51
|
Nishimura M, Ocorr K, Bodmer R, Cartry J. Drosophila as a model to study cardiac aging. Exp Gerontol 2010; 46:326-30. [PMID: 21130861 DOI: 10.1016/j.exger.2010.11.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
Abstract
With age, cardiac performance declines progressively and the risk of heart disease, a primary cause of mortality, rises dramatically. As the elderly population continues to increase, it is critical to gain a better understanding of the genetic influences and modulatory factors that impact cardiac aging. In an attempt to determine the relevance and utility of the Drosophila heart in unraveling the genetic mechanisms underlying cardiac aging, a variety of heart performance assays have recently been developed to quantify Drosophila heart performance that permit the use of the fruit fly to investigate the heart's decline with age. As for the human heart, Drosophila heart function also deteriorates with age. Notably, with progressive age the incidence of cardiac arrhythmias, myofibrillar disorganization and susceptibility to heart dysfunction and failure all increase significantly. We review here the evidence for an involvement of the insulin-TOR pathway, the K(ATP) channel subunit dSur, the KCNQ potassium channel, as well as Dystrophin and Myosin in fly cardiac aging, and discuss the utility of the Drosophila heart model for cardiac aging studies.
Collapse
|
52
|
Andereck JW, King JG, Hillyer JF. Contraction of the ventral abdomen potentiates extracardiac retrograde hemolymph propulsion in the mosquito hemocoel. PLoS One 2010; 5:e12943. [PMID: 20886066 PMCID: PMC2944847 DOI: 10.1371/journal.pone.0012943] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 08/28/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hemolymph circulation in mosquitoes is primarily controlled by the contractile action of a dorsal vessel that runs underneath the dorsal midline and is subdivided into a thoracic aorta and an abdominal heart. Wave-like peristaltic contractions of the heart alternate in propelling hemolymph in anterograde and retrograde directions, where it empties into the hemocoel at the terminal ends of the insect. During our analyses of hemolymph propulsion in Anopheles gambiae, we observed periodic ventral abdominal contractions and hypothesized that they promote extracardiac hemolymph circulation in the abdominal hemocoel. METHODOLOGY/PRINCIPAL FINDINGS We devised methods to simultaneously analyze both heart and abdominal contractions, as well as to measure hemolymph flow in the abdominal hemocoel. Qualitative and quantitative analyses revealed that ventral abdominal contractions occur as series of bursts that propagate in the retrograde direction. Periods of ventral abdominal contraction begin only during periods of anterograde heart contraction and end immediately following a heartbeat directional reversal, suggesting that ventral abdominal contractions function to propel extracardiac hemolymph in the retrograde direction. To test this functional role, fluorescent microspheres were intrathoracically injected and their trajectory tracked throughout the hemocoel. Quantitative measurements of microsphere movement in extracardiac regions of the abdominal cavity showed that during periods of abdominal contractions hemolymph flows in dorsal and retrograde directions at a higher velocity and with greater acceleration than during periods of abdominal rest. Histochemical staining of the abdominal musculature then revealed that ventral abdominal contractions result from the contraction of intrasegmental lateral muscle fibers, intersegmental ventral muscle bands, and the ventral transverse muscles that form the ventral diaphragm. CONCLUSIONS/SIGNIFICANCE These data show that abdominal contractions potentiate extracardiac retrograde hemolymph propulsion in the abdominal hemocoel during periods of anterograde heart flow.
Collapse
Affiliation(s)
- Jonathan W. Andereck
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jonas G. King
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Julián F. Hillyer
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
53
|
Choma MA, Suter MJ, Vakoc BJ, Bouma BE, Tearney GJ. Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:056020. [PMID: 21054114 PMCID: PMC2994925 DOI: 10.1117/1.3503418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 08/31/2010] [Accepted: 08/31/2010] [Indexed: 05/22/2023]
Abstract
Drosophila melanogaster (fruit fly) is a central organism in biology and is becoming increasingly important in the cardiovascular sciences. Prior work in optical imaging of the D. melanogaster heart has focused on static and dynamic structural anatomy. In the study, it is demonstrated that Doppler optical coherence tomography can quantify dynamic heart wall velocity and hemolymph flow in adult D. melanogaster. Since hemolymph is optically transparent, a novel exogenous contrast technique is demonstrated to increase the backscatter-based intracardiac Doppler flow signal. The results presented here open up new possibilities for functional cardiovascular phenotyping of normal and mutant D. melanogaster.
