51
|
Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1497449. [PMID: 34307650 PMCID: PMC8285185 DOI: 10.1155/2021/1497449] [Citation(s) in RCA: 358] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Chronic hyperglycemia and high blood pressure are the main risk factors for the development of DN. In general, screening for microalbuminuria should be performed annually, starting 5 years after diagnosis in type 1 diabetes and at diagnosis and annually thereafter in type 2 diabetes. Standard therapy is blood glucose and blood pressure control using the renin-angiotensin system blockade, targeting A1c < 7%, and <130/80 mmHg. Regression of albuminuria remains an important therapeutic goal. However, there are problems in diagnosis and treatment of nonproteinuric DN (NP-DN), which does not follow the classic pattern of DN. In fact, the prevalence of DN continues to increase, and additional therapy is needed to prevent or ameliorate the condition. In addition to conventional therapies, vitamin D receptor activators, incretin-related drugs, and therapies that target inflammation may also be promising for the prevention of DN progression. This review focuses on the role of inflammation and oxidative stress in the pathogenesis of DN, approaches to diagnosis in classic and NP-DN, and current and emerging therapeutic interventions.
Collapse
|
52
|
Nicholas SB. Novel Anti-inflammatory and Anti-fibrotic Agents for Diabetic Kidney Disease-From Bench to Bedside. Adv Chronic Kidney Dis 2021; 28:378-390. [PMID: 34922694 DOI: 10.1053/j.ackd.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation, now coined by the new paradigm as "metaflammation" or "metainflammation", has been linked to chronic kidney disease and its progression. In diabetes, altered metabolism denotes factors associated with the metabolic syndrome and hyperglycemia, among others. The interplay among hyperglycemia, oxidative stress, and inflammation in the pathogenesis of diabetic kidney disease (DKD) has been broadly explored. Identification of mediators of inflammatory processes involving macrophage infiltration, production of inflammasomes, release of cytokines, and activation of pertinent signaling pathways including mitogen-activated protein kinase, Jun N-terminal kinase, Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway (JAK/STAT), and apoptosis signal-regulating kinase 1 signaling mechanisms have enabled the development of therapeutic agents for DKD. This review describes the evidence supporting the contribution of the inflammatory response and fibrotic changes and focuses on selected, novel, promising drugs as well as repurposed drugs that have made it to phase 2, 3, or 4 of clinical trials in adults with type 2 diabetes mellitus and their potential to become an important part of our armamentarium to improve the management of DKD. Importantly, drugs that solely target inflammatory processes may be insufficient to fully optimize care of patients with DKD because of the complex nature of the disease.
Collapse
|
53
|
Abstract
Diabetic kidney disease (DKD) has been the leading cause of chronic kidney disease for over 20 years. Yet, over these two decades, the clinical approach to this condition has not much improved beyond the administration of glucose-lowering agents, renin-angiotensin-aldosterone system blockers for blood pressure control, and lipid-lowering agents. The proportion of diabetic patients who develop DKD and progress to end-stage renal disease has remained nearly the same. This unmet need for DKD treatment is caused by the complex pathophysiology of DKD, and the difficulty of translating treatment from bench to bed, which further adds to the growing argument that DKD is not a homogeneous disease. To better capture the full spectrum of DKD in our design of treatment regimens, we need improved diagnostic tools that can better distinguish the subgroups within the condition. For instance, DKD is typically placed in the broad category of a non-inflammatory kidney disease. However, genome-wide transcriptome analysis studies consistently indicate the inflammatory signaling pathway activation in DKD. This review will utilize human data in discussing the potential for redefining the role of inflammation in DKD. We also comment on the therapeutic potential of targeted anti-inflammatory therapy for DKD.
Collapse
Affiliation(s)
- Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
- Correspondence to Ju-Young Moon, M.D. Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea Tel: +82-2-440-7064 Fax: +82-2-440-8150 E-mail:
| |
Collapse
|
54
|
Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021; 12:649587. [PMID: 34025445 PMCID: PMC8131683 DOI: 10.3389/fphys.2021.649587] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays a critical role in the pathogenesis of DN, which involves renal cells and immune cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia, chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate gene expression via DNA methylation, histone modification, and non-coding RNAs without altering the DNA sequence. During the past years, numerous studies have been published to reveal the mechanisms of epigenetic modifications that regulate inflammation in DN. This review aimed to summarize the latest evidence on the interplay of epigenetics and inflammation in DN, and highlight the potential targets for treatment and diagnosis of DN.
Collapse
Affiliation(s)
- Bao-Yi Shao
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
55
|
Wei L, Zhang W, Yang Y, Li D. Pentoxifylline for the prevention of contrast-induced nephropathy: systematic review and meta-analysis of randomised controlled trials. BMJ Open 2021; 11:e043436. [PMID: 33945499 PMCID: PMC8039220 DOI: 10.1136/bmjopen-2020-043436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To summarise current evidence on the use of pentoxifylline (PTX) to prevent contrast-induced nephropathy (CIN). METHODS The PubMed, Embase and CENTRAL databases were searched for randomised controlled trials including patients with and without PTX undergoing contrast media exposure. We analysed the incidence of CIN and serum creatinine changes before and after contrast media exposure. All statistical analyses were conducted with Review Manager V.5.3. RESULTS We finally enrolled in seven randomised controlled trials with a total of 1484 patients in this analysis. All of seven included studies were performed in patients undergoing angioplasty or stenting. The overall rates of CIN were 8.8% and 10.4% in the PTX groups and control groups, respectively. However, no significant reduction in the CIN rate was observed in the patients treated with PTX compared with the control groups (OR 0.81, 95% CI 0.57 to 1.13, I2=0, p=0.21). All studies reported no hospital mortality and the new requirement for dialysis during the trials. CONCLUSION Perioperative administration of PTX to patients undergoing angioplasty did not significantly reduce the development of CIN but showed some weak tendency of lower serum creatinine increase. Based on the available trials, the evidence does not support the administration of PTX for the prevention of CIN. More trials with larger sample sizes are needed to evaluate the role of PTX in CIN prevention.
Collapse
Affiliation(s)
- Ling Wei
- Department of Nephrology, Second Xiangya Hospital, Changsha, China
| | - Weizhi Zhang
- Department of Cardiothoracic Surgery, Second Xiangya Hospital, Changsha, China
| | - Yifeng Yang
- Department of Cardiothoracic Surgery, Second Xiangya Hospital, Changsha, China
| | - Dongping Li
- Department of Cardiothoracic Surgery, Second Xiangya Hospital, Changsha, China
| |
Collapse
|
56
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S, Sun L. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Curr Med Chem 2021; 28:1003-1024. [PMID: 31701843 DOI: 10.2174/0929867326666191108160643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
57
|
Sugahara M, Pak WLW, Tanaka T, Tang SCW, Nangaku M. Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology (Carlton) 2021; 26:491-500. [PMID: 33550672 DOI: 10.1111/nep.13860] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes mellitus which may eventually lead to end-stage kidney disease (ESKD). Despite improvements in glycaemic control and blood pressure management with renin-angiotensin-aldosterone system (RAAS) blockade, the current therapy cannot completely halt DKD progression to ESKD in some patients. DKD is a heterogeneous disease entity in terms of its clinical manifestations, histopathology and the rate of progression, which makes it difficult to develop effective therapeutics. It was formerly considered that albuminuria preceded kidney function decline in DKD, but recent epidemiological studies revealed that a distinct group of patients presented kidney dysfunction without developing albuminuria. Other comorbidities, such as hypertension, obesity and gout, also affect the clinical course of DKD. The pathophysiology of DKD is complex and multifactorial, involving both metabolic and haemodynamic factors. These induce activation of intracellular signalling pathways, oxidative stress, hypoxia, dysregulated autophagy and epigenetic changes, which result in kidney inflammation and fibrosis. Recently, two groups of antidiabetic drugs, sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists, were demonstrated to provide renoprotection on top of their glucose-lowering effects. Several other therapeutic agents are also being developed and evaluated in clinical trials.
