51
|
Yamamuro C, Zhu JK, Yang Z. Epigenetic Modifications and Plant Hormone Action. MOLECULAR PLANT 2016; 9:57-70. [PMID: 26520015 PMCID: PMC5575749 DOI: 10.1016/j.molp.2015.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/27/2015] [Accepted: 10/22/2015] [Indexed: 05/18/2023]
Abstract
The action of phytohormones in plants requires the spatiotemporal regulation of their accumulation and responses at various levels. Recent studies reveal an emerging relationship between the function of phytohormones and epigenetic modifications. In particular, evidence suggests that auxin biosynthesis, transport, and signal transduction is modulated by microRNAs and epigenetic factors such as histone modification, chromatin remodeling, and DNA methylation. Furthermore, some phytohormones have been shown to affect epigenetic modifications. These findings are shedding light on the mode of action of phytohormones and are opening up a new avenue of research on phytohormones as well as on the mechanisms regulating epigenetic modifications.
Collapse
Affiliation(s)
- Chizuko Yamamuro
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PRC.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
52
|
Venturelli S, Belz RG, Kämper A, Berger A, von Horn K, Wegner A, Böcker A, Zabulon G, Langenecker T, Kohlbacher O, Barneche F, Weigel D, Lauer UM, Bitzer M, Becker C. Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors. THE PLANT CELL 2015; 27:3175-89. [PMID: 26530086 PMCID: PMC4682303 DOI: 10.1105/tpc.15.00585] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 05/22/2023]
Abstract
To secure their access to water, light, and nutrients, many plant species have developed allelopathic strategies to suppress competitors. To this end, they release into the rhizosphere phytotoxic substances that inhibit the germination and growth of neighbors. Despite the importance of allelopathy in shaping natural plant communities and for agricultural production, the underlying molecular mechanisms are largely unknown. Here, we report that allelochemicals derived from the common class of cyclic hydroxamic acid root exudates directly affect the chromatin-modifying machinery in Arabidopsis thaliana. These allelochemicals inhibit histone deacetylases both in vitro and in vivo and exert their activity through locus-specific alterations of histone acetylation and associated gene expression. Our multilevel analysis collectively shows how plant-plant interactions interfere with a fundamental cellular process, histone acetylation, by targeting an evolutionarily highly conserved class of enzymes.
Collapse
Affiliation(s)
- Sascha Venturelli
- Department of Internal Medicine I, Medical University Clinic, University of Tübingen, 72076 Tübingen, Germany
| | - Regina G Belz
- Agroecology Unit, University of Hohenheim, Institute of Plant Production and Agroecology in the Tropics and Subtropics, 70593 Stuttgart, Germany
| | - Andreas Kämper
- Applied Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Berger
- Department of Internal Medicine I, Medical University Clinic, University of Tübingen, 72076 Tübingen, Germany
| | - Kyra von Horn
- Department of Internal Medicine I, Medical University Clinic, University of Tübingen, 72076 Tübingen, Germany
| | - André Wegner
- Applied Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
| | | | - Gérald Zabulon
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Inserm U1024, CNRS UMR 8197, 75005 Paris, France
| | - Tobias Langenecker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
| | - Fredy Barneche
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Inserm U1024, CNRS UMR 8197, 75005 Paris, France
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine I, Medical University Clinic, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Bitzer
- Department of Internal Medicine I, Medical University Clinic, University of Tübingen, 72076 Tübingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
53
|
Cao H, Li X, Wang Z, Ding M, Sun Y, Dong F, Chen F, Liu L, Doughty J, Li Y, Liu YX. Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum Degradation-Related Genes in Rice. PLANT PHYSIOLOGY 2015; 168:1389-405. [PMID: 26143250 PMCID: PMC4528728 DOI: 10.1104/pp.114.256578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/02/2015] [Indexed: 05/06/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is an important regulatory mechanism in eukaryotic gene transcription and is essential for normal plant development. However, the function of H2Bub1 in reproductive development remains elusive. Here, we report rice (Oryza sativa) HISTONE MONOUBIQUITINATION1 (OsHUB1) and OsHUB2, the homologs of Arabidopsis (Arabidopsis thaliana) HUB1 and HUB2 proteins, which function as E3 ligases in H2Bub1, are involved in late anther development in rice. oshub mutants exhibit abnormal tapetum development and aborted pollen in postmeiotic anthers. Knockout of OsHUB1 or OsHUB2 results in the loss of H2Bub1 and a reduction in the levels of dimethylated lysine-4 on histone 3 (H3K4me2). Anther transcriptome analysis revealed that several key tapetum degradation-related genes including OsC4, rice Cysteine Protease1 (OsCP1), and Undeveloped Tapetum1 (UDT1) were down-regulated in the mutants. Further, chromatin immunoprecipitation assays demonstrate that H2Bub1 directly targets OsC4, OsCP1, and UDT1 genes, and enrichment of H2Bub1 and H3K4me2 in the targets is consistent to some degree. Our studies suggest that histone H2B monoubiquitination, mediated by OsHUB1 and OsHUB2, is an important epigenetic modification that in concert with H3K4me2, modulates transcriptional regulation of anther development in rice.
Collapse
Affiliation(s)
- Hong Cao
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yongzhen Sun
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Li'an Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - James Doughty
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| |
Collapse
|
54
|
Kang MJ, Jin HS, Noh YS, Noh B. Repression of flowering under a noninductive photoperiod by the HDA9-AGL19-FT module in Arabidopsis. THE NEW PHYTOLOGIST 2015; 206:281-294. [PMID: 25406502 DOI: 10.1111/nph.13161] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/08/2014] [Indexed: 05/20/2023]
Abstract
Posttranslational acetylation of histones is reversibly regulated by histone deacetylases (HDACs). Despite the evident significance of HDACs in Arabidopsis development, the biological roles and underlying molecular mechanisms of many HDACs are yet to be elucidated. By a reverse-genetic approach, we isolated an hda9 mutant and performed phenotypic analyses on it. In order to address the role of HDA9 in flowering, genetic, molecular, and biochemical approaches were employed. hda9 flowered early under noninductive short-day (SD) conditions and had increased expression of the floral integrator FLOWERING LOCUS T (FT) and the floral activator AGAMOUS-LIKE 19 (AGL19) compared with the wild-type. The hda9 mutation increased histone acetylation and RNA polymerase II occupancy at AGL19 but not at FT during active transcription, and the HDA9 protein directly targeted AGL19. AGL19 expression was higher under SD than under inductive long-day (LD) conditions, and an AGL19 overexpression caused a strong up-regulation of FT. A genetic analysis showed that an agl19 mutation is epistatic to the hda9 mutation, masking both the early flowering and the increased FT expression of hda9. Taken together, our data indicate that HDA9 prevents precocious flowering under SD conditions by curbing the hyperactivation of AGL19, an upstream activator of FT, through resetting the local chromatin environment.
