51
|
Li J, Liang Y, Fan J, Xu C, Guan B, Zhang J, Guo B, Shi Y, Wang P, Tan Y, Zhang Q, Yuan C, Wu Y, Zhou L, Ci W, Li X. DNA methylation subtypes guiding prognostic assessment and linking to responses the DNA methyltransferase inhibitor SGI-110 in urothelial carcinoma. BMC Med 2022; 20:222. [PMID: 35843958 PMCID: PMC9290251 DOI: 10.1186/s12916-022-02426-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND At present, the extent and clinical relevance of epigenetic differences between upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) remain largely unknown. Here, we conducted a study to describe the global DNA methylation landscape of UTUC and UCB and to address the prognostic value of DNA methylation subtype and responses to the DNA methyltransferase inhibitor SGI-110 in urothelial carcinoma (UC). METHODS Using whole-genome bisulfite sequencing (n = 49 samples), we analyzed epigenomic features and profiles of UTUC (n = 36) and UCB (n = 9). Next, we characterized potential links between DNA methylation, gene expression (n = 9 samples), and clinical outcomes. Then, we integrated an independent UTUC cohort (Fujii et al., n = 86) and UCB cohort (TCGA, n = 411) to validate the prognostic significance. Furthermore, we performed an integrative analysis of genome-wide DNA methylation and gene expression in two UC cell lines following transient DNA methyltransferase inhibitor SGI-110 treatment to identify potential epigenetic driver events that contribute to drug efficacy. RESULTS We showed that UTUC and UCB have very similar DNA methylation profiles. Unsupervised DNA methylation classification identified two epi-clusters, Methy-High and Methy-Low, associated with distinct muscle-invasive statuses and patient outcomes. Methy-High samples were hypermethylated, immune-infiltrated, and enriched for exhausted T cells, with poor clinical outcome. SGI-110 inhibited the migration and invasion of Methy-High UC cell lines (UMUC-3 and T24) by upregulating multiple antitumor immune pathways. CONCLUSIONS DNA methylation subtypes pave the way for predicting patient prognosis in UC. Our results provide mechanistic rationale for evaluating SGI-110 in treating UC patients in the clinic.
Collapse
Affiliation(s)
- Juan Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jian Fan
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Bin Guo
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Ping Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yezhen Tan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changwei Yuan
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Yucai Wu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
- Institute of Urology, Peking University, Beijing, 100034, China.
- National Urological Cancer Center, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
- Institute of Urology, Peking University, Beijing, 100034, China.
- National Urological Cancer Center, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China.
| |
Collapse
|
52
|
Chiappinelli KB, Baylin SB. Inhibiting DNA methylation improves antitumor immunity in ovarian cancer. J Clin Invest 2022; 132:160186. [PMID: 35838045 PMCID: PMC9282922 DOI: 10.1172/jci160186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer cells resist the immune response in a process known as immune editing or immune evasion. Therapies that target the immune system have revolutionized cancer treatment; however, immunotherapies have been ineffective for the majority of ovarian cancer cases. In this issue of the JCI, Chen, Xie, et al. hypothesized that hypomethylating agent (HMA) treatment would induce antitumor immunity to sensitize patients with ovarian cancer to anti-PD-1 immunotherapy. The authors performed a phase II clinical trial to test the combination of guadecitabine, a second-generation HMA, along with pembrolizumab, an immune checkpoint inhibitor of PD-1. The trial included a group of 35 patients with platinum-resistant ovarian cancer. While the clinical benefit from the combined HMA plus immune checkpoint blockade regimen was lower than hoped, the correlate analyses gave important information about which patients with ovarian cancer may be more likely to respond to immune therapy.
Collapse
Affiliation(s)
- Katherine B Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine and.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Stephen B Baylin
- Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA.,Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
53
|
Kogan AA, Topper MJ, Dellomo AJ, Stojanovic L, McLaughlin LJ, Creed TM, Eberly CL, Kingsbury TJ, Baer MR, Kessler MD, Baylin SB, Rassool FV. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2123227119. [PMID: 35759659 PMCID: PMC9271208 DOI: 10.1073/pnas.2123227119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers.
Collapse
Affiliation(s)
- Aksinija A. Kogan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael J. Topper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Anna J. Dellomo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lora Stojanovic
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lena J. McLaughlin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - T. Michael Creed
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Christian L. Eberly
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tami J. Kingsbury
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Maria R. Baer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael D. Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Stephen B. Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Feyruz V. Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
54
|
Upadhyay P, Beales J, Shah NM, Gruszczynska A, Miller CA, Petti AA, Ramakrishnan SM, Link DC, Ley TJ, Welch JS. Recurrent transcriptional responses in AML and MDS patients treated with decitabine. Exp Hematol 2022; 111:50-65. [PMID: 35429619 PMCID: PMC9833843 DOI: 10.1016/j.exphem.2022.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/21/2023]
Abstract
The molecular events responsible for decitabine responses in myelodysplastic syndrome and acute myeloid leukemia patients are poorly understood. Decitabine has a short serum half-life and limited stability in tissue culture. Therefore, theoretical pharmacologic differences may exist between patient molecular changes in vitro and the consequences of in vivo treatment. To systematically identify the global genomic and transcriptomic alterations induced by decitabine in vivo, we evaluated primary bone marrow samples that were collected during patient treatment and applied whole-genome bisulfite sequencing, RNA-sequencing, and single-cell RNA sequencing. Decitabine induced global, reversible hypomethylation after 10 days of therapy in all patients, which was associated with induction of interferon-induced pathways, the expression of endogenous retroviral elements, and inhibition of erythroid-related transcripts, recapitulating many effects seen previously in in vitro studies. However, at relapse after decitabine treatment, interferon-induced transcripts remained elevated relative to day 0, but erythroid-related transcripts now were more highly expressed than at day 0. Clinical responses were not correlated with epigenetic or transcriptional signatures, although sample size and interpatient variance restricted the statistical power required for capturing smaller effects. Collectively, these data define global hypomethylation by decitabine and find that erythroid-related pathways may be relevant because they are inhibited by therapy and reverse at relapse.
Collapse
Affiliation(s)
- Pawan Upadhyay
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeremy Beales
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Nakul M. Shah
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Agata Gruszczynska
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Christopher A. Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Allegra A. Petti
- Department of Neuro-logical Surgery, Washington University School of Medicine, St. Louis, MO
| | - Sai Mukund Ramakrishnan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John S. Welch
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
55
|
Solomon PE, Kirkemo LL, Wilson GM, Leung KK, Almond MH, Sayles LC, Sweet-Cordero EA, Rosenberg OS, Coon JJ, Wells JA. Discovery Proteomics Analysis Determines That Driver Oncogenes Suppress Antiviral Defense Pathways Through Reduction in Interferon-β Autocrine Stimulation. Mol Cell Proteomics 2022; 21:100247. [PMID: 35594991 PMCID: PMC9212846 DOI: 10.1016/j.mcpro.2022.100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Since the discovery of oncogenes, there has been tremendous interest to understand their mechanistic basis and to develop broadly actionable therapeutics. Some of the most frequently activated oncogenes driving diverse cancers are c-MYC, EGFR, HER2, AKT, KRAS, BRAF, and MEK. Using a reductionist approach, we explored how cellular proteomes are remodeled in isogenic cell lines engineered with or without these driver oncogenes. The most striking discovery for all oncogenic models was the systematic downregulation of scores of antiviral proteins regulated by type 1 interferon. These findings extended to cancer cell lines and patient-derived xenograft models of highly refractory pancreatic cancer and osteosarcoma driven by KRAS and MYC oncogenes. The oncogenes reduced basal expression of and autocrine stimulation by type 1 interferon causing remarkable convergence on common phenotypic and functional profiles. In particular, there was dramatically lower expression of dsRNA sensors including DDX58 (RIG-I) and OAS proteins, which resulted in attenuated functional responses when the oncogenic cells were treated with the dsRNA mimetic, polyI:C, and increased susceptibility to infection with an RNA virus shown using SARS-CoV-2. Our reductionist approach provides molecular and functional insights connected to immune evasion hallmarks in cancers and suggests therapeutic opportunities.