Collapse
Affiliation(s)
- Mai Sugahara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Japan
| | - Wai Lun Will Pak
- Renal Unit, Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Japan
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Japan
| |
Collapse
|
58
|
Roy S, Dhaneshwar S, Bhasin B. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery. Curr Drug Res Rev 2021; 13:101-119. [PMID: 33573567 DOI: 10.2174/2589977513666210211163711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning or repurposing is a revolutionary breakthrough in drug development that focuses on rediscovering new uses for old therapeutic agents. Drug repositioning can be defined more precisely as the process of exploring new indications for an already approved drug while drug repurposing includes overall re-development approaches grounded in the identical chemical structure of the active drug moiety as in the original product. The repositioning approach accelerates the drug development process, curtails the cost and risk inherent to drug development. The strategy focuses on the polypharmacology of drugs to unlocks novel opportunities for logically designing more efficient therapeutic agents for unmet medical disorders. Drug repositioning also expresses certain regulatory challenges that hamper its further utilization. The review outlines the eminent role of drug repositioning in new drug discovery, methods to predict the molecular targets of a drug molecule, advantages that the strategy offers to the pharmaceutical industries, explaining how the industrial collaborations with academics can assist in the discovering more repositioning opportunities. The focus of the review is to highlight the latest applications of drug repositioning in various disorders. The review also includes a comparison of old and new therapeutic uses of repurposed drugs, assessing their novel mechanisms of action and pharmacological effects in the management of various disorders. Various restrictions and challenges that repurposed drugs come across during their development and regulatory phases are also highlighted.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Bhavya Bhasin
- Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| |
Collapse
|
59
|
Donate-Correa J, Ferri CM, Sánchez-Quintana F, Pérez-Castro A, González-Luis A, Martín-Núñez E, Mora-Fernández C, Navarro-González JF. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Front Med (Lausanne) 2021; 7:628289. [PMID: 33553221 PMCID: PMC7862763 DOI: 10.3389/fmed.2020.628289] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/24/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and a main contributing factor for cardiovascular morbidity and mortality in patients with diabetes mellitus. Strategies employed to delay the progression of this pathology focus on the control of traditional risk factors, such as hyperglycemia, and elevated blood pressure. Although the intimate mechanisms involved in the onset and progression of DKD remain incompletely understood, inflammation is currently recognized as one of the main underlying processes. Untangling the mechanisms involved in the appearing of a harmful inflammatory response in the diabetic patient is crucial for the development of new therapeutic strategies. In this review, we focus on the inflammation-related pathogenic mechanisms involved in DKD and in the therapeutic utility of new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Carla M Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Fátima Sánchez-Quintana
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Atteneri Pérez-Castro
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.,REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
60
|
Srivastava A, Schmidt IM, Palsson R, Weins A, Bonventre JV, Sabbisetti V, Stillman IE, Rennke HG, Waikar SS. The Associations of Plasma Biomarkers of Inflammation With Histopathologic Lesions, Kidney Disease Progression, and Mortality-The Boston Kidney Biopsy Cohort Study. Kidney Int Rep 2021; 6:685-694. [PMID: 33732983 PMCID: PMC7938082 DOI: 10.1016/j.ekir.2020.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/20/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background Soluble tumor necrosis factor receptor (sTNFR)-1, sTNFR-2, YKL-40, monocyte chemoattractant protein (MCP)-1, and soluble urokinase plasminogen activator receptor (suPAR) have emerged as promising biomarkers of inflammation but have not been evaluated across diverse types of kidney diseases. Methods We measured these plasma biomarkers in 523 individuals enrolled into a prospective, observational cohort study of patients undergoing clinically indicated native kidney biopsy at 3 tertiary care hospitals. Two kidney pathologists adjudicated biopsy specimens for semiquantitative scores of histopathology. Proportional hazard models tested associations between biomarkers and risks of kidney disease progression (composite of ≥40% estimated glomerular filtration rate [eGFR] decline or end-stage kidney disease [ESKD]) and death. Results Mean eGFR was 56.4±36 ml/min per 1.73 m2 and the median proteinuria (interquartile range) was 1.6 (0.4, 3.9) g/g creatinine. The most common primary clinicopathologic diagnoses were proliferative glomerulonephritis (29.2%), nonproliferative glomerulopathy (18.1%), advanced glomerulosclerosis (11.3%), and diabetic kidney disease (11.1%). sTNFR-1, sTNFR-2, MCP-1, and suPAR were associated with tubulointerstitial and glomerular lesions. YKL-40 was not associated with any histopathologic lesions after multivariable adjustment. During a median follow-up of 65 months, 182 participants suffered kidney disease progression and 85 participants died. After multivariable adjustment, each doubling of sTNFR-1, sTNFR-2, YKL-40, and MCP-1 was associated with increased risks of kidney disease progression, with hazard ratios ranging from 1.21 to 1.47. Each doubling of sTNFR-2, YKL-40, and MCP-1 was associated with increased risks of death, with hazard ratios ranging from 1.33 to 1.45. suPAR was not significantly associated with kidney disease progression or death. Conclusions sTNFR-1, sTNFR-2, YKL-40, MCP-1, and suPAR are associated with underlying histopathologic lesions and adverse clinical outcomes across a diverse set of kidney diseases.
Collapse
Affiliation(s)
- Anand Srivastava
- Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Insa M. Schmidt
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Ragnar Palsson
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Division of Nephrology, Landspitali–The National University Hospital of Iceland, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Astrid Weins
- Pathology Department, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | | | | | - Isaac E. Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Helmut G. Rennke
- Pathology Department, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Sushrut S. Waikar
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Correspondence: Sushrut S. Waikar, Evans Biomedical Research Center, 650 Albany St, X504, Boston, Massachusetts 02118, USA.
| |
Collapse
|
61
|
Darwish NM, Elnahas YM, AlQahtany FS. Diabetes induced renal complications by leukocyte activation of nuclear factor κ-B and its regulated genes expression. Saudi J Biol Sci 2021; 28:541-549. [PMID: 33424337 PMCID: PMC7783672 DOI: 10.1016/j.sjbs.2020.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disorder characterized by inappropriate insulin function. Despite wide progress in genome studies, defects in gene expression for diabetes prognosis still incompletely identified. Prolonged hyperglycemia activates NF-κB, which is a main player in vascular dysfunctions of diabetes. Activated NF-κB, triggers expression of various genes that promote inflammation and cell adhesion process. Alteration of pro-inflammatory and profibrotic gene expression contribute to the irreversible functional and structural changes in the kidney resulting in diabetic nephropathy (DN). To identify the effect of some important NF-κB related genes on mediation of DN progression, we divided our candidate genes on the basis of their function exerted in bloodstream into three categories (Proinflammatory; NF-κB, IL-1B, IL-6, TNF-α and VEGF); (Profibrotic; FN, ICAM-1, VCAM-1) and (Proliferative; MAPK-1 and EGF). We analyzed their expression profile in leukocytes of patients and explored their correlation to diabetic kidney injury features. Our data revealed the overexpression of both proinflammatory and profibrotic genes in DN group when compared to T2D group and were associated positively with each other in DN group indicating their possible role in DN progression. In DN patients, increased expression of proinflammatory genes correlated positively with glycemic control and inflammatory markers indicating their role in DN progression. Our data revealed that the persistent activation NF-κB and its related genes observed in hyperglycemia might contribute to DN progression and might be a good diagnostic and therapeutic target for DN progression. Large-scale studies are needed to evaluate the potential of these molecules to serve as disease biomarkers.
Collapse
Key Words
- 2hPPBG, 2 h post prandial blood glucose.
- ACR, albumin creatinine ratio
- BMI, body mass index.
- DBP, Diastolic blood pressure.
- DN, diabetic nephropathy.
- FBS, fasting blood glucose.
- FN
- HDL, High density lipoprotein-cholesterol.
- HbA1c, Glycosylated hemoglobin.
- ICAM-1
- IL-1β
- IL-6
- LDL, Low density lipoprotein-cholesterol.
- M, male, F, female.
- NF-κB
- S.Cr, serum creatinine.
- SBP, Systolic blood pressure.
- T2D, type 2 diabetes mellitus without nephropathy.
- TC, total cholesterol.
- TGs, Triglyceride.
- TNF-α
- VCAM-1
- VEGF
- VLDL, Very low-density lipoprotein.
- e-GFR, estimated glomerular filtration rate.
