51
|
Triticum aestivum: antioxidant gene profiling and morpho-physiological studies under salt stress. Mol Biol Rep 2023; 50:2569-2580. [PMID: 36626063 DOI: 10.1007/s11033-022-07990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Soil salinity drastically reduced wheat growth and production in Pakistan. It is a need of an hour to identify the best suitable salt tolerance or resistant wheat varieties which shows good growth under salinity affected areas. In presented study, two wheat varieties Johar (salt tolerant) and Sarsabaz (salt sensitive) were examined under NaCl stress conditions. METHODS Antioxidant enzyme activities were investigated in 10-days old wheat seedlings under 200 mM NaCl stress in hydroponic conditions. To investigate the various growth parameters, antioxidant enzyme activities such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6) and ascorbate peroxidase (APX: EC 1.11.1.11) were monitored and studied. Besides this various growth parameters such as length of the roots, shoots, as well as Physiological parameters likes lipid peroxidation by malondialdehyde (MDA), hydrogen peroxide (H2O2), and proline contents and antioxidant enzyme activities were estimated. The effect of salinity was also observed on gene transcription level and eventually expression level. RESULTS Shoot and root length were decreased in Sarsabaz variety while it showed opposite trend in johar at 200 mM salt concentration. The concentration of proline showed a noticeable rise in salt dependency. Higher concentrations of Proline in Johar were observed as compared to Sarsabaz. SOD showed the increase in activity for antioxidant enzymes. Significant increase of SOD levels were observed in shoot tissues as compared to root tissues. The results indicated that the shoots were more susceptible to salt stress. Activity of APX showed similar affects in both varieties. The production of CAT enzyme in the shoot and root tissues of both varieties showed substantial growth under increased salt stress. Furthermore, NaCl stress has increased the expression of certain genes coding for antioxidant enzymes such as catalase, superoxide dismutase, and peroxidase. Maximum expression of all the antioxidant enzyme coding genes were observed in Johar (tolerant) at 48 h exposure to salt. In contrast the expression of the all mentioned genes in Sarsabaz variety were found maximum at early hours (24 h) and gradually decreased at 48 h. CONCLUSION The study showed that the selected salt tolerant wheat variety Johar is significantly resistant to 200 mM NaCl salt level as compared to Sarsabaz.
Collapse
|
52
|
Kesawat MS, Satheesh N, Kherawat BS, Kumar A, Kim HU, Chung SM, Kumar M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040864. [PMID: 36840211 PMCID: PMC9964777 DOI: 10.3390/plants12040864] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Salt stress is a severe type of environmental stress. It adversely affects agricultural production worldwide. The overproduction of reactive oxygen species (ROS) is the most frequent phenomenon during salt stress. ROS are extremely reactive and, in high amounts, noxious, leading to destructive processes and causing cellular damage. However, at lower concentrations, ROS function as secondary messengers, playing a critical role as signaling molecules, ensuring regulation of growth and adjustment to multifactorial stresses. Plants contain several enzymatic and non-enzymatic antioxidants that can detoxify ROS. The production of ROS and their scavenging are important aspects of the plant's normal response to adverse conditions. Recently, this field has attracted immense attention from plant scientists; however, ROS-induced signaling pathways during salt stress remain largely unknown. In this review, we will discuss the critical role of different antioxidants in salt stress tolerance. We also summarize the recent advances on the detrimental effects of ROS, on the antioxidant machinery scavenging ROS under salt stress, and on the crosstalk between ROS and other various signaling molecules, including nitric oxide, hydrogen sulfide, calcium, and phytohormones. Moreover, the utilization of "-omic" approaches to improve the ROS-regulating antioxidant system during the adaptation process to salt stress is also described.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Neela Satheesh
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Hyun-Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
- Correspondence:
| |
Collapse
|
53
|
Hong X, Qi F, Wang R, Jia Z, Lin F, Yuan M, Xin XF, Liang Y. Ascorbate peroxidase 1 allows monitoring of cytosolic accumulation of effector-triggered reactive oxygen species using a luminol-based assay. PLANT PHYSIOLOGY 2023; 191:1416-1434. [PMID: 36461917 PMCID: PMC9922408 DOI: 10.1093/plphys/kiac551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 05/06/2023]
Abstract
Biphasic production of reactive oxygen species (ROS) has been observed in plants treated with avirulent bacterial strains. The first transient peak corresponds to pattern-triggered immunity (PTI)-ROS, whereas the second long-lasting peak corresponds to effector-triggered immunity (ETI)-ROS. PTI-ROS are produced in the apoplast by plasma membrane-localized NADPH oxidases, and the recognition of an avirulent effector increases the PTI-ROS regulatory module, leading to ETI-ROS accumulation in the apoplast. However, how apoplastic ETI-ROS signaling is relayed to the cytosol is still unknown. Here, we found that in the absence of cytosolic ascorbate peroxidase 1 (APX1), the second phase of ETI-ROS accumulation was undetectable in Arabidopsis (Arabidopsis thaliana) using luminol-based assays. In addition to being a scavenger of cytosolic H2O2, we discovered that APX1 served as a catalyst in this chemiluminescence ROS assay by employing luminol as an electron donor. A horseradish peroxidase (HRP)-mimicking APX1 mutation (APX1W41F) further enhanced its catalytic activity toward luminol, whereas an HRP-dead APX1 mutation (APX1R38H) reduced its luminol oxidation activity. The cytosolic localization of APX1 implies that ETI-ROS might accumulate in the cytosol. When ROS were detected using a fluorescent dye, green fluorescence was observed in the cytosol 6 h after infiltration with an avirulent bacterial strain. Collectively, these results indicate that ETI-ROS eventually accumulate in the cytosol, and cytosolic APX1 catalyzes luminol oxidation and allows monitoring of the kinetics of ETI-ROS in the cytosol. Our study provides important insights into the spatial dynamics of ROS accumulation in plant immunity.
Collapse
Affiliation(s)
- Xiufang Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhiyi Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Minhang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
54
|
Alvarez-Morezuelas A, Barandalla L, Ritter E, Ruiz de Galarreta JI. Genome-Wide Association Study of Agronomic and Physiological Traits Related to Drought Tolerance in Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:734. [PMID: 36840081 PMCID: PMC9963855 DOI: 10.3390/plants12040734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Potato (Solanum tuberosum L.) is often considered a water-sensitive crop and its production can be threatened by drought events, making water stress tolerance a trait of increasing interest. In this study, a panel of 144 tetraploid potato genotypes was evaluated for two consecutive years (2019 and 2020) to observe the variation of several physiological traits such as chlorophyll content and fluorescence, stomatal conductance, NDVI, and leaf area and circumference. In addition, agronomic parameters such as yield, tuber fresh weight, tuber number, starch content, dry matter and reducing sugars were determined. GGP V3 Potato array was used to genotype the population, obtaining a total of 18,259 high-quality SNP markers. Marker-trait association was performed using GWASpoly package in R software and Q + K linear mixed models were considered. This approach allowed us to identify eighteen SNP markers significantly associated with the studied traits in both treatments and years, which were related to genes with known functions. Markers related to chlorophyll content and number of tubers under control and stress conditions, and related to stomatal conductance, NDVI, yield and reducing sugar content under water stress, were identified. Although these markers were distributed throughout the genome, the SNPs associated with the traits under control conditions were found mainly on chromosome 11, while under stress conditions they were detected on chromosome 4. These results contribute to the knowledge of the mechanisms of potato tolerance to water stress and are useful for future marker-assisted selection programs.
Collapse
|
55
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
56
|
Wang YX, Wang SY, Beta T, Shahriar M, Laborda P, Herrera-Balandrano DD. Kojic acid induces resistance against Colletotrichum brevisporum and enhances antioxidant properties of postharvest papaya. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
57
|
Pereira EC, Zabalgogeazcoa I, Arellano JB, Ugalde U, Vázquez de Aldana BR. Diaporthe atlantica enhances tomato drought tolerance by improving photosynthesis, nutrient uptake and enzymatic antioxidant response. FRONTIERS IN PLANT SCIENCE 2023; 14:1118698. [PMID: 36818856 PMCID: PMC9929572 DOI: 10.3389/fpls.2023.1118698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/31/2023]
Abstract
Functional symbiosis with fungal endophytes can help plants adapt to environmental stress. Diaporthe atlantica is one of the most abundant fungal taxa associated with roots of Festuca rubra subsp. pruinosa, a grass growing in sea cliffs. This study aimed to investigate the ability of a strain of this fungus to ameliorate the impact of drought stress on tomato plants. In a greenhouse experiment, tomato plants were inoculated with Diaporthe atlantica strain EB4 and exposed to two alternative water regimes: well-watered and drought stress. Several physiological and biochemical plant parameters were evaluated. Inoculation with Diaporthe promoted plant growth in both water treatments. A significant interactive effect of Diaporthe-inoculation and water-regime showed that symbiotic plants had higher photosynthetic capacity, water-use efficiency, nutrient uptake (N, P, K, Fe and Zn), and proline content under drought stress, but not under well-watered conditions. In addition, Diaporthe improved the enzymatic antioxidant response of plants under drought, through an induced mechanism, in which catalase activity was modulated and conferred protection against reactive oxygen species generation during stress. The results support that Diaporthe atlantica plays a positive role in the modulation of tomato plant responses to drought stress by combining various processes such as improving photosynthetic capacity, nutrient uptake, enzymatic antioxidant response and osmo-protectant accumulation. Thus, drought stress in tomato can be enhanced with symbiotic fungi.