Collapse
Affiliation(s)
- Paige E Solomon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Mark H Almond
- Division of Infectious Diseases, Department of Medicine, UCSF Medical Center, University of California, San Francisco, California, USA
| | - Leanne C Sayles
- Department of Pediatrics, University of California San Francisco, California, USA
| | | | - Oren S Rosenberg
- Division of Infectious Diseases, Department of Medicine, UCSF Medical Center, University of California, San Francisco, California, USA; Department of Biophysics and Biochemistry, Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
56
|
Analyzing the Systems Biology Effects of COVID-19 mRNA Vaccines to Assess Their Safety and Putative Side Effects. Pathogens 2022; 11:pathogens11070743. [PMID: 35889989 PMCID: PMC9320269 DOI: 10.3390/pathogens11070743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
COVID-19 vaccines have been instrumental tools in reducing the impact of SARS-CoV-2 infections around the world by preventing 80% to 90% of hospitalizations and deaths from reinfection, in addition to preventing 40% to 65% of symptomatic illnesses. However, the simultaneous large-scale vaccination of the global population will indubitably unveil heterogeneity in immune responses as well as in the propensity to developing post-vaccine adverse events, especially in vulnerable individuals. Herein, we applied a systems biology workflow, integrating vaccine transcriptional signatures with chemogenomics, to study the pharmacological effects of mRNA vaccines. First, we derived transcriptional signatures and predicted their biological effects using pathway enrichment and network approaches. Second, we queried the Connectivity Map (CMap) to prioritize adverse events hypotheses. Finally, we accepted higher-confidence hypotheses that have been predicted by independent approaches. Our results reveal that the mRNA-based BNT162b2 vaccine affects immune response pathways related to interferon and cytokine signaling, which should lead to vaccine success, but may also result in some adverse events. Our results emphasize the effects of BNT162b2 on calcium homeostasis, which could be contributing to some frequently encountered adverse events related to mRNA vaccines. Notably, cardiac side effects were signaled in the CMap query results. In summary, our approach has identified mechanisms underlying both the expected protective effects of vaccination as well as possible post-vaccine adverse effects. Our study illustrates the power of systems biology approaches in improving our understanding of the comprehensive biological response to vaccination against COVID-19.
Collapse
|
57
|
Govindarajan V, Shah AH, Di L, Rivas S, Suter RK, Eichberg DG, Luther E, Lu V, Morell AA, Ivan ME, Komotar RJ, Ayad N, De La Fuente M. Systematic Review of Epigenetic Therapies for Treatment of IDH-mutant Glioma. World Neurosurg 2022; 162:47-56. [PMID: 35314408 PMCID: PMC9177782 DOI: 10.1016/j.wneu.2022.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) mutations are present in 70% of World Health Organization grade II and III gliomas. IDH mutation induces accumulation of the oncometabolite 2-hydroxyglutarate. Therefore, therapies targeting reversal of epigenetic dysregulation in gliomas have been suggested. However, the utility of epigenetic treatments in gliomas remains unclear. Here, we present the first clinical systematic review of epigenetic therapies in treatment of IDH-mutant gliomas and highlight their safety and efficacy. METHODS We conducted a systematic search of electronic databases from 2000 to January 2021 following PRISMA guidelines. Articles were screened to include clinical usage of epigenetic therapies in case reports, prospective case series, or clinical trials. Primary and secondary outcomes included safety/tolerability of epigenetic therapies and progression-free survival/overall survival, respectively. RESULTS A total of 133 patients across 8 clinical studies were included in our analysis. IDH inhibitors appear to have the best safety profile, with an overall grade 3/grade 4 adverse event rate of 9%. Response rates to IDH-mutant inhibitors were highest in nonenhancing gliomas (stable disease achieved in 55% of patients). In contrast, histone deacetylase inhibitors demonstrate a lower safety profile with single-study adverse events as high as 28%. CONCLUSION IDH inhibitors appear promising given their benign toxicity profile and ease of monitoring. Histone deacetylase inhibitors appear to have a narrow therapeutic index, as lower concentrations do not appear effective, while increased doses can produce severe immunosuppressive effects. Preliminary data suggest that epigenetic therapies are generally well tolerated and may control disease in certain patient groups, such as those with nonenhancing lesions.
Collapse
Affiliation(s)
- Vaidya Govindarajan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Long Di
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sarah Rivas
- Surgical Neurology Branch, National Institute of Health, Bethesda, Maryland, USA
| | - Robert K Suter
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Daniel G Eichberg
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Evan Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Victor Lu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexis A Morell
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nagi Ayad
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Macarena De La Fuente
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
58
|
Liu YC, Kwon J, Fabiani E, Xiao Z, Liu YV, Follo MY, Liu J, Huang H, Gao C, Liu J, Falconi G, Valentini L, Gurnari C, Finelli C, Cocco L, Liu JH, Jones AI, Yang J, Yang H, Thoms JAI, Unnikrishnan A, Pimanda JE, Pan R, Bassal MA, Voso MT, Tenen DG, Chai L. Demethylation and Up-Regulation of an Oncogene after Hypomethylating Therapy. N Engl J Med 2022; 386:1998-2010. [PMID: 35613022 PMCID: PMC9514878 DOI: 10.1056/nejmoa2119771] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although hypomethylating agents are currently used to treat patients with cancer, whether they can also reactivate and up-regulate oncogenes is not well elucidated. METHODS We examined the effect of hypomethylating agents on SALL4, a known oncogene that plays an important role in myelodysplastic syndrome and other cancers. Paired bone marrow samples that were obtained from two cohorts of patients with myelodysplastic syndrome before and after treatment with a hypomethylating agent were used to explore the relationships among changes in SALL4 expression, treatment response, and clinical outcome. Leukemic cell lines with low or undetectable SALL4 expression were used to study the relationship between SALL4 methylation and expression. A locus-specific demethylation technology, CRISPR-DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that is critical for SALL4 expression. RESULTS SALL4 up-regulation after treatment with hypomethylating agents was observed in 10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and was associated with a worse outcome. Using CRISPR-DiR, we discovered that demethylation of a CpG island within the 5' untranslated region was critical for SALL4 expression. In cell lines and patients, we confirmed that treatment with a hypomethylating agent led to demethylation of the same CpG region and up-regulation of SALL4 expression. CONCLUSIONS By combining analysis of patient samples with CRISPR-DiR technology, we found that demethylation and up-regulation of an oncogene after treatment with a hypomethylating agent can indeed occur and should be further studied. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).
Collapse
Affiliation(s)
- Yao-Chung Liu
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Junsu Kwon
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Emiliano Fabiani
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Zhijian Xiao
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Yanjing V Liu
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Matilde Y Follo
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Jinqin Liu
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Huijun Huang
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Chong Gao
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Jun Liu
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Giulia Falconi
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Lia Valentini
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Carmelo Gurnari
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Carlo Finelli
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Lucio Cocco
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Jin-Hwang Liu
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Adrianna I Jones
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Junyu Yang
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Henry Yang
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Julie A I Thoms
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Ashwin Unnikrishnan
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - John E Pimanda
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Rongqing Pan
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Mahmoud A Bassal
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Maria T Voso
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Daniel G Tenen
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| | - Li Chai
- From the Department of Pathology, Brigham and Women's Hospital (Y.-C.L., C. Gao, Jun Liu, J.Y., L. Chai), Harvard Stem Cell Institute, Harvard Medical School (A.I.J., M.A.B., D.G.T.), and the Department of Medical Oncology, Dana-Farber Cancer Institute (R.P.) - all in Boston; the Division of Hematology, Department of Medicine, Taipei Veterans General Hospital (Y.-C.L.), and the Faculty of Medicine and the Program in Molecular Medicine, Institute of Biopharmaceutical Sciences, School of Life Science, National Yang Ming Chiao Tung University (Y.-C.L., J.-H.L.) - both in Taipei, Taiwan; the Cancer Science Institute of Singapore, Singapore (J.K., Y.V.L., H.Y., M.A.B., D.G.T.); the Department of Biomedicine and Prevention, University of Rome Tor Vergata (E.F., G.F., L.V., C. Gurnari, M.T.V.), and UniCamillus-Saint Camillus International University of Health Sciences (E.F.), Rome, and Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna (M.Y.F., L. Cocco), and IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli" (C.F.), Bologna - all in Italy; the National Clinical Research Center for Blood Diseases and State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (Z.X., Jinqin Liu, H.H.); and the School of Medical Sciences and Lowy Cancer Research Centre (J.A.I.T., J.E.P.) and Prince of Wales Clinical School and Lowy Cancer Research Centre (A.U., J.E.P.), Faculty of Medicine, University of New South Wales, Sydney, and the Department of Hematology, Prince of Wales Hospital, Randwick, NSW (J.E.P.) - both in Australia
| |
Collapse
|
59
|
Bos MK, Deger T, Sleijfer S, Martens JWM, Wilting SM. ESR1 Methylation Measured in Cell-Free DNA to Evaluate Endocrine Resistance in Metastatic Breast Cancer Patients. Int J Mol Sci 2022; 23:5631. [PMID: 35628441 PMCID: PMC9142900 DOI: 10.3390/ijms23105631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
ESR1 methylation was proposed as mechanism for endocrine resistance in metastatic breast cancer patients. To evaluate its potential as a minimally invasive biomarker, we investigated the feasibility of measuring ESR1 methylation in cell-free DNA (cfDNA) and its association with endocrine resistance. First, we provided evidence that demethylation in vitro restores ER expression. Subsequently, we found that ESR1 methylation in cfDNA was not enriched in endocrine-resistant versus endocrine-sensitive patients. Interestingly, we found a correlation between ESR1 methylation and age. Publicly available data confirm an age-related increase in ESR1 methylation in leukocytes, confounding the determination of the ESR1 methylation status of tumors using cfDNA.