Collapse
Affiliation(s)
- Michael A Choma
- Children's Hospital Boston, and Harvard Medical School, Department of Pediatrics, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
54
|
Glenn JD, King JG, Hillyer JF. Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport. J Exp Biol 2010; 213:541-50. [DOI: 10.1242/jeb.035014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SUMMARY
The insect circulatory system transports nutrients, signaling molecules, wastes and immune factors to all areas of the body. The primary organ driving circulation is the dorsal vessel, which consists of an abdominal heart and a thoracic aorta. Here, we present qualitative and quantitative data characterizing the heart of the mosquito, Anopheles gambiae. Visual observation showed that the heart of resting mosquitoes contracts at a rate of 1.37 Hz (82 beats per minute) and switches contraction direction, with 72% of contractions occurring in the anterograde direction (toward the head) and 28% of contractions occurring in the retrograde direction (toward the tip of the abdomen). The heart is tethered to the midline of the abdominal tergum by six complete and three incomplete pairs of alary muscles, and propels hemolymph at an average velocity of 8 mm s−1 by sequentially contracting muscle fibers oriented in a helical twist with respect to the lumen of the vessel. Hemolymph enters the heart through six pairs of incurrent abdominal ostia and one pair of ostia located at the thoraco-abdominal junction that receive hemolymph from the abdominal hemocoel and thoracic venous channels, respectively. The vessel expels hemolymph through distal excurrent openings located at the anterior end of the aorta and the posterior end of the heart. In conclusion, this study presents a comprehensive revision and expansion of our knowledge of the mosquito heart and for the first time quantifies hemolymph flow in an insect while observing dorsal vessel contractions.
Collapse
Affiliation(s)
- Justin D. Glenn
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235-1634, USA
| | - Jonas G. King
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235-1634, USA
| | - Julián F. Hillyer
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235-1634, USA
| |
Collapse
|
55
|
Cooper AS, Rymond KE, Ward MA, Bocook EL, Cooper RL. Monitoring heart function in larval Drosophila melanogaster for physiological studies. J Vis Exp 2009:1596. [PMID: 19918216 PMCID: PMC3353715 DOI: 10.3791/1596] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present various methods to record cardiac function in the larval Drosophila. The approaches allow heart rate to be measured in unrestrained and restrained whole larvae. For direct control of the environment around the heart another approach utilizes the dissected larvae and removal of the internal organs in order to bathe the heart in desired compounds. The exposed heart also allows membrane potentials to be monitored which can give insight of the ionic currents generated by the myocytes and for electrical conduction along the heart tube. These approaches have various advantages and disadvantages for future experiments that are discussed. The larval heart preparation provides an additional model besides the Drosophila skeletal NMJ to investigate the role of intracellular calcium regulation on cellular function. Learning more about the underlying ionic currents that shape the action potentials in myocytes in various species, one can hope to get a handle on the known ionic dysfunctions associated to specific genes responsible for various diseases in mammals.