Collapse
Affiliation(s)
- Eric C. Pereira
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Juan B. Arellano
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Unai Ugalde
- Biofungitek Limited Society (S.L.) Parque Científico y Tecnológico de Bizkaia, Derio, Spain
| | - Beatriz R. Vázquez de Aldana
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
58
|
Sharma S, Bahel S, Kaur Katnoria J. Evaluation of oxidative stress and genotoxicity of 900 MHz electromagnetic radiations using Trigonella foenum-graecum test system. PROTOPLASMA 2023; 260:209-224. [PMID: 35546647 DOI: 10.1007/s00709-022-01768-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Unprecedented growth in the communication sector and expanded usage of the number of wireless devices in the past few decades have resulted in a tremendous increase in emissions of non-ionizing electromagnetic radiations (EMRs) in the environment. The widespread EMRs have induced many significant changes in biological systems leading to oxidative stress as well as DNA damage. Considering this, the present study was planned to study the effects of EMRs at 900 MHz frequency with the power density of 10.0 dBm (0.01 W) at variable exposure periods (0.5 h, 1 h, 2 h, 4 h, and 8 h per day for 7 days) on percentage germination, morphological characteristics, protein content, lipid peroxidation in terms of malondialdehyde content (MDA), and antioxidant defense system of Trigonella foenum-graecum test system. The genotoxicity was also evaluated using similar conditions. It was observed that EMRs significantly decreased the germination percentage at an exposure time of 4 h and 8 h. Fresh weight and dry weight of root and shoot did not show significant variations, while the root and shoot length have shown significant variations for 4 h and 8 h exposure period. Further, EMRs enhanced MDA indicating lipid peroxidation. In response to exposure of EMRs, there was a significant up-regulation in the activities of enzymes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione-S-transferase (GST), guaiacol peroxidase (POD), and glutathione reductase (GR) in the roots and shoots of Trigonella-foenum graecum. The genotoxicity study showed the induction of chromosomal aberrations in root tip cells of the Trigonella foenum-graecum test system. The present study revealed the induction of oxidative stress and genotoxicity of EMRs exposure in the test system.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shalini Bahel
- Department of Electronics Technology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Jatinder Kaur Katnoria
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
59
|
An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation. Int Microbiol 2023; 26:25-42. [PMID: 35930160 PMCID: PMC9362617 DOI: 10.1007/s10123-022-00259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/01/2022] [Accepted: 06/07/2022] [Indexed: 01/06/2023]
Abstract
Leishmania donovani causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector's gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the L. donovani promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival-related proteins are ascorbate peroxidase; cystathionine β synthase; an elongation factor 1β paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins-HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase, pyruvate dehydrogenase E1α and E1β subunits, and triosephosphate isomerase. These proteins may become disease control candidates through future intra-vector control methods or vaccines.
Collapse
|
60
|
Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5275449. [PMID: 36619307 PMCID: PMC9815931 DOI: 10.1155/2022/5275449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Global agriculture is frequently subjected to stresses from increased salt content, drought, heavy metals, and other factors, which limit plant growth and production, deteriorate soil health, and constitute a severe danger to global food security. Development of environmentally acceptable mitigation techniques against stresses and restrictions on the use of chemical fertilizers in agricultural fields is essential. Therefore, eco-friendly practises must be kept to prevent the detrimental impacts of stress on agricultural regions. The advanced metabolic machinery needed to handle this issue is not now existent in plants to deal against the stresses. Research has shown that the key role and mechanisms of arbuscular mycorrhiza fungi (AMF) to enhance plant nutrient uptake, immobilisation and translocation of heavy metals, and plant growth-promoting attributes may be suitable agents for plant growth under diversed stressed condition. The successful symbiosis and the functional relationship between the plant and AMF may build the protective regulatory mechansm against the key challenge in particular stress. AMF's compatibility with hyperaccumulator plants has also been supported by studies on gene regulation and theoretical arguments. In order to address this account, the present review included reducing the impacts of biotic and abiotic stress through AMF, the mechanisms of AMF to improve the host plant's capacity to endure stress, and the strategies employed by AM fungus to support plant survival in stressful conditions.
Collapse
|
61
|
Xu C, Wang B, Luo Q, Ma Y, Zheng T, Wang Y, Cai Y, Zuo Z. The uppermost monoterpenes improving Cinnamomum camphora thermotolerance by serving signaling functions. FRONTIERS IN PLANT SCIENCE 2022; 13:1072931. [PMID: 36589079 PMCID: PMC9800025 DOI: 10.3389/fpls.2022.1072931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 05/23/2023]
Abstract
Terpenes serve important functions in enhancing plant thermotolerance. Cinnamomum camphora mainly has eucalyptol (EuL), camphor (CmR), linalool (LnL) and borneol (BeL) chemotypes basing on the uppermost monoterpenes. To reveal the thermotolerance mechanisms of these uppermost monoterpenes (eucalyptol, camphor, linalool, and borneol) in C. camphora, we surveyed the ROS metabolism and photosynthesis in the 4 chemotypes fumigated with the corresponding uppermost monoterpene after fosmidomycin (Fos) inhibiting monoterpene synthesis under high temperature at 38°C (Fos+38°C+monoterpene), and investigated the related gene expression in EuL and CmR. Meanwhile, the thermotolerance differences among the 4 uppermost monoterpenes were analyzed. In contrast to normal temperature (28°C), ROS levels and antioxidant enzyme activities in the 4 chemotypes increased under 38°C, and further increased in the treatment with Fos inhibiting monoterpene synthesis at 38°C (Fos+38°C), which may be caused by the alterations in expression of the genes related with non-enzymatic and enzymatic antioxidant formation according to the analyses in EuL and CmR. Compared with Fos+38°C treatment, Fos+38°C+monoterpene treatments lowered ROS levels and antioxidant enzyme activities for the increased non-enzymatic antioxidant gene expression and decreased enzymatic antioxidant gene expression, respectively. High temperature at 38°C reduced the chlorophyll and carotenoid content as well as photosynthetic abilities, which may result from the declined expression of the genes associated with photosynthetic pigment biosynthesis, light reaction, and carbon fixation. Fos+38°C treatment aggravated the reduction. In contrast to Fos+38°C treatment, Fos+38°C+monoterpene treatments increased photosynthetic pigment content and improved photosynthetic abilities by up-regulating related gene expression. Among the 4 uppermost monoterpenes, camphor showed strong abilities in lowering ROS and maintaining photosynthesis, while eucalyptol showed weak abilities. This was consistent with the recovery effects of the gene expression in the treatments with camphor and eucalyptol fumigation. Therefore, the uppermost monoterpenes can enhance C. camphora thermotolerance as signaling molecules, and may have differences in the signaling functions.
Collapse
Affiliation(s)
- Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Bin Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Qingyun Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yuandan Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yingying Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yuyan Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
62
|
Jardim-Messeder D, Caverzan A, Bastos GA, Galhego V, Souza-Vieira YD, Lazzarotto F, Felix-Mendes E, Lavaquial L, Nicomedes Junior J, Margis-Pinheiro M, Sachetto-Martins G. Genome-wide, evolutionary, and functional analyses of ascorbate peroxidase (APX) family in Poaceae species. Genet Mol Biol 2022; 46:e20220153. [PMID: 36512713 DOI: 10.1590/1678-4685-gmb-2022-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related (APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial (mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms. Duplication events contributed to the expansion of this family and the divergence times. Different from other APX isoforms, the emergence of Poaceae mitAPXs occurred independently after eudicot and monocot divergence. Our results showed that the constitutive silencing of mitAPX genes is not viable in rice plants, suggesting that these isoforms are essential for rice regeneration or development. We also obtained rice plants silenced individually to sAPX isoforms, demonstrating that, different to plants double silenced to both sAPX and tAPX or single silenced to tAPX previously obtained, these plants do not show changes in the total APX activity and hydrogen peroxide content in the shoot. Among rice plants silenced to different isoforms, plants silenced to cAPX showed a higher decrease in total APX activity and an increase in hydrogen peroxide levels. These results suggest that the cAPXs are the main isoforms responsible for regulating hydrogen peroxide levels in the cell, whereas in the chloroplast, this role is provided mainly by the tAPX isoform. In addition to broadening our understanding of the core components of the antioxidant defense in Poaceae species, the present study also provides a platform for their functional characterization.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, RJ, Brazil
| | - Andreia Caverzan
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Gabriel Afonso Bastos
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Vanessa Galhego
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Ygor de Souza-Vieira
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Esther Felix-Mendes
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Lucas Lavaquial
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - José Nicomedes Junior
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Márcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | | |
Collapse
|
63
|
Unique and Shared Proteome Responses of Rice Plants ( Oryza sativa) to Individual Abiotic Stresses. Int J Mol Sci 2022; 23:ijms232415552. [PMID: 36555193 PMCID: PMC9778788 DOI: 10.3390/ijms232415552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Food safety of staple crops such as rice is of global concern and is at the top of the policy agenda worldwide. Abiotic stresses are one of the main limitations to optimizing yields for sustainability, food security and food safety. We analyzed proteome changes in Oryza sativa cv. Nipponbare in response to five adverse abiotic treatments, including three levels of drought (mild, moderate, and severe), soil salinization, and non-optimal temperatures. All treatments had modest, negative effects on plant growth, enabling us to identify proteins that were common to all stresses, or unique to one. More than 75% of the total of differentially abundant proteins in response to abiotic stresses were specific to individual stresses, while fewer than 5% of stress-induced proteins were shared across all abiotic constraints. Stress-specific and non-specific stress-responsive proteins identified were categorized in terms of core biological processes, molecular functions, and cellular localization.