Collapse
Affiliation(s)
- Noura M. Darwish
- Department of Biochemistry, Faculty of Science, Ain Shams University, 11566, Egypt
- Ministry of Health Laboratories, Tanta, Egypt
| | - Yousif M. Elnahas
- Department of Surgery, College of Medicine, King Saud University, Medical City, Riyadh 24251, Saudi Arabia
| | - Fatmah S. AlQahtany
- Department of Pathology, Hematopathology Unit, College of Medicine, King Saud University, Medical City, King Saud University, Riyadh 24251, Saudi Arabia
| |
Collapse
|
62
|
Charlton A, Garzarella J, Jandeleit-Dahm KAM, Jha JC. Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes. BIOLOGY 2020; 10:biology10010018. [PMID: 33396868 PMCID: PMC7830433 DOI: 10.3390/biology10010018] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary The progressive nature of type 2 diabetes mellitus (T2DM) leads to micro- and macro-vascular complications, including renal and cardiovascular disease. These alone, or in combination, are a major cause of premature morbidity and mortality in diabetic patients. Despite advances in glucose lowering treatments, these diabetic complications are still inadequately prevented or reversed. This ongoing cardiovascular–renal burden in diabetes poses a heavy cost on the health care system. Therefore, there is an urgent need to develop more effective treatments. In this review, we discuss how oxidative stress and inflammation induce and perpetuate the renal and cardiovascular complications of diabetes. It is particularly important to understand these driving mechanisms in order to elucidate pharmacological targets and mechanism-based future drug therapies. Abstract Oxidative stress and inflammation are considered major drivers in the pathogenesis of diabetic complications, including renal and cardiovascular disease. A symbiotic relationship also appears to exist between oxidative stress and inflammation. Several emerging therapies target these crucial pathways, to alleviate the burden of the aforementioned diseases. Oxidative stress refers to an imbalance between reactive oxygen species (ROS) and antioxidant defenses, a pathological state which not only leads to direct cellular damage but also an inflammatory cascade that further perpetuates tissue injury. Emerging therapeutic strategies tackle these pathways in a variety of ways, from increasing antioxidant defenses (antioxidants and Nrf2 activators) to reducing ROS production (NADPH oxidase inhibitors and XO inhibitors) or inhibiting the associated inflammatory pathways (NLRP3 inflammasome inhibitors, lipoxins, GLP-1 receptor agonists, and AT-1 receptor antagonists). This review summarizes the mechanisms by which oxidative stress and inflammation contribute to and perpetuate diabetes associated renal and cardiovascular disease along with the therapeutic strategies which target these pathways to provide reno and cardiovascular protection in the setting of diabetes.
Collapse
Affiliation(s)
- Amelia Charlton
- Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia; (A.C.); (J.G.); (K.A.M.J.-D.)
| | - Jessica Garzarella
- Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia; (A.C.); (J.G.); (K.A.M.J.-D.)
| | - Karin A. M. Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia; (A.C.); (J.G.); (K.A.M.J.-D.)
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Dusseldorf 40225, Germany
| | - Jay C. Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia; (A.C.); (J.G.); (K.A.M.J.-D.)
- Correspondence:
| |
Collapse
|
63
|
Mitrofanova A, Fontanella AM, Merscher S, Fornoni A. Lipid deposition and metaflammation in diabetic kidney disease. Curr Opin Pharmacol 2020; 55:60-72. [PMID: 33137677 DOI: 10.1016/j.coph.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
A critical link between metabolic disorders and a form of low-grade systemic and chronic inflammation has been recently established and named 'Metaflammation'. Metaflammation has been recognized as a key mediator of both microvascular and macrovascular complications of diabetes and as a significant contributor to the development of diabetic kidney disease (DKD). The goal of this review is to summarize the contribution of diabetes-induced inflammation and the related signaling pathways to diabetic complications, with a particular focus on how innate immunity and lipid metabolism influence each other.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antonio M Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
64
|
Danta CC, Boa AN, Bhandari S, Sathyapalan T, Xu SZ. Recent advances in drug discovery for diabetic kidney disease. Expert Opin Drug Discov 2020; 16:447-461. [PMID: 33003971 DOI: 10.1080/17460441.2021.1832077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD), and 40% of patients with diabetes develop DKD. Although some pathophysiological mechanisms and drug targets of DKD have been described, the effectiveness or clinical usefulness of such treatment has not been well validated. Therefore, searching for new targets and potential therapeutic candidates has become an emerging research area. AREAS COVERED The pathophysiological mechanisms, new drug targets and potential therapeutic compounds for DKD are addressed in this review. EXPERT OPINION Although preclinical and clinical evidence has shown some positive results for controlling DKD progression, treatment regimens have not been well developed to reduce the mortality in patients with DKD globally. Therefore, the discovery of new therapeutic targets and effective target-based drugs to achieve better and safe treatment are urgently required. Preclinical screening and clinical trials for such drugs are needed.
Collapse
Affiliation(s)
- Chhanda Charan Danta
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Andrew N Boa
- Department of Chemistry, University of Hull, Hull, UK
| | - Sunil Bhandari
- Department of Renal Medicine and Hull York Medical School, Hull Royal Infirmary, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
65
|
Namdar H, Khiali S, Khezerlou Aghdam N, Gharekhani A, Entezari-Maleki T. The Randomized Clinical Trial of Pentoxifylline for Reduction of Blood Pressure in Patients with Primary Hypertension. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hossein Namdar
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Khiali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Gharekhani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
66
|
Chen Y, Lee K, Ni Z, He JC. Diabetic Kidney Disease: Challenges, Advances, and Opportunities. KIDNEY DISEASES (BASEL, SWITZERLAND) 2020; 6:215-225. [PMID: 32903946 PMCID: PMC7445658 DOI: 10.1159/000506634] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease (ESRD). Regardless of intensive treatments with hyperglycemic control, blood pressure control, and the use of renin-angiotensin system blockades, the prevalence of DKD remains high. Recent studies suggest that the spectrum of DKD has been changed and many progresses have been made to develop new treatments for DKD. Therefore, it is time to perform a systemic review on the new developments in the field of DKD. SUMMARY Although the classic clinical presentation of DKD is characterized by a slow progression from microalbuminuria to macroalbuminuria and by a hyperfiltration at the early stage and progressive decline of renal function at the late stage, recent epidemiological studies suggest that DKD patients have a variety of clinical presentations and progression rates to ESRD. Some DKD patients have a decline in renal function without albuminuria but display prominent vascular and interstitial fibrosis on renal histology. DKD patients are more susceptible to acute kidney injury, which might contribute to the interstitial fibrosis. A large portion of type 2 diabetic patients with albuminuria could have overlapping nondiabetic glomerular disease, and therefore, kidney biopsy is required for differential diagnosis for these patients. Only a small portion of DKD patients eventually progress to end-stage renal failure. However, we do not have sensitive and specific biomarkers to identify these high-risk patients. Genetic factors that have a strong association with DKD progression have not been identified yet. A combination of circulating tumor necrosis factor receptor (TNFR)1, TNFR2, and kidney injury molecular 1 provides predictive value for DKD progression. Artificial intelligence could enhance the predictive values for DKD progression by combining the clinical parameters and biological markers. Sodium-glucose co-transporter-2 inhibitors should be added to the new standard care of DKD patients. Several promising new drugs are in clinical trials. KEY MESSAGES Over last years, our understanding of DKD has been much improved and new treatments to halt the progression of DKD are coming. However, better diagnostic tools, predictive markers, and treatment options are still urgently needed to help us to better manage these patients with this detrimental disease.
Collapse
Affiliation(s)
- Ya Chen
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
67
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
68
|
Rayego-Mateos S, Valdivielso JM. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin Ther Targets 2020; 24:655-670. [PMID: 32338087 DOI: 10.1080/14728222.2020.1762173] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The current therapeutic armamentarium to prevent chronic kidney disease (CKD) progression is limited to the control of blood pressure and in diabetic patients, the strict control of glucose levels. Current research is primarily focused on the reduction of inflammation and fibrosis at different levels. AREAS COVERED This article examines the latest progress in this field and places an emphasis on inflammation, oxidative stress, and fibrosis. New therapeutic targets are described and evidence from experimental and clinical studies is summarized. We performed a search in Medline for articles published over the last 10 years. EXPERT OPINION The search for therapeutic targets of renal inflammation is hindered by an incomplete understanding of the pathophysiology. The determination of the specific inducers of inflammation in the kidney is an area of heightened potential. Prevention of the progression of renal fibrosis by blocking TGF-β signaling has been unsuccessful, but the investigation of signaling pathways involved in late stages of fibrosis progression could yield improved results. Preventive strategies such as the modification of microbiota-inducers of uremic toxins involved in CKD progression is a promising field because of the interaction between the gut microbiota and the renal system.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| | - Jose M Valdivielso
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| |
Collapse
|
69
|
Macrophage Phenotype and Fibrosis in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21082806. [PMID: 32316547 PMCID: PMC7215738 DOI: 10.3390/ijms21082806] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. The primary initiating mechanism in DN is hyperglycemia-induced vascular dysfunction, but its progression is due to different pathological mechanisms, including oxidative stress, inflammatory cells infiltration, inflammation and fibrosis. Macrophages (Mφ) accumulation in kidneys correlates strongly with serum creatinine, interstitial myofibroblast accumulation and interstitial fibrosis scores. However, whether or not Mφ polarization is involved in the progression of DN has not been adequately defined. The prevalence of the different phenotypes during the course of DN, the existence of hybrid phenotypes and the plasticity of these cells depending of the environment have led to inconclusive results. In the same sense the role of the different macrophage phenotype in fibrosis associated or not to DN warrants additional investigation into Mφ polarization and its role in fibrosis. Due to the association between fibrosis and the progressive decline of renal function in DN, and the role of the different phenotypes of Mφ in fibrosis, in this review we examine the role of macrophage phenotype control in DN and highlight the potential factors contributing to phenotype change and injury or repair in DN.