Collapse
Affiliation(s)
| | | | | | | | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.D.); (S.S.); (J.W.M.M.)
| |
Collapse
|
60
|
Huyghe N, Benidovskaya E, Stevens P, Van den Eynde M. Biomarkers of Response and Resistance to Immunotherapy in Microsatellite Stable Colorectal Cancer: Toward a New Personalized Medicine. Cancers (Basel) 2022; 14:2241. [PMID: 35565369 PMCID: PMC9105843 DOI: 10.3390/cancers14092241] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Immune Checkpoint Inhibitors (ICIs) are well recognized as a major immune treatment modality for multiple types of solid cancers. However, for colorectal cancer (CRC), ICIs are only approved for the treatment of Mismatch-Repair-Deficient and Microsatellite Instability-High (dMMR/MSI-H) tumors. For the vast majority of CRC, that are not dMMR/MSI-H, ICIs alone provide limited to no clinical benefit. This discrepancy of response between CRC and other solid cancers suggests that CRC may be inherently resistant to ICIs alone. In translational research, efforts are underway to thoroughly characterize the immune microenvironment of CRC to better understand the mechanisms behind this resistance and to find new biomarkers of response. In the clinic, trials are being set up to study biomarkers along with treatments targeting newly discovered immune checkpoint molecules or treatments combining ICIs with other existing therapies to improve response in MSS CRC. In this review, we will focus on the characteristics of response and resistance to ICIs in CRC, and discuss promising biomarkers studied in recent clinical trials combining ICIs with other therapies.
Collapse
Affiliation(s)
- Nicolas Huyghe
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Elena Benidovskaya
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Philippe Stevens
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Marc Van den Eynde
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
- Institut Roi Albert II, Department of Medical Oncology and Gastroenterology, Cliniques Universitaires St-Luc, 1200 Brussels, Belgium
| |
Collapse
|
61
|
Mi T, Jin L, Zhang Z, Wang J, Li M, Zhanghuang C, Tan X, Wang Z, Tian X, Xiang B, He D. DNA Hypermethylation-Regulated CX3CL1 Reducing T Cell Infiltration Indicates Poor Prognosis in Wilms Tumour. Front Oncol 2022; 12:882714. [PMID: 35530333 PMCID: PMC9072742 DOI: 10.3389/fonc.2022.882714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the role of chemokines in Wilms tumours, especially their chemotaxis to immune cells and the role of DNA methylation in regulating the expression level of chemokines. Methods RNAseqV2 gene expression and clinical data were downloaded from the TARGET database. DNA methylation data were downloaded from the GEO and cBioPortal database. The difference analysis and Kaplan-Meier(KM) analysis of chemokines were performed by edgeR package. Then predictive model based on chemokines was constructed by lasso regression and multivariate COX regression. ROC curve, DCA curve, Calibration curve, and Nomogram were used to evaluate the prognostic model. MCPcounter and Cibersort algorithm was used to calculate the infiltration of immune cells in Wilms tumour and para-tumour samples. Then the difference analysis of the immune cells was performed. The relationship between chemokines and immune cells were calculated by Pearson correlation. In addition, DNA methylation differences between Wilms tumour and para-tumour samples was performed. The correlation between DNA methylation and mRNA expression was calculated by Pearson correlation. Western blot(WB)and immunofluorescence were used to confirm the differential expression of CX3CL1 and T cells, and the correlation between them. Results A total of 16 chemokines were differentially expressed in tumour and para-tumour samples. A total of seven chemokines were associated with survival. CCL2 and CX3CL1 were positively correlated with prognosis, while high expression of CCL3, CCL8, CCL15, CCL18 and CXCL9 predicted poor prognosis. By lasso regression and multivariate COX regression, CCL3, CCL15, CXCL9 and CX3CL1 were finally included to construct a prediction model. The model shows good prediction ability. MCPcounter and Cibersort algorithm both showed that T cells were higher in para-tumour tissues than cancer tissues. Correlation analysis showed that CX3CL1 had a strong correlation with T cells. These were verified by Weston blot and immunofluorescence. DNA methylation analysis showed that various chemokines were different in para-tumours and tumours. CX3CL1 was hypermethylated in tumours, and the degree of methylation was negatively correlated with mRNA expression. Conclusion 1. There is low T cell infiltration in nephroblastoma. 2. Chemokines such as CX3CL1 indicate a favourable prognosis and positively correlate with the number of T cells. 3. chemokines such as CX3CL1 are negatively regulated by DNA hypermethylation.
Collapse
Affiliation(s)
- Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhaoxia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jinkui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mujie Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chenghao Zhanghuang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaojun Tan
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhang Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaomao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bin Xiang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dawei He
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
- *Correspondence: Dawei He,
| |
Collapse
|
62
|
Chen Y, Cai Q, Pan C, Liu W, Li L, Liu J, Gao M, Li X, Wang L, Rao Y, Yang H, Cheng G. CDK2 Inhibition Enhances Antitumor Immunity by Increasing IFN Response to Endogenous Retroviruses. Cancer Immunol Res 2022; 10:525-539. [PMID: 35181784 DOI: 10.1158/2326-6066.cir-21-0806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Inhibitors of cyclin-dependent kinase-2 (CDK2) are commonly used against several solid tumors, and their primary mechanisms of action were thought to include cell proliferation arrest, induction of cancer cell apoptosis and induction of differentiation. Here, we found that CDK2 inhibition by either small molecular inhibitors or genetic Cdk2 deficiency promoted antitumor immunity in murine models of fibrosarcoma and lung carcinoma. Mechanistically, CDK2 inhibition reduced phosphorylation of RB protein and transcription of E2F-mediated DNA methyltransferase 1 (DNMT1), which resulted in increased expression of endogenous retroviral RNA and type I IFN (IFN-I) response. The increased IFN-I response subsequently promoted antitumor immunity by enhancing tumor antigen presentation and CD8+ T-cell infiltration. Our studies provide evidence that inhibition of CDK2 in cancer cells suppresses tumor growth by enhancing antitumor immune responses in the tumor microenvironment, suggesting a new mechanism to enhance antitumor immunity by CDK2 inhibitors.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China.,Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Qiaomei Cai
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Chaohu Pan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China.,Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Wancheng Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Lili Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Junxiao Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Meiling Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Xiaorong Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Liguo Wang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, P.R. China
| | - Heng Yang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, P.R. China
| | - Genhong Cheng
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
63
|
Laurent A, Madigou T, Bizot M, Turpin M, Palierne G, Mahé E, Guimard S, Métivier R, Avner S, Le Péron C, Salbert G. TET2-mediated epigenetic reprogramming of breast cancer cells impairs lysosome biogenesis. Life Sci Alliance 2022; 5:5/7/e202101283. [PMID: 35351824 PMCID: PMC8963717 DOI: 10.26508/lsa.202101283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
TET2-mediated oxidation of 5-methylcytosine establishes an antiviral state and contributes to MYC-dependent down-regulation of genes involved in lysosome biogenesis and function in breast cancer cells. Methylation and demethylation of cytosines in DNA are believed to act as keystones of cell-specific gene expression by controlling the chromatin structure and accessibility to transcription factors. Cancer cells have their own transcriptional programs, and we sought to alter such a cancer-specific program by enforcing expression of the catalytic domain (CD) of the methylcytosine dioxygenase TET2 in breast cancer cells. The TET2 CD decreased the tumorigenic potential of cancer cells through both activation and repression of a repertoire of genes that, interestingly, differed in part from the one observed upon treatment with the hypomethylating agent decitabine. In addition to promoting the establishment of an antiviral state, TET2 activated 5mC turnover at thousands of MYC-binding motifs and down-regulated a panel of known MYC-repressed genes involved in lysosome biogenesis and function. Thus, an extensive cross-talk between TET2 and the oncogenic transcription factor MYC establishes a lysosomal storage disease–like state that contributes to an exacerbated sensitivity to autophagy inducers.