Collapse
|
64
|
Bashar HMK, Juraimi AS, Ahmad-Hamdani MS, Uddin MK, Asib N, Anwar MP, Rahaman F, Karim SMR, Haque MA, Berahim Z, Nik Mustapha NA, Hossain A. Determination and Quantification of Phytochemicals from the Leaf Extract of Parthenium hysterophorus L. and Their Physio-Biochemical Responses to Several Crop and Weed Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:3209. [PMID: 36501249 PMCID: PMC9736957 DOI: 10.3390/plants11233209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
This current investigation was undertaken both in laboratory and glasshouse for documentation and quantification of phytochemicals from different parts of the parthenium (Parthenium hysterophorus L.) plant through LC-MS and HPLC to study their effect on two crops namely, Bambara groundnut (Vigna subterranean L.) and maize (Zea mays L.), and six different types of weed e.g., Digitaria sanguinalis, Eleusine indica, Ageratum conyzoides, Cyperus iria, Euphorbia hirta, and Cyperus difformis. The parthenium methanolic leaf extracts at 25, 50, 75, and 100 g L-1 were sprayed in the test crops and weeds to assess their physiological and biochemical reactions after 6, 24, 48, and 72 h of spraying these compounds (HAS). The LC-MS analysis confirmed seven types of phytochemicals (caffeic acid, ferulic acid, vanillic acid, parthenin, chlorogenic acid, quinic acid, and p-anisic acid) in the parthenium leaf extract that were responsible for the inhibition of tested crops and weeds. From the HPLC analysis, higher amounts in leaf methanol extracts (40,752.52 ppm) than those of the stem (2664.09 ppm) and flower extracts (30,454.33 ppm) were recorded. Parthenium leaf extract at 100 g L-1 had observed higher phytotoxicity on all weed species except C. difformis. However, all crops were found safe under this dose of extraction. Although both crops were also affected to some extent, they could recover from the stress after a few days. The photosynthetic rate, transpiration rate, stomatal conductance, carotenoid and chlorophyll content were decreased due to the application of parthenium leaf extract. However, when parthenium leaf extract was applied at 100 g L-1 for 72 h, the malondialdehyde (MDA) and proline content were increased in all weeds. Enzymatic antioxidant activity (e.g., superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contents) were also elevated as a result of the sprayed parthenium leaf extract. The negative impact of physiological and biochemical responses as a consequence of the parthenium leaf extract led the weed species to be stressed and finally killed. The current findings show the feasibility of developing bioherbicide from the methanolic extract of parthenium leaf for controlling weeds, which will be cost-effective, sustainable, and environment friendly for crop production during the future changing climate.
Collapse
Affiliation(s)
- HM Khairul Bashar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
- Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh
| | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
| | | | - Md. Kamal Uddin
- Department of Land Management, University Putra Malaysia, Serdang 43400, Malaysia
| | - Norhayu Asib
- Department of Plant Protection, Faculty of Agriculture, University of Putra Malaysia, Serdang 43400, Malaysia
| | - Md. Parvez Anwar
- Department of Agronomy, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ferdoushi Rahaman
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
| | - SM Rezaul Karim
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
| | - Mohammad Amdadul Haque
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
- Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh
| | - Zulkarami Berahim
- Laboratory of Climate-Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nik Amelia Nik Mustapha
- Laboratory of Climate-Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
65
|
Hussain MA, Luo D, Zeng L, Ding X, Cheng Y, Zou X, Lv Y, Lu G. Genome-wide transcriptome profiling revealed biological macromolecules respond to low temperature stress in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:1050995. [PMID: 36452101 PMCID: PMC9702069 DOI: 10.3389/fpls.2022.1050995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
Brassica napus L. (B. napus) is a vital oilseed crop cultivated worldwide; low temperature (LT) is one of the major stress factors that limit its growth, development, distribution, and production. Even though processes have been developed to characterize LT-responsive genes, only limited studies have exploited the molecular response mechanisms in B. napus. Here the transcriptome data of an elite B. napus variety with LT adaptability was acquired and applied to investigate the gene expression profiles of B. napus in response to LT stress. The bioinformatics study revealed a total of 79,061 unigenes, of which 3,703 genes were differentially expressed genes (DEGs), with 2,129 upregulated and 1,574 downregulated. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis pinpointed that the DEGs were enriched in LT-stress-responsive biological functions and metabolic pathways, which included sugar metabolism, antioxidant defense system, plant hormone signal transduction, and photosynthesis. Moreover, a group of LT-stress-responsive transcription factors with divergent expression patterns under LT was summarized. A combined protein interaction suggested that a complex interconnected regulatory network existed in all detected pathways. RNA-seq data was verified using real-time quantitative polymerase chain reaction analysis. Based on these findings, we presented a hypothesis model illustrating valuable information for understanding the LT response mechanisms in B. napus.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Guangyuan Lu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
66
|
Impacts of Cd Pollution on the Vitality, Anatomy and Physiology of Two Morphologically Different Lichen Species of the Genera Parmotrema and Usnea, Evaluated under Experimental Conditions. DIVERSITY 2022. [DOI: 10.3390/d14110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The heavy metal Cd accumulates in trophic chains, constituting a toxic element for photosynthesizing organisms, including the algal photobionts of lichen. Thus, as lichens respond differently to heavy metal toxicity, we hypothesized that the species Parmotrema tinctorum and Usnea barbata, commonly sampled in the Cerrado ecoregion, could be sensitive to Cd and, therefore, be used to biomonitor the dispersion of this metal. We also aimed to indicate the responsiveness of biological markers to Cd in these species by exposing the thalli to simulated rainfall with increasing metal concentrations. We observed that both lichen species are responsive to Cd stress; however, different pathways are accessed. The synthesis of carotenoids by P. tinctorum and the production of antioxidant enzymes by U. barbata seem to constitute relevant response strategies to Cd-induced stress. The lichen morphoanatomy, cell viability, photobiont vitality index, chlorophyll a fluorescence, and chlorophyll a synthesis were efficient biomarkers for the effects of increasing Cd exposure in P. tinctorum, being the variables primarily associated with damage to the photobiont. For U. barbata, the lichen morphoanatomy, photochemistry, and antioxidant enzyme activity (catalase, superoxide dismutase and ascorbate peroxidase) were essential to reflect Cd toxicity. However, the species P. tinctorum was characterized as the most sensitive to Cd toxicity, constituting a good bioindicator for the presence of this metal. It can be used in the diagnosis of air quality in urban and industrial areas or even in forest areas influenced by Cd in phosphate fertilizers.
Collapse
|
67
|
Lacroux J, Atteia A, Brugière S, Couté Y, Vallon O, Steyer JP, van Lis R. Proteomics unveil a central role for peroxisomes in butyrate assimilation of the heterotrophic Chlorophyte alga Polytomella sp. Front Microbiol 2022; 13:1029828. [PMID: 36353459 PMCID: PMC9637915 DOI: 10.3389/fmicb.2022.1029828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/05/2022] [Indexed: 09/08/2023] Open
Abstract
Volatile fatty acids found in effluents of the dark fermentation of biowastes can be used for mixotrophic growth of microalgae, improving productivity and reducing the cost of the feedstock. Microalgae can use the acetate in the effluents very well, but butyrate is poorly assimilated and can inhibit growth above 1 gC.L-1. The non-photosynthetic chlorophyte alga Polytomella sp. SAG 198.80 was found to be able to assimilate butyrate fast. To decipher the metabolic pathways implicated in butyrate assimilation, quantitative proteomics study was developed comparing Polytomella sp. cells grown on acetate and butyrate at 1 gC.L-1. After statistical analysis, a total of 1772 proteins were retained, of which 119 proteins were found to be overaccumulated on butyrate vs. only 46 on acetate, indicating that butyrate assimilation necessitates additional metabolic steps. The data show that butyrate assimilation occurs in the peroxisome via the β-oxidation pathway to produce acetyl-CoA and further tri/dicarboxylic acids in the glyoxylate cycle. Concomitantly, reactive oxygen species defense enzymes as well as the branched amino acid degradation pathway were strongly induced. Although no clear dedicated butyrate transport mechanism could be inferred, several membrane transporters induced on butyrate are identified as potential condidates. Metabolic responses correspond globally to the increased needs for central cofactors NAD, ATP and CoA, especially in the peroxisome and the cytosol.
Collapse
Affiliation(s)
| | - Ariane Atteia
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA, INSERM, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA, INSERM, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne Université, Paris, France
| | | | | |
Collapse
|
68
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
69
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
70
|
Winichayakul S, Macknight R, Le Lievre L, Beechey-Gradwell Z, Lee R, Cooney L, Xue H, Crowther T, Anderson P, Richardson K, Zou X, Maher D, Bryan G, Roberts N. Insight into the regulatory networks underlying the high lipid perennial ryegrass growth under different irradiances. PLoS One 2022; 17:e0275503. [PMID: 36227922 PMCID: PMC9560171 DOI: 10.1371/journal.pone.0275503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022] Open
Abstract
Under favourable conditions, perennial ryegrass (Lolium perenne) engineered to accumulated high lipid (HL) carbon sink in their leaves was previously shown to also enhance photosynthesis and growth. The greater aboveground biomass was found to be diminished in a dense canopy compared to spaced pots. Besides, the underlying genetic regulatory network linking between leaf lipid sinks and these physiological changes remains unknown. In this study, we demonstrated that the growth advantage was not displayed in HL Lolium grown in spaced pots under low lights. Under standard lights, analysis of differentiating transcripts in HL Lolium reveals that the plants had elevated transcripts involved in lipid metabolism, light capturing, photosynthesis, and sugar signalling while reduced expression of genes participating in sugar biosynthesis and transportation. The plants also had altered several transcripts involved in mitochondrial oxidative respiration and redox potential. Many of the above upregulated or downregulated transcript levels were found to be complemented by growing the plants under low light. Overall, this study emphasizes the importance of carbon and energy homeostatic regulatory mechanisms to overall productivity of the HL Lolium through photosynthesis, most of which are significantly impacted by low irradiances.
Collapse
Affiliation(s)
| | - Richard Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Liam Le Lievre
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Luke Cooney
- AgResearch Ltd., Palmerston North, New Zealand
| | - Hong Xue
- AgResearch Ltd., Palmerston North, New Zealand
| | | | | | | | - Xiuying Zou
- AgResearch Ltd., Palmerston North, New Zealand
| | | | | | - Nick Roberts
- AgResearch Ltd., Palmerston North, New Zealand
- * E-mail: (SW); (NR)
| |
Collapse
|
71
|
Miyokawa R, Hanada M, Togawa Y, Itoh TQ, Kobayakawa Y, Kusumi J. Symbiont specificity differs among green hydra strains. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220789. [PMID: 36312570 PMCID: PMC9554523 DOI: 10.1098/rsos.220789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The symbiotic hydra Hydra viridissima has a stable symbiotic relationship with the green alga Chlorella. This hydra appears to cospeciate with the symbiotic alga, and some strains are known to have strain-specific host/symbiont combinations. To investigate the mechanism of the specificity between host and symbiont, we explored the effect of the removal or exchange of symbionts in two distantly related H. viridissima strains (K10 and M9). In the K10 strain, severe morphological and behavioural changes were found in symbiont-removed and symbiont-exchanged polyps. Interestingly, both polyps showed a similar gene expression pattern. The gene ontology (GO) enrichment analysis revealed that the removal or exchange of symbionts caused the downregulation of genes involved in the electron transport chain and the upregulation of genes involved in translation in the K10 strain. On the other hand, symbiont-removed and symbiont-exchanged M9 polyps showed modest changes in their morphology and behaviour compared with the K10 strain. Furthermore, the patterns of the gene expression changes in the M9 strain were quite different between the symbiont-removed and symbiont-exchanged polyps. Our results suggested that the regulation of energy balance is one of the crucial mechanisms for maintaining symbiotic relationships in green hydra, and this mechanism differs between the strains.
