑SY5Y cell viability. In addition, puerarin inhibited the degree of Aβ1‑42‑induced tau phosphorylation at Ser396, Ser199 and Thr231 in SH‑SY5Y cells, and reduced the expression of GSK‑3β by increasing the expression of p‑GSK‑3β (Ser9). Furthermore, puerarin increased the protein expression levels of β‑catenin and cyclin D1, which are key factors involved in the Wnt/β‑catenin signaling pathway. The results of the present study demonstrated that puerarin may attenuate Aβ1‑42‑induced tau hyperphosphorylation in SH‑SY5Y cells, by inhibiting the expression of GSK‑3β and activating the Wnt/β‑catenin signaling pathway; therefore, puerarin may exert protective effects against Alzheimer's disease.
Collapse
Affiliation(s)
- Ying Yao
- Department of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xianchun Chen
- Department of Pharmacy, Zhejiang University Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Yuting Bao
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yangsheng Wu
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
74
|
Ruan Q, D'onofrio G, Wu T, Greco A, Sancarlo D, Yu Z. Sexual dimorphism of frailty and cognitive impairment: Potential underlying mechanisms (Review). Mol Med Rep 2017; 16:3023-3033. [PMID: 28713963 DOI: 10.3892/mmr.2017.6988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 01/01/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess systematically gender differences in susceptibility to frailty and cognitive performance decline, and the underlying mechanisms. A systematic assessment was performed of the identified reviews of cohort, mechanistic and epidemiological studies. The selection criteria of the present study included: i) Sexual dimorphism of frailty, ii) sexual dimorphism of subjective memory decline (impairment) and atrophy of hippocampus during early life, iii) sexual dimorphism of late‑onset Alzheimer's disease and iv) sexual dimorphism mechanisms underlying frailty and cognitive impairment. Males exhibit a susceptibility to poor memory performance and a severe atrophy of the hippocampus during early life and females demonstrate a higher prevalence for frailty and late‑life dementia. The different alterations within the hypothalamic‑pituitary‑gonadal/adrenal axis, particularly with regard to gonadal hormones, cortisol and dehydroepiandrosterone/sulfate‑bound dehydroepiandrosterone prior to and following andropause in males and menopause in females, serve important roles in sexual dimorphism of frailty and cognitive impairment. These endocrine changes may accelerate immunosenescence, weaken neuroprotective and neurotrophic effects, and promote muscle catabolism. The present study suggested that these age‑associated endocrine alterations interact with gender‑specific genetic and epigenetic factors, together with immunosenescence and iron accumulation. Environment factors, including psychological factors, are additional potential causes of the sexual dimorphism of frailty and cognitive impairment.
Collapse
Affiliation(s)
- Qingwei Ruan
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Grazia D'onofrio
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Tao Wu
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Antonio Greco
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Daniele Sancarlo
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Zhuowei Yu
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
75
|
NADPH Oxidase 2 Regulates NLRP3 Inflammasome Activation in the Brain after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6057609. [PMID: 28785377 PMCID: PMC5529650 DOI: 10.1155/2017/6057609] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 06/01/2017] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. After the initial primary mechanical injury, a complex secondary injury cascade involving oxidative stress and neuroinflammation follows, which may exacerbate the injury and complicate the healing process. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in TBI pathology, and inhibition of NOX2 is neuroprotective. The NLRP3 inflammasome can become activated in response to oxidative stress, but little is known about the role of NOX2 in regulating NLRP3 inflammasome activation following TBI. In this study, we utilized NOX2 knockout mice to study the role of NOX2 in mediating NLRP3 inflammasome expression and activation following a controlled cortical impact. Expression of NLRP3 inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC), as well as its downstream products cleaved caspase-1 and interleukin-1β (IL-1β), was robustly increased in the injured cerebral cortex following TBI. Deletion of NOX2 attenuated the expression, assembly, and activity of the NLRP3 inflammasome via a mechanism that was associated with TXNIP, a sensor of oxidative stress. The results support the notion that NOX2-dependent inflammasome activation contributes to TBI pathology.
Collapse
|
76
|
Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M. Neuroprotection by Estrogen and Progesterone in Traumatic Brain Injury and Spinal Cord Injury. Curr Neuropharmacol 2017; 14:641-53. [PMID: 26955967 PMCID: PMC4981744 DOI: 10.2174/1570159x14666160309123554] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/31/2015] [Accepted: 02/25/2016] [Indexed: 12/25/2022] Open
Abstract
In recent years there has been a growing body of clinical and laboratory evidence demonstrating the neuroprotective effects of estrogen and progesterone after traumatic brain injury (TBI) and spinal cord injury (SCI). In humans, women have been shown to have a lower incidence of morbidity and mortality after TBI compared with age-matched men. Similarly, numerous laboratory studies have demonstrated that estrogen and progesterone administration is associated with a mortality reduction, improvement in neurological outcomes, and a reduction in neuronal apoptosis after TBI and SCI. Here, we review the evidence that supports hormone-related neuroprotection and discuss possible underlying mechanisms. Estrogen and progesterone-mediated neuroprotection are thought to be related to their effects on hormone receptors, signaling systems, direct antioxidant effects, effects on astrocytes and microglia, modulation of the inflammatory response, effects on cerebral blood flow and metabolism, and effects on mediating glutamate excitotoxicity. Future laboratory research is needed to better determine the mechanisms underlying the hormones' neuroprotective effects, which will allow for more clinical studies. Furthermore, large randomized clinical control trials are needed to better assess their role in human neurodegenerative conditions.