Collapse
Affiliation(s)
- Ann S Cooper
- Department of Biology, University of Kentucky, Lexington
| | | | | | | | | |
Collapse
|
56
|
Alayari NN, Vogler G, Taghli-Lamallem O, Ocorr K, Bodmer R, Cammarato A. Fluorescent labeling of Drosophila heart structures. J Vis Exp 2009:1423. [PMID: 19826399 DOI: 10.3791/1423] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Drosophila melanogaster dorsal vessel, or heart, is a tubular structure comprised of a single layer of contractile cardiomyocytes, pericardial cells that align along each side of the heart wall, supportive alary muscles and, in adults, a layer of ventral longitudinal muscle cells. The contractile fibers house conserved constituents of the muscle cytoarchitecture including densely packed bundles of myofibrils and cytoskeletal/submembranous protein complexes, which interact with homologous components of the extracellular matrix. Here we describe a protocol for the fixation and the fluorescent labeling of particular myocardial elements from the hearts of dissected larvae and semi-intact adult Drosophila. Specifically, we demonstrate the labeling of sarcomeric F-actin and of alpha-actinin in larval hearts. Additionally, we perform labeling of F-actin and alpha-actinin in myosin-GFP expressing adult flies and of alpha-actinin and pericardin, a type IV extracellular matrix collagen, in wild type adult hearts. Particular attention is given to a mounting strategy for semi-intact adult hearts that minimizes handling and optimizes the opportunity for maintaining the integrity of the cardiac tubes and the associated tissues. These preparations are suitable for imaging via fluorescent and confocal microscopy. Overall, this procedure allows for careful and detailed analysis of the structural characteristics of the heart from a powerful genetically tractable model system.
Collapse
|
57
|
A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 2009; 46:101-13. [PMID: 19317655 DOI: 10.2144/000113078] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genetic basis of heart development is remarkably conserved from Drosophila to mammals, and insights from flies have greatly informed our understanding of vertebrate heart development. Recent evidence suggests that many aspects of heart function are also conserved and the genes involved in heart development also play roles in adult heart function. We have developed a Drosophila heart preparation and movement analysis algorithm that allows quantification of functional parameters. Our methodology combines high-speed optical recording of beating hearts with a robust, semi-automated analysis to accurately detect and quantify, on a beat-to-beat basis, not only heart rate but also diastolic and systolic intervals, systolic and diastolic diameters, percent fractional shortening, contraction wave velocity, and cardiac arrhythmicity. Here, we present a detailed analysis of hearts from adult Drosophila, 2-3-day-old zebrafish larva, and 8-day-old mouse embryos, indicating that our methodology is potentially applicable to an array of biological models. We detect progressive age-related changes in fly hearts as well as subtle but distinct cardiac deficits in Tbx5 heterozygote mutant zebrafish. Our methodology for quantifying cardiac function in these genetically tractable model systems should provide valuable insights into the genetics of heart function.
Collapse
|
58
|
Taghli-Lamallem O, Bodmer R, Chamberlain JS, Cammarato A. Genetics and pathogenic mechanisms of cardiomyopathies in the Drosophila model. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.ddmod.2009.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
59
|
Ejaz A, Lange AB. Peptidergic control of the heart of the stick insect, Baculum extradentatum. Peptides 2008; 29:214-25. [PMID: 18234395 DOI: 10.1016/j.peptides.2007.07.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/03/2007] [Indexed: 10/22/2022]
Abstract
The dorsal vessel of the Vietnamese stick insect, Baculum extradentatum, consists of a tubular heart and an aorta that extends anteriorly into the head. Alary muscles, associated with the heart, are anchored to the body wall with attachments to the dorsal diaphragm. Alary muscle contraction draws haemolymph into the heart through incurrent ostia. Excurrent ostia lie on the dorsal vessel in the last thoracic and in each of the first two abdominal segments. Muscle fibers are associated with these excurrent ostia. Crustacean cardioactive peptide (CCAP)- and proctolin-like immunoreactivity is present in axons of the segmental nerves that project to the dorsal vessel, and in processes extending over the heart and alary muscles. Proctolin-like immunoreactive processes are also localized to the valves of the incurrent ostia and to the excurrent ostia. Neither the link nerve neurons, nor the lateral cardiac neurons, stain positively for these peptides. Physiological assays reveal dose-dependent increases in heart beat frequency in response to CCAP and proctolin. Isolating the dorsal vessel from the ventral nerve cord led to a change in the pattern of heart contractions, from a tonic, stable heart beat, to one which was phasic. The tonic nature was restored by the application of CCAP.