Collapse
Affiliation(s)
- Ryo Miyokawa
- Graduate School of Integrated Science for Global Society, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Maki Hanada
- Graduate School of Systems Life Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yumiko Togawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Taichi Q. Itoh
- Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshitaka Kobayakawa
- Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junko Kusumi
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
72
|
Martin RE, Postiglione AE, Muday GK. Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102293. [PMID: 36099672 PMCID: PMC10475289 DOI: 10.1016/j.pbi.2022.102293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) serve as second messengers in plant signaling pathways to remodel plant growth and development. New insights into how enzymatic ROS-producing machinery is regulated by hormones or localized during development have provided a framework for understanding the mechanisms that control ROS accumulation patterns. Signaling-mediated increases in ROS can then modulate the activity of proteins through reversible oxidative modification of specific cysteine residues. Plants also control the synthesis of antioxidants, including plant-specialized metabolites, to further define when, where, and how much ROS accumulate. The availability of sophisticated imaging capabilities, combined with a growing tool kit of ROS detection technologies, particularly genetically encoded biosensors, sets the stage for improved understanding of ROS as signaling molecules.
Collapse
Affiliation(s)
- R Emily Martin
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA; Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Anthony E Postiglione
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Gloria K Muday
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA; Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
73
|
Study on the biocontrol effect and physiological mechanism of Hannaella sinensis on the blue mold decay of apples. Int J Food Microbiol 2022; 382:109931. [PMID: 36137461 DOI: 10.1016/j.ijfoodmicro.2022.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
Blue mold decay is a major postharvest disease of apples, causing considerable losses to the apple industry. In the early stage of this research, an antagonistic yeast, Hannaella sinensis, with a good control effect on the blue mold of apples, was selected. On this basis, the main purpose of this work was to study the biocontrol effect of H. sinensis on the blue mold of apples and the mechanisms involved. The results showed that H. sinensis could effectively control the blue mold decay of apples, reduce the rot rate and diameter, and the antagonistic effect strengthened with the increase of H. sinensis concentration (1 × 108 cells/mL). Further in vitro experiments proved that H. sinensis could significantly inhibit the spore germination and germ tube length of P. expansum. In addition, stable colonization of H. sinensis on apple wounds and surfaces confirmed the environmental adaptability and the ability to compete with other microbiota for nutrition and space. Moreover, H. sinensis induced the activities of resistance-related enzymes such as polyphenol oxidase (PPO), peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL) in apples and the content of the coding genes corresponding to these enzymes was also higher than that of the control group. Our results indicate that H. sinensis treatment could induce the disease resistance of apples. In summary, H. sinensis served as a promising antagonistic yeast for the prevention and treatment of postharvest blue mold decay of apples.
Collapse
|
74
|
Zhang M, Li W, Li S, Gao J, Gan T, Li Q, Bao L, Jiao F, Su C, Qian Y. Quantitative Proteomics and Functional Characterization Reveal That Glutathione Peroxidases Act as Important Antioxidant Regulators in Mulberry Response to Drought Stress. PLANTS 2022; 11:plants11182350. [PMID: 36145752 PMCID: PMC9500794 DOI: 10.3390/plants11182350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Mulberry (Morus alba L.) has been an economically important food crop for the domesticated silkworm, Bombyx mori, in China for more than 5000 years. However, little is known about the mechanism underlying mulberry response to environmental stress. In this study, quantitative proteomics was applied to elucidate the molecular mechanism of drought response in mulberry. A total of 604 differentially expressed proteins (DEPs) were identified via LC-MS/MS. The proteomic profiles associated with antioxidant enzymes, especially five glutathione peroxidase (GPX) isoforms, as a scavenger of reactive oxygen species (ROS), were systematically increased in the drought-stressed mulberry. This was further confirmed by gene expression and enzymatic activity. Furthermore, overexpression of the GPX isoforms led to enhancements in both antioxidant system and ROS-scavenging capacity, and greater tolerance to drought stress in transgenic plants. Taken together, these results indicated that GPX-based antioxidant enzymes play an important role in modulating mulberry response to drought stress, and higher levels of GPX can improve drought tolerance through enhancing the capacity of the antioxidant system for ROS scavenging.
Collapse
Affiliation(s)
- Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Shuaijun Li
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Junru Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Tiantian Gan
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| |
Collapse
|
75
|
Whole-Genome Identification of APX and CAT Gene Families in Cultivated and Wild Soybeans and Their Regulatory Function in Plant Development and Stress Response. Antioxidants (Basel) 2022; 11:antiox11081626. [PMID: 36009347 PMCID: PMC9404807 DOI: 10.3390/antiox11081626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Plants coevolved with their antioxidant defense systems, which detoxify and adjust levels of reactive oxygen species (ROS) under multiple plant stresses. We performed whole-genome identification of ascorbate peroxidase (APX) and catalase (CAT) families in cultivated and wild soybeans. In cultivated and wild soybean genomes, we identified 11 and 10 APX genes, respectively, whereas the numbers of identified CAT genes were four in each species. Comparative phylogenetic analysis revealed more homology among cultivated and wild soybeans relative to other legumes. Exon/intron structure, motif and synteny blocks are conserved in cultivated and wild species. According to the Ka/Ks value, purifying selection is a major force for evolution of these gene families in wild soybean; however, the APX gene family was evolved by both positive and purifying selection in cultivated soybean. Segmental duplication was a major factor involved in the expansion of APX and CAT genes. Expression patterns revealed that APX and CAT genes are differentially expressed across fourteen different soybean tissues under water deficit (WD), heat stress (HS) and combined drought plus heat stress (WD + HS). Altogether, the current study provides broad insights into these gene families in soybeans. Our results indicate that APX and CAT gene families modulate multiple stress response in soybeans.
Collapse
|
76
|
Omidi M, Khandan-Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M. Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC PLANT BIOLOGY 2022; 22:373. [PMID: 35896978 PMCID: PMC9327194 DOI: 10.1186/s12870-022-03754-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Today, salinity stress is one of the most important abiotic stresses in the world, because it causes damage to many agricultural products and reduces their yields. Oxidative stress causes tissue damages in plants, which occurs with the production of reactive oxygen species (ROS) when plants are exposed to environmental stresses such as salinity. Today, it is recommended to use compounds that increase the resistance of plants to environmental stresses and improve plant metabolic activities. Salicylic acid (SA), as an intracellular and extracellular regulator of the plant response, is known as one of these effective compounds. Damask rose (Rosa damascena Mill.) is a medicinal plant from the Rosaceae, and its essential oils and aromatic compounds are used widely in the cosmetic and food industries in the world. Therefore, considering the importance of this plant from both medicinal and ornamental aspects, for the first time, we investigated one of the native cultivars of Iran (Kashan). Since one of the most important problems in Damask rose cultivation is the occurrence of salinity stress, for the first time, we investigated the interaction of several levels of NaCl salinity (0, 4, 8, and 12 ds m- 1) with SA (0, 0.5, 1, and 2 mM) as a stress reducer. RESULTS Since salinity stress reduces plant growth and yield, in this experiment, the results showed that the increase in NaCl concentration caused a gradual decrease in photosynthetic and morphological parameters and an increase in ion leakage. Also, increasing the level of salinity stress up to 12 ds m- 1 affected the amount of chlorophyll, root length and leaf total area, all of which reduced significantly compared to plants under no stress. However, many studies have highlighted the application of compounds that reduce the negative effects of stress and increase plant resistance and tolerance against stresses. In this study, the application of SA even at low concentration (0.5 mM) could neutralize the negative effects of salinity stress in the Rosa damascena. In this regard, the results showed that salinity increases the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the concentration of proline, protein and glycine betaine (GB). Overexpression of antioxidant genes (Ascorbate Peroxidase (APX), CAT, Peroxidase (POD), Fe-SOD and Cu-SOD) showed an important role in salt tolerance in Damascus rose. In addition, 0.5 mm SA increased the activity of enzymatic and non-enzymatic systems and increased salinity tolerance. CONCLUSIONS The change in weather conditions due to global warming and increased dryness contributes to the salinization of the earth's surface soils. Therefore, it is of particular importance to measure the threshold of tolerance of roses to salinity stress and the effect of stress-reducing substances in plants. In this context, SA has various roles such as increasing the content of pigments, preventing ethylene biosynthesis, increasing growth, and activating genes involved in stress, which modifies the negative effects of salinity stress. Also, according to the results of this research, even in the concentration of low values, positive results can be obtained from SA, so it can be recommended as a relatively cheap and available material to improve production in saline lands.