Collapse
Affiliation(s)
- Audrey Laurent
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Thierry Madigou
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Maud Bizot
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Marion Turpin
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gaëlle Palierne
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Elise Mahé
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Sarah Guimard
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Raphaël Métivier
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Stéphane Avner
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Christine Le Péron
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gilles Salbert
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| |
Collapse
|
64
|
Increasing Role of Targeted Immunotherapies in the Treatment of AML. Int J Mol Sci 2022; 23:ijms23063304. [PMID: 35328721 PMCID: PMC8953556 DOI: 10.3390/ijms23063304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The standard of care in medically and physically fit patients is intensive induction therapy. The majority of these intensively treated patients achieve a complete remission. However, a high number of these patients will experience relapse. In patients older than 60 years, the results are even worse. Therefore, new therapeutic approaches are desperately needed. One promising approach in high-risk leukemia to prevent relapse is the induction of the immune system simultaneously or after reduction of the initial tumor burden. Different immunotherapeutic approaches such as allogenic stem cell transplantation or donor lymphocyte infusions are already standard therapies, but other options for AML treatment are in the pipeline. Moreover, the therapeutic landscape in AML is rapidly changing, and in the last years, a number of immunogenic targets structures eligible for specific therapy, risk assessment or evaluation of disease course were determined. For example, leukemia-associated antigens (LAA) showed to be critical as biomarkers of disease state and survival, as well as markers of minimal residual disease (MRD). Yet many mechanisms and properties are still insufficiently understood, which also represents a great potential for this form of therapy. Therefore, targeted therapy as immunotherapy could turn into an efficient tool to clear residual disease, improve the outcome of AML patients and reduce the relapse risk. In this review, established but also emerging immunotherapeutic approaches for AML patients will be discussed.
Collapse
|
65
|
DiMarco AV, Maddalo D. In Vivo Modeling of Tumor Heterogeneity for Immuno-Oncology Studies: Failures, Improvements, and Hopes. Curr Protoc 2022; 2:e377. [PMID: 35255200 DOI: 10.1002/cpz1.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Murine tumor modeling is fundamental for the preclinical development of anti-cancer therapies. Use of immunocompetent mouse models is becoming increasingly relevant as we gain more knowledge of how cancer cells interact with the immune system in the tumor microenvironment and how we can harness the immune system to fight tumors. However, there are few intrinsically immunogenic preclinical tumor models, and the vast majority either do not respond to therapy or do not faithfully predict the responses of the therapy when applied in the clinic. Here, we discuss the limitations of commonly used murine tumor models in immuno-oncology and strategies to improve their immunogenicity and mutational burden to more accurately reflect the heterogeneity of patient tumors. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ashley V DiMarco
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
66
|
Liu Z, Ren Y, Weng S, Xu H, Li L, Han X. A New Trend in Cancer Treatment: The Combination of Epigenetics and Immunotherapy. Front Immunol 2022; 13:809761. [PMID: 35140720 PMCID: PMC8818678 DOI: 10.3389/fimmu.2022.809761] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy has become a hot spot in the treatment of tumors. As an emerging treatment, it solves many problems in traditional cancer treatment and has now become the main method for cancer treatment. Although immunotherapy is promising, most patients do not respond to treatment or develop resistance. Therefore, in order to achieve a better therapeutic effect, combination therapy has emerged. The combination of immune checkpoint inhibition and epigenetic therapy is one such strategy. In this review, we summarize the current understanding of the key mechanisms of how epigenetic mechanisms affect cancer immune responses and reveal the key role of epigenetic processes in regulating immune cell function and mediating anti-tumor immunity. In addition, we highlight the outlook of combined epigenetic and immune regimens, particularly the combination of immune checkpoint blockade with epigenetic agents, to address the limitations of immunotherapy alone.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Lifeng Li,
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Lifeng Li,
| |
Collapse
|
67
|
Brown LJ, Achinger-Kawecka J, Portman N, Clark S, Stirzaker C, Lim E. Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers (Basel) 2022; 14:474. [PMID: 35158742 PMCID: PMC8833457 DOI: 10.3390/cancers14030474] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic therapies remain a promising, but still not widely used, approach in the management of patients with cancer. To date, the efficacy and use of epigenetic therapies has been demonstrated primarily in the management of haematological malignancies, with limited supportive data in solid malignancies. The most studied epigenetic therapies in breast cancer are those that target DNA methylation and histone modification; however, none have been approved for routine clinical use. The majority of pre-clinical and clinical studies have focused on triple negative breast cancer (TNBC) and hormone-receptor positive breast cancer. Even though the use of epigenetic therapies alone in the treatment of breast cancer has not shown significant clinical benefit, these therapies show most promise in use in combinations with other treatments. With improving technologies available to study the epigenetic landscape in cancer, novel epigenetic alterations are increasingly being identified as potential biomarkers of response to conventional and epigenetic therapies. In this review, we describe epigenetic targets and potential epigenetic biomarkers in breast cancer, with a focus on clinical trials of epigenetic therapies. We describe alterations to the epigenetic landscape in breast cancer and in treatment resistance, highlighting mechanisms and potential targets for epigenetic therapies. We provide an updated review on epigenetic therapies in the pre-clinical and clinical setting in breast cancer, with a focus on potential real-world applications. Finally, we report on the potential value of epigenetic biomarkers in diagnosis, prognosis and prediction of response to therapy, to guide and inform the clinical management of breast cancer patients.