Collapse
Affiliation(s)
- Evgeni Brotfain
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
77
|
Gaskill C, Marriott S, Pratap S, Menon S, Hedges LK, Fessel JP, Kropski JA, Ames D, Wheeler L, Loyd JE, Hemnes AR, Roop DR, Klemm DJ, Austin ED, Majka SM. Shared gene expression patterns in mesenchymal progenitors derived from lung and epidermis in pulmonary arterial hypertension: identifying key pathways in pulmonary vascular disease. Pulm Circ 2016; 6:483-497. [PMID: 28090290 PMCID: PMC5210051 DOI: 10.1086/688314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid access to lung-derived cells from stable subjects is a major challenge in the pulmonary hypertension field, given the relative contraindication of lung biopsy. In these studies, we sought to demonstrate the importance of evaluating a cell type that actively participates in disease processes, as well as the potential to translate these findings to vascular beds in other nonlung tissues, in this instance perivascular skin mesenchymal cells (MCs). We utilized posttransplant or autopsy lung explant-derived cells (ABCG2-expressing mesenchymal progenitor cells [MPCs], fibroblasts) and skin-derived MCs to test the hypothesis that perivascular ABCG2 MPCs derived from pulmonary arterial hypertension (PAH) patient lung and skin would express a gene profile reflective of ongoing vascular dysfunction. By analyzing the genetic signatures and pathways associated with abnormal ABCG2 lung MPC phenotypes during PAH and evaluating them in lung- and skin-derived MCs, we have identified potential predictor genes for detection of PAH as well as a targetable mechanism to restore MPCs and microvascular function. These studies are the first to explore the utility of expanding the study of ABCG2 MPC regulation of the pulmonary microvasculature to the epidermis, in order to identify potential markers for adult lung vascular disease, such as PAH.
Collapse
Affiliation(s)
- Christa Gaskill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Shennea Marriott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Sidd Pratap
- Meharry Medical College, Nashville, Tennessee, USA
| | - Swapna Menon
- Pulmonary Vascular Research Institute, Kochi; and AnalyzeDat Consulting Services, Kerala, India
| | - Lora K. Hedges
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Joshua P. Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - DeWayne Ames
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Lisa Wheeler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - James E. Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Dennis R. Roop
- Department of Dermatology; and Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| | - Dwight J. Klemm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan M. Majka
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
78
|
Mao G, Ren P, Wang G, Yan F, Zhang Y. MicroRNA-128-3p Protects Mouse Against Cerebral Ischemia Through Reducing p38α Mitogen-Activated Protein Kinase Activity. J Mol Neurosci 2016; 61:152-158. [DOI: 10.1007/s12031-016-0871-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 12/27/2022]
|
79
|
Neuroprotection Mediated through GluN2C-Containing N-methyl-D-aspartate (NMDA) Receptors Following Ischemia. Sci Rep 2016; 6:37033. [PMID: 27845401 PMCID: PMC5109474 DOI: 10.1038/srep37033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022] Open
Abstract
Post-ischemic activation of NMDA receptors (NMDARs) has been linked to NMDAR subunit-specific signaling that mediates pro-survival or pro-death activity. Although extensive studies have been performed to characterize the role of GluN2A and GluN2B following ischemia, there is less understanding regarding the regulation of GluN2C. Here, we show that GluN2C expression is increased in acute hippocampal slices in response to ischemia. Strikingly, GluN2C knockout mice, following global cerebral ischemia, exhibit greater neuronal death in the CA1 area of the hippocampus and reduced spatial working memory compared to wild-type mice. Moreover, we find that GluN2C-expressing hippocampal neurons show marked resistance to NMDA-induced toxicity and reduced calcium influx. Using both in vivo and in vitro experimental models of ischemia, we demonstrate a neuroprotective role of GluN2C, suggesting a mechanism by which GluN2C is upregulated to promote neuronal survival following ischemia. These results may provide insights into development of NMDAR subunit-specific therapeutic strategies to protect neurons from excitotoxicity.