Collapse
Affiliation(s)
- Aiza Ejaz
- University of Toronto at Mississauga, Department of Biology, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | | |
Collapse
|
60
|
Wasserthal LT. Drosophila flies combine periodic heartbeat reversal with a circulation in the anterior body mediated by a newly discovered anterior pair of ostial valves and 'venous' channels. ACTA ACUST UNITED AC 2008; 210:3707-19. [PMID: 17951411 DOI: 10.1242/jeb.007864] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heartbeat activity in tethered adult drosophilids was recorded using a linear optosensor chip and an IR-light beam. Recording from two to five sensor elements within 250 mum along the anterior heart, it was possible to analyze periodic reversals. In intact Drosophila melanogaster and D. hydei, longer anterograde pulse periods with lower pulse rates generally alternated with shorter retrograde pulse periods having higher pulse rates. These differences are dependent on heart anatomy: a newly discovered first pair of ostia is connected to bilateral thoraco-abdominal hemolymph channels. These channels are part of a venous space separated from the abdominal hemocoel by a septum, consisting of a metanotal ridge and the pericardial diaphragm lined by a special form of fat body. The channels are sealed, and their lumen is possibly controlled by the metathoracic tergo-pleural muscle. During retrograde pulses, the heart chamber works like a suction pump, aspiring hemolymph through the first ostia from the venous channels and discharging it through a newly described caudal opening. During forward beating, the anterior chamber receives hemolymph via all inflow ostia from the entire heart and drives it like a pressure pump through the narrow aorta. Also, during forward pulses, a lateral circulation occurs in the thorax as a result of the venous supply. Inhibition of abdominal mobility leads to an irregular heart rate, with pulse-wise alternating heartbeat reversals. The possible involvement of slow abdominal movements in heartbeat periodicity is discussed. The heartbeat periods are superimposed with intermittent bouts of abdominal pumping movements.
Collapse
Affiliation(s)
- Lutz T Wasserthal
- Institute of Biology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058 Erlangen, Germany.
| |
Collapse
|
61
|
Kucharski R, Mitri C, Grau Y, Maleszka R. Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation. INVERTEBRATE NEUROSCIENCE 2007; 7:99-108. [PMID: 17372777 DOI: 10.1007/s10158-007-0045-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 02/23/2007] [Indexed: 11/30/2022]
Abstract
G-protein-coupled metabotropic glutamate receptors (GPC mGluRs) are important constituents of glutamatergic synapses where they contribute to synaptic plasticity and development. Here we characterised a member of this family in the honeybee. We show that the honeybee genome encodes a genuine mGluR (AmGluRA) that is expressed at low to medium levels in both pupal and adult brains. Analysis of honeybee protein sequence places it within the type 3 GPCR family, which includes mGlu receptors, GABA-B receptors, calcium-sensing receptors, and pheromone receptors. Phylogenetic comparisons combined with pharmacological evaluation in HEK 293 cells transiently expressing AmGluRA show that the honeybee protein belongs to the group II mGluRs. With respect to learning and memory AmGluRA appears to be required for memory formation. Both agonists and antagonists selective against the group II mGluRs impair long-term (24 h) associative olfactory memory formation when applied 1 h before training, but have no effect when injected post-training or pre-testing. Our results strengthen the notion that glutamate is a key neurotransmitter in memory processes in the honeybee.
Collapse
Affiliation(s)
- R Kucharski
- Visual Sciences and ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
62
|
Ocorr K, Reeves NL, Wessells RJ, Fink M, Chen HSV, Akasaka T, Yasuda S, Metzger JM, Giles W, Posakony JW, Bodmer R. KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci U S A 2007; 104:3943-8. [PMID: 17360457 PMCID: PMC1820688 DOI: 10.1073/pnas.0609278104] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Indexed: 12/13/2022] Open
Abstract
Population profiles of industrialized countries show dramatic increases in cardiovascular disease with age, but the molecular and genetic basis of disease progression has been difficult to study because of the lack of suitable model systems. Our studies of Drosophila show a markedly elevated incidence of cardiac dysfunction and arrhythmias in aging fruit fly hearts and a concomitant decrease in the expression of the Drosophila homolog of human KCNQ1-encoded K(+) channel alpha subunits. In humans, this channel is involved in myocardial repolarization, and alterations in the function of this channel are associated with an increased risk for Torsades des Pointes arrhythmias and sudden death. Hearts from young KCNQ1 mutant fruit flies exhibit prolonged contractions and fibrillations reminiscent of Torsades des Pointes arrhythmias, and they exhibit severely increased susceptibility to pacing-induced cardiac dysfunction at young ages, characteristics that are observed only at advanced ages in WT flies. The fibrillations observed in mutant flies correlate with delayed relaxation of the myocardium, as revealed by increases in the duration of phasic contractions, extracellular field potentials, and in the baseline diastolic tension. These results suggest that K(+) currents, mediated by a KCNQ channel, contribute to the repolarization reserve of fly hearts, ensuring normal excitation-contraction coupling and rhythmical contraction. That arrhythmias in both WT and KCNQ1 mutants become worse as flies age suggests that additional factors are also involved.