Collapse
|
70
|
Leehey DJ. Targeting Inflammation in Diabetic Kidney Disease: Is There a Role for Pentoxifylline? ACTA ACUST UNITED AC 2020; 1:292-299. [DOI: 10.34067/kid.0001252019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diabetic kidney disease (DKD) is the most common cause of ESKD in the United States and worldwide. Current treatment for DKD includes strict glycemic control and normalization of BP with renin-angiotensin-aldosterone system (RAAS) blockade. Although RAAS blockers slow progression of disease, they do not generally prevent ESKD and none of the studies with these agents in DKD included patients who were nonproteinuric, which make up an increasingly large percentage of patients with diabetes now seen in clinical practice. Recent studies with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown beneficial renal effects, and the benefits of SGLT2 inhibitors likely extend to patients who are nonproteinuric. However, there remains a need to develop new therapies for DKD, particularly in those patients with advanced disease. A role of chronic low-grade inflammation in microvascular complications in patients with diabetes has now been widely accepted. Large clinical trials are being carried out with experimental agents such as bardoxolone and selonsertib that target inflammation and oxidative stress. The Food and Drug Administration–approved, nonspecific phosphodiesterase inhibitor pentoxifylline (PTX) has been shown to have anti-inflammatory effects in both animal and human studies by inhibiting the production of proinflammatory cytokines. Small randomized clinical trials and meta-analyses indicate that PTX may have therapeutic benefits in DKD, raising the possibility that a clinically available drug may be able to be repurposed to treat this disease. A large, multicenter, randomized clinical trial to determine whether this agent can decrease time to ESKD or death is currently being conducted, but results will not be available for several years. At this time, the combination of RAAS blockade plus SGLT2 inhibition is considered standard of care for DKD, but it may be reasonable for clinicians to consider addition of PTX in patients whose disease continues to progress despite optimization of current standard-of-care therapies.
Collapse
|
71
|
Hung PH, Lin CH, Hung KY, Muo CH, Chung MC, Chang CH, Chung CJ. Clinical burden of autosomal dominant polycystic kidney disease. Aging (Albany NY) 2020; 12:3899-3910. [PMID: 32096480 PMCID: PMC7066921 DOI: 10.18632/aging.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/08/2020] [Indexed: 11/25/2022]
Abstract
There are no specific therapies for autosomal dominant polycystic kidney disease (ADPKD), and clinical data evaluating the effects of non-specific therapies on ADPKD patients are scarce. We therefore evaluated those effects using data from a longitudinal health insurance database collected from 2000-2010. We individually selected patients with and without ADPKD from inpatient data files as well as from the catastrophic illness registry in Taiwan based on 1:5 frequency matching for sex, age, and index year. The hazard ratios (HR) of all-cause mortality, ischemic stroke, hemorrhagic stroke and end-stage renal disease (ESRD) in ADPKD inpatients were elevated as compared to the controls. Similarly, ADPKD patients from the catastrophic illness registry had an increased risk of hemorrhagic stroke and ESRD. Allopurinol users also had an increased risk of all-cause mortality. The HR for developing ESRD after medication exposure was 0.47-fold for statin and 1.93-fold for pentoxifylline. These results reveal that patients with ADPKD (either inpatient or from the catastrophic illness registry) are at elevated risk for hemorrhagic stroke and ESRD, and suggest that allopurinol and pentoxifylline should not be prescribed to ADPKD patients due to possible adverse effects.
Collapse
Affiliation(s)
- Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi, Taiwan.,Department of Applied Life Science and Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan.,College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Hsiang Chang
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Jung Chung
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
72
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
73
|
Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, Tagua VG, Hernández-Carballo C, Ferri C, Rodríguez-Rodríguez AE, Mora-Fernández C, Navarro-González JF. Inflammatory Targets in Diabetic Nephropathy. J Clin Med 2020; 9:jcm9020458. [PMID: 32046074 PMCID: PMC7074396 DOI: 10.3390/jcm9020458] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
One of the most frequent complications in patients with diabetes mellitus is diabetic nephropathy (DN). At present, it constitutes the first cause of end stage renal disease, and the main cause of cardiovascular morbidity and mortality in these patients. Therefore, it is clear that new strategies are required to delay the development and the progression of this pathology. This new approach should look beyond the control of traditional risk factors such as hyperglycemia and hypertension. Currently, inflammation has been recognized as one of the underlying processes involved in the development and progression of kidney disease in the diabetic population. Understanding the cascade of signals and mechanisms that trigger this maladaptive immune response, which eventually leads to the development of DN, is crucial. This knowledge will allow the identification of new targets and facilitate the design of innovative therapeutic strategies. In this review, we focus on the pathogenesis of proinflammatory molecules and mechanisms related to the development and progression of DN, and discuss the potential utility of new strategies based on agents that target inflammation.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
| | | | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | | | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- Correspondence: ; Tel.: +34-922-602-389
| |
Collapse
|
74
|
Yang DH, Lee SY. Diabetic kidney disease: seven questions. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2020. [DOI: 10.5124/jkma.2020.63.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dong Ho Yang
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
75
|
Yang H, Juang SY, Liao KF, Chen YH. Comparing the Effect of Folic Acid and Pentoxifylline on Delaying Dialysis Initiation in Patients with Advanced Chronic Kidney Disease. Nutrients 2019; 11:nu11092192. [PMID: 31547288 PMCID: PMC6769878 DOI: 10.3390/nu11092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 11/17/2022] Open
Abstract
Background: We hypothesized that the nutrient loss and chronic inflammation status may stimulate progression in advanced chronic kidney disease. Therefore, we aimed to generate a study to state the influence of combined nutritional and anti-inflammatory interventions. Methods: The registry from the National Health Insurance Research Database in Taiwan was searched for 20–90 years individuals who had certified end-stage renal disease. From January 2005 through December 2010, the diagnosis code ICD-9 585 (chronic kidney disease, CKD) plus erythropoiesis-stimulating agent (ESA) use was defined as entering advanced chronic kidney disease. The ESA starting date was defined as the first index date, whereas the initiation day of maintenance dialysis was defined as the second index date. The duration between the index dates was analyzed in different medical treatments. Results: There were 10,954 patients analyzed. The combination therapy resulted in the longest duration (n = 2184, median 145 days, p < 0.001) before the dialysis initiation compared with folic acid (n = 5073, median 111 days), pentoxifylline (n = 1119, median 102 days, p = 0.654), and no drug group (control, n = 2578, median 89 days, p < 0.001). Lacking eGFR data and the retrospective nature are important limitations. Conclusions: In patients with advanced CKD on the ESA treatment, the combination of folic acid and pentoxifylline was associated with delayed initiation of hemodialysis.
Collapse
Affiliation(s)
- Hsun Yang
- Department of Nephrology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
| | - Shiun-Yang Juang
- Department of Medical Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
| | - Kuan-Fu Liao
- Division of Gastroenterology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yi-Hsin Chen
- Department of Nephrology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei 112, Taiwan.
| |
Collapse
|
76
|
Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin Sci (Lond) 2019; 133:1759-1777. [PMID: 31383716 DOI: 10.1042/cs20190672] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 06/30/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023]
Abstract
Macrophage polarization toward the M1 phenotype and its subsequent inflammatory response have been implicated in the progression of diabetic complications. Despite adverse consequences of autophagy impairment on macrophage inflammation, the regulation of macrophage autophagy under hyperglycemic conditions is incompletely understood. Here, we report that the autophagy-lysosome system and mitochondrial function are impaired in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated RAW 264.7 cells. Mitochondrial dysfunction promotes reactive oxygen species (ROS) production and blocks autophagic flux by impairing lysosome function in macrophages under hyperglycemic conditions. Conversely, inhibition of mitochondrial ROS by Mito-TEMPO prevents HG-induced M1 macrophage polarization, and its effect is offset by blocking autophagic flux. The role of mitochondrial ROS in lysosome dysfunction and M1 macrophage polarization is also demonstrated in mitochondrial complex I defective RAW 264.7 cells induced by silencing NADH:ubiquinone oxidoreductase subunit-S4 (Ndufs4). These findings prove that mitochondrial ROS plays a key role in promoting macrophage polarization to inflammatory phenotype by impairing autophagy-lysosome system, which might provide clue to a novel treatment for diabetic complications.