Collapse
|
80
|
NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17 β-Estradiol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8309031. [PMID: 27843532 PMCID: PMC5097821 DOI: 10.1155/2016/8309031] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective factor in the brain. Recently, our lab demonstrated that the neuroprotective and cognitive effects of E2 require mediation by the estrogen receptor (ER) coregulator protein and proline-, glutamic acid-, and leucine-rich protein 1 (PELP1). In the current study, we examined whether E2, acting via PELP1, can exert anti-inflammatory effects in the ovariectomized rat and mouse hippocampus to regulate NLRP3 inflammasome activation after global cerebral ischemia (GCI). Activation of the NLRP3 inflammasome pathway and expression of its downstream products, cleaved caspase-1 and IL-1β, were robustly increased in the hippocampus after GCI, with peak levels observed at 6-7 days. Expression of P2X7 receptor, an upstream regulator of NLRP3, was also increased after GCI. E2 markedly inhibited NLRP3 inflammasome pathway activation, caspase-1, and proinflammatory cytokine production, as well as P2X7 receptor expression after GCI (at both the mRNA and protein level). Intriguingly, the ability of E2 to exert these anti-inflammatory effects was lost in PELP1 forebrain-specific knockout mice, indicating a key role for PELP1 in E2 anti-inflammatory signaling. Collectively, our study demonstrates that NLRP3 inflammasome activation and proinflammatory cytokine production are markedly increased in the hippocampus after GCI, and that E2 signaling via PELP1 can profoundly inhibit these proinflammatory effects.
Collapse
|
81
|
Ahmed ME, Dong Y, Lu Y, Tucker D, Wang R, Zhang Q. Beneficial Effects of a CaMKIIα Inhibitor TatCN21 Peptide in Global Cerebral Ischemia. J Mol Neurosci 2016; 61:42-51. [PMID: 27604243 DOI: 10.1007/s12031-016-0830-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022]
Abstract
Aberrant calcium influx is a common feature following ischemic reperfusion (I/R) in transient global cerebral ischemia (GCI) and causes delayed neuronal cell death in the CA1 region of the hippocampus. Activation of calcium-calmodulin (CaM)-dependent protein kinase IIα (CaMKIIα) is a key event in calcium signaling in ischemic injury. The present study examined the effects of intracerebroventricular (icv) injection of tatCN21 in ischemic rats 3 h after GCI reperfusion. Cresyl violet and NeuN staining revealed that tatCN21 exerted neuroprotective effects against delayed neuronal cell death of hippocampal CA1 pyramidal neurons 10 days post-GCI. In addition, TatCN21 administration ameliorated GCI-induced spatial memory deficits in the Barnes maze task as well as anxiety-like behaviors and spontaneous motor activity in the elevated plus maze and open field test, respectively. Mechanistic studies showed that the administration of tatCN21 decreased GCI-induced phosphorylation, translocation, and membrane targeting of CaMKIIα. Treatment with tatCN21 also inhibited the level of CaMKIIα-NR2B interaction and NR2B phosphorylation. Our results revealed an important role of tatCN21 in inhibiting CaMKIIα activation and its beneficial effects in neuroprotection and memory preservation in an ischemic brain injury model.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
82
|
Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 2016; 158:78-88. [PMID: 27370940 DOI: 10.1016/j.lfs.2016.06.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023]
Abstract
The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.
Collapse
Affiliation(s)
- Rosaliana Libro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
83
|
Abstract
Wnt signaling has emerged in recent years as a major player in both nervous system development and adult synaptic plasticity. Of particular relevance to researchers studying learning and memory, Wnt signaling is critical for normal functioning of the hippocampus, a brain region that is essential for many types of memory formation and whose dysfunction is implicated in numerous neurodegenerative and psychiatric conditions. Impaired hippocampal Wnt signaling is implicated in several of these conditions, however, little is known about how Wnt signaling mediates hippocampal memory formation. This review will provide a general overview of Wnt signaling and discuss evidence demonstrating a key role for Wnt signaling in hippocampal memory formation in both normal and disease states. The regulation of Wnt signaling by ovarian sex steroid hormones will also be highlighted, given that the neuroprotection afforded by Wnt-hormone interactions may have significant implications for cognitive function in aging, neurodegenerative disease, and ischemic injury.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, WI, USA
| |
Collapse
|
84
|
Hwang IH, Park J, Kim JM, Kim SI, Choi JS, Lee KB, Yun SH, Lee MG, Park SJ, Jang IS. Tetraspanin-2 promotes glucotoxic apoptosis by regulating the JNK/β-catenin signaling pathway in human pancreatic β cells. FASEB J 2016; 30:3107-16. [PMID: 27247127 PMCID: PMC5001516 DOI: 10.1096/fj.201600240rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/19/2016] [Indexed: 12/02/2022]
Abstract
Diabetes mellitus is a complex and heterogeneous disease, which has β-cell
dysfunction at its core. Glucotoxicity affects pancreatic islets, causing
β-cell apoptosis. However, the role of JNK/β-catenin signaling in
glucotoxic β-cell apoptosis is not well understood. Recently, we identified
tetraspanin-2 (TSPAN2) protein as a proapoptotic β-cell factor induced by
glucose, suggesting that TSPAN2 might contribute to pancreatic β-cell
glucotoxicity. To investigate the effects of glucose concentration on TSPAN2
expression and apoptosis, we used reverted immortalized RNAKT-15 human pancreatic
β cells. High TSPAN2 levels up-regulated phosphorylated (p) JNK and induced
apoptosis. p-JNK enhanced the phosphorylation of β-catenin and Dickkopf-1
(Dkk1). Dkk1 knockdown by small interfering (si)RNA up-regulated nuclear
β-catenin, suggesting that it is a JNK/β-catenin-dependent pathway.
siRNA-mediated TSPAN2 depletion in RNAKT-15 cells increased nuclear β-catenin.