Collapse
Affiliation(s)
- Min-Jeong Kang
- School of Biological Sciences, Seoul National University, Seoul, 151-747, Korea
| | - Hong-Shi Jin
- School of Biological Sciences, Seoul National University, Seoul, 151-747, Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul, 151-747, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-742, Korea
| | - Bosl Noh
- Research Institute of Basic Sciences, Seoul National University, Seoul, 151-747, Korea
| |
Collapse
|
55
|
Xu J, Xu H, Liu Y, Wang X, Xu Q, Deng X. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process. FRONTIERS IN PLANT SCIENCE 2015; 6:607. [PMID: 26300904 PMCID: PMC4525380 DOI: 10.3389/fpls.2015.00607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/23/2015] [Indexed: 05/20/2023]
Abstract
In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuxin Deng
- *Correspondence: Xiuxin Deng, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China,
| |
Collapse
|
56
|
Wang Z, Cao H, Chen F, Liu Y. The roles of histone acetylation in seed performance and plant development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:125-133. [PMID: 25270163 DOI: 10.1016/j.plaphy.2014.09.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/23/2014] [Indexed: 05/08/2023]
Abstract
Histone acetylation regulates gene transcription by chromatin modifications and plays a crucial role in the plant development and response to environment cues. The homeostasis of histone acetylation is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in different plant tissues and development stages. The vigorous knowledge of the function and co-factors about HATs (e.g. GCN5) and HDACs (e.g. HDA19, HDA6) has been obtained from model plant Arabidopsis. However, understanding individual role of other HATs and HDACs require more work, especially in the major food crops such as rice, maize and wheat. Many co-regulators have been recently identified to function as a component of HAT or HDAC complex in some specific developmental processes. The described findings show a distinctive and interesting epigenetic regulation network composed of HATs, HDACs and co-regulators playing crucial roles in the seed performance, flowering time, plant morphogenesis, plant response to stresses etc. In this review, we summarized the recent progresses and suggested the perspective of histone acetylation research, which might provide us a new window to understand the epigenetic code of plant development and to improve the crop production and quality.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
57
|
Zhao L, Wang P, Hou H, Zhang H, Wang Y, Yan S, Huang Y, Li H, Tan J, Hu A, Gao F, Zhang Q, Li Y, Zhou H, Zhang W, Li L. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS One 2014; 9:e106070. [PMID: 25171199 PMCID: PMC4149478 DOI: 10.1371/journal.pone.0106070] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/27/2014] [Indexed: 12/22/2022] Open
Abstract
The histone modification level has been shown to be related with gene activation and repression in stress-responsive process, but there is little information on the relationship between histone modification and cell cycle gene expression responsive to environmental cues. In this study, the function of histone modifications in mediating the transcriptional regulation of cell cycle genes under various types of stress was investigated in maize (Zea mays L.). Abiotic stresses all inhibit the growth of maize seedlings, and induce total acetylation level increase compared with the control group in maize roots. The positive and negative regulation of the expression of some cell cycle genes leads to perturbation of cell cycle progression in response to abiotic stresses. Chromatin immunoprecipitation analysis reveals that dynamic histone acetylation change in the promoter region of cell cycle genes is involved in the control of gene expression in response to external stress and different cell cycle genes have their own characteristic patterns for histone acetylation. The data also showed that the combinations of hyperacetylation and hypoacetylation states of specific lysine sites on the H3 and H4 tails on the promoter regions of cell cycle genes regulate specific cell cycle gene expression under abiotic stress conditions, thus resulting in prolonged cell cycle duration and an inhibitory effect on growth and development in maize seedlings.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yapei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shihan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junjun Tan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ao Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingnan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Zhang
- Renmin Hospital, Wuhan University, Wuhan, China
- * E-mail: (LL); (WZ)
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LL); (WZ)
| |
Collapse
|
58
|
Ay N, Janack B, Humbeck K. Epigenetic control of plant senescence and linked processes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3875-87. [PMID: 24683182 DOI: 10.1093/jxb/eru132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Senescence processes are part of the plant developmental programme. They involve reprogramming of gene expression and are under the control of a complex regulatory network closely linked to other developmental and stress-responsive pathways. Recent evidence indicates that leaf senescence is regulated via epigenetic mechanisms. In the present review, the epigenetic control of plant senescence is discussed in the broader context of environment-sensitive plant development. The review outlines the concept of epigenetic control of interconnected regulatory pathways steering stress responses and plant development. Besides giving an overview of techniques used in the field, it summarizes recent findings on global alterations in chromatin structure, histone and DNA modifications, and ATP-dependent chromatin remodelling during plant senescence and linked processes.
Collapse
Affiliation(s)
- Nicole Ay
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | - Bianka Janack
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| |
Collapse
|
59
|
Liu X, Yang S, Zhao M, Luo M, Yu CW, Chen CY, Tai R, Wu K. Transcriptional repression by histone deacetylases in plants. MOLECULAR PLANT 2014; 7:764-72. [PMID: 24658416 DOI: 10.1093/mp/ssu033] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in regulation of eukaryotic gene activity. Acetylation of core histones usually induces an 'open' chromatin structure and is associated with gene activation, whereas deacetylation of histone is often correlated with 'closed' chromatin and gene repression. Histone deacetylation is catalyzed by histone deacetylases (HDACs). A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcriptional regulation, and development in plants. Furthermore, HDACs were shown to interact with various chromatin remolding factors and transcription factors involved in transcriptional repression in multiple developmental processes. In this review, we summarized recent findings on the transcriptional repression mediated by HDACs in plants.
Collapse
Affiliation(s)
- Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Boycheva I, Vassileva V, Iantcheva A. Histone acetyltransferases in plant development and plasticity. Curr Genomics 2014; 15:28-37. [PMID: 24653661 PMCID: PMC3958957 DOI: 10.2174/138920291501140306112742] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 12/16/2022] Open
Abstract
In eukaryotes, transcriptional regulation is determined by dynamic and reversible chromatin modifications, such as acetylation, methylation, phosphorylation, ubiquitination, glycosylation, that are essential for the processes of DNA replication, DNA-repair, recombination and gene transcription. The reversible and rapid changes in histone acetylation induce genome-wide and specific alterations in gene expression and play a key role in chromatin modification. Because of their sessile lifestyle, plants cannot escape environmental stress, and hence have evolved a number of adaptations to survive in stress surroundings. Chromatin modifications play a major role in regulating plant gene expression following abiotic and biotic stress. Plants are also able to respond to signals that affect the maintaince of genome integrity. All these factors are associated with changes in gene expression levels through modification of histone acetylation. This review focuses on the major types of genes encoding for histone acetyltransferases, their structure, function, interaction with other genes, and participation in plant responses to environmental stimuli, as well as their role in cell cycle progression. We also bring together the most recent findings on the study of the histone acetyltransferase HAC1 in the model legumes Medicago truncatula and Lotus japonicus.
Collapse
Affiliation(s)
- Irina Boycheva
- AgroBioInstitute, Blvd. Dragan Tzankov 8, 1164 Sofia, Bulgaria
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Acad. Georgi Bonchev str. Bl. 21 1113, Sofia, Bulgaria
| | | |
Collapse
|
61
|
Li T, Chen X, Zhong X, Zhao Y, Liu X, Zhou S, Cheng S, Zhou DX. Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice. THE PLANT CELL 2013; 25:4725-36. [PMID: 24280387 PMCID: PMC3875746 DOI: 10.1105/tpc.113.118802] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 05/17/2023]
Abstract
Histone methylation is an important epigenetic modification in chromatin function, genome activity, and gene regulation. Dimethylated or trimethylated histone H3 lysine 27 (H3K27me2/3) marks silent or repressed genes involved in developmental processes and stress responses in plants. However, the role and the mechanism of the dynamic removal of H3K27me2/3 during gene activation remain unclear. Here, we show that the rice (Oryza sativa) Jumonji C (jmjC) protein gene JMJ705 encodes a histone lysine demethylase that specifically reverses H3K27me2/3. The expression of JMJ705 is induced by stress signals and during pathogen infection. Overexpression of the gene reduces the resting level of H3K27me2/3 resulting in preferential activation of H3K27me3-marked biotic stress-responsive genes and enhances rice resistance to the bacterial blight disease pathogen Xanthomonas oryzae pathovar oryzae. Mutation of the gene reduces plant resistance to the pathogen. Further analysis revealed that JMJ705 is involved in methyl jasmonate-induced dynamic removal of H3K27me3 and gene activation. The results suggest that JMJ705 is a biotic stress-responsive H3K27me2/3 demethylase that may remove H3K27me3 from marked defense-related genes and increase their basal and induced expression during pathogen infection.
Collapse
Affiliation(s)
- Tiantian Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiangsong Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaochao Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaoyun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Saifeng Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
- Institut de Biologie des Plantes Unité Mixte de Recherche 8618 Université Paris-sud 11, 91405 Orsay, France
- Address correspondence to
| |
Collapse
|
62
|
Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. Int J Mol Sci 2013; 14:20478-91. [PMID: 24129180 PMCID: PMC3821626 DOI: 10.3390/ijms141020478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023] Open
Abstract
Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.