Collapse
|
77
|
Weir MR. Predicting, preventing, and managing cardiovascular and chronic kidney disease progression in people with type 2 diabetes: How to improve on traditional strategies. J Diabetes 2019; 11:619-622. [PMID: 31066238 DOI: 10.1111/1753-0407.12929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Matthew R Weir
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
78
|
Kopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy. World J Diabetes 2019; 10:269-279. [PMID: 31139314 PMCID: PMC6522757 DOI: 10.4239/wjd.v10.i5.269] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes remains an important health issue as more patients with chronic and uncontrolled diabetes develop diabetic nephropathy (DN), which classically presents with proteinuria followed by a progressive decrease in renal function. However, an increasing proportion of DN patients have a decline in kidney function and vascular complications without proteinuria, known as non-proteinuric DN (NP-DN). Despite the increased incidence of NP-DN, few clinical or experimental studies have thoroughly investigated the pathophysiological mechanisms and targeted treatment for this form of DN. In this review, we will examine the differences between conventional DN and NP-DN and consider potential pathophysiological mechanisms, diagnostic markers, and treatment for both DN and NP-DN. The investigation of the pathophysiology of NP-DN should provide additional insight into the cardiovascular factors influencing renal function and disease and provide novel treatments for the vascular complications seen in diabetic patients.
Collapse
Affiliation(s)
- Jonathan Kopel
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79416, United States
| | - Camilo Pena-Hernandez
- Department of Internal Medicine, Division of Nephrology, Lubbock, TX 79430, United States
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| |
Collapse
|
79
|
Niewczas MA, Pavkov ME, Skupien J, Smiles A, Md Dom ZI, Wilson JM, Park J, Nair V, Schlafly A, Saulnier PJ, Satake E, Simeone CA, Shah H, Qiu C, Looker HC, Fiorina P, Ware CF, Sun JK, Doria A, Kretzler M, Susztak K, Duffin KL, Nelson RG, Krolewski AS. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med 2019; 25:805-813. [PMID: 31011203 PMCID: PMC6508971 DOI: 10.1038/s41591-019-0415-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Chronic inflammation is postulated to be involved in development of end stage renal disease (ESRD) in diabetes, but which specific circulating inflammatory proteins contribute to this risk remains unknown. To study this we examined 194 circulating inflammatory proteins in subjects from three independent cohorts with Type 1 and Type 2 diabetes. In each cohort we identified an extremely robust Kidney Risk Inflammatory Signature (KRIS) consisting of 17 novel proteins enriched for TNF Receptor Superfamily members that was associated with a 10-year risk of ESRD. All these proteins had a systemic, non-kidney source. Our prospective study findings provide strong evidence that KRIS proteins contribute to the inflammatory process underlying ESRD development in both types of diabetes. These proteins may be used as new therapeutic targets, new prognostic tests for high risk of ESRD and as surrogate outcome measures where changes in KRIS levels during intervention can reflect the tested therapy’s effectiveness. Proteomic profiling of circulating proteins in subjects from three independent cohorts with type 1 and type 2 diabetes, identified an extremely robust inflammatory signature, consisting of 17 proteins enriched for TNF Receptor Superfamily members that was associated with a 10-year risk of end-stage renal disease.
Collapse
Affiliation(s)
- Monika A Niewczas
- Research Division, Joslin Diabetes Center, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Meda E Pavkov
- Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Skupien
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Smiles
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Zaipul I Md Dom
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Wilson
- Diabetes and Complications Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jihwan Park
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viji Nair
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Pierre-Jean Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA.,CHU Poitiers, University of Poitiers, Inserm, Clinical Investigation Center CIC1402, Poitiers, France
| | - Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Hetal Shah
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chengxiang Qiu
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Romeo ed Enrica Invernizzi Pediatric Center, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Matthias Kretzler
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin L Duffin
- Diabetes and Complications Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Andrzej S Krolewski
- Research Division, Joslin Diabetes Center, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
80
|
de Morales AM, Goicoechea M, Verde E, Carbayo J, Barbieri D, Delgado A, Verdalles U, de Jose AP, Luño J. Pentoxifylline, progression of chronic kidney disease (CKD) and cardiovascular mortality: long-term follow-up of a randomized clinical trial. J Nephrol 2019; 32:581-587. [DOI: 10.1007/s40620-019-00607-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
81
|
Murkamilov IT, Aitbaev KA, Fomin VV, Murkamilova ZA, Bayzhigitova AA. Pentoxifylline and nephroprotection: effects on renal dysfunction and cardiovascular risks. TERAPEVT ARKH 2019; 91:95-100. [PMID: 31090379 DOI: 10.26442/00403660.2019.01.000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Generalized data on nephroprotective efficacy of pentoxifylline in chronic kidney disease (CKD) are presented. The potential of this drug in treating people suffering from CKD and cardiovascular diseases (CVD) with a high risk of developing the terminal stage of renal dysfunction is considered. Antiproteinuric, antifibrotic and anti-inflammatory effects of pentoxifylline significantly reduce the risk of progression of CKD and joining of CVD in the future. Efficacy in preventing the onset of the uremic stage of CKD, safety andapplicability at all stages of renal dysfunction development make pentoxifylline a very appealing drug not only for nephrologists but also for physicians. Keywords: chronic kidney disease, progression, pentoxifylline, nephroprotection, cardiovascular diseases.
Collapse
Affiliation(s)
- I T Murkamilov
- Kyrgyz State Medical Academy named after I.K. Akhunbaev, Bishkek, Kyrgyzstan.,Kyrgyz Russian Slavic University named after the First President of Russia B.N. Yeltsin, Bishkek, Kyrgyzstan
| | - K A Aitbaev
- Scientific Research Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - V V Fomin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian
| | | | - A A Bayzhigitova
- National Hospital under the Ministry of Health of the Kyrgyz Republic, Bishkek, Kyrgyzstan
| |
Collapse
|
82
|
Donate-Correa J, Tagua VG, Ferri C, Martín-Núñez E, Hernández-Carballo C, Ureña-Torres P, Ruiz-Ortega M, Ortiz A, Mora-Fernández C, Navarro-González JF. Pentoxifylline for Renal Protection in Diabetic Kidney Disease. A Model of Old Drugs for New Horizons. J Clin Med 2019; 8:jcm8030287. [PMID: 30818852 PMCID: PMC6463074 DOI: 10.3390/jcm8030287] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Diabetic kidney disease is one of the most relevant complications in diabetes mellitus patients, which constitutes the main cause of end-stage renal disease in the western world. Delaying the progression of this pathology requires new strategies that, in addition to the control of traditional risk factors (glycemia and blood pressure), specifically target the primary pathogenic mechanisms. Nowadays, inflammation is recognized as a critical novel pathogenic factor in the development and progression of renal injury in diabetes mellitus. Pentoxifylline is a nonspecific phosphodiesterase inhibitor with rheologic properties clinically used for more than 30 years in the treatment of peripheral vascular disease. In addition, this compound also exerts anti-inflammatory actions. In the context of diabetic kidney disease, pentoxifylline has shown significant antiproteinuric effects and a delay in the loss of estimated glomerular filtration rate, although at the present time there is no definitive evidence regarding renal outcomes. Moreover, recent studies have reported that this drug can be associated with a positive impact on new factors related to kidney health, such as Klotho. The use of pentoxifylline as renoprotective therapy for patients with diabetic kidney disease represents a new example of drug repositioning.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain.
| | - Víctor G Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain.
| | | | - Pablo Ureña-Torres
- Department of Dialyisis, AURA Nord, Saint Ouen, 93400 Paris, France.
- Department of Renal Physiology, Necker Hospital, University Paris Descartes, 75006 Paris, France.