This decreased BCL2-associated X protein (Bax) activation, leading to marked
protection against high glucose–induced apoptosis. Bax subfamily proteins
induced apoptosis through caspase-3. Thus, TSPAN2 might have induced Bax
translocation and caspase-3 activation in pancreatic β cells, thereby
promoting the apoptosis of RNAKT-15 cells by regulating the JNK/β-catenin
pathway in response to high glucose concentrations. Targeting TSPAN2 could be a
potential therapeutic strategy to treat glucose toxicity-induced β-cell
failure.—Hwang, I.-H., Park, J., Kim, J. M., Kim, S. I., Choi, J.-S., Lee,
K.-B., Yun, S. H., Lee, M.-G., Park, S. J., Jang, I.-S. Tetraspanin-2 promotes
glucotoxic apoptosis by regulating the JNK/β-catenin signaling pathway in
human pancreatic β cells.
Collapse
Affiliation(s)
- In-Hu Hwang
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Korea
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, Daejeon, Korea
| | - Seung Il Kim
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| | - Jong-Soon Choi
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| | - Kyung-Bok Lee
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| | - Sung Ho Yun
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| | - Min-Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Sangji University College of Korean Medicine, Wonju, Korea
| | - Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| |
Collapse
|
85
|
Ahmed HH, Salem AM, Atta HM, Eskandar EF, Farrag ARH, Ghazy MA, Salem NA, Aglan HA. Updates in the pathophysiological mechanisms of Parkinson’s disease: Emerging role of bone marrow mesenchymal stem cells. World J Stem Cells 2016; 8:106-117. [PMID: 27022441 PMCID: PMC4807309 DOI: 10.4252/wjsc.v8.i3.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/27/2015] [Accepted: 02/24/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the approaches exerted by mesenchymal stem cells (MSCs) to improve Parkinson’s disease (PD) pathophysiology.
METHODS: MSCs were harvested from bone marrow of femoral bones of male rats, grown and propagated in culture. Twenty four ovariectomized animals were classified into 3 groups: Group (1) was control, Groups (2) and (3) were subcutaneously administered with rotenone for 14 d after one month of ovariectomy for induction of PD. Then, Group (2) was left untreated, while Group (3) was treated with single intravenous dose of bone marrow derived MSCs (BM-MSCs). SRY gene was assessed by PCR in brain tissue of the female rats. Serum transforming growth factor beta-1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1) and brain derived neurotrophic factor (BDNF) levels were assayed by ELISA. Brain dopamine DA level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) and nestin gene expression were detected by semi-quantitative real time PCR. Brain survivin expression was determined by immunohistochemical procedure. Histopathological investigation of brain tissues was also done.
RESULTS: BM-MSCs were able to home at the injured brains and elicited significant decrease in serum TGF-β1 (489.7 ± 13.0 vs 691.2 ± 8.0, P < 0.05) and MCP-1 (89.6 ± 2.0 vs 112.1 ± 1.9, P < 0.05) levels associated with significant increase in serum BDNF (3663 ± 17.8 vs 2905 ± 72.9, P < 0.05) and brain DA (874 ± 15.0 vs 599 ± 9.8, P < 0.05) levels as well as brain TH (1.18 ± 0.004 vs 0.54 ± 0.009, P < 0.05) and nestin (1.29 ± 0.005 vs 0.67 ± 0.006, P < 0.05) genes expression levels. In addition to, producing insignificant increase in the number of positive cells for survivin (293.2 ± 15.9 vs 271.5 ± 15.9, P > 0.05) expression. Finally, the brain sections showed intact histological structure of the striatum as a result of treatment with BM-MSCs.
CONCLUSION: The current study sheds light on the therapeutic potential of BM-MSCs against PD pathophysiology via multi-mechanistic actions.
Collapse
|
86
|
Wang C, Zhang F, Jiang S, Siedlak SL, Shen L, Perry G, Wang X, Tang B, Zhu X. Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer's disease. Sci Rep 2016; 6:20352. [PMID: 26837465 PMCID: PMC4738266 DOI: 10.1038/srep20352] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023] Open
Abstract
The female predominance for developing Alzheimer disease (AD) suggests the involvement of gender specific factor(s) such as a reduced estrogen-estrogen receptor signaling in the pathogenesis of AD. The potential role of ERα in AD pathogenesis has been explored by several groups with mixed results. We revisited this issue of expression and distribution of ERα in AD brain using a specific ERα antibody. Interestingly, we found that ERα co-localized with neurofibrillary pathology in AD brain and further demonstrated that ERα interacts with tau protein in vivo. Immunoprecipitaion experiments found increased ERα-tau interaction in the AD cases, which may account for ERα being sequestered in neuronal tau pathology. Indeed, tau overexpression in M17 cells leads to interruption of estrogen signaling. Our data support the idea that sequestration of ERα by tau pathology underlies the loss of estrogen neuroprotection during the course of AD.