Collapse
Affiliation(s)
- Karen Ocorr
- *Center for Neuroscience and Aging, Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Nick L. Reeves
- Division of Biological Sciences/Section of Cell and Developmental Biology and
| | - Robert J. Wessells
- *Center for Neuroscience and Aging, Burnham Institute for Medical Research, La Jolla, CA 92037
| | | | - H.-S. Vincent Chen
- *Center for Neuroscience and Aging, Burnham Institute for Medical Research, La Jolla, CA 92037
- **Cardiology, University of California at San Diego, La Jolla, CA 92093-0349; and
| | - Takeshi Akasaka
- *Center for Neuroscience and Aging, Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Soichiro Yasuda
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Joseph M. Metzger
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | | | - James W. Posakony
- Division of Biological Sciences/Section of Cell and Developmental Biology and
| | - Rolf Bodmer
- *Center for Neuroscience and Aging, Burnham Institute for Medical Research, La Jolla, CA 92037
| |
Collapse
|
63
|
Angioy AM, Muroni P, Barbarossa IT, McCormick J, Nichols R. Evidence dromyosuppressin acts at posterior and anterior pacemakers to decrease the fast and the slow cardiac activity in the blowfly Protophormia terraenovae. Peptides 2007; 28:585-93. [PMID: 17141921 PMCID: PMC3422744 DOI: 10.1016/j.peptides.2006.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
The molecular complexity of the simple blowfly heart makes it an attractive preparation to delineate cardiovascular mechanisms. Blowfly cardiac activity consists of a fast, high-frequency signal phase alternating with a slow, low-frequency signal phase triggered by pacemakers located in the posterior abdominal heart and anterior thoracocephalic aorta, respectively. Mechanisms underlying FMRFamide-related peptides (FaRPs) effects on heart contractions are not well understood. Here, we report antisera generated to a FaRP, dromyosuppressin (DMS, TDVDHVFLRFamide), recognized neuronal processes that innervated the blowfly Protophormia terraenovae heart and aorta. Dromyosuppressin caused a reversible cardiac arrest. High- and low-frequency signals were abolished after which they resumed; however, the concentration-dependent resumption of the fast phase differed from the slow phase. Dromyosuppressin decreased the frequency of cardiac activity in a dose-dependent manner with threshold values between 5 fM and 0.5 fM (fast phase), and 0.5 fM and 0.1 fM (slow phase). Dromyosuppressin structure-activity relationship (SAR) for the decrease of the fast-phase frequency was not the same as the SAR for the decrease of the slow-phase frequency. The alanyl-substituted analog TDVDHVFLAFamide ([Ala9] DMS) was inactive on the fast phase, but active on the slow phase, a novel finding. FaRPs including myosuppressins are reported to require the C-terminal RFamide for activity. Our data are consistent with the conclusions DMS acts on posterior and anterior cardiac tissue to play a role in regulating the fast and slow phases of cardiac activity, respectively, and ligand-receptor binding requirements of the abdominal and thoracocephalic pacemakers are different.