| | - Marta Ruiz-Ortega
- Laboratorio de Biología Celular en Enfermedades Renales, Universidad Autónoma Madrid, IIS-Fundación Jiménez Díaz, Madrid, 28004, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0007), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Alberto Ortiz
- Departamento de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz y Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
83
|
Al-Kuraishy HM, Al-Gareeb AI, Hussien NR. Synergistic effect of berberine and pentoxifylline in attenuation of acute kidney injury. Int J Crit Illn Inj Sci 2019; 9:69-74. [PMID: 31334048 PMCID: PMC6625331 DOI: 10.4103/ijciis.ijciis_85_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective To evaluate the renoprotective effects of berberine and/or pentoxifylline in reduction of diclofenac-induced acute kidney injury (AKI) in rats. Material and Methods Fifty male Sprague-Dawley rats were allocated into five groups, Group 1: Rats treated with distilled water plus normal saline for 12 days. Group 2: Rats treated with distilled water plus diclofenac for 12 days. Group 3: Rats treated with berberine plus diclofenac for 12 days. Group 4: Rats treated with pentoxifylline plus diclofenac for 12 days. Group 5: Rats treated with berberine + pentoxifylline plus diclofenac 15 mg/kg for 12 days. Blood urea, creatinine, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecules (KIM-1), and cystatin-c were used to measure the severity of AKI. Results Diclofenac led to significant AKI by significant elevation of blood urea, serum creatinine, KIM-1, and NGAL. Treatment with berberine showed no significant effect on all biomarkers level compared to diclofenac group except on serum KIM-1 level which also seen in the pentoxifylline group whereas combination of berberine and pentoxifylline led to more significant effect in the reduction of all renal biomarkers. Conclusion Combination of berberine with pentoxifylline illustrated a synergistic effect in attenuation of diclofenac-induced AKI.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Al-Mustansiriya University, Baghdad, Iraq
| | - Nawar R Hussien
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Al-Mustansiriya University, Baghdad, Iraq
| |
Collapse
|
84
|
Zhang J, Zhang R, Wang Y, Li H, Han Q, Wu Y, Wang T, Liu F. The Level of Serum Albumin Is Associated with Renal Prognosis in Patients with Diabetic Nephropathy. J Diabetes Res 2019; 2019:7825804. [PMID: 30911552 PMCID: PMC6398001 DOI: 10.1155/2019/7825804] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/02/2018] [Accepted: 12/23/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Although hypoalbuminemia is frequently found in most patients with diabetic nephropathy (DN), its relationship to the severity and progression of DN remains largely unknown. Our aim was to investigate the association between the serum albumin levels and clinicopathological features and renal outcomes in patients with type 2 diabetes mellitus (T2DM) and biopsy-proven DN. MATERIALS AND METHODS A total of 188 patients with T2DM and biopsy-proven DN followed up for at least one year were enrolled. The patients were divided into four groups based on the albumin levels: normal group: ≥35 g/L (n = 87); mild group: 30-35 g/L (n = 34); moderate group: 25-30 g/L (n = 36); and severe group: <25 g/L (n = 31). The renal outcome was defined by progression to end-stage renal disease. The impact of the serum albumin level on renal survival was estimated using Cox regression analysis. RESULTS Among the cases, the serum albumin level had a significant correlation with proteinuria, renal function, and glomerular lesions. A multivariate Cox regression analysis indicated that the severity of hypoalbuminemia remained significantly associated with an adverse renal outcome, independent of clinical and histopathological features. In reference to the normal group, the risk of progression to ESRD increased such that the hazard ratio (HR) for the mild group was 2.09 (95% CI, 0.67-6.56, p = 0.205), 6.20 (95% CI, 1.95-19.76, p = 0.002) for the moderate group, and 7.37 (95% CI, 1.24-43.83, p = 0.028) for the severe group. CONCLUSIONS These findings suggested that hypoalbuminemia was associated with a poorer renal prognosis in patients with T2DM and DN.
Collapse
Affiliation(s)
- Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hanyu Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qianqian Han
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tingli Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
85
|
Ma H, Lee S, Yang Y, Bedi P, Chou SY. Pentoxifylline protects against loss of function and renal interstitial fibrosis in chronic experimental partial ureteral obstruction. PATHOPHYSIOLOGY 2018; 25:419-425. [DOI: 10.1016/j.pathophys.2018.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
|
86
|
Guiteras R, Sola A, Flaquer M, Manonelles A, Hotter G, Cruzado JM. Exploring macrophage cell therapy on Diabetic Kidney Disease. J Cell Mol Med 2018; 23:841-851. [PMID: 30407737 PMCID: PMC6349346 DOI: 10.1111/jcmm.13983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Alternatively activated macrophages (M2) have regenerative properties and shown promise as cell therapy in chronic kidney disease. However, M2 plasticity is one of the major hurdles to overcome. Our previous studies showed that genetically modified macrophages stabilized by neutrophil gelatinase‐associated lipocalin (NGAL) were able to preserve their M2 phenotype. Nowadays, little is known about M2 macrophage effects in diabetic kidney disease (DKD). The aim of the study was to investigate the therapeutic effect of both bone marrow‐derived M2 (BM‐фM2) and ф‐NGAL macrophages in the db/db mice. Seventeen‐week‐old mice with established DKD were divided into five treatment groups with their controls: D+BM‐фM2; D+ф‐BM; D+ф‐NGAL; D+ф‐RAW; D+SHAM and non‐diabetic (ND) (db/‐ and C57bl/6J) animals. We infused 1 × 106 macrophages twice, at baseline and 2 weeks thereafter. BM‐фM2 did not show any therapeutic effect whereas ф‐NGAL significantly reduced albuminuria and renal fibrosis. The ф‐NGAL therapy increased the anti‐inflammatory IL‐10 and reduced some pro‐inflammatory cytokines, reduced the proportion of M1 glomerular macrophages and podocyte loss and was associated with a significant decrease of renal TGF‐β1. Overall, our study provides evidence that ф‐NGAL macrophage cell therapy has a therapeutic effect on DKD probably by modulation of the renal inflammatory response caused by the diabetic milieu.
Collapse
Affiliation(s)
- Roser Guiteras
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Sola
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Maria Flaquer
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Manonelles
- Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Georgina Hotter
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Department of Ischemia and Inflammation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Barcelona, Spain
| | - Josep M Cruzado
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
87
|
Harrison TG, Tam-Tham H, Hemmelgarn BR, Elliott M, James MT, Ronksley PE, Jun M. Change in Proteinuria or Albuminuria as a Surrogate for Cardiovascular and Other Major Clinical Outcomes: A Systematic Review and Meta-analysis. Can J Cardiol 2018; 35:77-91. [PMID: 30595186 DOI: 10.1016/j.cjca.2018.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND There is ongoing controversy around the surrogacy of proteinuria or albuminuria, particularly for cardiovascular (CV) outcomes, which remain the leading cause of morbidity and mortality among patients with chronic kidney disease. We performed a systematic review and meta-analysis of the literature to assess the surrogacy of changing proteinuria or albuminuria for CV events, end-stage renal disease (ESRD), and all-cause mortality. METHODS CENTRAL, EMBASE, and MEDLINE were searched (from inception to October 2017). All randomized controlled trials in adults that reported change in proteinuria or albuminuria and ≥ 10 CV, ESRD, or all-cause mortality events were included. We calculated treatment effect ratios (TERs), defined as the ratio of the treatment effect on a clinical outcome and the effect on the change in the surrogate outcome. TERs close to 1 indicate greater agreement between the clinical outcome and changing proteinuria or albuminuria. RESULTS Thirty-six trials were included in the meta-analysis. We observed inconsistent treatment effects for proteinuria and CV events (20 trials; TER 1.11 [95% confidence interval (CI), 1.01-1.22]) with moderate heterogeneity (I2 = 51%, P = 0.005). Treatment effects on proteinuria or albuminuria were also inconsistent with the effects on all-cause mortality (21 trials; TER 1.17 [95% CI, 1.07-1.28]; I2 = 35%, P for heterogeneity = 0.06), although they were similar with the effects on ESRD (23 trials; TER 0.99 [95% CI, 0.88-1.13]; I2 = 9%, P for heterogeneity = 0.337). CONCLUSIONS Change in proteinuria or albuminuria might be a suitable surrogate outcome for ESRD. However, overall treatment effects on these potential surrogates are inconsistent and overestimate the treatment effects on CV events and all-cause mortality.
Collapse
Affiliation(s)
- Tyrone G Harrison
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Helen Tam-Tham
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brenda R Hemmelgarn
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Meghan Elliott
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthew T James
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul E Ronksley
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Min Jun
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada; The George Institute for Global Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
88
|
Moreno JA, Gomez-Guerrero C, Mas S, Sanz AB, Lorenzo O, Ruiz-Ortega M, Opazo L, Mezzano S, Egido J. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin Investig Drugs 2018; 27:917-930. [PMID: 30334635 DOI: 10.1080/13543784.2018.1538352] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic nephropathy (DN) is the leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Beyond the new anti-diabetic drugs that possess markedly cardiovascular and renal protective effects, no novel direct therapies for DN have become available on the market in the last twenty years. Recently well-designed clinical trials for the treatment of DN, with attractive pathogenetic rationale, e.g. bardoxolone and atrasentan, were canceled or stopped because of safety concerns or lack of reaching the end points, respectively. AREAS COVERED In this review, we focus on the involvement of inflammation in the pathogenesis of DN. We update information from recent experimental and clinical studies that reported beneficial effects of several agents targeting chemokines, cytokines, transcription factors and kinases as well as several compounds with anti-inflammatory properties on DN. EXPERT OPINION Inflammation plays a key role in the DN progression. Preclinical studies have identified several anti-inflammatory molecules that effective decrease albuminuria and/or proteinuria. However, limited clinical trials in humans have been performed to confirm these results. Inhibitors of CCL2/CCR2, IL-1β and JAK/STAT pathways, and Nrf2 inducers are promising therapeutic options to improve the renal outcome of patients with DN, but appropriate clinical trials are necessary.