Collapse
Affiliation(s)
- Chunyu Wang
- Department of Neurology, the second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fan Zhang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosurgery, Chengdu first people’s Hospital, Chengdu, The People’s Republic of China
| | - Sirui Jiang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
87
|
Wu SM, Shih LH, Lee JY, Shen YJ, Lee HH. Estrogen enhances activity of Wnt signaling during osteogenesis by inducing Fhl1 expression. J Cell Biochem 2016; 116:1419-30. [PMID: 25676585 DOI: 10.1002/jcb.25102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 01/23/2015] [Indexed: 01/13/2023]
Abstract
Estrogen is a crucial hormone for osteoclast inhibition and for preventing osteoporosis. However, the hormone's role in osteoblast growth and differentiation remains unclear. The complexity of estrogen's role in guiding osteoblast behavior arises partly from crosstalk with other signaling pathways, including Wnt signaling. In this study, we show that the Wnt agonist, LiCl, induced Fhl1 gene expression, which substantially enhanced osteoblast differentiation. Staining with alizarin red revealed that MC3T3-E1 mineralization was enhanced by overexpression of Fhl1. In addition, Fhl1 promoted the expression of the osteogenic markers, Runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and osteopontin (OPN), whereas MC3T3-E1 cells with gene knockdown of Fhl1 exhibited limited mineralization and expression of Runx2, OCN, and OPN. We further demonstrate evidences from quantitative reverse transcription real-time polymerase chain reaction and reporter assay that Fhl1 expression was synergistically stimulated by estrogen (E2) and LiCl, but reduced by the estrogen-receptor inhibitor fulvestrant (ICI 182,780). However, estrogen could not enhance osteogenesis while Fhl1 expression was knocked down. Because estrogen and Wnt signaling frequently interact in developmental processes, we propose that Fhl1 can be an acting molecule mediating both signaling pathways during osteogenesis.
Collapse
Affiliation(s)
- Shao-Min Wu
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Lan-Hsin Shih
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Jing-Yu Lee
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Yi-Jun Shen
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Hu-Hui Lee
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| |
Collapse
|
88
|
Activation of AKT1/GSK-3β/β-Catenin–TRIM11/Survivin Pathway by Novel GSK-3β Inhibitor Promotes Neuron Cell Survival: Study in Differentiated SH-SY5Y Cells in OGD Model. Mol Neurobiol 2015; 53:6716-6729. [DOI: 10.1007/s12035-015-9598-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
|
89
|
The bone-sparing effects of estrogen and WNT16 are independent of each other. Proc Natl Acad Sci U S A 2015; 112:14972-7. [PMID: 26627248 DOI: 10.1073/pnas.1520408112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16(-/-) mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females is WNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl-Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl-Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16(-/-) mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16(-/-) and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16-targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.
Collapse
|
90
|
Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain. Proc Natl Acad Sci U S A 2015; 112:E6673-82. [PMID: 26627258 DOI: 10.1073/pnas.1516729112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
17-β estradiol (E2) has been implicated as neuroprotective in a variety of neurodegenerative disorders. However, the underlying mechanism remains unknown. Here, we provide genetic evidence, using forebrain-specific knockout (FBKO) mice, that proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), an estrogen receptor coregulator protein, is essential for the extranuclear signaling and neuroprotective actions of E2 in the hippocampal CA1 region after global cerebral ischemia (GCI). E2-mediated extranuclear signaling (including activation of extracellular signal-regulated kinase and Akt) and antiapoptotic effects [such as attenuation of JNK signaling and increase in phosphorylation of glycogen synthase kinase-3β (GSK3β)] after GCI were compromised in PELP1 FBKO mice. Mechanistic studies revealed that PELP1 interacts with GSK3β, E2 modulates interaction of PELP1 with GSK3β, and PELP1 is a novel substrate for GSK3β. RNA-seq analysis of control and PELP1 FBKO mice after ischemia demonstrated alterations in several genes related to inflammation, metabolism, and survival in PELP1 FBKO mice, as well as a significant reduction in the activation of the Wnt/β-catenin signaling pathway. In addition, PELP1 FBKO studies revealed that PELP1 is required for E2-mediated neuroprotection and for E2-mediated preservation of cognitive function after GCI. Collectively, our data provide the first direct in vivo evidence, to our knowledge, of an essential role for PELP1 in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain.