Collapse
Affiliation(s)
- Anna Maria Angioy
- Dipartimento di Biologia Sperimentale, Sezione di Fisiologia Generale, Università di Cagliari, 09042 Monserrato-Cagliari, Italy
| | - Patrizia Muroni
- Dipartimento di Biologia Sperimentale, Sezione di Fisiologia Generale, Università di Cagliari, 09042 Monserrato-Cagliari, Italy
| | - Iole Tomassini Barbarossa
- Dipartimento di Biologia Sperimentale, Sezione di Fisiologia Generale, Università di Cagliari, 09042 Monserrato-Cagliari, Italy
| | - Jennifer McCormick
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109-0606 USA
| | - Ruthann Nichols
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109-0606 USA
| |
Collapse
|
64
|
Sláma K, Sakai T, Takeda M. Effect of corazonin and crustacean cardioactive peptide on heartbeat in the adult American cockroach (Periplaneta americana). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:91-103. [PMID: 16703615 DOI: 10.1002/arch.20131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Changes in the frequency of cardiac pulsations have been monitored in the decapitated body of adult P. americana before and 5 h after the injections of [Arg(7)]-corazonin and CCAP, using newly invented touch-free, noninvasive optocardiographic methods. Relatively large dosages of these peptides (10(-6) M concentrations in the body) had no effect on the rate of the heartbeat beyond the Ringer control limits. It has been concluded, therefore, that Corazonin and CCAP, which are currently cited in the literature as "the most potent cardiostimulating peptides" in insects, have no effect on the physiological regulation of cardiac functions in the living body.
Collapse
Affiliation(s)
- Karel Sláma
- Institute of Entomology, Czech Academy of Sciences, Praha, Czech Republic.
| | | | | |
Collapse
|
65
|
Johnstone AFM, Cooper RL. Direct innervation of the Drosophila melanogaster larval aorta. Brain Res 2006; 1083:159-63. [PMID: 16529726 DOI: 10.1016/j.brainres.2006.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/27/2006] [Accepted: 02/01/2006] [Indexed: 11/15/2022]
Abstract
The heart rate of larval Drosophila is modulated by various biogenic amines and peptides. The actions have always been assumed to be due to direct action on the heart since the larval heart was not known to be innervated. A recent study showed a difference in the sensitivity of the larval heart to serotonin when the CNS was ablated, thus suggesting a direct neural input. Here, we show that GFP tagged motor neurons and nerve terminals are present on the aortic region of the heart. Motor neuron cell bodies also exist outside the CNS. Transmission electron microscopy reveals the direct innervation in the aortic tissue. Thus, developmental and regulatory questions in this genetic model can now be addressed in relation to heart development and neural control.
Collapse
Affiliation(s)
- Andrew F M Johnstone
- Department of Biology, University of Kentucky, 675 Rose Street, University of Kentucky, Lexington, KY 40506-0225, USA
| | | |
Collapse
|
66
|
Affiliation(s)
- Fabrizio C. Serluca
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139
| | - Mark C. Fishman
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
67
|
Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA. Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci U S A 2006; 103:1394-9. [PMID: 16432241 PMCID: PMC1360529 DOI: 10.1073/pnas.0507359103] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Drosophila melanogaster genetics provides the advantage of molecularly defined P-element insertions and deletions that span the entire genome. Although Drosophila has been extensively used as a model system to study heart development, it has not been used to dissect the genetics of adult human heart disease because of an inability to phenotype the adult fly heart in vivo. Here we report the development of a strategy to measure cardiac function in awake adult Drosophila that opens the field of Drosophila genetics to the study of human dilated cardiomyopathies. Through the application of optical coherence tomography, we accurately distinguish between normal and abnormal cardiac function based on measurements of internal cardiac chamber dimensions in vivo. Normal Drosophila have a fractional shortening of 87 +/- 4%, whereas cardiomyopathic flies that contain a mutation in troponin I or tropomyosin show severe impairment of systolic function. To determine whether the fly can be used as a model system to recapitulate human dilated cardiomyopathy, we generated transgenic Drosophila with inducible cardiac expression of a mutant of human delta-sarcoglycan (deltasg(S151A)), which has previously been associated with familial dilated cardiomyopathy. Compared to transgenic flies overexpressing wild-type deltasg, or the standard laboratory strain w(1118), Drosophila expressing deltasg(S151A) developed marked impairment of systolic function and significantly enlarged cardiac chambers. These data illustrate the utility of Drosophila as a model system to study dilated cardiomyopathy and the applicability of the vast genetic resources available in Drosophila to systematically study the genetic mechanisms responsible for human cardiac disease.