Collapse
|
63
|
She W, Grimanelli D, Rutowicz K, Whitehead MWJ, Puzio M, Kotlinski M, Jerzmanowski A, Baroux C. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 2013; 140:4008-19. [PMID: 24004947 DOI: 10.1242/dev.095034] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The life cycle of flowering plants is marked by several post-embryonic developmental transitions during which novel cell fates are established. Notably, the reproductive lineages are first formed during flower development. The differentiation of spore mother cells, which are destined for meiosis, marks the somatic-to-reproductive fate transition. Meiosis entails the formation of the haploid multicellular gametophytes, from which the gametes are derived, and during which epigenetic reprogramming takes place. Here we show that in the Arabidopsis female megaspore mother cell (MMC), cell fate transition is accompanied by large-scale chromatin reprogramming that is likely to establish an epigenetic and transcriptional status distinct from that of the surrounding somatic niche. Reprogramming is characterized by chromatin decondensation, reduction in heterochromatin, depletion of linker histones, changes in core histone variants and in histone modification landscapes. From the analysis of mutants in which the gametophyte fate is either expressed ectopically or compromised, we infer that chromatin reprogramming in the MMC is likely to contribute to establishing postmeiotic competence to the development of the pluripotent gametophyte. Thus, as in primordial germ cells of animals, the somatic-to-reproductive cell fate transition in plants entails large-scale epigenetic reprogramming.
Collapse
Affiliation(s)
- Wenjing She
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Cigliano RA, Cremona G, Paparo R, Termolino P, Perrella G, Gutzat R, Consiglio MF, Conicella C. Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:431-40. [PMID: 23878078 PMCID: PMC3762662 DOI: 10.1104/pp.113.221713] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Histone modifications are involved in the regulation of many processes in eukaryotic development. In this work, we provide evidence that AtHDA7, a HISTONE DEACETYLASE (HDAC) of the Reduced Potassium Dependency3 (RPD3) superfamily, is crucial for female gametophyte development and embryogenesis in Arabidopsis (Arabidopsis thaliana). Silencing of AtHDA7 causes degeneration of micropylar nuclei at the stage of four-nucleate embryo sac and delay in the progression of embryo development, thereby bringing the seed set down in the Athda7-2 mutant. Furthermore, AtHDA7 down- and up-regulation lead to a delay of growth in postgermination and later developmental stages. The Athda7-2 mutation that induces histone hyperacetylation significantly increases the transcription of other HDACs (AtHDA6 and AtHDA9). Moreover, silencing of AtHDA7 affects the expression of ARABIDOPSIS HOMOLOG OF SEPARASE (AtAESP), previously demonstrated to be involved in female gametophyte and embryo development. However, chromatin immunoprecipitation analysis with acetylated H3 antibody provided evidence that the acetylation levels of H3 at AtAESP and HDACs does not change in the mutant. Further investigations are essential to ascertain the mechanism by which AtHDA7 affects female gametophyte and embryo development.
Collapse
|
65
|
Humbeck K. Epigenetic and small RNA regulation of senescence. PLANT MOLECULAR BIOLOGY 2013; 82:529-37. [PMID: 23315005 DOI: 10.1007/s11103-012-0005-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 12/19/2012] [Indexed: 05/08/2023]
Abstract
Leaf senescence is regulated through a complex regulatory network triggered by internal and external signals for the reprogramming of gene expression. In plants, the major developmental phase transitions and stress responses are under epigenetic control. In this review, the underlying molecular mechanisms are briefly discussed and evidence is shown that epigenetic processes are also involved in the regulation of leaf senescence. Changes in the chromatin structure during senescence, differential histone modifications determining active and inactive sites at senescence-associated genes and DNA methylation are addressed. In addition, the role of small RNAs in senescence regulation is discussed.
Collapse
Affiliation(s)
- Klaus Humbeck
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany.
| |
Collapse
|
66
|
Yaacob JS, Loh HS, Mat Taha R. Protein profiling and histone deacetylation activities in somaclonal variants of oil palm (Elaeis guineensis Jacq.). ScientificWorldJournal 2013; 2013:613635. [PMID: 23844406 PMCID: PMC3686130 DOI: 10.1155/2013/613635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022] Open
Abstract
Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants.
Collapse
Affiliation(s)
- Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. jam
| | | | | |
Collapse
|
67
|
Latrasse D, Jégu T, Meng PH, Mazubert C, Hudik E, Delarue M, Charon C, Crespi M, Hirt H, Raynaud C, Bergounioux C, Benhamed M. Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator. Nucleic Acids Res 2013; 41:2907-17. [PMID: 23341037 PMCID: PMC3597657 DOI: 10.1093/nar/gks1458] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022] Open
Abstract
Because regulation of its activity is instrumental either to support cell proliferation and growth or to promote cell death, the universal myo-inositol phosphate synthase (MIPS), responsible for myo-inositol biosynthesis, is a critical enzyme of primary metabolism. Surprisingly, we found this enzyme to be imported in the nucleus and to interact with the histone methyltransferases ATXR5 and ATXR6, raising the question of whether MIPS1 has a function in transcriptional regulation. Here, we demonstrate that MIPS1 binds directly to its promoter to stimulate its own expression by locally inhibiting the spreading of ATXR5/6-dependent heterochromatin marks coming from a transposable element. Furthermore, on activation of pathogen response, MIPS1 expression is reduced epigenetically, providing evidence for a complex regulatory mechanism acting at the transcriptional level. Thus, in plants, MIPS1 appears to have evolved as a protein that connects cellular metabolism, pathogen response and chromatin remodeling.
Collapse
Affiliation(s)
- David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Pin-Hong Meng
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Christelle Mazubert
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Elodie Hudik
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Céline Charon
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Martin Crespi
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Heribert Hirt
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| |
Collapse
|
68
|
Hu Z, Han Z, Song N, Chai L, Yao Y, Peng H, Ni Z, Sun Q. Epigenetic modification contributes to the expression divergence of three TaEXPA1 homoeologs in hexaploid wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2013; 197:1344-1352. [PMID: 23360546 DOI: 10.1111/nph.12131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/25/2012] [Indexed: 05/22/2023]
Abstract
Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat, as well as in other polyploid plants. However, the mechanisms underlying this phenomenon are poorly understood. Expansin genes play important roles in the regulation of cell size, as well as organ size. We found that all three TaEXPA1 homoeologs were silenced in seedling roots. In seedling leaves, TaEXPA1-A and TaEXPA1-D were expressed, but TaEXPA1-B was silenced. Further analysis revealed that silencing of TaEXPA1-B in leaves occurred after the formation of the hexaploid. Chromatin immunoprecipitation assays revealed that the transcriptional silencing of three TaEXPA1 homoeologs in roots was correlated with an increased level of H3K9 dimethylation and decreased levels of H3K4 trimethylation and H3K9 acetylation. Reactivation of TaEXPA1-A and TaEXPA1-D expression in leaves was correlated with increased levels of H3K4 trimethylation and H3K9 acetylation, and decreased levels of H3K9 dimethylation in their promoters, respectively. Moreover, a higher level of cytosine methylation was detected in the promoter region of TaEXPA1-B, which may contribute to its silencing in leaves. We demonstrated that epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development.
Collapse
Affiliation(s)
- Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zongfu Han
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Na Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| |
Collapse
|
69
|
Wang Y, An C, Zhang X, Yao J, Zhang Y, Sun Y, Yu F, Amador DM, Mou Z. The Arabidopsis elongator complex subunit2 epigenetically regulates plant immune responses. THE PLANT CELL 2013; 25:762-76. [PMID: 23435660 PMCID: PMC3608791 DOI: 10.1105/tpc.113.109116] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 05/17/2023]
Abstract
The Arabidopsis thaliana Elongator complex subunit2 (ELP2) genetically interacts with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), a key transcription coactivator of plant immunity, and regulates the induction kinetics of defense genes. However, the mechanistic relationship between ELP2 and NPR1 and how ELP2 regulates the kinetics of defense gene induction are unclear. Here, we demonstrate that ELP2 is an epigenetic regulator required for pathogen-induced rapid transcriptome reprogramming. We show that ELP2 functions in a transcriptional feed-forward loop regulating both NPR1 and its target genes. An elp2 mutation increases the total methylcytosine number, reduces the average methylation levels of methylcytosines, and alters (increases or decreases) methylation levels of specific methylcytosines. Interestingly, infection of plants with the avirulent bacterial pathogen Pseudomonas syringae pv tomato DC3000/avrRpt2 induces biphasic changes in DNA methylation levels of NPR1 and PHYTOALEXIN DEFICIENT4 (PAD4), which encodes another key regulator of plant immunity. These dynamic changes are blocked by the elp2 mutation, which is correlated with delayed induction of NPR1 and PAD4. The elp2 mutation also reduces basal histone acetylation levels in the coding regions of several defense genes. Together, our data demonstrate a new role for Elongator in somatic DNA demethylation/methylation and suggest a function for Elongator-mediated chromatin regulation in pathogen-induced transcriptome reprogramming.