Collapse
Affiliation(s)
- Lauren Julia Brown
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Susan Clark
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
68
|
Xu J, Wei L, Liu H, Lei Y, Zhu Y, Liang C, Sun G. CD274 (PD-L1) Methylation is an Independent Predictor for Bladder Cancer Patients' Survival. Cancer Invest 2022; 40:228-233. [PMID: 35020560 DOI: 10.1080/07357907.2022.2028805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study was carried out to demonstrate the prognostic value of CD274 (PD-L1 promoter gene) methylation in bladder cancer patients. UCSC Xena database was searched for relevant information of PD-L1 (CD274) methylation and PD-L1 mRNA expression in bladder cancer. 407 bladder patients were included in our analyses. Multivariate analysis revealed that PD-L1 methylation was an independent predictor for OS (P = 0.037). Moreover, PD-L1 methylation might be a prognostic biomarker for immunotherapy response. However, PD-L1 methylation and PD-L1 mRNA expression were not statistically associated with chemotherapy response. In conclusion, PD-L1 methylation was an independent prognostic factor for bladder cancer patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Laiming Wei
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, Anhui Province, China
| | - Hao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chaozhao Liang
- Department of Urology, the Geriatric Research Institute, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
69
|
Kuang C, Park Y, Augustin RC, Lin Y, Hartman DJ, Seigh L, Pai RK, Sun W, Bahary N, Ohr J, Rhee JC, Marks SM, Beasley HS, Shuai Y, Herman JG, Zarour HM, Chu E, Lee JJ, Krishnamurthy A. Pembrolizumab plus azacitidine in patients with chemotherapy refractory metastatic colorectal cancer: a single-arm phase 2 trial and correlative biomarker analysis. Clin Epigenetics 2022; 14:3. [PMID: 34991708 PMCID: PMC8740438 DOI: 10.1186/s13148-021-01226-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND DNA mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) is not responsive to pembrolizumab monotherapy. DNA methyltransferase inhibitors can promote antitumor immune responses. This clinical trial investigated whether concurrent treatment with azacitidine enhances the antitumor activity of pembrolizumab in mCRC. METHODS We conducted a phase 2 single-arm trial evaluating activity and tolerability of pembrolizumab plus azacitidine in patients with chemotherapy-refractory mCRC (NCT02260440). Patients received pembrolizumab 200 mg IV on day 1 and azacitidine 100 mg SQ on days 1-5, every 3 weeks. A low fixed dose of azacitidine was chosen in order to reduce the possibility of a direct cytotoxic effect of the drug, since the main focus of this study was to investigate its potential immunomodulatory effect. The primary endpoint of this study was overall response rate (ORR) using RECIST v1.1., and secondary endpoints were progression-free survival (PFS) and overall survival (OS). Tumor tissue was collected pre- and on-treatment for correlative studies. RESULTS Thirty chemotherapy-refractory patients received a median of three cycles of therapy. One patient achieved partial response (PR), and one patient had stable disease (SD) as best confirmed response. The ORR was 3%, median PFS was 1.9 months, and median OS was 6.3 months. The combination regimen was well-tolerated, and 96% of treatment-related adverse events (TRAEs) were grade 1/2. This trial was terminated prior to the accrual target of 40 patients due to lack of clinical efficacy. DNA methylation on-treatment as compared to pre-treatment decreased genome wide in 10 of 15 patients with paired biopsies and was significantly lower in gene promoter regions after treatment. These promoter demethylated genes represented a higher proportion of upregulated genes, including several immune gene sets, endogenous retroviral elements, and cancer-testis antigens. CD8+ TIL density trended higher on-treatment compared to pre-treatment. Higher CD8+ TIL density at baseline was associated with greater likelihood of benefit from treatment. On-treatment tumor demethylation correlated with the increases in tumor CD8+ TIL density. CONCLUSIONS The combination of pembrolizumab and azacitidine is safe and tolerable with modest clinical activity in the treatment for chemotherapy-refractory mCRC. Correlative studies suggest that tumor DNA demethylation and immunomodulation occurs. An association between tumor DNA demethylation and tumor-immune modulation suggests immune modulation and may result from treatment with azacitidine. Trial registration ClinicalTrials.gov, NCT02260440. Registered 9 October 2014, https://clinicaltrials.gov/ct2/show/NCT02260440 .
Collapse
Affiliation(s)
- Chaoyuan Kuang
- UPMC Hillman Cancer Center, Pittsburgh, USA.
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA.
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA.
- Albert Einstein Cancer Center, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 628, Bronx, NY, 10461, USA.
| | - Yongseok Park
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Ryan C Augustin
- Division of General Internal Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Yan Lin
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Douglas J Hartman
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Lindsey Seigh
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Reetesh K Pai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Weijing Sun
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
- University of Kansas Cancer Center, Westwood, USA
| | - Nathan Bahary
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
- AHN Cancer Institute, Pittsburgh, USA
| | - James Ohr
- UPMC Hillman Cancer Center, Pittsburgh, USA
| | | | | | | | | | - James G Herman
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Epidemiology and Prevention Program, Pittsburgh, USA
| | - Hassane M Zarour
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Immunology and Immunotherapy Program, Pittsburgh, USA
| | - Edward Chu
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
- Albert Einstein Cancer Center, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 628, Bronx, NY, 10461, USA
| | - James J Lee
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
| | - Anuradha Krishnamurthy
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
| |
Collapse
|
70
|
Kawakubo K, Castillo CFD, Liss AS. Epigenetic regulation of pancreatic adenocarcinoma in the era of cancer immunotherapy. J Gastroenterol 2022; 57:819-826. [PMID: 36048239 PMCID: PMC9596544 DOI: 10.1007/s00535-022-01915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic adenocarcinoma is a lethal cancer with poor response to chemotherapy and immune checkpoint inhibitors. Recent studies suggest that epigenetic alterations contribute to its aggressive biology and the tumor microenvironment which render it unresponsive to immune checkpoint blockade. Here, we review our current understandings of epigenetic dysregulation in pancreatic adenocarcinoma, its effect on the tumor immune microenvironment, and the potential for epigenetic therapy to be combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kazumichi Kawakubo
- grid.39158.360000 0001 2173 7691Department of Gastroenterology and Hepatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan ,grid.38142.3c000000041936754XDepartment of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Carlos Fernandez-del Castillo
- grid.38142.3c000000041936754XDepartment of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Andrew Scott Liss
- grid.38142.3c000000041936754XDepartment of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
71
|
Betlej G, Lewińska A, Adamczyk-Grochala J, Błoniarz D, Rzeszutek I, Wnuk M. Deficiency of TRDMT1 impairs exogenous RNA-based response and promotes retrotransposon activity during long-term culture of osteosarcoma cells. Toxicol In Vitro 2022; 80:105323. [DOI: 10.1016/j.tiv.2022.105323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
|
72
|
The Role of DNA Methylation and DNA Methyltransferases in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:317-348. [DOI: 10.1007/978-3-031-11454-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
A Randomized Phase 2 Trial of Azacitidine ± Durvalumab as First-line Therapy for Higher-Risk Myelodysplastic Syndromes. Blood Adv 2021; 6:2207-2218. [PMID: 34972214 PMCID: PMC9006291 DOI: 10.1182/bloodadvances.2021005487] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
This is the first reported randomized trial of immune checkpoint inhibitor therapy in HR-MDS. Azacitidine combined with the PD-L1 inhibitor durvalumab was feasible but did not improve outcomes over azacitidine alone.
Azacitidine-mediated hypomethylation promotes tumor cell immune recognition but may increase the expression of inhibitory immune checkpoint molecules. We conducted the first randomized phase 2 study of azacitidine plus the immune checkpoint inhibitor durvalumab vs azacitidine monotherapy as first-line treatment for higher-risk myelodysplastic syndromes (HR-MDS). In all, 84 patients received 75 mg/m2 subcutaneous azacitidine (days 1-7 every 4 weeks) combined with 1500 mg intravenous durvalumab on day 1 every 4 weeks (Arm A) for at least 6 cycles or 75 mg/m² subcutaneous azacitidine alone (days 1-7 every 4 weeks) for at least 6 cycles (Arm B). After a median follow-up of 15.25 months, 8 patients in Arm A and 6 in Arm B remained on treatment. Patients in Arm A received a median of 7.9 treatment cycles and those in Arm B received a median of 7.0 treatment cycles with 73.7% and 65.9%, respectively, completing ≥4 cycles. The overall response rate (primary end point) was 61.9% in Arm A (26 of 42) and 47.6% in Arm B (20 of 42; P = .18), and median overall survival was 11.6 months (95% confidence interval, 9.5 months to not evaluable) vs 16.7 months (95% confidence interval, 9.8-23.5 months; P = .74). Durvalumab-related adverse events (AEs) were reported by 71.1% of patients; azacitidine-related AEs were reported by 82% (Arm A) and 81% (Arm B). Grade 3 or 4 hematologic AEs were reported in 89.5% (Arm A) vs 68.3% (Arm B) of patients. Patients with TP53 mutations tended to have a worse response than patients without these mutations. Azacitidine increased programmed cell death ligand 1 (PD-L1 [CD274]) surface expression on bone marrow granulocytes and monocytes, but not blasts, in both arms. In summary, combining azacitidine with durvalumab in patients with HR-MDS was feasible but with more toxicities and without significant improvement in clinical outcomes over azacitidine alone. This trial was registered at www.clinicaltrials.gov as #NCT02775903.