Collapse
Affiliation(s)
- Matthew J Wolf
- Department of Medicine, Duke University, Durham, NC 27110, USA
| | | | | | | | | | | |
Collapse
|
68
|
Prokop A. Organization of the Efferent System and Structure of Neuromuscular Junctions In Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:71-90. [PMID: 17137924 DOI: 10.1016/s0074-7742(06)75004-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
69
|
Abstract
Structural synapses are key regulators of information flow in neuronal networks. To understand the function and formation of neuronal circuits, the development and function of synapses have therefore been intensely studied in both vertebrate and invertebrate species. Precise descriptions of synapses and their amenability to genetic analysis in the model organism Drosophila provide an efficient platform from which to explore mechanisms and principles of synapse formation, which find many counterparts in other animals. Here we summarise our knowledge of the structure of Drosophila synapses. Focussing on neuromuscular junctions and photoreceptor synapses, we provide an overview of mechanisms underlying the development of synaptic structure in Drosophila.
Collapse
Affiliation(s)
- Andreas Prokop
- The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
70
|
Dasari S, Cooper RL. Direct influence of serotonin on the larval heart of Drosophila melanogaster. J Comp Physiol B 2005; 176:349-57. [PMID: 16362307 DOI: 10.1007/s00360-005-0058-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 11/16/2005] [Accepted: 11/23/2005] [Indexed: 12/31/2022]
Abstract
The heart rate (HR) of larval Drosophila is established to be modulated by various neuromodulators. Serotonin (5-HT) showed dose-dependent responses in direct application within semi-intact preparations. At 1 nM, HR decreased by 20% while it increased at 10 nM (10%) and 100 nM (30%). The effects plateaued at 100 nM. The action of 5-HT on the heart was examined with an intact Central Nervous System (CNS) and an ablated CNS. The heart and aorta of dorsal vessel pulsate at different rates at rest and during exposure to 5-HT. Splitting the heart and aorta resulted in a dramatic reduction in pulse rate of both the segments and the addition of 5-HT did not produce regional differences. The split aorta and heart showed a high degree of sensitivity to sham changes of saline but no significant effect to 5-HT. Larvae-fed 5-HT (1 mM) did not show any significant change in HR. Since 3,4-methylenedioxymethamphetamine (MDMA) is known to act as a weak agonist on 5-HT receptors in vertebrates, we tested an exogenous application; however, no significant effect was observed to dosage ranging from 1 nM to 100 microM in larvae with and without an intact CNS. In summary, direct application of 5-HT to the larval heart had significant effects in a dose-dependent manner while MDMA had no effect.
Collapse
Affiliation(s)
- Sameera Dasari
- Department of Biology, University of Kentucky, 675 Rose Street, Lexington, KY 40506-0225, USA
| | | |
Collapse
|
71
|
Monier B, Astier M, Sémériva M, Perrin L. Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart. Development 2005; 132:5283-93. [PMID: 16284119 DOI: 10.1242/dev.02091] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Drosophila larval cardiac tube, aorta and heart differentiation are controlled by the Hox genes Ultrabithorax(Ubx) and abdominal A (abdA), respectively. There is evidence that the cardiac tube undergoes extensive morphological and functional changes during metamorphosis to form the adult organ, but both the origin of adult cardiac tube myocytes and the underlying genetic control have not been established. Using in vivo time-lapse analysis, we show that the adult fruit fly cardiac tube is formed during metamorphosis by the reprogramming of differentiated and already functional larval cardiomyocytes,without cell proliferation. We characterise the genetic control of the process, which is cell autonomously ensured by the modulation of Ubxexpression and AbdA activity. Larval aorta myocytes are remodelled to differentiate into the functional adult heart, in a process that requires the regulation of Ubx expression. Conversely, the shape, polarity,function and molecular characteristics of the surviving larval contractile heart myocytes are profoundly transformed as these cells are reprogrammed to form the adult terminal chamber. This process is mediated by the regulation of AbdA protein function, which is successively required within these persisting myocytes for the acquisition of both larval and adult differentiated states. Importantly, AbdA specificity is switched at metamorphosis to induce a novel genetic program that leads to differentiation of the terminal chamber. Finally, the steroid hormone ecdysone controls cardiac tube remodelling by impinging on both the regulation of Ubx expression and the modification of AbdA function. Our results shed light on the genetic control of one in vivo occurring remodelling process, which involves a steroid-dependent modification of Hox expression and function.