Collapse
Affiliation(s)
- Juan Antonio Moreno
- a Renal, Vascular and Diabetes Research Laboratory, Fundacion Jimenez Diaz University Hospital-Health Research Institute (FIIS-FJD) , Autonoma University of Madrid (UAM) , Madrid , Spain
| | - Carmen Gomez-Guerrero
- a Renal, Vascular and Diabetes Research Laboratory, Fundacion Jimenez Diaz University Hospital-Health Research Institute (FIIS-FJD) , Autonoma University of Madrid (UAM) , Madrid , Spain.,b Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| | - Sebastian Mas
- a Renal, Vascular and Diabetes Research Laboratory, Fundacion Jimenez Diaz University Hospital-Health Research Institute (FIIS-FJD) , Autonoma University of Madrid (UAM) , Madrid , Spain.,b Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| | - Ana Belen Sanz
- a Renal, Vascular and Diabetes Research Laboratory, Fundacion Jimenez Diaz University Hospital-Health Research Institute (FIIS-FJD) , Autonoma University of Madrid (UAM) , Madrid , Spain.,c Red de Investigación Renal (REDinREN) , Spain
| | - Oscar Lorenzo
- a Renal, Vascular and Diabetes Research Laboratory, Fundacion Jimenez Diaz University Hospital-Health Research Institute (FIIS-FJD) , Autonoma University of Madrid (UAM) , Madrid , Spain.,b Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| | - Marta Ruiz-Ortega
- c Red de Investigación Renal (REDinREN) , Spain.,d Biology in Renal Diseases Laboratory , FIIS-FJD, UAM , Madrid , Spain
| | - Lucas Opazo
- e Division of Nephrology, School of Medicine , Universidad Austral , Valdivia , Chile
| | - Sergio Mezzano
- e Division of Nephrology, School of Medicine , Universidad Austral , Valdivia , Chile
| | - Jesus Egido
- a Renal, Vascular and Diabetes Research Laboratory, Fundacion Jimenez Diaz University Hospital-Health Research Institute (FIIS-FJD) , Autonoma University of Madrid (UAM) , Madrid , Spain.,b Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| |
Collapse
|
89
|
Association between circulating tumor necrosis factor-related biomarkers and estimated glomerular filtration rate in type 2 diabetes. Sci Rep 2018; 8:15302. [PMID: 30333553 PMCID: PMC6193030 DOI: 10.1038/s41598-018-33590-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation plays a crucial role in the development/progression of diabetic kidney disease. The involvement of tumor necrosis factor (TNF)-related biomarkers [TNFα, progranulin (PGRN), TNF receptors (TNFR1 and TNFR2)] and uric acid (UA) in renal function decline was investigated in patients with type 2 diabetes (T2D). Serum TNF-related biomarkers and UA levels were measured in 594 Japanese patients with T2D and an eGFR ≥30 mL/min/1.73 m2. Four TNF-related biomarkers and UA were negatively associated with estimated glomerular filtration rate (eGFR). In a logistic multivariate model, each TNF-related biomarker and UA was associated with lower eGFR (eGFR <60mL /min/1.73 m2) after adjustment for relevant covariates (basic model). Furthermore, UA and TNF-related biomarkers other than PGRN added a significant benefit for the risk factors of lower eGFR when measured together with a basic model (UA, ΔAUC, 0.049, p < 0.001; TNFα, ΔAUC, 0.022, p = 0.007; TNFR1, ΔAUC, 0.064, p < 0.001; TNFR2, ΔAUC, 0.052, p < 0.001) in receiver operating characteristic curve analysis. TNFR ligands were associated with lower eGFR, but the associations were not as strong as those with TNFRs or UA in patients with T2D and an eGFR ≥30 mL/min/1.73 m2.
Collapse
|
90
|
Bertelsen LB, Nielsen PM, Qi H, Mariager CØ, Lindhardt J, Laustsen C. Renal Energy Metabolism Following Acute Dichloroacetate and 2,4-Dinitrophenol Administration: Assessing the Cumulative Action with Hyperpolarized [1- 13C]Pyruvate MRI. ACTA ACUST UNITED AC 2018; 4:105-109. [PMID: 30320210 PMCID: PMC6173791 DOI: 10.18383/j.tom.2018.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Numerous patient groups receive >1 medication and as such represent a potential point of improvement in today's healthcare setup, as the combined or cumulative effects are difficult to monitor in an individual patient. Here we show the ability to monitor the pharmacological effect of 2 classes of medications sequentially, namely, 2,4-dinitrophenol, a mitochondrial uncoupler, and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, both targeting the oxygen-dependent energy metabolism. We show that although the 2 drugs target 2 different metabolic pathways connected ultimately to oxygen metabolism, we could distinguish the 2 in vivo by using hyperpolarized [1-13C]pyruvate magnetic resonance imaging. A statistically significantly different pyruvate dehydrogenase flux was observed by reversing the treatment order of 2,4-dinitrophenol and dichloroacetate. The significance of this study is the demonstration of the ability to monitor the metabolic cumulative effects of 2 distinct therapeutics on an in vivo organ level using hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
91
|
Abstract
Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty - which affect clinical manifestations, prognosis, and response to treatment - and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Elisa Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
92
|
A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 2018; 132:1811-1836. [PMID: 30166499 DOI: 10.1042/cs20171459] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Chronic renal and vascular oxidative stress in association with an enhanced inflammatory burden are determinant processes in the development and progression of diabetic complications including cardiovascular disease (CVD), atherosclerosis and diabetic kidney disease (DKD). Persistent hyperglycaemia in diabetes mellitus increases the production of reactive oxygen species (ROS) and activates mediators of inflammation as well as suppresses antioxidant defence mechanisms ultimately contributing to oxidative stress which leads to vascular and renal injury in diabetes. Furthermore, there is increasing evidence that ROS, inflammation and fibrosis promote each other and are part of a vicious connection leading to development and progression of CVD and kidney disease in diabetes.
Collapse
|
93
|
Keri KC, Samji NS, Blumenthal S. Diabetic nephropathy: newer therapeutic perspectives. J Community Hosp Intern Med Perspect 2018; 8:200-207. [PMID: 30181826 PMCID: PMC6116149 DOI: 10.1080/20009666.2018.1500423] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN is a dreaded consequence of diabetes mellitus, accounting for about 40% of end-stage renal disease (ESRD). It is responsible for significant morbidity and mortality, both directly by causing ESRD and indirectly by increasing cardiovascular risk. Extensive research in this field has thrown light on multiple pathways that can be pharmacologically targeted, to control or reverse the process of DN. Glomerulocentric approach of DN still continues to produce favourable results as evidenced by the recent data on SGLT-2 (sodium glucose co-transporter type 2) inhibitors. Beyond the glomerular mechanisms, numerous novel pathways have been discovered in the last decade. Some of these pathways target inflammatory and oxidative damage, while the others target more specific mechanisms such as AGE-RAGE (advanced glycation end products-receptors for advanced glycation end products), ASK (apoptotic signal-regulating kinase), and endothelin-associated pathways. As a result of the research, a handful of clinically relevant drugs have made it to the human trials which have been elucidated in the following review, bearing in the mind that there are many more to come over the next few years. Ongoing research is expected to inform the clinicians regarding the use of the newer drugs in DN. Abbreviations: USFDA: Unites States Food and Drug Administration; SGLT-2: Sodium glucose transporter type 2; GLP-1: Glucagon-like peptide-1; DDP-4: Dipeptidyl peptidase-4; UACR: urinary albumin creatinine ratio; eGFR: Estimated glomerular filtration rate; CKD: Chronic kidney disease; DN: Diabetic nephropathy; TGF: Tubuloglomerular feedback; RAAS: Renin angiotensin aldosterone system; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; RCT: Randomized controlled trial; AGE-RAGE: Advanced glycation end products-receptors for advanced glycation end products; ASK-1: Apoptotic signal-regulating kinase-1; Nrf-2: Nuclear 1 factor [erythroid derived-2]-related factor 2; ml/min/1.73m2: Millilitre/minute/1.73 square meters of body surface area; ~: Approximately.
Collapse
Affiliation(s)
- Krishna C Keri
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Naga S Samji
- Internal Medicine Department, Primary Care, Bellin Health, Marinette, WI, USA
| | - Samuel Blumenthal
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
94
|
Navarro-González JF, Sánchez-Niño MD, Donate-Correa J, Martín-Núñez E, Ferri C, Pérez-Delgado N, Górriz JL, Martínez-Castelao A, Ortiz A, Mora-Fernández C. Effects of Pentoxifylline on Soluble Klotho Concentrations and Renal Tubular Cell Expression in Diabetic Kidney Disease. Diabetes Care 2018; 41:1817-1820. [PMID: 29866645 DOI: 10.2337/dc18-0078] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/04/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The effect of pentoxifylline on Klotho levels in patients with type 2 diabetes mellitus with chronic kidney disease (CKD) was assessed in a post hoc analysis of the Pentoxifylline for Renoprotection in Diabetic Nephropathy (PREDIAN) trial. RESEARCH DESIGN AND METHODS Circulating and urinary tumor necrosis factor-α (TNF-α) and Klotho were measured before and after 1 year of pentoxifylline. The effect on Klotho expression was assessed in cultured renal tubular cells. RESULTS Pentoxifylline administration resulted in decreased serum and urinary TNF-α, whereas serum and urinary Klotho increased significantly. Changes in urinary Klotho, urinary TNF-α, and phosphorus were associated with changes in serum Klotho; changes in estimated glomerular filtration rate, urinary TNF-α, and albuminuria were related to urinary Klotho variation. In renal tubular cells, pentoxifylline prevented the decrease in Klotho expression induced by inflammatory cytokines or albumin. CONCLUSIONS Pentoxifylline increased Klotho levels in patients with diabetes with stage 3-4 CKD and prevented reduced Klotho expression in vitro. This beneficial effect may be related to anti-inflammatory and antialbuminuric activity.