Collapse
|
74
|
HDAC Inhibition to Prime Immune Checkpoint Inhibitors. Cancers (Basel) 2021; 14:cancers14010066. [PMID: 35008230 PMCID: PMC8750966 DOI: 10.3390/cancers14010066] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has made a breakthrough in medical oncology with the approval of several immune checkpoint inhibitors in clinical routine, improving overall survival of advanced cancer patients with refractory disease. However only a minority of patients experience a durable response with these agents, which has led to the development of combination strategies and novel immunotherapy drugs to further counteract tumor immune escape. Epigenetic regulations can be altered in oncogenesis, favoring tumor progression. The development of epidrugs has allowed targeting successfully these altered epigenetic patterns in lymphoma and leukemia patients. It has been recently shown that epigenetic alterations can also play a key role in tumor immune escape. Epidrugs, like HDAC inhibitors, can prime the anti-tumor immune response, therefore constituting interesting partners to develop combination strategies with immunotherapy agents. In this review, we will discuss epigenetic regulations involved in oncogenesis and immune escape and describe the clinical development of combining HDAC inhibitors with immunotherapies.
Collapse
|
75
|
Azacitidine and Durvalumab in First-line Treatment of Elderly Patients With Acute Myeloid Leukemia. Blood Adv 2021; 6:2219-2229. [PMID: 34933333 PMCID: PMC9006260 DOI: 10.1182/bloodadvances.2021006138] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
This is the first reported randomized trial of immune checkpoint inhibitor therapy in older patients with AML. Azacitidine combined with the PD-L1 inhibitor durvalumab was feasible but did not improve outcomes over azacitidine alone.
Evidence suggests that combining immunotherapy with hypomethylating agents may enhance antitumor activity. This phase 2 study investigated the activity and safety of durvalumab, a programmed death-ligand 1 (PD-L1) inhibitor, combined with azacitidine for patients aged ≥65 years with acute myeloid leukemia (AML), including analyses to identify biomarkers of treatment response. Patients were randomized to first-line therapy with azacitidine 75 mg/m2 on days 1 through 7 with (Arm A, n = 64) or without (Arm B, n = 65) durvalumab 1500 mg on day 1 every 4 weeks. Overall response rate (complete response [CR] + CR with incomplete blood recovery) was similar in both arms (Arm A, 31.3%; Arm B, 35.4%), as were overall survival (Arm A, 13.0 months; Arm B, 14.4 months) and duration of response (Arm A, 24.6 weeks; Arm B, 51.7 weeks; P = .0765). No new safety signals emerged with combination treatment. The most frequently reported treatment-emergent adverse events were constipation (Arm A, 57.8%; Arm B, 53.2%) and thrombocytopenia (Arm A, 42.2%; Arm B, 45.2%). DNA methylation, mutational status, and PD-L1 expression were not associated with response to treatment. In this study, first-line combination therapy with durvalumab and azacitidine in older patients with AML was feasible but did not improve clinical efficacy compared with azacitidine alone. ClinicalTrials.gov: NCT02775903.
Collapse
|
76
|
Grunewald CM, Haist C, König C, Petzsch P, Bister A, Nößner E, Wiek C, Scheckenbach K, Köhrer K, Niegisch G, Hanenberg H, Hoffmann MJ. Epigenetic Priming of Bladder Cancer Cells With Decitabine Increases Cytotoxicity of Human EGFR and CD44v6 CAR Engineered T-Cells. Front Immunol 2021; 12:782448. [PMID: 34868059 PMCID: PMC8637820 DOI: 10.3389/fimmu.2021.782448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background Treatment of B-cell malignancies with CD19-directed chimeric antigen receptor (CAR) T-cells marked a new era in immunotherapy, which yet has to be successfully adopted to solid cancers. Epigenetic inhibitors of DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) can induce broad changes in gene expression of malignant cells, thus making these inhibitors interesting combination partners for immunotherapeutic approaches. Methods Urothelial carcinoma cell lines (UCC) and benign uroepithelial HBLAK cells pretreated with the DNMTi decitabine or the HDACi romidepsin were co-incubated with CAR T-cells directed against EGFR or CD44v6, and subsequent cytotoxicity assays were performed. Effects on T-cell cytotoxicity and surface antigen expression on UCC were determined by flow cytometry. We also performed next-generation mRNA sequencing of inhibitor-treated UCC and siRNA-mediated knockdown of potential regulators of CAR T-cell killing. Results Exposure to decitabine but not romidepsin enhanced CAR T-cell cytotoxicity towards all UCC lines, but not towards the benign HBLAK cells. Increased killing could neither be attributed to enhanced target antigen expression (EGFR and CD44v6) nor fully explained by changes in the T-cell ligands PD-L1, PD-L2, ICAM-1, or CD95. Instead, gene expression analysis suggested that regulators of cell survival and apoptosis were differentially induced by the treatment. Decitabine altered the balance between survival and apoptosis factors towards an apoptosis-sensitive state associated with increased CAR T-cell killing, while romidepsin, at least partially, tilted this balance in the opposite direction. Knockdown experiments with siRNA in UCC confirmed BID and BCL2L1/BCLX as two key factors for the altered susceptibility of the UCC. Conclusion Our data suggest that the combination of decitabine with CAR T-cell therapy is an attractive novel therapeutic approach to enhance tumor-specific killing of bladder cancer. Since BID and BCL2L1 are essential determinants for the susceptibility of a wide variety of malignant cells, their targeting might be additionally suitable for combination with immunotherapies, e.g., CAR T-cells or checkpoint inhibitors in other malignancies.
Collapse
Affiliation(s)
- Camilla M Grunewald
- Department of Urology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Corinna Haist
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carolin König
- Department of Urology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Arthur Bister
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elfriede Nößner
- Immunoanalytics: Tissue Control of Immunocytes, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kathrin Scheckenbach
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
77
|
Zheng X, Liu Z, Mi M, Wen Q, Wu G, Zhang L. Disulfiram Improves the Anti-PD-1 Therapy Efficacy by Regulating PD-L1 Expression via Epigenetically Reactivation of IRF7 in Triple Negative Breast Cancer. Front Oncol 2021; 11:734853. [PMID: 34858816 PMCID: PMC8631359 DOI: 10.3389/fonc.2021.734853] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint blockade (ICB), particularly programmed death 1 (PD-1) and its ligand (PD-L1), has shown considerable clinical benefits in patients with various cancers. Many studies show that PD-L1 expression may be biomarkers to help select responders for anti-PD-1 treatment. Therefore, it is necessary to elucidate the molecular mechanisms that control PD-L1 expression. As a potential chemosensitizer and anticancer drug, disulfiram (DSF) kills tumor cells via regulating multiple signaling pathways and transcription factors. However, its effect on tumor immune microenvironment (TIME) remains unclear. Here, we showed that DSF increased PD-L1 expression in triple negative breast cancer (TNBC) cells. Through bioinformatics analysis, we found that DNMT1 was highly expressed in TNBC tissue and PD-L1 was negatively correlated with IRF7 expression. DSF reduced DNMT1 expression and activity, and hypomethylated IRF7 promoter region resulting in upregulation of IRF7. Furthermore, we found DSF enhanced PD-L1 expression via DNMT1-mediated IRF7 hypomethylation. In in vivo experiments, DSF significantly improved the response to anti-PD-1 antibody (Ab) in 4T1 breast cancer mouse model. Immunohistochemistry staining showed that granzyme B+ and CD8+ T cells in the tumor tissues were significantly increased in the combination group. By analyzing the results of the tumor tissue RNA sequencing, four immune-associated pathways were significantly enriched in the DSF joint anti-PD-1 Ab group. In conclusion, we found that DSF could upregulate PD-L1 in TNBC cells and elucidated its mechanism. Our findings revealed that the combination of DSF and anti-PD-1 Ab could activate TIME to show much better antitumor efficacy than monotherapy.