Collapse
Affiliation(s)
- Bruno Monier
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545 CNRS-Université, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
72
|
Uchimura K, Ai H, Kuwasawa K, Matsushita T, Kurokawa M. Excitatory neural control of posterograde heartbeat by the frontal ganglion in the last instar larva of a lepidopteran, Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:175-85. [PMID: 16231186 DOI: 10.1007/s00359-005-0059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 08/10/2005] [Accepted: 09/11/2005] [Indexed: 11/27/2022]
Abstract
The frontal ganglion of the silkworm (Bombyx mori) gives rise to a visceral nerve, branches of which include a pair of anterior cardiac nerves and a pair of the posterior cardiac nerves. Forward-fill of the visceral nerve with dextran labeled with tetramethyl rhodamine shows the anterior cardiac nerves innervate the anterior region of the dorsal vessel. Back-fill of the anterior cardiac nerves with Co(2+) and Ni(2+) ions and the fluorescent dye reveals that the cell bodies of two motor neurons are located in the frontal ganglion. Injection of 5, 6-carboxyfluorescein into the cell body of an identified motor neuron shows that the neuron gives rise to an axon running to the visceral nerve. Unitary excitatory junctional potentials (EJPs) were recorded from a myocardial cell at the anterior end of the heart. They responded in a one-to-one manner to electrical stimuli applied to the visceral nerve, or to impulses generated by a depolarizing current injected into the cell body. EJPs induced by stimuli at higher than 0.5 Hz showed facilitation while those induced at higher than 2 Hz showed summation. Individual EJPs without summation, or a train of EJPs with summation, caused acceleration in the phase of posterograde heartbeat and heart reversal from anterograde heartbeat to posterograde heartbeat. It is likely that the innervation of the anterior region of the dorsal vessel by the motor neurons, through the anterior cardiac nerves is responsible for the control of heartbeat in Lepidoptera, at least in part.
Collapse
Affiliation(s)
- Kazuyuki Uchimura
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | |
Collapse
|
73
|
Dulcis D, Levine RB, Ewer J. Role of the neuropeptide CCAP inDrosophila cardiac function. ACTA ACUST UNITED AC 2005; 64:259-74. [PMID: 15898062 DOI: 10.1002/neu.20136] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The heartbeat of adult Drosophila melanogaster displays two cardiac phases, the anterograde and retrograde beat, which occur in cyclic alternation. Previous work demonstrated that the abdominal heart becomes segmentally innervated during metamorphosis by peripheral neurons that express crustacean cardioactive peptide (CCAP). CCAP has a cardioacceleratory effect when it is applied in vitro. The role of CCAP in adult cardiac function was studied in intact adult flies using targeted cell ablation and RNA interference (RNAi). Optical detection of heart activity showed that targeted ablation of CCAP neurons selectively altered the anterograde beat, without apparently altering the cyclic cardiac reversal. Normal development of the abdominal heart and of the remainder of cardiac innervation in flies lacking CCAP neurons was confirmed by immunocytochemistry. Thus, in addition to its important role in ecdysis behavior (the behavior used by insects to shed the remains of the old cuticle at the end of the molt), CCAP may control the level of activity of the anterograde cardiac pacemaker in the adult fly. Expression of double stranded CCAP RNA in the CCAP neurons (targeted CCAP RNAi) caused a significant reduction in CCAP expression. However, this reduction was not sufficient to compromise CCAP's function in ecdysis behavior and heartbeat regulation.
Collapse
Affiliation(s)
- Davide Dulcis
- Division of Neurobiology, University of Arizona, 611 Gould-Simpson Science Building, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|