Collapse
Affiliation(s)
- Yongsheng Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Jiqiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - David Moraga Amador
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
- Address correspondence to
| |
Collapse
|
70
|
Aiese Cigliano R, Sanseverino W, Cremona G, Ercolano MR, Conicella C, Consiglio FM. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics 2013; 14:57. [PMID: 23356725 PMCID: PMC3567966 DOI: 10.1186/1471-2164-14-57] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/22/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. RESULTS Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. CONCLUSIONS In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.
Collapse
Affiliation(s)
- Riccardo Aiese Cigliano
- CNR, National Research Council of Italy, Institute of Plant Genetics, Research Division Portici, Via Università 133, 80055 Portici, Italy
| | | | | | | | | | | |
Collapse
|
71
|
Wang Z, Cao H, Sun Y, Li X, Chen F, Carles A, Li Y, Ding M, Zhang C, Deng X, Soppe WJ, Liu YX. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. THE PLANT CELL 2013; 25:149-66. [PMID: 23371947 PMCID: PMC3584531 DOI: 10.1105/tpc.112.108191] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 05/18/2023]
Abstract
Histone (de)acetylation is a highly conserved chromatin modification that is vital for development and growth. In this study, we identified a role in seed dormancy for two members of the histone deacetylation complex in Arabidopsis thaliana, SIN3-LIKE1 (SNL1) and SNL2. The double mutant snl1 snl2 shows reduced dormancy and hypersensitivity to the histone deacetylase inhibitors trichostatin A and diallyl disulfide compared with the wild type. SNL1 interacts with HISTONE DEACETYLASE19 in vitro and in planta, and loss-of-function mutants of SNL1 and SNL2 show increased acetylation levels of histone 3 lysine 9/18 (H3K9/18) and H3K14. Moreover, SNL1 and SNL2 regulate key genes involved in the ethylene and abscisic acid (ABA) pathways by decreasing their histone acetylation levels. Taken together, we showed that SNL1 and SNL2 regulate seed dormancy by mediating the ABA-ethylene antagonism in Arabidopsis. SNL1 and SNL2 could represent a cross-link point of the ABA and ethylene pathways in the regulation of seed dormancy.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongzhen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Annaick Carles
- Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Yong Li
- Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cun Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wim J.J. Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
72
|
Krogan NT, Hogan K, Long JA. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 2012. [PMID: 23034631 DOI: 10.1242/dev.085407dev.085407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development and coordination of complex tissues in eukaryotes requires precise spatial control of fate-specifying genes. Although investigations of such control have traditionally focused on mechanisms of transcriptional activation, transcriptional repression has emerged as being equally important in the establishment of gene expression territories. In the angiosperm flower, specification of lateral organ fate relies on the spatial regulation of the ABC floral organ identity genes. Our understanding of how the boundaries of these expression domains are controlled is not complete. Here, we report that the A-class organ identity gene APETALA2 (AP2), which is known to repress the C-class gene AGAMOUS, also regulates the expression borders of the B-class genes APETALA3 and PISTILLATA, and the E-class gene SEPALLATA3. We show that AP2 represses its target genes by physically recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. These results demonstrate that AP2 plays a broad role in flower development by controlling the expression domains of numerous floral organ identity genes.
Collapse
Affiliation(s)
- Naden T Krogan
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
73
|
Krogan NT, Hogan K, Long JA. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 2012; 139:4180-90. [PMID: 23034631 DOI: 10.1242/dev.085407] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development and coordination of complex tissues in eukaryotes requires precise spatial control of fate-specifying genes. Although investigations of such control have traditionally focused on mechanisms of transcriptional activation, transcriptional repression has emerged as being equally important in the establishment of gene expression territories. In the angiosperm flower, specification of lateral organ fate relies on the spatial regulation of the ABC floral organ identity genes. Our understanding of how the boundaries of these expression domains are controlled is not complete. Here, we report that the A-class organ identity gene APETALA2 (AP2), which is known to repress the C-class gene AGAMOUS, also regulates the expression borders of the B-class genes APETALA3 and PISTILLATA, and the E-class gene SEPALLATA3. We show that AP2 represses its target genes by physically recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. These results demonstrate that AP2 plays a broad role in flower development by controlling the expression domains of numerous floral organ identity genes.
Collapse
Affiliation(s)
- Naden T Krogan
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
74
|
Choi SM, Song HR, Han SK, Han M, Kim CY, Park J, Lee YH, Jeon JS, Noh YS, Noh B. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:135-46. [PMID: 22381007 DOI: 10.1111/j.1365-313x.2012.04977.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To cope with a lifetime of exposure to a variety of pathogens, plants have developed exquisite and refined defense mechanisms that vary depending on the type of attacking pathogen. Defense-associated transcriptional reprogramming is a central part of plant defense mechanisms. Chromatin modification has recently been shown to be another layer of regulation for plant defense mechanisms. Here, we show that the RPD3/HDA1-class histone deacetylase HDA19 is involved in the repression of salicylic acid (SA)-mediated defense responses in Arabidopsis. Loss of HDA19 activity increased SA content and increased the expression of a group of genes required for accumulation of SA as well as pathogenesis related (PR) genes, resulting in enhanced resistance to Pseudomonas syringae. We found that HDA19 directly associates with and deacetylates histones at the PR1 and PR2 promoters. Thus, our study shows that HDA19, by modifying chromatin to a repressive state, ensures low basal expression of defense genes, such as PR1, under unchallenged conditions, as well as their proper induction without overstimulation during defense responses to pathogen attacks. Thus, the role of HDA19 might be critical in preventing unnecessary activation and self-destructive overstimulation of defense responses, allowing successful growth and development.
Collapse
Affiliation(s)
- Sun-Mee Choi
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ontogenetic survey of histone modifications in an annelid. GENETICS RESEARCH INTERNATIONAL 2012; 2012:392903. [PMID: 22567386 PMCID: PMC3335605 DOI: 10.1155/2012/392903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/21/2011] [Indexed: 01/06/2023]
Abstract
Histone modifications are widely recognized for their fundamental importance in regulating gene expression in embryonic development in a wide range of eukaryotes, but they have received relatively little attention in the development of marine invertebrates. We surveyed histone modifications throughout the development of a marine annelid, Polydora cornuta, to determine if modifications could be detected immunohistochemically and if there were characteristic changes in modifications throughout ontogeny (surveyed at representative stages from oocyte to adult). We found a common time of onset for three histone modifications in early cleavage (H3K14ac, H3K9me, and H3K4me2), some differences in the distribution of modifications among germ layers, differences in epifluorescence intensity in specific cell lineages suggesting that hyperacetylation (H3K14ac) and hypermethylation (H3K9me) occur during differentiation, and an overall decrease in the distribution of modifications from larvae to adults. Although preliminary, these results suggest that histone modifications are involved in activating early development and differentiation in a marine invertebrate.
Collapse
|
76
|
Cucurachi M, Busconi M, Morreale G, Zanetti A, Bavaresco L, Fogher C. Characterization and differential expression analysis of complete coding sequences of Vitis vinifera L. sirtuin genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 54:123-32. [PMID: 22446584 DOI: 10.1016/j.plaphy.2012.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/19/2012] [Indexed: 05/20/2023]
Abstract
The sirtuin/Sir2 (Silent information regulator 2) family of NAD+-dependent deacetylases and mono-ADP-ribosyltransferases plays an important role in several cellular processes including gene silencing, cell cycle regulation and life span extension in yeast and animals. Compared to other eukaryotes, plants have relatively fewer SIR2 related genes encoding only two putative SIR2 family proteins. Recently, two putative sirtuin genes were identified also in the grapevine genome. Starting from the predicted coding sequences present in the database, we have been able to obtain two truly expressed coding sequences from the start to the stop codon for both sirtuin genes that were named VvSRT1 and VvSRT2. The search for the expressed coding sequences was performed by comparing the predicted sequences with the recently available grape RNA seq database with the aim to develop the primers to be used in reverse transcriptase PCR reactions to amplify the genes of interest. Finally, in order to better understand the physiological role of both sirtuins, we investigated the expression of these genes in young leaves, mature leaves, and berries sampled at different growing stages. In leaves, usually it has been observed that VvSRT1 is less expresses than VvSRT2, moreover in young leaves VvSRT2 showed the higher expression during setting while in mature leaves during the flowering time. No particular variations have been observed concerning VvSRT1. In berries the two genes showed more similar expression level, and they showed the highest expression during the flowering time. Finally, the expression of VvSRT2 in berries is smaller than in leaves.