Collapse
Affiliation(s)
- Mohammad Omidi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran.
| | - Azizollah Khandan-Mirkohi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Mohsen Kafi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Zabihollah Zamani
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Ladan Ajdanian
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Babaei
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
77
|
Balogh E, Kalapos B, Ahres M, Boldizsár Á, Gierczik K, Gulyás Z, Gyugos M, Szalai G, Novák A, Kocsy G. Far-Red Light Coordinates the Diurnal Changes in the Transcripts Related to Nitrate Reduction, Glutathione Metabolism and Antioxidant Enzymes in Barley. Int J Mol Sci 2022; 23:ijms23137479. [PMID: 35806480 PMCID: PMC9267158 DOI: 10.3390/ijms23137479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Spectral quality, intensity and period of light modify many regulatory and stress signaling pathways in plants. Both nitrate and sulfate assimilations must be synchronized with photosynthesis, which ensures energy and reductants for these pathways. However, photosynthesis is also a source of reactive oxygen species, whose levels are controlled by glutathione and other antioxidants. In this study, we investigated the effect of supplemental far-red (735 nm) and blue (450 nm) lights on the diurnal expression of the genes related to photoreceptors, the circadian clock, nitrate reduction, glutathione metabolism and various antioxidants in barley. The maximum expression of the investigated four photoreceptor and three clock-associated genes during the light period was followed by the peaking of the transcripts of the three redox-responsive transcription factors during the dark phase, while most of the nitrate and sulfate reduction, glutathione metabolism and antioxidant-enzyme-related genes exhibited high expression during light exposure in plants grown in light/dark cycles for two days. These oscillations changed or disappeared in constant white light during the subsequent two days. Supplemental far-red light induced the activation of most of the studied genes, while supplemental blue light did not affect or inhibited them during light/dark cycles. However, in constant light, several genes exhibited greater expression in blue light than in white and far-red lights. Based on a correlation analysis of the gene expression data, we propose a major role of far-red light in the coordinated transcriptional adjustment of nitrate reduction, glutathione metabolism and antioxidant enzymes to changes of the light spectrum.
Collapse
|
78
|
Griebel T, Schütte D, Ebert A, Nguyen HH, Baier M. Cold Exposure Memory Reduces Pathogen Susceptibility in Arabidopsis Based on a Functional Plastid Peroxidase System. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:627-637. [PMID: 35345887 DOI: 10.1094/mpmi-11-21-0283-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chloroplasts serve as cold priming hubs modulating the transcriptional response of Arabidopsis thaliana to a second cold stimulus for several days by postcold accumulation of thylakoid ascorbate peroxidases (tAPX). In an attempt to investigate cross-priming effects of cold on plant pathogen protection, we show here that such a single 24-h cold treatment at 4°C decreased the susceptibility of Arabidopsis to virulent Pseudomonas syringae pv. tomato DC3000 but did not alter resistance against the avirulent P. syringae pv. tomato avRPM1 and P. syringae pv. tomato avrRPS4 strains or the effector-deficient P. syringae pv. tomato strain hrcC-. The effect of cold priming against P. syringae pv. tomato was active immediately after cold exposure and memorized for at least 5 days. The priming benefit was established independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) or activation of the immune-related genes NHL10, FRK1, ICS1 and PR1 but required thylakoid-bound as well as stromal ascorbate peroxidase activities because the effect was absent or weak in corresponding knock-out-lines. Suppression of tAPX postcold regulation in a conditional-inducible tAPX-RNAi line led to increased bacterial growth numbers. This highlights that the plant immune system benefits from postcold regeneration of the protective chloroplast peroxidase system.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Thomas Griebel
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Dominic Schütte
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Alina Ebert
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - H Hung Nguyen
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| |
Collapse
|
79
|
Alam H, Zamin M, Adnan M, Shah AN, Alharby HF, Bamagoos AA, Alabdallah NM, Alzahrani SS, Alharbi BM, Saud S, Hassan S, Fahad S. Exploring Suitability of Salsola imbricata (Fetid Saltwort) for Salinity and Drought Conditions: A Step Toward Sustainable Landscaping Under Changing Climate. FRONTIERS IN PLANT SCIENCE 2022; 13:900210. [PMID: 35755706 PMCID: PMC9213750 DOI: 10.3389/fpls.2022.900210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
In context of the climate change, major abiotic stresses faced by plants include salt stress and drought stress. Though, plants have similar physiological mechanisms to cope with these salt and drought stresses. The physiological and biochemical response of native plants to the combined application of salinity and drought stresses are still not well-understood. Thus, to investigate the combined effect of salinity and drought stresses, an experiment was conducted on Salsola imbricata with four levels of salinity and four drought intensities under the arid climatic conditions. The experiment was conducted in a randomized complete block design with a split-plot arrangement replicated three times. S. imbricata had been found resistant to different levels of individual and combined salt and drought stresses. S. imbricata survived till the end of the experiment. Salt and water stress did not show any significant effects on shoot weight, shoot length, and root length. The drought stress affected the photosynthetic rate, ion uptake and leaf water potential. However, salt stress helped to counter this effect of drought stress. Thus, drought stress did not affect plant growth, photosynthesis rate, and ion uptake when combined with salt stress. Increased Na+ and Cl- uptake under the salt stress helped in osmotic adjustment. Therefore, the leaf water potential (LWP) decreased with increasing the salt stress from 5 dSm-1 until 15 dSm-1 and increased again at 20 dSm-1. At lower salt stress, ABA and proline content declined with increasing the drought stress. However, at higher salt stress, ABA content increased with increasing the drought stress. In conclusion, the salt stress had been found to have a protective role to drought stress for S. imbricata. S. imbricata utilized inorganic ion for osmotic adjustment at lower salinity stress but also accumulate the organic solutes to balance the osmotic pressure of the ions in the vacuole under combined stress conditions. Due to the physical lush green appearance and less maintenance requirements, S. imbricata can be recommended as a native substitute in landscaping under the salt and drought stresses conditions.
Collapse
Affiliation(s)
- Hasnain Alam
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhammad Zamin
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Muhammad Adnan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saleha S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, China
| | - Shah Hassan
- Department of Agricultural Extension Education and Communication, The University of Agriculture, Peshawar, Pakistan
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
80
|
Wang JZ, van de Ven W, Xiao Y, He X, Ke H, Yang P, Dehesh K. Reciprocity between a retrograde signal and a putative metalloprotease reconfigures plastidial metabolic and structural states. SCIENCE ADVANCES 2022; 8:eabo0724. [PMID: 35658042 PMCID: PMC9166295 DOI: 10.1126/sciadv.abo0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Reconfiguration of the plastidial proteome in response to environmental cues is central to tailoring adaptive responses. To define the underlying mechanisms and consequences of these reconfigurations, we performed a suppressor screen, using a mutant (ceh1) accumulating high levels of a plastidial retrograde signaling metabolite, MEcPP. We isolated a revertant partially suppressing the dwarf stature and high salicylic acid of ceh1 and identified the mutation in a putative plastidial metalloprotease (VIR3). Biochemical analyses showed increased VIR3 levels in ceh1, accompanied by reduced abundance of VIR3-target enzymes, ascorbate peroxidase, and glyceraldehyde 3-phophate dehydrogenase B. These proteomic shifts elicited increased H2O2, salicylic acid, and MEcPP levels, as well as stromule formation. High light recapitulated VIR3-associated reconfiguration of plastidial metabolic and structural states. These results establish a link between a plastidial stress-inducible retrograde signaling metabolite and a putative metalloprotease and reveal how the reciprocity between the two components modulates plastidial metabolic and structural states, shaping adaptive responses.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Wilhelmina van de Ven
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yanmei Xiao
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Xiang He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Panyu Yang
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
81
|
Effect of Titanium and Vanadium on Antioxidants Content and Productivity of Red Cabbage. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work studied the effect of foliar spray of different concentrations of titanium (Ti, applied as titanium dioxide) and vanadium (V, applied as vanadium pentoxide) on growth, chemical composition, antioxidant contents, antioxidant enzymes, antioxidant capacity, yield and quality criteria of red cabbage plants. For this purpose, 2.0, 4.0 and 6.0 mg L−1 of Ti and V were used to treat red cabbage plants. The control plants were treated with tap water. Our results showed that plants treated with 4.0 mg L−1 of Ti recorded the highest values of plant growth and bioactive compounds, while antioxidant capacity was decreased compared to the other treatments. In addition, plants treated with Ti and V at 2.0 and 4.0 mg L−1, respectively, showed higher values of all of the growth, yield, non-enzymatic antioxidants and antioxidants enzymes’ parameters compared to the untreated plants. Based on the obtained results, it could be concluded that the low concentrations of both Ti and V (2.0 and 4.0 mg L−1) were able to enhance red cabbage growth and yield, as well as the antioxidant contents, enzymes and capacity.
Collapse
|
82
|
Asaeda T, Rahman M, Liping X, Schoelynck J. Hydrogen Peroxide Variation Patterns as Abiotic Stress Responses of Egeria densa. FRONTIERS IN PLANT SCIENCE 2022; 13:855477. [PMID: 35651776 PMCID: PMC9149424 DOI: 10.3389/fpls.2022.855477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
In vegetation management, understanding the condition of submerged plants is usually based on long-term growth monitoring. Reactive oxygen species (ROS) accumulate in organelles under environmental stress and are highly likely to be indicators of a plant's condition. However, this depends on the period of exposure to environmental stress, as environmental conditions are always changing in nature. Hydrogen peroxide (H2O2) is the most common ROS in organelles. The responses of submerged macrophytes, Egeria densa, to high light and iron (Fe) stressors were investigated by both laboratory experiments and natural river observation. Plants were incubated with combinations of 30-200 μmol m-2 s-1 of photosynthetically active radiation (PAR) intensity and 0-10 mg L-1 Fe concentration in the media. We have measured H2O2, photosynthetic pigment concentrations, chlorophyll a (Chl-a), chlorophyll b (Chl-b), carotenoid (CAR), Indole-3-acetic acid (IAA) concentrations of leaf tissues, the antioxidant activity of catalase (CAT), ascorbic peroxidase (APX), peroxidase (POD), the maximal quantum yield of PSII (Fv Fm -1), and the shoot growth rate (SGR). The H2O2 concentration gradually increased with Fe concentration in the media, except at very low concentrations and at an increased PAR intensity. However, with extremely high PAR or Fe concentrations, first the chlorophyll contents and then the H2O2 concentration prominently declined, followed by SGR, the maximal quantum yield of PSII (Fv Fm -1), and antioxidant activities. With an increasing Fe concentration in the substrate, the CAT and APX antioxidant levels decreased, which led to an increase in H2O2 accumulation in the plant tissues. Moreover, increased POD activity was proportionate to H2O2 accumulation, suggesting the low-Fe independent nature of POD. Diurnally, H2O2 concentration varies following the PAR variation. However, the CAT and APX antioxidant activities were delayed, which increased the H2O2 concentration level in the afternoon compared with the level in morning for the same PAR intensities. Similar trends were also obtained for the natural river samples where relatively low light intensity was preferable for growth. Together with our previous findings on macrophyte stress responses, these results indicate that H2O2 concentration is a good indicator of environmental stressors and could be used instead of long-term growth monitoring in macrophyte management.