Collapse
|
91
|
Yao Y, Gao Z, Liang W, Kong L, Jiao Y, Li S, Tao Z, Yan Y, Yang J. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model. Toxicol Appl Pharmacol 2015; 289:474-81. [PMID: 26525509 DOI: 10.1016/j.taap.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 01/01/2023]
Abstract
Neurogenesis is the process by which neural stem cells (NSCs) proliferate and differentiate into neurons. This is diminished in several neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by the deposition of amyloid (A)β peptides and neuronal loss. Stimulating NSCs to replace lost neurons is therefore a promising approach for AD treatment. Our previous study demonstrated that osthole modulates NSC proliferation and differentiation, and may reduce Aβ protein expression in nerve cells. Here we investigated the mechanism underlying the effects of osthole on NSCs. We found that osthole enhances NSC proliferation and neuronal differentiation while suppressing apoptosis, effects that were exerted via activation of Wnt/β-catenin signaling. These results provide evidence that osthole can potentially be used as a therapeutic agent in the treatment of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yingjia Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Zhong Gao
- Department of Interventional Therapy, Dalian Municipal Central Hospital, Dalian 116033, China
| | - Wenbo Liang
- Medical College of Dalian University, Dalian 116600, Liaoning, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Yanan Jiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Shaoheng Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Zhenyu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Yuhui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China.
| |
Collapse
|
92
|
Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, Lundholm L, Viktorsson K. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer 2015; 15:628. [PMID: 26353782 PMCID: PMC4565013 DOI: 10.1186/s12885-015-1635-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/01/2015] [Indexed: 12/30/2022] Open
Abstract
Background Platinum compounds are the mainstay of chemotherapy for lung cancer. Unfortunately treatment failure remains a critical issue since about 60 % of all non-small cell lung cancer (NSCLC) patients display intrinsic platinum resistance. Methods We analyzed global gene expression profiles of NSCLC clones surviving a pulse treatment with cisplatin and mapped deregulated signaling networks in silico by Ingenuity Pathway Analysis (IPA). Further validation was done using siRNA. Results The pooled cisplatin-surviving NSCLC clones from each of the biological replicates demonstrated heterogeneous gene expression patterns both in terms of the number and the identity of the altered genes. Genes involved in Wnt signaling pathway (Dickkopf-1, DKK1), DNA repair machinery (XRCC2) and cell-cell/cell-matrix interaction (FMN1, LGALS9) were among the top deregulated genes by microarray in these replicates and were validated by q-RT-PCR. We focused on DKK1 which previously was reported to be overexpressed in NSCLC patients. IPA network analysis revealed coordinate up-regulation of several DKK1 transcriptional regulators (TCF4, EZH2, DNAJB6 and HDAC2) in cisplatin-surviving clones from that biological replicate. Knockdown of DKK1 by siRNA sensitized for cisplatin in two different NSCLC cell lines and in ovarian A2780 cells, but not in the A2780 cis subline made resistant to cisplatin by chronic exposure, suggesting a role of DKK1 in intrinsic but not acquired platinum refractoriness. Conclusions We identified DKK1 as a possible marker of a cisplatin-refractory phenotype and as a potential novel therapeutic target to improve platinum response of NSCLC cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1635-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hogir Salim
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Dali Zong
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Petra Hååg
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Metka Novak
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Birgitta Mörk
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Rolf Lewensohn
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Lovisa Lundholm
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Kristina Viktorsson
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
93
|
Arevalo MA, Azcoitia I, Gonzalez-Burgos I, Garcia-Segura LM. Signaling mechanisms mediating the regulation of synaptic plasticity and memory by estradiol. Horm Behav 2015; 74:19-27. [PMID: 25921586 DOI: 10.1016/j.yhbeh.2015.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 01/29/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Estradiol participates in the regulation of the function and plasticity of synaptic circuits in key cognitive brain regions, such as the prefrontal cortex and the hippocampus. The mechanisms elicited by estradiol are mediated by the regulation of transcriptional activity by nuclear estrogen receptors and by intracellular signaling cascades activated by estrogen receptors associated with the plasma membrane. In addition, the mechanisms include the interaction of estradiol with the signaling of other factors involved in the regulation of cognition, such as brain derived neurotrophic factor, insulin-like growth factor-1 and Wnt. Modifications in these signaling pathways by aging or by a long-lasting ovarian hormone deprivation after menopause may impair the enhancing effects of estradiol on synaptic plasticity and cognition.
Collapse
Affiliation(s)
- Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, Calle José Antonio Novais 12, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Ignacio Gonzalez-Burgos
- Laboratorio de Psicobiología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal. Mexico
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain.
| |
Collapse
|
94
|
Ni Y, Zhou Y, Zhou M, Zhang L. Akt and cAMP response element binding protein mediate 17β-estradiol regulation of glucose transporter 3 expression in human SH-SY5Y neuroblastoma cell line. Neurosci Lett 2015; 604:58-63. [PMID: 26240989 DOI: 10.1016/j.neulet.2015.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022]
Abstract
Impaired glucose uptake is involved in Alzheimer's disease (AD) and glucose transporter 3 (Glut3) is the major neuronal glucose transporter. Estrogens contribute its theorized protective role against AD. The present studies aimed to examine the effect of 17β-estradiol (E2, the natural estrogen) on Glut3 expression and the underlying mechanisms by using human SH-SY5Y cell line. The results demonstrated that E2 increased Glut3 expression. E2 could stimulate the activation of Akt signaling pathway and the subsequent phosphorylation of cAMP response element binding protein (CREB). Akt/CREB pathway mediated E2-induced increase in Glut3 expression. These results suggested the mechanisms underlying E2-induced increase in Glut3 expression in human SH-SY5Y cell line and might provide the new data for elucidating the neuroprotective role of E2 against AD.