Collapse
Affiliation(s)
- Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain .,Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética) y REDINREN (Red de Investigación Renal), Madrid, Spain
| | - María Dolores Sánchez-Niño
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética) y REDINREN (Red de Investigación Renal), Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma de Madrid y Fundación Renal Iñigo Álvarez de Toledo-Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | - Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética) y REDINREN (Red de Investigación Renal), Madrid, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Nayra Pérez-Delgado
- Servicio de Análisis Clínico, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - José Luis Górriz
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética) y REDINREN (Red de Investigación Renal), Madrid, Spain.,Hospital Clínico Universitario de Valencia, INCLIVA, Universitat de Valencia, Valencia, Spain
| | - Alberto Martínez-Castelao
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética) y REDINREN (Red de Investigación Renal), Madrid, Spain.,Hospital Universitario de Bellvitge, IDIBELL, Barcelona, Spain
| | - Alberto Ortiz
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética) y REDINREN (Red de Investigación Renal), Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma de Madrid y Fundación Renal Iñigo Álvarez de Toledo-Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| |
Collapse
|
95
|
Allinovi M, De Chiara L, Angelotti ML, Becherucci F, Romagnani P. Anti-fibrotic treatments: A review of clinical evidence. Matrix Biol 2018; 68-69:333-354. [DOI: 10.1016/j.matbio.2018.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
96
|
Abstract
Diabetic nephropathy (DN) is currently the leading cause of end-stage renal disease globally. Given the increasing incidence of diabetes, many experts hold the view that DN will eventually progress toward pandemic proportions. Whilst hyperglycaemia-induced vascular dysfunction is the primary initiating mechanism in DN, its progression is also driven by a heterogeneous set of pathological mechanisms, including oxidative stress, inflammation and fibrosis. Current treatment strategies for DN are targeted against the fundamental dysregulation of glycaemia and hypertension. Unfortunately, these standards of care can delay but do not prevent disease progression or the significant emotional, physical and financial costs associated with this disease. As such, there is a pressing need to develop novel therapeutics that are both effective and safe. Set against the genomic era, numerous potential target pathways in DN have been identified. However, the clinical translation of basic DN research has been met with a number of challenges. Moreover, the notion of DN as a purely vascular disease is outdated and it has become clear that DN is a multi-dimensional, multi-cellular condition. The review will highlight the current therapeutic approaches for DN and provide an insight into how the inherent complexity of DN is shaping the research pathways toward the development and clinical translation of novel therapeutic strategies.
Collapse
|
97
|
Vanholder R, Van Laecke S, Glorieux G, Verbeke F, Castillo-Rodriguez E, Ortiz A. Deleting Death and Dialysis: Conservative Care of Cardio-Vascular Risk and Kidney Function Loss in Chronic Kidney Disease (CKD). Toxins (Basel) 2018; 10:E237. [PMID: 29895722 PMCID: PMC6024824 DOI: 10.3390/toxins10060237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
The uremic syndrome, which is the clinical expression of chronic kidney disease (CKD), is a complex amalgam of accelerated aging and organ dysfunctions, whereby cardio-vascular disease plays a capital role. In this narrative review, we offer a summary of the current conservative (medical) treatment options for cardio-vascular and overall morbidity and mortality risk in CKD. Since the progression of CKD is also associated with a higher cardio-vascular risk, we summarize the interventions that may prevent the progression of CKD as well. We pay attention to established therapies, as well as to novel promising options. Approaches that have been considered are not limited to pharmacological approaches but take into account lifestyle measures and diet as well. We took as many randomized controlled hard endpoint outcome trials as possible into account, although observational studies and post hoc analyses were included where appropriate. We also considered health economic aspects. Based on this information, we constructed comprehensive tables summarizing the available therapeutic options and the number and kind of studies (controlled or not, contradictory outcomes or not) with regard to each approach. Our review underscores the scarcity of well-designed large controlled trials in CKD. Nevertheless, based on the controlled and observational data, a therapeutic algorithm can be developed for this complex and multifactorial condition. It is likely that interventions should be aimed at targeting several modifiable factors simultaneously.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Steven Van Laecke
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Francis Verbeke
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain.
| |
Collapse
|
98
|
Panchapakesan U, Pollock C. Drug repurposing in kidney disease. Kidney Int 2018; 94:40-48. [PMID: 29628139 DOI: 10.1016/j.kint.2017.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Drug repurposing, is the re-tasking of known medications for new clinical indications. Advantages, compared to de novo drug development, include reduced cost and time to market plus the added benefit of a known pharmacokinetic and safety profiles. Suitable drug candidates are identified through serendipitous observations, data mining, or increased understanding of disease mechanisms. This review highlights drugs suited for repurposing in kidney disease. The main cause of mortality in patients with chronic kidney disease is cardiovascular disease. Hence, we have included CV endpoints for the drugs. This review begins with candidates in acute kidney injury: vasodilators levosimendan and vitamin D, followed by candidates in CKD, with particular focus on diabetic kidney disease, autosomal dominant polycystic kidney disease, and focal segmental glomerulosclerosis. Examples include glucose-lowering drugs (sodium glucose co-transporter 2 inhibitors, glucagon-like peptide 1 agonists, and metformin), which have mechanistic potential for cardiac and/or renal protection beyond glucose lowering, with broader applicability to the nondiabetic population; xanthine oxidase inhibitors (allopurinol, febuxostat), selective endothelin receptor A antagonist (atrasentan), Janus kinase inhibitor (baricitinib), selective costimulation modulator (abatacept), pentoxyfylline, and the DNA demethylating agent/vasodilator (hydralazine).
Collapse
Affiliation(s)
- Usha Panchapakesan
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, New South Wales 2065, Australia.
| | - Carol Pollock
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, New South Wales 2065, Australia
| |
Collapse
|
99
|
Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc 2018; 117:662-675. [PMID: 29486908 DOI: 10.1016/j.jfma.2018.02.007] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of morbidity and mortality in patients with diabetes mellitus and the leading cause of end-stage renal disease in the world. The most characteristic marker of DKD is albuminuria, which is associated with renal disease progression and cardiovascular events. Renal hemodynamics changes, oxidative stress, inflammation, hypoxia and overactive renin-angiotensin-aldosterone system (RAAS) are involved in the pathogenesis of DKD, and renal fibrosis plays the key role. Intensified multifactorial interventions, including RAAS blockades, blood pressure and glucose control, and quitting smoking, help to prevent DKD development and progression. In recent years, novel agents are applied for preventing DKD development and progression, including new types of glucose-lowering agents, pentoxifylline, vitamin D analog paricalcitol, pyridoxamine, ruboxistaurin, soludexide, Janus kinase inhibitors and nonsteroidal minerocorticoid receptor antagonists. In this review, recent large studies about DKD are also summarized.
Collapse
|
100
|
Alicic RZ, Johnson EJ, Tuttle KR. Inflammatory Mechanisms as New Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:181-191. [PMID: 29580582 DOI: 10.1053/j.ackd.2017.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of CKD and end-stage kidney disease (ESKD) worldwide. Approximately 30-40% of people with diabetes develop this microvascular complication, placing them at high risk of losing kidney function as well as of cardiovascular events, infections, and death. Current therapies are ineffective for arresting kidney disease progression and mitigating risks of comorbidities and death among patients with DKD. As the global count of people with diabetes will soon exceed 400 million, the need for effective and safe treatment options for complications such as DKD becomes ever more urgent. Recently, the understanding of DKD pathogenesis has evolved to recognize inflammation as a major underlying mechanism of kidney damage. In turn, inflammatory mediators have emerged as potential biomarkers and therapeutic targets for DKD. Phase 2 clinical trials testing inhibitors of monocyte-chemotactic protein-1 chemokine C-C motif-ligand 2 and the Janus kinase/signal transducer and activator of transcription pathway, in particular, have produced promising results.
Collapse
|