Collapse
Affiliation(s)
- Takashi Asaeda
- Hydro Technology Institute Co, Ltd., Tokyo, Japan
- Research and Development Center, Ibaraki, Japan
- Department of Environmental Science, Saitama University, Saitama, Japan
| | - Mizanur Rahman
- Department of Environmental Science, Saitama University, Saitama, Japan
| | - Xia Liping
- Department of Environmental Science, Saitama University, Saitama, Japan
| | | |
Collapse
|
83
|
Mallikarjuna MG, Sharma R, Veeraya P, Tyagi A, Rao AR, Hirenallur Chandappa L, Chinnusamy V. Evolutionary and functional characterisation of glutathione peroxidases showed splicing mediated stress responses in Maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:40-54. [PMID: 35276595 DOI: 10.1016/j.plaphy.2022.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays L) is an important cereal with extensive adaptability and multifaceted usages. However, various abiotic and biotic stresses limit the productivity of maize across the globe. Exposure of plant to stresses disturb the balance between reactive oxygen species (ROS) production and scavenging, which subsequently increases cellular damage and death of plants. Tolerant genotypes have evolved higher output of scavenging antioxidative defence compounds (ADCs) during stresses as one of the protective mechanisms. The glutathione peroxidases (GPXs) are the broad class of ADCs family. The plant GPXs catalyse the reduction of hydrogen peroxide (H2O2), lipid hydroperoxides and organic hydroperoxides to the corresponding alcohol, and facilitate the regulation of stress tolerance mechanisms. The present investigation was framed to study the maize GPXs using evolutionary and functional analyses. Seven GPX genes with thirteen splice-variants and sixty-three types of cis-acting elements were identified through whole-genome scanning in maize. Evolutionary analysis of GPXs in monocots and dicots revealed mixed and lineage-specific grouping patterns in phylogeny. The expression of ZmGPX splice variants was studied in drought and waterlogging tolerant (L1621701) and sensitive (PML10) genotypes in root and shoot tissues. Further, the differential expression of splice variants of ZmGPX1, ZmGPX3, ZmGPX6 and ZmGPX7 and regulatory network analysis suggested the splicing and regulatory elements mediated stress responses. The present investigation suggests targeting the splicing machinery of GPXs as an approach to enhance the stress tolerance in maize.
Collapse
Affiliation(s)
| | - Rinku Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Palanisamy Veeraya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Akshita Tyagi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
84
|
Do JH, Park SY, Park SH, Kim HM, Ma SH, Mai TD, Shim JS, Joung YH. Development of a Genome-Edited Tomato With High Ascorbate Content During Later Stage of Fruit Ripening Through Mutation of SlAPX4. FRONTIERS IN PLANT SCIENCE 2022; 13:836916. [PMID: 35498670 PMCID: PMC9039661 DOI: 10.3389/fpls.2022.836916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 06/12/2023]
Abstract
Ascorbate is an essential antioxidant substance for humans. Due to the lack of ascorbate biosynthetic enzyme, a human must intake ascorbate from the food source. Tomato is one of the most widely consumed fruits, thus elevation of ascorbate content in tomato fruits will improve their nutritional value. Here we characterized Solanum lycopersicum ASCORBATE PEROXIDASE 4 (SlAPX4) as a gene specifically induced during fruit ripening. In tomatoes, ascorbate accumulates in the yellow stage of fruits, then decreases during later stages of fruit ripening. To investigate whether SlAPX is involved in the decrease of ascorbate, the expression of SlAPXs was analyzed during fruit maturation. Among nine SlAPXs, SlAPX4 is the only gene whose expression was induced during fruit ripening. Mutation of SlAPX4 by the CRISPR/Cas9 system increased ascorbate content in ripened tomato fruits, while ascorbate content in leaves was not significantly changed by mutation of SlAPX4. Phenotype analysis revealed that mutation of SlAPX4 did not induce an adverse effect on the growth of tomato plants. Collectively, we suggest that SlAPX4 mediates a decrease of ascorbate content during the later stage of fruit ripening, and mutation of SlAPX4 can be used for the development of genome-edited tomatoes with elevated ascorbate content in fruits.
Collapse
|
85
|
Pan J, Zhang L, Chen M, Ruan Y, Li P, Guo Z, Liu B, Ruan Y, Xiao M, Huang Y. Identification and charactering of APX genes provide new insights in abiotic stresses response in Brassica napus. PeerJ 2022; 10:e13166. [PMID: 35402101 PMCID: PMC8992642 DOI: 10.7717/peerj.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/04/2022] [Indexed: 01/12/2023] Open
Abstract
Ascorbate peroxidase (APX) plays an important role in scavenging H2O2 and balancing ROS content in plant cells, which is of great significance for the growth and development of life and resistance to external stress. However, up to now, APXs in Brassica napus (B. napus) have not been systematically characterized. In this study, a total of 26 BnaAPX genes were identified, which were distributed on 13 chromosomes and divided into five phylogenetic branches. Gene structure analysis showed that they had a wide varied number of exons while BnaAPXs proteins contained more similar motifs in the same phylogenetic branches. qRT-PCR analysis of 26 BnaAPX gene expression patterns showed that three putative cytosol BnaAPX genes BnaAPX1, BnaAPX2, BnaAPX9, two putatice microsomal genes BnaAPX18 and BnaAPX25 were up-regulated rapidly and robustly under high salt, water shortage and high temperature stresses. In addition, the above three abiotic stresses led to a significant increase in APX activity. The results provide basic and comprehensive information for further functional characterization of APX gene family in B. napus.
Collapse
Affiliation(s)
- Jiao Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Lei Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Min Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Yuxuan Ruan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Peifang Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Zhihui Guo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Boyu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Ying Ruan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Mu Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China,Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
86
|
Hayford RK, Serba DD, Xie S, Ayyappan V, Thimmapuram J, Saha MC, Wu CH, Kalavacharla VK. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. BMC PLANT BIOLOGY 2022; 22:107. [PMID: 35260072 PMCID: PMC8903725 DOI: 10.1186/s12870-022-03477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.
Collapse
Affiliation(s)
- Rita K Hayford
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| | | | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, USA.
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA.
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
87
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
88
|
Verma D, Upadhyay SK, Singh K. Characterization of APX and APX-R gene family in Brassica juncea and B. rapa for tolerance against abiotic stresses. PLANT CELL REPORTS 2022; 41:571-592. [PMID: 34115169 DOI: 10.1007/s00299-021-02726-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
APX and APX-R gene families were identified and characterized in two important oilseed species of Brassica. Gene expression under abiotic stress conditions, recombinant protein expression, and analysis further divulged their drought, heat, and salt-responsive behavior. Ascorbate peroxidases (APX) are heme-dependent enzymes that rid the cells of H2O2 and regulate diverse biological processes. In the present study, we performed APX gene family characterization in two Brassica sp. (B. juncea and B. rapa) as these are commercially important oilseed crops and affected severely by abiotic stresses. We identified 16 BjuAPX and 9 BraAPX genes and 2 APX-R genes each in B. juncea and B. rapa genomes, respectively. Phylogenetic analysis divided the APX genes into five distinct clades, which exhibited conservation in the gene structure, motif organization, and sub-cellular location within the clade. Structural analysis of APX and APX-R proteins revealed the amino acid substitutions in conserved domains of APX-R proteins. The expression profiling of BjuAPX and BraAPX genes showed that 3 BjuAPX, 7BraAPX, and 2 BraAPX-R genes were drought and heat responsive. Notably, BjuAAPX1a, BjuAPX1d, BjuAAPX6, BraAAPX1a, BraAAPX2, and BraAAPX3b showed high expression levels in RT-qPCR. Cis-regulatory elements in APX and APX-R gene promoters supported the differential behavior of these genes. Further, two stress-responsive genes BjuAPX1d and BraAAPX2 were cloned, characterized, and their roles were validated under heat, drought, salt, and cold stress in bacterial expression system. This study for the first time reports the presence of APX activity in dimeric and LMW form of purified BraAAPX2 protein. The study may help pave way for developing abiotic stress-tolerant Brassica crops.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | | | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
89
|
Individual and Interactive Effects of Elevated Ozone and Temperature on Plant Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
From the preindustrial era to the present day, the tropospheric ozone (O3) concentration has increased dramatically in much of the industrialized world due to anthropogenic activities. O3 is the most harmful air pollutant to plants. Global surface temperatures are expected to increase with rising O3 concentration. Plants are directly affected by temperature and O3. Elevated O3 can impair physiological processes, as well as cause the accumulation of reactive oxygen species (ROS), leading to decreased plant growth. Temperature is another important factor influencing plant development. Here, we summarize how O3 and temperature elevation can affect plant physiological and biochemical characteristics, and discuss results from studies investigating plant responses to these factors. In this review, we focused on the interactions between elevated O3 and temperature on plant responses, because neither factor acts independently. Temperature has great potential to significantly influence stomatal movement and O3 uptake. For this reason, the combined influence of both factors can yield significantly different results than those of a single factor. Plant responses to the combined effects of elevated temperature and O3 are still controversial. We attribute the substantial uncertainty of these combined effects primarily to differences in methodological approaches.