Collapse
Affiliation(s)
- M Cucurachi
- Plantechno S.r.l., Via Staffolo 60, 26041 Vicomoscano, Cremona, Italy
| | | | | | | | | | | |
Collapse
|
77
|
Berr A, Ménard R, Heitz T, Shen WH. Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol 2012; 14:829-39. [DOI: 10.1111/j.1462-5822.2012.01785.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
78
|
Alinsug MV, Chen FF, Luo M, Tai R, Jiang L, Wu K. Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light. PLoS One 2012; 7:e30846. [PMID: 22363501 PMCID: PMC3281883 DOI: 10.1371/journal.pone.0030846] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
Class II histone deacetylases in humans and other model organisms undergo nucleocytoplasmic shuttling. This unique functional regulatory mechanism has been well elucidated in eukaryotic organisms except in plant systems. In this study, we have paved the baseline evidence for the cytoplasmic and nuclear localization of Class II HDAs as well as their mRNA expression patterns. RT-PCR analysis on the different vegetative parts and developmental stages reveal that Class II HDAs are ubiquitously expressed in all tissues with minimal developmental specificity. Moreover, stable and transient expression assays using HDA-YFP/GFP fusion constructs indicate cytoplasmic localization of HDA5, HDA8, and HDA14 further suggesting their potential for nuclear transport and deacetylating organellar and cytoplasmic proteins. Organelle markers and stains confirm HDA14 to abound in the mitochondria and chloroplasts while HDA5 localizes in the ER. HDA15, on the other hand, shuttles in and out of the nucleus upon light exposure. In the absence of light, it is exported out of the nucleus where further re-exposition to light treatments signals its nuclear import. Unlike HDA5 which binds with 14-3-3 proteins, HDA15 fails to interact with these chaperones. Instead, HDA15 relies on its own nuclear localization and export signals to navigate its subcellular compartmentalization classifying it as a Class IIb HDA. Our study indicates that nucleocytoplasmic shuttling is indeed a hallmark for all eukaryotic Class II histone deacetylases.
Collapse
Affiliation(s)
- Malona V. Alinsug
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Fang Fang Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming Luo
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ready Tai
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
79
|
Kuang JF, Chen JY, Luo M, Wu KQ, Sun W, Jiang YM, Lu WJ. Histone deacetylase HD2 interacts with ERF1 and is involved in longan fruit senescence. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:441-54. [PMID: 21926091 PMCID: PMC3245477 DOI: 10.1093/jxb/err290] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 05/21/2023]
Abstract
Histone deacetylation plays an important role in epigenetic control of gene expression. HD2 is a plant-specific histone deacetylase that is able to mediate transcriptional repression in many biological processes. To investigate the epigenetic and transcriptional mechanisms of longan fruit senescence, one histone deacetylase 2-like gene, DlHD2, and two ethylene-responsive factor-like genes, DlERF1 and DlERF2, were cloned and characterized from longan fruit. Expression of these genes was examined during fruit senescence under different storage conditions. The accumulation of DlHD2 reached a peak at 2 d and 30 d in the fruit stored at 25 °C (room temperature) and 4 °C (low temperature), respectively, or 6 h after the fruit was transferred from 4 °C to 25 °C, when fruit senescence was initiated. However, the DlERF1 transcript accumulated mostly at the later stage of fruit senescence, reaching a peak at 5 d and 35 d in the fruit stored at 25 °C and 4 °C, respectively, or 36 h after the fruit was transferred from low temperature to room temperature. Moreover, application of nitric oxide (NO) delayed fruit senescence, enhanced the expression of DlHD2, but suppressed the expression of DlERF1 and DlERF2. These results indicated a possible interaction between DlHD2 and DlERFs in regulating longan fruit senescence, and the direct interaction between DlHD2 and DlERF1 was confirmed by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Taken together, the results suggested that DlHD2 may act with DlERF1 to regulate gene expression involved in longan fruit senescence.
Collapse
Affiliation(s)
- Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, PR China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ming Luo
- South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, PR China
| | - Ke-qiang Wu
- South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, PR China
| | - Wei Sun
- South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, PR China
| | - Yue-ming Jiang
- South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, PR China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
80
|
Raut VV, Sainis JK. 60Co-γ radiation induces differential acetylation and phosphorylation of histones H3 and H4 in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:110-117. [PMID: 21973290 DOI: 10.1111/j.1438-8677.2011.00463.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Histone modifications occur during DNA damage and repair in eukaryotes. These modifications were analysed in wheat seedlings exposed to (60) Co-γ radiation. Seedling height was not significantly affected in the first 2 days after irradiation up to 150 Gy. Subsequently, in the next 2 weeks, there was 30-40% reduction in seedling height, indicating that there were late effects of irradiation. The histones isolated from irradiated seedlings were analysed in the initial stages for modifications of H3 and H4 using antibodies. Global acetylation of H3 decreased and H4 increased in a dose-dependent manner till 100 Gy. The time course of individual modifications showed that for H3K4 and H3K9, acetylation decreased, whereas for H3S10 phosphorylation increased. There were fluctuations in acetylation of H4K5, H4K12 and H4K16, whereas H4K8 showed hyper-acetylation. The results indicate that γ radiation induced DNA damage and repair in wheat seedlings and initiated differential acetylation of H3 and H4. This is the first report in plants on site-specific H3 and H4 modifications in response to exposure to ionizing radiation.
Collapse
Affiliation(s)
- V V Raut
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
81
|
Colville A, Alhattab R, Hu M, Labbé H, Xing T, Miki B. Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. PLANT CELL REPORTS 2011; 30:1969-79. [PMID: 21739146 DOI: 10.1007/s00299-011-1105-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 05/06/2023]
Abstract
The Arabidopsis HD2 family of histone deacetylases consist of 4 members (HD2A, HD2B, HD2C, HD2D) that play diverse roles in plant development and physiology through chromatin remodelling. Here, we show that the transcripts of HD2 family members selectively accumulate in response to glucose through a HXK1-independent signal transduction pathway during the early stages of seedling growth. Germination was enhanced in hd2a null mutants relative to wild-type seeds. In contrast, hd2c mutants were restrained in germination relative to wild-type seeds. In hd2a/hd2c double mutants, germination was restored to wild-type levels. The data suggests that HD2A and HD2C may have different and opposing functions in germination with the glucose/HD2A pathway acting to restrain germination and the HD2C pathway acting to enhance germination. These pathways may function early in the regulation of seedling germination, independently of the glucose/HXK1/ABA signal transduction pathway, to fine tune the onset of germination.