Collapse
Affiliation(s)
- Xin Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Mi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
78
|
Liu S, Bellile E, Nguyen A, Zarins K, Rozek L, Wolf GT, Sartor M. Characterization of the immune response in patients with cancer of the oral cavity after neoadjuvant immunotherapy with the IRX-2 regimen. Oral Oncol 2021; 123:105587. [PMID: 34717154 PMCID: PMC8982160 DOI: 10.1016/j.oraloncology.2021.105587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/26/2021] [Accepted: 10/15/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE IRX-2 is a homologous cell-derived multi-cytokine biologic with multifaceted immune modulatory effects that has been shown to induce increased lymphocyte infiltration into primary tumors in oral cavity carcinoma. Our objective was to characterize tumor immune gene expression and epigenomic changes after neoadjuvant IRX-2 immunotherapy in patients with squamous cell carcinoma of the oral cavity. METHODS A randomized phase II trial was conducted of the IRX regimen 3 weeks prior to surgery for previously untreated patients with Stage II-IV oral cavity carcinoma. The treatment regimen consisted of low dose (300 mg/m2) cyclophosphamide (day 1) followed by 10 days of regional perilymphatic IRX-2 cytokine injections and daily oral indomethacin, zinc and omeprazole (Regimen 1) compared to the identical regimen without the IRX-2 cytokines (Regimen 2). The NanoString immune panel (730 genes) and Infinium MethylationEPIC BeadChip were performed to assess the gene expression and DNA methylation signatures, respectively, in pre- and post-immunotherapy tumor samples. RESULTS A total of 51 and 79 immune-related genes were found upregulated and downregulated, respectively, in the samples from Regimen 1 patients after treatment, while 51 and 56 were found upregulated and downregulated in the samples for Regimen 2. When comparing the changes between the two regimens, we identified 9 genes significantly different, including DMBT1, a potential tumor suppressor, functioning in tumor invasion of head and neck cancer. The exploration of DNA methylation showed slight overall hypermethylation after treatment in both regimens, especially for Regimen 1 immune responders, and methylation-based cell type deconvolution demonstrated high concordance with tumor infiltrating T lymphocyte cell counts. CONCLUSION While a consistent patient response after treatment was observed, most changes were similar between regimens, indicating a subtle, targeted, or patient-specific effect of IRX-2 cytokines. Change in DMBT1 expression was a unique finding that will require further study to better understand its significance.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariane Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Katie Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA,Corresponding authors: To whom correspondence should be addressed: Laura Rozek, Address: 1415 Washington Heights, Ann Arbor, MI 48109; ; Gregory Wolf, Address: 1903 Taubman, Box 5312, Ann Arbor, MI 48109; ; Maureen Sartor, Address: 100 Washtenaw Ave, Ann Arbor, MI 48109;
| | - Gregory T. Wolf
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, Michigan, USA,Corresponding authors: To whom correspondence should be addressed: Laura Rozek, Address: 1415 Washington Heights, Ann Arbor, MI 48109; ; Gregory Wolf, Address: 1903 Taubman, Box 5312, Ann Arbor, MI 48109; ; Maureen Sartor, Address: 100 Washtenaw Ave, Ann Arbor, MI 48109;
| | - Maureen Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA,Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA,Corresponding authors: To whom correspondence should be addressed: Laura Rozek, Address: 1415 Washington Heights, Ann Arbor, MI 48109; ; Gregory Wolf, Address: 1903 Taubman, Box 5312, Ann Arbor, MI 48109; ; Maureen Sartor, Address: 100 Washtenaw Ave, Ann Arbor, MI 48109;
| | | | | |
Collapse
|
79
|
Chen R, Ishak CA, De Carvalho DD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021; 11:2707-2725. [PMID: 34649957 DOI: 10.1158/2159-8290.cd-21-0506] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Features of the cancer epigenome distinguish cancers from their respective cell of origin and establish therapeutic vulnerabilities that can be exploited through pharmacologic inhibition of DNA- or histone-modifying enzymes. Epigenetic therapies converge with cancer immunotherapies through "viral mimicry," a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons. This review describes the initial characterization and expansion of viral mimicry-inducing approaches as well as features that "prime" cancers for viral mimicry induction. Increased understanding of viral mimicry in therapeutic contexts suggests potential physiologic roles in cellular homeostasis. SIGNIFICANCE: Recent literature establishes elevated cytosolic double strand RNA (dsRNA) levels as a cancer-specific therapeutic vulnerability that can be elevated by viral mimicry-inducing therapies beyond tolerable thresholds to induce antiviral signaling and increase dependence on dsRNA stress responses mediated by ADAR1. Improved understanding of viral mimicry signaling and tolerance mechanisms reveals synergistic treatment combinations with epigenetic therapies that include inhibition of BCL2, ADAR1, and immune checkpoint blockade. Further characterization of viral mimicry tolerance may identify contexts that maximize efficacy of conventional cancer therapies.
Collapse
Affiliation(s)
- Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
80
|
McDonald JI, Diab N, Arthofer E, Hadley M, Kanholm T, Rentia U, Gomez S, Yu A, Grundy EE, Cox O, Topper MJ, Xing X, Strissel PL, Strick R, Wang T, Baylin SB, Chiappinelli KB. Epigenetic Therapies in Ovarian Cancer Alter Repetitive Element Expression in a TP53-Dependent Manner. Cancer Res 2021; 81:5176-5189. [PMID: 34433584 PMCID: PMC8530980 DOI: 10.1158/0008-5472.can-20-4243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian carcinomas are particularly deadly due to intratumoral heterogeneity, resistance to standard-of-care therapies, and poor response to alternative treatments such as immunotherapy. Targeting the ovarian carcinoma epigenome with DNA methyltransferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi) increases immune signaling and recruits CD8+ T cells and natural killer cells to fight ovarian carcinoma in murine models. This increased immune activity is caused by increased transcription of repetitive elements (RE) that form double-stranded RNA (dsRNA) and trigger an IFN response. To understand which REs are affected by epigenetic therapies in ovarian carcinoma, we assessed the effect of DNMTi and HDACi on ovarian carcinoma cell lines and patient samples. Subfamily-level (TEtranscripts) and individual locus-level (Telescope) analysis of REs showed that DNMTi treatment upregulated more REs than HDACi treatment. Upregulated REs were predominantly LTR and SINE subfamilies, and SINEs exhibited the greatest loss of DNA methylation upon DNMTi treatment. Cell lines with TP53 mutations exhibited significantly fewer upregulated REs with epigenetic therapy than wild-type TP53 cell lines. This observation was validated using isogenic cell lines; the TP53-mutant cell line had significantly higher baseline expression of REs but upregulated fewer upon epigenetic treatment. In addition, p53 activation increased expression of REs in wild-type but not mutant cell lines. These data give a comprehensive, genome-wide picture of RE chromatin and transcription-related changes in ovarian carcinoma after epigenetic treatment and implicate p53 in RE transcriptional regulation. SIGNIFICANCE: This study identifies the repetitive element targets of epigenetic therapies in ovarian carcinoma and indicates a role for p53 in this process.
Collapse
Affiliation(s)
- James I McDonald
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Noor Diab
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Elisa Arthofer
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Melissa Hadley
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Tomas Kanholm
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Uzma Rentia
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Stephanie Gomez
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Angela Yu
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Erin E Grundy
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Olivia Cox
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Michael J Topper
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Xiaoyun Xing
- The Edison Family Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Pamela L Strissel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Stephen B Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, D.C.
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
81
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
82
|
Pappalardi MB, Keenan K, Cockerill M, Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J, Steidel M, Chapman P, Groy A, Wiseman AK, McHugh CF, Campobasso N, Graves AP, Fairweather E, Werner T, Raoof A, Butlin RJ, Rueda L, Horton JR, Fosbenner DT, Zhang C, Handler JL, Muliaditan M, Mebrahtu M, Jaworski JP, McNulty DE, Burt C, Eberl HC, Taylor AN, Ho T, Merrihew S, Foley SW, Rutkowska A, Li M, Romeril SP, Goldberg K, Zhang X, Kershaw CS, Bantscheff M, Jurewicz AJ, Minthorn E, Grandi P, Patel M, Benowitz AB, Mohammad HP, Gilmartin AG, Prinjha RK, Ogilvie D, Carpenter C, Heerding D, Baylin SB, Jones PA, Cheng X, King BW, Luengo JI, Jordan AM, Waddell I, Kruger RG, McCabe MT. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. NATURE CANCER 2021; 2:1002-1017. [PMID: 34790902 DOI: 10.1038/s43018-021-00249-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/27/2021] [Indexed: 05/22/2023]
Abstract
DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.