Collapse
Affiliation(s)
- Yaohui Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226002 Jiangsu, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Nantong, 226001 Jiangsu, China
| | - Mingming Zhou
- College of Life Science, Nantong University, Nantong, 226007 Jiangsu, China
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Nantong University, Xi si Road 20, Nantong, 226002 Jiangsu, China.
| |
Collapse
|
95
|
The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target? Neurochem Res 2015; 40:1319-32. [PMID: 26012365 DOI: 10.1007/s11064-015-1614-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 02/05/2023]
Abstract
Temporal lobe epilepsy is one of the most common clinical neurological disorders. One of the major pathological findings in temporal lobe epilepsy is hippocampal sclerosis, characterized by massive neuronal loss and severe gliosis. The epileptogenesis process of temporal lobe epilepsy usually starts with initial precipitating insults, followed by neurodegeneration, abnormal hippocampus circuitry reorganization, and the formation of hypersynchronicity. Experimental and clinical evidence strongly suggests that dysfunctional neurogenesis is involved in the epileptogenesis. Recent data demonstrate that neurogenesis is induced by acute seizures or precipitating insults, whereas the capacity of neuronal recruitment and proliferation substantially decreases in the chronic phase of epilepsy. Participation of the Wnt/β-catenin signaling pathway in neurogenesis reveals its importance in epileptogenesis; its dysfunction contributes to the structural and functional abnormality of temporal lobe epilepsy, while rescuing this pathway exerts neuroprotective effects. Here, we summarize data supporting the involvement of Wnt/β-catenin signaling in the epileptogenesis of temporal lobe epilepsy. We also propose that the Wnt/β-catenin signaling pathway may serve as a promising therapeutic target for temporal lobe epilepsy treatment.
Collapse
|
96
|
Lambert C, Cisternas P, Inestrosa NC. Role of Wnt Signaling in Central Nervous System Injury. Mol Neurobiol 2015; 53:2297-311. [PMID: 25976365 DOI: 10.1007/s12035-015-9138-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/22/2015] [Indexed: 01/03/2023]
Abstract
The central nervous system (CNS) is highly sensitive to external mechanical damage, presenting a limited capacity for regeneration explained in part by its inability to restore either damaged neurons or the synaptic network. The CNS may suffer different types of external injuries affecting its function and/or structure, including stroke, spinal cord injury, and traumatic brain injury. These pathologies critically affect the quality of life of a large number of patients worldwide and are often fatal because available therapeutics are ineffective and produce limited results. Common effects of the mentioned pathologies involves the triggering of several cellular and metabolic responses against injury, including infiltration of blood cells, inflammation, glial activation, and neuronal death. Although some of the underlying molecular mechanisms of those responses have been elucidated, the mechanisms driving these processes are poorly understood in the context of CNS injury. In the last few years, it has been suggested that the activation of the Wnt signaling pathway could be important in the regenerative response after CNS injury, activating diverse protective mechanisms including the stimulation of neurogenesis, blood brain structure consolidation and the recovery of cognitive brain functions. Because Wnt signaling is involved in several physiological processes, the putative positive role of its activation after injury could be the basis for novel therapeutic approaches to CNS injury.
Collapse
Affiliation(s)
- Catherine Lambert
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, P.O. Box 114-D, Santiago, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, P.O. Box 114-D, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, P.O. Box 114-D, Santiago, Chile. .,Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro UC, Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
97
|
Xu Z, Chen Y, Yu J, Yin D, Liu C, Chen X, Zhang D. TCF4 Mediates the Maintenance of Neuropathic Pain Through Wnt/β-Catenin Signaling Following Peripheral Nerve Injury in Rats. J Mol Neurosci 2015; 56:397-408. [PMID: 25963533 DOI: 10.1007/s12031-015-0565-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/14/2015] [Indexed: 01/20/2023]
Abstract
Neuropathic pain is elicited after a serious disorder of the nervous system and is along with the neural damage. It is usually chronic and challenging to treat. Transcription factor 4 (TCF4) is a key transcription factor of Wnt signaling system. Recent studies have shown that TCF4 interacts with β-catenin in the Wnt signaling pathway and coactivates downstream target genes in diverse systems. However, it is not well elucidated in the pathogenesis of neuropathic pain. In the present study, we investigated the role of TCF4 in the maintenance of neuropathic pain after chronic constriction injury (CCI) in rats. CCI induced persistent TCF4 upregulation in the dorsal root ganglion and spinal cord. Interestingly, TCF4 was mainly colocalized with neurons in the injured dorsal root ganglion and spinal cord on CCI day 7. Moreover, the expression patterns of β-catenin and glycogen synthase kinase-3β (GSK-3β) were parallel with that of TCF4 in vivo studies. Intrathecal injection of Wnt/β-catenin pathway inhibitor IWR-1-endo and TCF4 small interfering RNA (siRNA) significantly attenuated CCI-induced mechanical allodynia and heat hyperalgesia. The results suggest that TCF4 in the dorsal root ganglion and spinal cord is involved in the maintenance of CCI-induced neuropathic pain. Targeting TCF4 or Wnt/β-catenin signaling may be a potential treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | | | | | | | | | | | | |
Collapse
|
98
|
Kim EA, Cho CH, Kim DW, Choi SY, Huh JW, Cho SW. Antioxidative effects of ethyl 2-(3-(benzo[d]thiazol-2-yl)ureido)acetate against amyloid β-induced oxidative cell death via NF-κB, GSK-3β and β-catenin signaling pathways in cultured cortical neurons. Free Radic Res 2015; 49:411-21. [PMID: 25747393 DOI: 10.3109/10715762.2015.1007048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously shown that 2-(3-(benzo[d]thiazol-2-yl)ureido)acetate (KHG21834) attenuates amyloid beta(Aβ)25-35-induced apoptotic death and shows anti-inflammatory activity against Aβ25-35-induced microglial activation. However, antioxidative effects of KHG21834 against Aβ-induced oxidative stress have not yet been reported. In the present study, we investigated the antioxidative function of KHG21834 in primary cultured cortical neurons, to expand the potential therapeutic efficacy of KHG21834. Pretreatment with KHG21834 protected against Aβ-induced neuronal cell death and mitochondrial damage, and significantly restored GSH levels and the activities of catalase, superoxide dismutase, and glutathione peroxidase, and also suppressed the production of reactive oxygen species and protein oxidation. These results imply that KHG21834 may play a role in cellular defense mechanisms against Aβ-induced oxidative stress in cultured cortical neurons. Furthermore, KHG21834 significantly attenuated the effects of Aβ treatment on levels of NF-κB, β-catenin, and GSK-3β proteins in cortical neurons. Taken together, our results suggest that the antioxidant effects of KHG21834 may result at least in part from its ability to regulate the NF-κB, β-catenin, and GSK-3β signaling pathways. To our knowledge, this is the first report showing that KHG21834 significantly attenuates Aβ25-35-induced oxidative stress in primary cortical neurons, and provides novel insights into KHG21834 as a possible therapeutic agent for the treatment of Aβ-mediated neurotoxicity involving oxidative stress.
Collapse
Affiliation(s)
- E-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine , Seoul , Korea
| | | | | | | | | | | |
Collapse
|
99
|
Han D, Scott EL, Dong Y, Raz L, Wang R, Zhang Q. Attenuation of mitochondrial and nuclear p38α signaling: a novel mechanism of estrogen neuroprotection in cerebral ischemia. Mol Cell Endocrinol 2015; 400:21-31. [PMID: 25462588 DOI: 10.1016/j.mce.2014.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022]
Abstract
P38 mitogen-activated protein kinase (MAPK) is a pro-apoptotic and pro-inflammatory protein that is activated in response to cellular stress. While p38 is known to be activated in response to cerebral ischemia, the precise role of p38 and its isoforms in ischemia-induced neuronal apoptosis remains unclear. In the current study, we examined the differential activation and functional roles of p38α and p38β MAPK isoforms in short-term ovariectomized female rats treated with either the neuroprotective ovarian hormone 17beta-estradiol (E2) or placebo in a model of global cerebral ischemia (GCI). GCI induced biphasic activation of total p38 in the hippocampal CA1, with peaks at 30 min and 1 day after 10-min ischemia-reperfusion. Further study demonstrated that activated p38α, but not p38β, translocated to the nucleus 30 min and 3 h post reperfusion, and that this event coincided with increased phosphorylation of activating transcription factor 2 (ATF2), a p38 target protein. Intriguingly, activated p38α was also enhanced in mitochondrial fractions of CA1 neurons 1 day after GCI, and there was loss of mitochondrial membrane potential, as well as enhanced cytochrome c release and caspase-3 cleavage at 2 days post GCI. Importantly, E2 prevented the biphasic activation of p38, as well as both nuclear and mitochondrial translocation of p38α after GCI, and these findings correlated with attenuation of mitochondrial dysfunction and delayed neuronal cell death in the hippocampal CA1. Furthermore, administration of a p38 inhibitor was able to mimic the neuroprotective effects of E2 in the hippocampal CA1 region by preventing nuclear and mitochondrial translocation of p38α, loss of mitochondrial membrane potential, and neuronal apoptosis. As a whole, this study suggests that changes in subcellular localization of the activated p38α isoform are required for neuronal apoptosis following GCI, and that E2 exerts robust neuroprotection, in part, through dual inhibition of activation and subcellular trafficking of p38α.
Collapse
Affiliation(s)
- Dong Han
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, Jiangsu 221004, China
| | - Erin L Scott
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Limor Raz
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Neurobiology Institute of Medical Research Centre, Hebei United University, Tangshan, Hebei 06300, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
100
|
Fortress AM, Heisler JD, Frick KM. The mTOR and canonical Wnt signaling pathways mediate the mnemonic effects of progesterone in the dorsal hippocampus. Hippocampus 2014; 25:616-29. [DOI: 10.1002/hipo.22398] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Ashley M. Fortress
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - John D. Heisler
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - Karyn M. Frick
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| |
Collapse
|