Collapse
Affiliation(s)
- Adam Colville
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | | | | | | | | |
Collapse
|
82
|
Kim ED, Chen ZJ. Unstable transcripts in Arabidopsis allotetraploids are associated with nonadditive gene expression in response to abiotic and biotic stresses. PLoS One 2011; 6:e24251. [PMID: 21897874 PMCID: PMC3163679 DOI: 10.1371/journal.pone.0024251] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/05/2011] [Indexed: 11/18/2022] Open
Abstract
Genome-wide analysis has documented differential gene expression between closely related species in plants and animals and nonadditive gene expression in hybrids and allopolyploids compared to the parents. In Arabidopsis, 15–43% of genes are expressed differently between the related species, Arabidopsis thaliana and Arabidopsis arenosa, the majority of which are nonadditively expressed (differently from mid-parent value) in allotetraploids. Nonadditive gene expression can be caused by transcriptional regulation through chromatin modifications, but the role of posttranscriptional regulation in nonadditive gene expression is largely unknown. Here we reported genome-wide analysis of mRNA decay in resynthesized Arabidopsis allotetraploids. Among ∼26,000 annotated genes, over 1% of gene transcripts showed rapid decay with an estimated half-life of less than 60 minutes, and they are called allotetraploid genes with unstable transcripts (AlloGUTs). Remarkably, 30% of alloGUTs matched the nonadditively expressed genes, and their expression levels were negatively correlated with the decay rate. Compared to all genes, these nonadditively expressed alloGUTs were overrepresented 2-6-fold in the Gene Ontology (GOSlim) classifications in response to abiotic and biotic stresses, signal transduction, and transcription. Interestingly, the AlloGUTs include transcription factor genes that are highly inducible under stress conditions and circadian clock regulators that regulate growth in A. thaliana. These data suggest a role of mRNA stability in homoeologous gene expression in Arabidopsis allopolyploids. The enrichment of nonadditively expressed genes in stress-related pathways were commonly observed in Arabidopsis and other allopolyploids such as wheat and cotton, which may suggest a role for stress-mediated growth vigor in hybrids and allopolyploids.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | | |
Collapse
|
83
|
Berr A, Shafiq S, Shen WH. Histone modifications in transcriptional activation during plant development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:567-76. [PMID: 21777708 DOI: 10.1016/j.bbagrm.2011.07.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/30/2011] [Accepted: 07/06/2011] [Indexed: 12/24/2022]
Abstract
In eukaryotic cell nuclei, chromatin states dictated by different combinations of post-translational modifications of histones, such as acetylation, methylation and monoubiquitination of lysine residues, are part of the multitude of epigenomes involved in the fine-tuning of all genetic functions and in particular transcription. During the past decade, an increasing number of 'writers', 'readers' and 'erasers' of histone modifications have been identified. Characterization of these factors in Arabidopsis has unraveled their pivotal roles in the regulation of essential processes, such as floral transition, cell differentiation, gametogenesis, and plant response/adaptation to environmental stresses. In this review we focus on histone modification marks associated with transcriptional activation to highlight current knowledge on Arabidopsis 'writers', 'readers' and 'erasers' of histone modifications and to discuss recent findings on molecular mechanisms of integration of histone modifications with the RNA polymerase II transcriptional machinery during transcription of the flowering repressor gene FLC.
Collapse
Affiliation(s)
- Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France
| | | | | |
Collapse
|
84
|
Finkemeier I, Laxa M, Miguet L, Howden AJM, Sweetlove LJ. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1779-90. [PMID: 21311031 PMCID: PMC3091095 DOI: 10.1104/pp.110.171595] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/04/2011] [Indexed: 05/20/2023]
Abstract
Acetylation of the ε-amino group of lysine (Lys) is a reversible posttranslational modification recently discovered to be widespread, occurring on proteins outside the nucleus, in most subcellular locations in mammalian cells. Almost nothing is known about this modification in plants beyond the well-studied acetylation of histone proteins in the nucleus. Here, we report that Lys acetylation in plants also occurs on organellar and cytosolic proteins. We identified 91 Lys-acetylated sites on 74 proteins of diverse functional classes. Furthermore, our study suggests that Lys acetylation may be an important posttranslational modification in the chloroplast, since four Calvin cycle enzymes were acetylated. The plastid-encoded large subunit of Rubisco stands out because of the large number of acetylated sites occurring at important Lys residues that are involved in Rubisco tertiary structure formation and catalytic function. Using the human recombinant deacetylase sirtuin 3, it was demonstrated that Lys deacetylation significantly affects Rubisco activity as well as the activities of other central metabolic enzymes, such as the Calvin cycle enzyme phosphoglycerate kinase, the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase, and the tricarboxylic acid cycle enzyme malate dehydrogenase. Our results demonstrate that Lys acetylation also occurs on proteins outside the nucleus in Arabidopsis (Arabidopsis thaliana) and that Lys acetylation could be important in the regulation of key metabolic enzymes.
Collapse
|
85
|
Ha M, Ng DWK, Li WH, Chen ZJ. Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res 2011; 21:590-8. [PMID: 21324879 DOI: 10.1101/gr.116467.110] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone modifications regulate gene expression in eukaryotes, but their effects on transcriptomes of a multicellular organism and on transcriptomic divergence between species are poorly understood. Here we present the first nucleotide-resolution maps of histone acetylation, methylation, and core histone in Arabidopsis thaliana and a comprehensive analysis of these and all other available maps with gene expression data in A. thaliana, Arabidopsis arenosa, and allotetraploids. H3K9 acetylation (H3K9ac) and H3K4 trimethylation (H3K4me3) are correlated, and their distribution patterns are associated with Gene Ontology (GO) functional classifications. Highly dense and narrow distributions of these modifications near transcriptional start sites are associated with constitutive expression of genes involved in translation, whereas broad distributions toward coding regions correlate with expression variation of the genes involved in photosynthesis, carbohydrate metabolism, and defense responses. Compared to animal stem cells, dispersed distributions of H3K27me3 without bivalent H3K4me3 and H3K9ac marks correlate with developmentally repressed genes in Arabidopsis. Finally, genes affected by A. thaliana histone deacetylase 1 mutation tend to show high levels of expression variation within and between species. The data suggest that genome-wide coordinated modifications of histone acetylation and methylation provide a general mechanism for gene expression changes within and between species and in allopolyploids.
Collapse
Affiliation(s)
- Misook Ha
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
86
|
FOXP3 and RORγt: transcriptional regulation of Treg and Th17. Int Immunopharmacol 2010; 11:536-42. [PMID: 21081189 DOI: 10.1016/j.intimp.2010.11.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/14/2022]
Abstract
FOXP3(+)CD4(+)CD25(+) Regulatory T (Treg) cells and IL-17 producing helper T cells (Th17) are critical subsets of T cells which play essential roles in immune homeostasis. The Forkhead family transcription factor FOXP3 is predominantly expressed in Treg cells, where the FOXP3 ensemble is essential for Treg cell development and function. As FOXP3 is to Treg cells, the orphan retinoic acid nuclear receptor (ROR) family transcription factor RORγt is essential for Th17 development and function. In this review, we summarize recent progress of our understanding towards the molecular mechanisms underlying the differentiation and function of FOXP3(+) Treg cells and RORγt expressing Th17 cells. These may provide new insights into therapeutic intervention and targeting of human immune-deficient diseases.
Collapse
|
87
|
Abstract
In eukaryotic genomes, gene expression and DNA recombination are affected by structural chromatin traits. Chromatin structure is shaped by the activity of enzymes that either introduce covalent modifications in DNA and histone proteins or use energy from ATP to disrupt histone-DNA interactions. The genomic 'marks' that are generated by covalent modifications of histones and DNA, or by the deposition of histone variants, are susceptible to being altered in response to stress. Recent evidence has suggested that proteins generating these epigenetic marks play crucial roles in the defence against pathogens. Histone deacetylases are involved in the activation of jasmonic acid- and ethylene-sensitive defence mechanisms. ATP-dependent chromatin remodellers mediate the constitutive repression of the salicylic acid-dependent pathway, whereas histone methylation at the WRKY70 gene promoter affects the activation of this pathway. Interestingly, bacterial-infected tissues show a net reduction in DNA methylation, which may affect the disease resistance genes responsible for the surveillance against pathogens. As some epigenetic marks can be erased or maintained and transmitted to offspring, epigenetic mechanisms may provide plasticity for the dynamic control of emerging pathogens without the generation of genomic lesions.
Collapse
Affiliation(s)
- María E Alvarez
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| | | | | |
Collapse
|
88
|
|
89
|
Kole C, Michler CH, Abbott AG, Hall TC. Levels and Stability of Expression of Transgenes. TRANSGENIC CROP PLANTS 2010. [PMCID: PMC7122870 DOI: 10.1007/978-3-642-04809-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that in a given cell, at a particular time, only a fraction of the entire genome is expressed. Expression of a gene, nuclear, or organellar starts with the onset of transcription and ends in the synthesis of the functional protein. The regulation of gene expression is a complex process that requires the coordinated activity of different proteins and nucleic acids that ultimately determine whether a gene is transcribed, and if transcribed, whether it results in the production of a protein that develops a phenotype. The same also holds true for transgenic crops, which lie at the very core of insert design. There are multiple checkpoints at which the expression of a gene can be regulated and controlled. Much of the emphasis of studies related to gene expression has been on regulation of gene transcription, and a number of methods are used to effect the control of gene expression. Controlling transgene expression for a commercially valuable trait is necessary to capture its value. Many gene functions are either lethal or produce severe deformity (resulting in loss of value) if over-expressed. Thus, expression of a transgene at a particular site or in response to a particular elicitor is always desirable.