Collapse
|
90
|
Physiological, Biochemical, and Agronomic Trait Responses of Nigella sativa Genotypes to Water Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water stress may affect the growth, physiology, morphology, biochemistry, and productivity of Nigella sativa (black cumin), a medicinal and aromatic plant. Measuring these parameters under various irrigation regimes could provide useful information for successful genotype selection and breeding. Therefore, these agronomically significant features were evaluated in ten black cumin genotypes (Afghanistan, Pakistan, Syria, India, Arak, Isfahan, Semirom, Shahreza, Shahrekord, and Mashhad) under three irrigation regimes (40% (I1), 60% (I2), and 80% (I3) of permissible moisture discharge) during the 2017 to 2018 growing seasons. Water stress was shown to increase the levels of carotenoids (Cars), proline, total soluble carbohydrates (TSC), malondialdehyde (MDA), hydrogen peroxide (H2O2), catalase (CAT), and ascorbate peroxidase (APX) activities but reduced the relative water content (RWC) and chlorophyll content. The highest increases in Cars, TSC, proline, CAT, and APX were noted in the Arak, Isfahan, Semirom, Shahreza, Shahrekord, and Mashhad genotypes under the I3 water regime, respectively. At the same time, the lowest decrease was observed in chlorophyll, H2O2, and relative water content (RWC) in Semirom. According to the stress susceptibility index, the most resistant genotypes were Shahrekord under I2 and Semirom under I3. These data demonstrate that the irrigation regimes affected the physiological, biochemical, and morphological features of black cumin both qualitatively and quantitatively, although the impact varied depending upon the genotype, irrigation regime, and traits. As such, the results presented represent valuable information with which to inform future selection and breeding programs for drought-tolerant black cumin. This is of particular significance considering global climate change.
Collapse
|
91
|
Yang L, Wang H, Wang P, Gao M, Huang L, Cui X, Liu Y. De novo and comparative transcriptomic analysis explain morphological differences in Panax notoginseng taproots. BMC Genomics 2022; 23:86. [PMID: 35100996 PMCID: PMC8802446 DOI: 10.1186/s12864-021-08283-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background Panax notoginseng (Burk.) F. H. Chen (PN) belonging to the genus Panax of family Araliaceae is widely used in traditional Chinese medicine to treat various diseases. PN taproot, as the most vital organ for the accumulation of bioactive components, presents a variable morphology (oval or long), even within the same environment. However, no related studies have yet explained the molecular mechanism of phenotypic differences. To investigate the cause of differences in the taproot phenotype, de novo and comparative transcriptomic analysis on PN taproot was performed. Results A total of 133,730,886 and 114,761,595 paired-end clean reads were obtained based on high-throughput sequencing from oval and long taproot samples, respectively. 121,955 unigenes with contig N50 = 1,774 bp were generated by using the de novo assembly transcriptome, 63,133 annotations were obtained with the BLAST. And then, 42 genes belong to class III peroxidase (PRX) gene family, 8 genes belong to L-Ascorbate peroxidase (APX) gene family, and 55 genes belong to a series of mitogen-activated protein kinase (MAPK) gene family were identified based on integrated annotation results. Differentially expressed genes analysis indicated substantial up-regulation of PnAPX3 and PnPRX45, which are related to reactive oxygen species metabolism, and the PnMPK3 gene, which is related to cell proliferation and plant root development, in long taproots compared with that in oval taproots. Furthermore, the determination results of real-time quantitative PCR, enzyme activity, and H2O2 content verified transcriptomic analysis results. Conclusion These results collectively demonstrate that reactive oxygen species (ROS) metabolism and the PnMPK3 gene may play vital roles in regulating the taproot phenotype of PN. This study provides further insights into the genetic mechanisms of phenotypic differences in other species of the genus Panax. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08283-w.
Collapse
Affiliation(s)
- Lifang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Hanye Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Panpan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Mingju Gao
- Wenshan University, Wenshan, 663000, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China.,Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650000, China.,Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650000, China.,Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, 650000, China.,Sanqi Research Institute of Yunnan Province, Kunming, 650000, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China. .,Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650000, China. .,Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650000, China. .,Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, 650000, China. .,Sanqi Research Institute of Yunnan Province, Kunming, 650000, China.
| |
Collapse
|
92
|
Kmieć K, Kot I, Rubinowska K, Górska-Drabik E, Golan K, Sytykiewicz H. The Variation of Selected Physiological Parameters in Elm Leaves (Ulmus glabra Huds.) Infested by Gall Inducing Aphids. PLANTS 2022; 11:plants11030244. [PMID: 35161224 PMCID: PMC8839363 DOI: 10.3390/plants11030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
Abstract
Three aphid species, Eriosoma ulmi (L.), Colopha compressa (Koch) and Tetraneura ulmi (L.) induce distinct gall morphotypes on Ulmus glabra Huds.; opened and closed galls. Because the trophic relationship of aphids and their galls shows that throughout the gall formation aphids can elicit multiple physiological regulations, we evaluated the changes of hydrogen peroxide content (H2O2), cytoplasmic membrane condition, expressed as electrolyte leakage (EL) and concentration of thiobarbituric acid reactive substances (TBARS), as well as, the activity of catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) in gall tissues, as well as, in damaged and undamaged parts of galled leaves. All aphid species increased EL from gall tissues and significantly upregulated APX activity in galls and galled leaves. Alterations in H2O2 and TBARS concentrations, as well as GPX and CAT activities, were aphid- and tissue-dependent. The development of pseudo- and closed galls on elm leaves did not have a clear effect on the direction and intensity of the host plant’s physiological response. The different modes of changes in H2O2, TBARS, CAT and GPX were found in true galls of C. compressa and T. ulmi. Generally, physiological alterations in new plant tissues were quite different compared to other tissues and could be considered beneficial to galling aphids.
Collapse
Affiliation(s)
- Katarzyna Kmieć
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland; (K.K.); (E.G.-D.); (K.G.)
| | - Izabela Kot
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland; (K.K.); (E.G.-D.); (K.G.)
- Correspondence:
| | - Katarzyna Rubinowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Edyta Górska-Drabik
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland; (K.K.); (E.G.-D.); (K.G.)
| | - Katarzyna Golan
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland; (K.K.); (E.G.-D.); (K.G.)
| | - Hubert Sytykiewicz
- Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland;
| |
Collapse
|
93
|
The Role of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Catalase) in the Tolerance of Lemna minor to Antibiotics: Implications for Phytoremediation. Antioxidants (Basel) 2022; 11:antiox11010151. [PMID: 35052655 PMCID: PMC8772849 DOI: 10.3390/antiox11010151] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 01/24/2023] Open
Abstract
We investigated the individual and combined contributions of two distinct heme proteins namely, ascorbate peroxidase (APX) and catalase (CAT) on the tolerance of Lemna minor plants to antibiotics. For our investigation, we used specific inhibitors of these two H2O2-scavenging enzymes (p-aminophenol, 3-amino,1,2,4-triazole, and salicylic acid). APX activity was central for the tolerance of this aquatic plant to amoxicillin (AMX), whereas CAT activity was important for avoiding oxidative damage when exposed to ciprofloxacin (CIP). Both monitored enzymes had important roles in the tolerance of Lemna minor to erythromycin (ERY). The use of molecular kinetic approaches to detect and increase APX and/or CAT scavenging activities could enhance tolerance, and, therefore, improve the use of L. minor plants to reclaim antibiotics from water bodies.
Collapse
|
94
|
Asaeda T, Rahman M, Abeynayaka HDL. Hydrogen peroxide can be a plausible biomarker in cyanobacterial bloom treatment. Sci Rep 2022; 12:12. [PMID: 34996907 PMCID: PMC8741898 DOI: 10.1038/s41598-021-02978-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
The effect of combined stresses, photoinhibition, and nutrient depletion on the oxidative stress of cyanobacteria was measured in laboratory experiments to develop the biomass prediction model. Phormidium ambiguum was exposed to various photosynthetically active radiation (PAR) intensities and phosphorous (P) concentrations with fixed nitrogen concentrations. The samples were subjected to stress assays by detecting the hydrogen peroxide (H2O2) concentration and antioxidant activities of catalase (CAT) and superoxide dismutase (SOD). H2O2 concentrations decreased to 30 µmol m-2 s-1 of PAR, then increased with higher PAR intensities. Regarding P concentrations, H2O2 concentrations (nmol L-1) generally decreased with increasing P concentrations. SOD and CAT activities were proportionate to the H2O2 protein-1. No H2O2 concentrations detected outside cells indicated the biological production of H2O2, and the accumulated H2O2 concentration inside cells was parameterized with H2O2 concentration protein-1. With over 30 µmol m-2 s-1 of PAR, H2O2 concentration protein-1 had a similar increasing trend with PAR intensity, independently of P concentration. Meanwhile, with increasing P concentration, H2O2 protein-1 decreased in a similar pattern regardless of PAR intensity. Protein content decreased with gradually increasing H2O2 up to 4 nmol H2O2 mg-1 protein, which provides a threshold to restrict the growth of cyanobacteria. With these results, an empirical formula-protein (mg L-1) = - 192*Log((H2O2/protein)/4.1), where H2O2/protein (nmol mg-1) = - 0.312*PAR2/(502 + PAR2)*((25/PAR)4 + 1)*Log(P/133,100), as a function of total phosphorus concentration, P (µg L-1)-was developed to obtain the cyanobacteria biomass.