Collapse
Affiliation(s)
- Chittaranjan Kole
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Charles H. Michler
- NSF I/UCRC Center for Tree Genetics, Hardwood Tree Improvement and Regeneration Center at Purdue University, West Lafayette, IN 47907 USA
| | - Albert G. Abbott
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Timothy C. Hall
- Institute of Developmental & Molecular Biology Department of Biology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
90
|
Krogan NT, Long JA. Why so repressed? Turning off transcription during plant growth and development. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:628-36. [PMID: 19700365 PMCID: PMC2757442 DOI: 10.1016/j.pbi.2009.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/18/2009] [Accepted: 07/21/2009] [Indexed: 05/20/2023]
Abstract
To ensure correct patterns of gene expression, eukaryotes use a variety of strategies to repress transcription. The transcriptional regulators mediating this repression can be broadly categorized as either passive or active repressors. While passive repressors rely on mechanisms such as steric hindrance of transcriptional activators to repress gene expression, active repressors display inherent repressive abilities commonly conferred by discrete repression domains. Recent studies have indicated that both categories of regulators function in a variety of plant processes, including hormone signal transduction, developmental pathways, and response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Naden T Krogan
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
91
|
Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH, Kim JK. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:764-76. [PMID: 19453457 DOI: 10.1111/j.1365-313x.2009.03908.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have previously isolated a rice gene encoding a histone deacetylase, OsHDAC1, and observed that its transgenic overexpression increases seedling root growth. To identify the transcriptional repression events that occur as a result of OsHDAC1 overexpression (OsHDAC1(OE)), a global profiling of root-expressed genes was performed on OsHDAC1(OE) or HDAC inhibitor-treated non-transgenic (NT) roots, in comparison with untreated NT roots. We selected 39 genes that are induced and repressed in HDAC inhibitor-treated NT and OsHDAC1(OE) roots, compared with NT roots, respectively. Interestingly, OsNAC6, a member of the NAM-ATAF-CUC (NAC) family, was identified as a key component of the OsHDAC1 regulon, and was found to be epigenetically repressed by OsHDAC1 overexpression. The root phenotype of OsNAC6 knock-out seedlings was observed to be similar to that of the OsHDAC1(OE) seedlings. Conversely, the root phenotype of the OsNAC6 overexpressors was similar to that of the OsHDAC1 knock-out seedlings. These observations indicate that OsHDAC1 negatively regulates the OsNAC6 gene that primarily mediates the alteration in the root growth of the OsHDAC1(OE) seedlings. Chromatin immunoprecipitation assays of the OsNAC6 promoter region using antibodies specific to acetylated histones H3 and H4 revealed that OsHDAC1 epigenetically represses the expression of OsNAC6 by deacetylating K9, K14 and K18 on H3 and K5, K12 and K16 on H4.
Collapse
Affiliation(s)
- Pil Joong Chung
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | | | | | | | | | | |
Collapse
|
92
|
Hu Y, Qin F, Huang L, Sun Q, Li C, Zhao Y, Zhou DX. Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Biophys Res Commun 2009; 388:266-71. [PMID: 19664599 DOI: 10.1016/j.bbrc.2009.07.162] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022]
Abstract
Histone deacetylases (HDAC) are important in plant gene expression. Here we show that the expression of rice HDAC genes is both tissue/organ-specific, and most of them are responsive to drought or salt stresses. Over-expression of several rice HDACs did not produce any visible phenotype, whereas down-regulation of a few HDAC genes affected different developmental aspects. Specifically, down-regulation of HDA703 by amiRNA reduced rice peduncle elongation and fertility, while inactivation of a closely related homolog HDA710 by RNAi affected vegetative growth. HDA704 RNAi altered plant height and flag leaf morphology. Down-regulation of HDT702 led to the production of narrowed leaves and stems. These data suggest that rice HDAC genes may have divergent developmental functions compared with closely related homologs in Arabidopsis.
Collapse
Affiliation(s)
- Yongfeng Hu
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
93
|
Demetriou K, Kapazoglou A, Tondelli A, Francia E, Stanca MA, Bladenopoulos K, Tsaftaris AS. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. PHYSIOLOGIA PLANTARUM 2009; 136:358-68. [PMID: 19470089 DOI: 10.1111/j.1399-3054.2009.01236.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigenetic phenomena have been associated with modifications of chromatin structure. These are achieved, in part, by histone post-translational modifications including acetylations and deacetylations, the later being catalyzed by histone deacetylaces (HDACs). Eukaryotic HDACs are grouped into three major families, RPD3/HDA1, SIR2 and the plant-specific HD2. HDAC genes have been analyzed from model plants such as Arabidopsis, rice and maize and have been shown to be involved in various cellular processes including seed development, vegetative and reproductive growth and responses to abiotic and biotic stress, but reports on HDACs from other crops are limited. In this work two full-length cDNAs (HvHDAC2-1 and HvHDAC2-2) encoding two members of the plant-specific HD2 family, respectively, were isolated and characterized from barley (Hordeum vulgare), an agronomically important cereal crop. HvHDAC2-1 and HvHDAC2-2 were mapped on barley chromosomes 1H and 3H, respectively, which could prove useful in developing markers for marker-assisted selection in breeding programs. Expression analysis of the barley HD2 genes demonstrated that they are expressed in all tissues and seed developmental stages examined. Significant differences were observed among tissues and seed stages, and between cultivars with varying seed size, suggesting an association of these genes with seed development. Furthermore, the HD2 genes from barley were found to respond to treatments with plant stress-related hormones such as jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA) implying an association of these genes with plant resistance to biotic and abiotic stress. The expression pattern of HD2 genes suggests a possible role for these genes in the epigenetic regulation of seed development and stress response.
Collapse
Affiliation(s)
- Kyproula Demetriou
- Centre for Research & Technology, Institute of Agrobiotechnology, Thermi-Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
94
|
van den Burg HA, Takken FLW. Does chromatin remodeling mark systemic acquired resistance? TRENDS IN PLANT SCIENCE 2009; 14:286-94. [PMID: 19369112 DOI: 10.1016/j.tplants.2009.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 05/07/2023]
Abstract
The recognition of plant pathogens activates local defense responses and triggers a long-lasting systemic acquired resistance (SAR) response. Activation of SAR requires the hormone salicylic acid (SA), which induces SA-responsive gene expression. Recent data link changes in gene expression to chromatin remodeling, such as histone modifications and histone replacement. Here, we propose a model in which recruitment of chromatin-modifying complexes to SA-responsive loci controls their basal and SA-induced expression. Basal repression of these loci requires the post-translational modifier SUMO (SMALL UBIQUITIN-LIKE MODIFIER). This is of particular relevance because SUMO conjugation has been shown to control the activity, assembly and disassembly of chromatin-modifying complexes to transcription complexes. Chromatin remodeling could be instrumental for priming of SA-responsive loci to enable their enhanced reactivation upon subsequent pathogen attack.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | |
Collapse
|
95
|
Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:333-346. [PMID: 19143996 DOI: 10.1111/j.0960-7412.2009.03782.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Leaf senescence, the final step of leaf development, involves extensive reprogramming of gene expression. Here, we show that these processes include discrete changes of epigenetic indexing, as well as global alterations in chromatin organization. During leaf senescence, the interphase nuclei show a decondensation of chromocenter heterochromatin, and changes in the nuclear distribution of the H3K4me2, H3K4me3, and the H3K27me2 and H3K27me3 histone modification marks that index active and inactive chromatin, respectively. Locus-specific epigenetic indexing was studied at the WRKY53 key regulator of leaf senescence. During senescence, when the locus becomes activated, H3K4me2 and H3K4me3 are significantly increased at the 5' end and at coding regions. Impairment of these processes is observed in plants overexpressing the SUVH2 histone methyltransferase, which causes ectopic heterochromatization. In these plants the transcriptional initiation of WRKY53 and of the senescence-associated genes SIRK, SAG101, ANAC083, SAG12 and SAG24 is inhibited, resulting in a delay of leaf senescence. In SUVH2 overexpression plants, significant levels of H3K27me2 and H3K27me3 are detected at the 5'-end region of WRKY53, resulting in its transcriptional repression. Furthermore, SUVH2 overexpression inhibits senescence-associated global changes in chromatin organization. Our data suggest that complex epigenetic processes control the senescence-specific gene expression pattern.
Collapse
Affiliation(s)
- Nicole Ay
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | | | | | |
Collapse
|
96
|
Alinsug MV, Yu CW, Wu K. Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC PLANT BIOLOGY 2009; 9:37. [PMID: 19327164 PMCID: PMC2671507 DOI: 10.1186/1471-2229-9-37] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/28/2009] [Indexed: 05/06/2023]
Abstract
BACKGROUND Although histone deacetylases from model organisms have been previously identified, there is no clear basis for the classification of histone deacetylases under the RPD3/HDA1 superfamily, particularly on plants. Thus, this study aims to reconstruct a phylogenetic tree to determine evolutionary relationships between RPD3/HDA1 histone deacetylases from six different plants representing dicots with Arabidopsis thaliana, Populus trichocarpa, and Pinus taeda, monocots with Oryza sativa and Zea mays, and the lower plants with Physcomitrella patens. RESULTS Sixty two histone deacetylases of RPD3/HDA1 family from the six plant species were phylogenetically analyzed to determine corresponding orthologues. Three clusters were formed separating Class I, Class II, and Class IV. We have confirmed lower and higher plant orthologues for AtHDA8 and AtHDA14, classifying both genes as Class II histone deacetylases in addition to AtHDA5, AtHDA15, and AtHDA18. Since Class II histone deacetylases in other eukaryotes have been known to undergo nucleocytoplasmic transport, it remains unknown whether such functional regulation also happens in plants. Thus, bioinformatics studies using different programs and databases were conducted to predict their corresponding localization sites, nuclear export signal, nuclear localization signal, as well as expression patterns. We also found new conserved domains in most of the RPD3/HDA1 histone deacetylases which were similarly conserved in its corresponding orthologues. Assessing gene expression patterns using Genevestigator, it appears that RPD3/HDA1 histone deacetylases are expressed all throughout the plant parts and developmental stages of the plant. CONCLUSION The RPD3/HDA1 histone deacetylase family in plants is divided into three distinct groups namely, Class I, Class II, and Class IV suggesting functional diversification. Class II comprises not only AtHDA5, AtHDA15, and AtHDA18 but also includes AtHDA8 and AtHDA14. New conserved domains have also been identified in most of the RPD3/HDA1 family indicating further versatile roles other than histone deacetylation.
Collapse
Affiliation(s)
- Malona V Alinsug
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei Yu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
97
|
Wang L, Tao R, Hancock WW. Using histone deacetylase inhibitors to enhance Foxp3(+) regulatory T-cell function and induce allograft tolerance. Immunol Cell Biol 2009; 87:195-202. [PMID: 19172156 DOI: 10.1038/icb.2008.106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The histone/protein deacetylase inhibitor (HDACi), trichostatin A (TsA), increases the production and suppressive function of Foxp3(+) regulatory T cells (T(regs)), at least in part, by promoting the acetylation of Foxp3 protein itself. Acetylation of Foxp3 is required for effective binding of Foxp3 to the promoter of the interleukin-2 (IL-2) gene and the suppression of IL-2 expression. We have sought to identify agents that had similar effects on T(regs), but without the associated toxicity of TsA. This review summarizes the contrasting effects of various HDACis on T(reg) functions in vitro and in vivo. Agents that block primarily class I HDAC had minimal or no effect on T(reg) suppression, whereas multiple inhibitors of both class I and class II HDAC enhanced T(reg) suppression in vitro and in vivo. These data indicate tools for further analysis of T(reg) functions, and point to a critical role of class II HDAC in the regulation of T(regs). Such knowledge has direct implications for the development of in vivo approaches to treat autoimmune and other inflammatory diseases.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Pathology and Laboratory Medicine, Stokes Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | | | | |
Collapse
|
98
|
Bucuvalas JC, Alonso E, Magee JC, Talwalkar J, Hanto D, Doo E. Improving long-term outcomes after liver transplantation in children. Am J Transplant 2008; 8:2506-13. [PMID: 18853949 DOI: 10.1111/j.1600-6143.2008.02432.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The objective was to review the current state of knowledge and recommend future research directions related to long-term outcomes for pediatric liver transplant recipients. A 1-day Clinical Research Workshop on Improving Long-Term Outcomes for Pediatric Liver Transplant Recipients was held on February 12, 2007, in Washington, DC. The speaker topics were germane to research priorities delineated in the chapters on Pediatric Liver Diseases and on Liver Transplantation in the Trans-NIH Action Plan for Liver Disease Research. Issues that compromise long-term well-being and survival but are amenable to existing and new research efforts were presented and discussed. Areas of research that further enhanced the research priorities in the Action Plan for Liver Disease Research included collection of longitudinal data to define emerging trends of clinical challenges; identification of risk factors associated with long-term immunosuppression complications; development of tolerance-inducing regimens; definition of biomarkers that reflect the level of clinical immunosuppression; development of instruments for the measurement of health wellness; identification of risk factors that impede growth and intellectual development before and after liver transplantation and identification of barriers and facilitators that impact nonadherence and transition of care for adolescents.
Collapse
Affiliation(s)
- J C Bucuvalas
- Pediatric Liver Care Center, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
99
|
Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 2008; 457:327-31. [PMID: 19029881 PMCID: PMC2679702 DOI: 10.1038/nature07523] [Citation(s) in RCA: 443] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 10/02/2008] [Indexed: 01/12/2023]
Abstract
Segregating hybrids and stable allopolyploids display morphological vigor1,2,3, and Arabidopsis allotetraploids are larger than the parents Arabidopsis thaliana and A. arenosa1,4. The mechanisms are unknown. Circadian clocks mediate metabolic pathways and increase fitness in animals and plants5,6,7,8. Here we report that epigenetic modifications of the circadian clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY)9,10 and their reciprocal regulators TIMING OF CAB EXPRESSION 1 (TOC1) and GIGANTEA (GI)10,11,12 mediate expression changes in downstream genes and pathways. During the day, epigenetic repression of CCA1 and LHY induced expression of TOC1, GI and downstream genes that contain CCA1 binding site (CBS)13 in chlorophyll and starch metabolic pathways in allotetraploids and F1 hybrids, which produced more chlorophyll and starch than the parents in the same environment. Mutations in cca1 and cca1 lhy and daily repression of cca1 in TOC1:cca1-RNAi transgenic plants increased expression of downstream genes and chlorophyll and starch content, whereas constitutively expressing CCA1 or ectopically expressing TOC1:CCA1 had the opposite effects. The causal effects of CCA1 on output traits suggest that hybrids and allopolyploids gain advantages from the control of circadian-mediated physiological and metabolic pathways, leading to growth vigor and increased biomass.
Collapse
Affiliation(s)
- Zhongfu Ni
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, One University Station, A-4800, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci U S A 2008; 105:13679-84. [PMID: 18765808 DOI: 10.1073/pnas.0805901105] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone lysine methylation is an important epigenetic modification with both activating and repressive roles in gene expression. Jumonji C (jmjC) domain-containing proteins have been shown to reverse histone methylation in nonplant model systems. Here, we show that plant Jumonji C proteins have both conserved and specific features compared with mammalian homologues. In particular, the rice JMJD2 family jmjC gene JMJ706 is shown to encode a heterochromatin-enriched protein. The JMJ706 protein specifically reverses di- and trimethylations of lysine 9 of histone H3 (H3K9) in vitro. Loss-of-function mutations of the gene lead to increased di- and trimethylations of H3K9 and affect the spikelet development, including altered floral morphology and organ number. Gene expression and histone modification analysis indicates that JMJ706 regulates a subset of flower development regulatory genes. Taken together, our data suggest that rice JMJ706 encodes a heterochromatin-associated H3K9 demethylase involved in the regulation of flower development in rice.
Collapse
|