Collapse
Affiliation(s)
- Takashi Asaeda
- Saitama University, Saitama, 338-8570, Japan. .,Hydro Technology Institute, Shimo-meguro, Tokyo, Japan. .,Research and Development Center, Nippon Koei, Tsukuba, Japan.
| | | | | |
Collapse
|
95
|
Hajivand S, Kashanizadeh S, Javanshah A. Effects of different antifreeze chemicals on late spring frost in pistachio. PROTOPLASMA 2022; 259:91-102. [PMID: 33855643 DOI: 10.1007/s00709-021-01638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Frost injury is one of the major limiting factors to horticultural crops production and distribution. Despite numerous efforts and researches concerning freezing injury reduction, it still accounts for more than 50% of the fruit losses in the horticulture sector. In the present investigation, we aimed to investigate the effects of different antifreeze compounds (Tiofer®, Cropaid®, Bio-Bloom®, amino acid (mixture), salicylic acid, and water (control)) on pistachio trees behavior under low-temperature regimes (2 °C, 0 °C, -2 °C, -4 °C, -6 °C, and spring natural temperature). The applied chemicals improved the osmolyte content during the cold stress. Tiofer® and Cropaid® could increase the proline content better than other compounds. Salicylic acid and Cropaid® application increased the guaiacol peroxidase (GPX) content better than other compounds. For ascorbate peroxidase (APX), Tiofer® and Bio-Bloom®, and for catalase (CAT), Tiofer®, Cropaid®, and salicylic acid performed better. Applying chemicals also improved the photosynthetic pigments under cold stress. Among all treatments, Tiofer® and Bio-Bloom® improved the chlorophyll a (Chla), while chlorophyll b (Chlb) better improved by Tiofer® and Cropaid®; moreover, carotenoids had better increase in Cropaid®, amino acid, and salicylic acid treatments. All applied chemicals except Tiofer® had a good effect on the anthocyanin content increase under cold stress. In conclusion, based on the findings presented here, applying antifreeze compounds, such as Tiofer®, Cropaid® Bio-Bloom®, salicylic acid, and amino acid, could effectively ameliorate the adverse effects of cold stress. Osmolytes and antioxidant (GPX, APX, CAT) contents, photosynthetic pigments (chlorophyll a and b and carotenoid), and anthocyanins were improved. Among all applied antifreezes, Tiofer® and Cropaid® were the most effective ones.
Collapse
Affiliation(s)
- Shokrollah Hajivand
- Department of Genetics and Breeding, Temperae Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Saeid Kashanizadeh
- Department of Genetics and Breeding, Temperae Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Amanallah Javanshah
- Department of Genetics and Breeding, Temperae Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
96
|
Petrović I, Savić S, Gricourt J, Causse M, Jovanović Z, Stikić R. Effect of long-term drought on tomato leaves: the impact on metabolic and antioxidative response. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2805-2817. [PMID: 35035137 PMCID: PMC8720120 DOI: 10.1007/s12298-021-01102-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Water deficit triggers physiological, biochemical, and molecular changes in leaves that could be important for overall plant adaptive response and it can affect tomato yield and quality. To assess the influence of long-term moderate drought on leaves, four tomato accessions from MAGIC TOM populations were selected on the basis of their differences in fruit size and were grown in a glasshouse under control and water deficit conditions. Drought affected stomatal conductance more in large fruit genotypes compared to cherry genotypes and this could be related to higher abscisic acid (ABA) leaf content. Compared to large fruits, cherry tomato genotypes coped better with water stress by reducing leaf area and maintaining photochemical efficiency as important adaptive responses. Accumulation of soluble sugars in the cherry genotypes and organic acid in the leaves of the larger fruit genotypes indicated their role in the osmoregulation and the continuum of source/sink gradient under stress conditions. Long-term moderate drought induced upregulation of NCED gene in all four genotypes that was associated with ABA production. The increase in the expression of ZEP gene was found only in the LA1420 cherry genotype and indicated its possible role in the protection against photooxidative stress induced by prolonged water stress. In addition, upregulation of the APX genes, higher accumulation of vitamin C and total antioxidant capacity in cherry genotype leaves highlighted their greater adaptive response against long-term drought stress compared to larger fruit genotypes that could also reflect at fruit level. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01102-2.
Collapse
Affiliation(s)
- Ivana Petrović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia
| | - Slađana Savić
- Institute for Vegetable Crops, Karađorđeva 71, 11420 Smederevska Palanka, Serbia
| | | | | | - Zorica Jovanović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia
| | - Radmila Stikić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia
| |
Collapse
|
97
|
Pawlowski Â, Da Silva ER, Schwambach J, Kaltchuk-Santos E, Zini CA, Soares GLG. Phytotoxic effects of Schinus terebinthifolius volatiles on adventitious rooting of Arabidopsis thaliana. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.2002200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ângela Pawlowski
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Santo Ângelo, Brazil
- Laboratório de Evolução, Ecologia Química e Quimiotaxonomia, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliane Regina Da Silva
- Laboratório de Evolução, Ecologia Química e Quimiotaxonomia, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joséli Schwambach
- Laboratório de Biotecnologia Vegetal, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Eliane Kaltchuk-Santos
- Laboratório de Citogenética Vegetal, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cláudia Alcaraz Zini
- Laboratório de Química Analítica Ambiental e Oleoquímica, Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Geraldo Luiz Gonçalves Soares
- Laboratório de Evolução, Ecologia Química e Quimiotaxonomia, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
98
|
Jiang M, Pang X, Liu H, Lin F, Lu F, Bie X, Lu Z, Lu Y. Iturin A Induces Resistance and Improves the Quality and Safety of Harvested Cherry Tomato. Molecules 2021; 26:molecules26226905. [PMID: 34833997 PMCID: PMC8622131 DOI: 10.3390/molecules26226905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
The soft rot disease caused by Rhizopus stolonifer is an important disease in cherry tomato fruit. In this study, the effect of iturin A on soft rot of cherry tomato and its influence on the storage quality of cherry tomato fruit were investigated. The results showed that 512 μg/mL of iturin A could effectively inhibit the incidence of soft rot of cherry tomato fruit. It was found that iturin A could induce the activity of resistance-related enzymes including phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), glucanase (GLU), and chitinase (CHI), and active oxygen-related enzymes including ascorbate peroxidases (APX), superoxide dismutases (SOD), catalases (CAT), and glutathione reductase (GR) of cherry tomato fruit. In addition, iturin A treatment could slow down the weight loss of cherry tomato and soften the fruit. These results indicated that iturin A could retard the decay and improve the quality of cherry tomato fruit by both the inhibition growth of R. stolonifera and the inducing the resistance.
Collapse
Affiliation(s)
- Mengxi Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (F.L.); (F.L.); (X.B.)
| | - Xinyi Pang
- College of Food Science and Technology, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Huawei Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Fuxing Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (F.L.); (F.L.); (X.B.)
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (F.L.); (F.L.); (X.B.)
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (F.L.); (F.L.); (X.B.)
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (F.L.); (F.L.); (X.B.)
- Correspondence: (Z.L.); (Y.L.)
| | - Yingjian Lu
- College of Food Science and Technology, Nanjing University of Finance and Economics, Nanjing 210023, China;
- Correspondence: (Z.L.); (Y.L.)
| |
Collapse
|
99
|
Paunescu RA, Bonciu E, Rosculete E, Paunescu G, Rosculete CA, Babeanu C. The Variability for the Biochemical Indicators at the Winter Wheat Assortment and Identifying the Sources with a High Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112443. [PMID: 34834806 PMCID: PMC8617625 DOI: 10.3390/plants10112443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
This study presents the variability of some biochemical indicators in the winter wheat assortments tested in south-western Oltenia (Romania) and identification of the sources showing a high antioxidant activity. The peroxidase activity has intensified as the stress induced by treatment with PEG of different concentrations and in different doses increased. Regarding the peroxidase content, among the varieties treated with PEG 10,000 25%, the majority of the Romanian varieties tested showed higher values of the PEG/control treatment ratio, which suggests tolerance to drought. In reverse, the activity of ascorbate peroxidase is lower in tolerant varieties. The varieties with a subunit report have been noted. Among them are the Izvor variety, known as the drought-tolerant variety, as well as other Romanian varieties: Alex, Delabrad, Lovrin 34, etc. An increased activity of catalase was present in most varieties, so there is the possibility of drought tolerance. Among the varieties highlighted are Romanian varieties (Dropia, Trivale, Nikifor, etc.) but also foreign varieties (Kristina, GH Hattyu, Karlygash, etc.). However, the correlation between yield index in the limited assortment and the antioxidant enzyme content ratios between PEG and control treatments does not exist, suggesting that none of these biochemical indicators are a selective indicator for drought tolerance under the experimental condition.
Collapse
Affiliation(s)
- Ramona Aida Paunescu
- Syngenta Agro Romania, 73-81 Bucuresti-Ploiesti Street, 013685 Bucharest, Romania;
| | - Elena Bonciu
- Department of Agricultural and Forestry Technology, Faculty of Agronomy, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania;
| | - Elena Rosculete
- Department of Land Measurement, Management, Mechanization, Faculty of Agronomy, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania
| | - Gabriela Paunescu
- SCDA Caracal, University of Craiova, 106 Vasile Alecsandri Street, 235200 Caracal, Romania;
| | - Catalin Aurelian Rosculete
- Department of Agricultural and Forestry Technology, Faculty of Agronomy, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania;
| | - Cristina Babeanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania;
| |
Collapse
|
100
|
Phan H, Schläppi M. Low Temperature Antioxidant Activity QTL Associate with Genomic Regions Involved in Physiological Cold Stress Tolerance Responses in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:genes12111700. [PMID: 34828305 PMCID: PMC8618774 DOI: 10.3390/genes12111700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Boosting cold stress tolerance in crop plants can minimize stress-mediated yield losses. Asian rice (Oryza sativa L.), one of the most consumed cereal crops, originated from subtropical regions and is generally sensitive to low temperature environments. Within the two subspecies of rice, JAPONICA, and INDICA, the cold tolerance potential of its accessions is highly variable and depends on their genetic background. Yet, cold stress tolerance response mechanisms are complex and not well understood. This study utilized 370 accessions from the Rice Diversity Panel 1 (RDP1) to investigate and correlate four cold stress tolerance response phenotypes: membrane damage, seedling survivability, and catalase and anthocyanin antioxidative activity. Most JAPONICA accessions, and admixed accessions within JAPONICA, had lower membrane damage, higher antioxidative activity, and overall, higher seedling survivability compared to INDICA accessions. Genome-wide association study (GWAS) mapping was done using the four traits to find novel quantitative trait loci (QTL), and to validate and fine-map previously identified QTL. A total of 20 QTL associated to two or more traits were uncovered by our study. Gene Ontology (GO) term enrichment analyses satisfying four layers of filtering retrieved three potential pathways: signal transduction, maintenance of plasma membrane and cell wall integrity, and nucleic acids metabolism as general mechanisms of cold stress tolerance responses involving antioxidant activity.
Collapse
|