Collapse
Affiliation(s)
- Melissa B Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kathryn Keenan
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Mark Cockerill
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
- These authors contributed equally: Mark Cockerill, Wendy A. Kellner
| | - Wendy A Kellner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
- These authors contributed equally: Mark Cockerill, Wendy A. Kellner
| | - Alexandra Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Christian Sherk
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kristen Wong
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Sarath Pathuri
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacques Briand
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael Steidel
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Philip Chapman
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Arthur Groy
- Future Pipeline Discovery, GlaxoSmithKline, Collegeville, PA, USA
| | - Ashley K Wiseman
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Charles F McHugh
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Nino Campobasso
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Alan P Graves
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Emma Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Thilo Werner
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Ali Raoof
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Roger J Butlin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Lourdes Rueda
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David T Fosbenner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Cunyu Zhang
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jessica L Handler
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Morris Muliaditan
- Drug Metabolism and Pharmacokinetics Modelling, GlaxoSmithKline, Stevenage, UK
| | - Makda Mebrahtu
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon-Paul Jaworski
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Dean E McNulty
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Charlotte Burt
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - H Christian Eberl
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Amy N Taylor
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Thau Ho
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Susan Merrihew
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Shawn W Foley
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Anna Rutkowska
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Mei Li
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Stuart P Romeril
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kristin Goldberg
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher S Kershaw
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Marcus Bantscheff
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | | | - Elisabeth Minthorn
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Paola Grandi
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Mehul Patel
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Helai P Mohammad
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Rab K Prinjha
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Donald Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | | | - Dirk Heerding
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Peter A Jones
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan W King
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Juan I Luengo
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Ryan G Kruger
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael T McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
83
|
Rud D, Marjoram P, Siegmund K, Shibata D. Functional human genes typically exhibit epigenetic conservation. PLoS One 2021; 16:e0253250. [PMID: 34520456 PMCID: PMC8439480 DOI: 10.1371/journal.pone.0253250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022] Open
Abstract
Recent DepMap CRISPR-Cas9 single gene disruptions have identified genes more essential to proliferation in tissue culture. It would be valuable to translate these finding with measurements more practical for human tissues. Here we show that DepMap essential genes and other literature curated functional genes exhibit cell-specific preferential epigenetic conservation when DNA methylation measurements are compared between replicate cell lines and between intestinal crypts from the same individual. Culture experiments indicate that epigenetic drift accumulates through time with smaller differences in more functional genes. In NCI-60 cell lines, greater targeted gene conservation correlated with greater drug sensitivity. These studies indicate that two measurements separated in time allow normal or neoplastic cells to signal through conservation which human genes are more essential to their survival in vitro or in vivo.
Collapse
Affiliation(s)
- Daniel Rud
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States of America
| | - Paul Marjoram
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States of America
| | - Kimberly Siegmund
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States of America
| | - Darryl Shibata
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
84
|
Taylor K, Loo Yau H, Chakravarthy A, Wang B, Shen SY, Ettayebi I, Ishak CA, Bedard PL, Abdul Razak A, R Hansen A, Spreafico A, Cescon D, Butler MO, Oza AM, Lheureux S, Stjepanovic N, Van As B, Boross-Harmer S, Wang L, Pugh TJ, Ohashi PS, Siu LL, De Carvalho DD. An open-label, phase II multicohort study of an oral hypomethylating agent CC-486 and durvalumab in advanced solid tumors. J Immunother Cancer 2021; 8:jitc-2020-000883. [PMID: 32753546 PMCID: PMC7406114 DOI: 10.1136/jitc-2020-000883] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To evaluate whether administration of the oral DNA hypomethylating agent CC-486 enhances the poor response rate of immunologically ‘cold’ solid tumors to immune checkpoint inhibitor durvalumab. Experimental design PD-L1/PD-1 inhibitor naïve patients with advanced microsatellite stable colorectal cancer; platinum resistant ovarian cancer; and estrogen receptor positive, HER2 negative breast cancer were enrolled in this single-institution, investigator-initiated trial. Two 28 day regimens, regimen A (CC-486 300 mg QD Days 1–14 (cycles 1–3 only) in combination with durvalumab 1500 mg intravenous day 15) and regimen B (CC-486 100 mg QD days 1–21 (cycle 1 and beyond), vitamin C 500 mg once a day continuously and durvalumab 1500 mg intravenous day 15) were investigated. Patients underwent paired tumor biopsies and serial peripheral blood mononuclear cells (PBMCs) collection for immune-profiling, transcriptomic and epigenomic analyzes. Results A total of 28 patients were enrolled, 19 patients treated on regimen A and 9 on regimen B. The combination of CC-486 and durvalumab was tolerable. Regimen B, with a lower dose of CC-486 extended over a longer treatment course, showed less grade 3/4 adverse effects. Global LINE-1 methylation assessment of serial PBMCs and genome-wide DNA methylation profile in paired tumor biopsies demonstrated minimal changes in global methylation in both regimens. The lack of robust tumor DNA demethylation was accompanied by an absence of the expected ‘viral mimicry’ inflammatory response, and consequently, no clinical responses were observed. The disease control rate was 7.1%. The median progression-free survival was 1.9 months (95% CI 1.5 to 2.3) and median overall survival was 5 months (95% CI 4.5 to 10). Conclusions The evaluated treatment schedules of CC-486 in combination with durvalumab did not demonstrate robust pharmacodynamic or clinical activity in selected immunologically cold solid tumors. Lessons learned from this biomarker-rich study should inform continued drug development efforts using these agents. Trial registration number NCT02811497.
Collapse
Affiliation(s)
- Kirsty Taylor
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Helen Loo Yau
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ankur Chakravarthy
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Epigenetics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ben Wang
- Immunology, University of Toronto, Toronto, Ontario, Canada.,Immuno-Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shu Yi Shen
- Genetics and Epigenetics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ilias Ettayebi
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Charles A Ishak
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Epigenetics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Albiruni Abdul Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dave Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcus O Butler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neda Stjepanovic
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brendan Van As
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Boross-Harmer
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lisa Wang
- Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Genomics, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Immunology, University of Toronto, Toronto, Ontario, Canada.,Immuno-Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada .,Genetics and Epigenetics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
85
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
86
|
Intravesical Instillation of Azacitidine Suppresses Tumor Formation through TNF-R1 and TRAIL-R2 Signaling in Genotoxic Carcinogen-Induced Bladder Cancer. Cancers (Basel) 2021; 13:cancers13163933. [PMID: 34439091 PMCID: PMC8392848 DOI: 10.3390/cancers13163933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Azacitidine, an inhibitor of DNA methylation, shows therapeutic effects against several malignancies by inducing apoptosis and inhibiting tumor cell proliferation. However, the anti-tumor effects of azacitidine on urinary bladder urothelial carcinoma (UBUC), especially following intravesical instillation (IVI), are not established. Here, UBUC cell lines were used to analyze the in vitro therapeutic effects of azacitidine. Potential signaling pathways were investigated by antibody arrays and Western blotting. The N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced rat UBUC model was used for in vivo quantitative analysis of tumor burden. Azacitidine significantly inhibited DNMT expression in UBUC cell lines and reduced cell viability and clonogenic activity, as determined by MTT and colony formation assays, while also inducing significant cytotoxic effects in the form of increased sub-G1 and Annexin V-PI populations (all p < 0.05). Antibody arrays confirmed the in vitro suppression of TNF-R1 and the induction of TRAIL-R2 and their downstream signaling molecules. TNF-R1 suppression reduced claspin and survivin expression, while TRAIL-R2 activation induced cytochrome C and caspase 3 expression. Rats with BBN-induced bladder cancer had a significantly reduced tumor burden and Ki67 index following IVI of azacitidine (p < 0.01). Our study provides evidence for a reduction in BBN-induced bladder cancer by IVI of azacitidine through alterations in the TRAIL-R2 and TNF-R1 signaling pathways. These findings might provide new insights for further clinical trials.
Collapse
|
87
|
Miliotis C, Slack FJ. miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Lett 2021; 518:115-126. [PMID: 34098061 DOI: 10.1016/j.canlet.2021.05.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapies targeting the interaction between Programmed death 1 (PD-1) and Programmed death ligand 1 (PD-L1) have recently been approved for the treatment of multiple cancer types, including gastric cancer. However, not all patients respond to these therapies, while some eventually acquire resistance. A partial predictive biomarker for positive response to PD-1/PD-L1 therapy is PD-L1 expression, which has been shown to be under strict post-transcriptional control in cancer. By fractionating the PD-L1 3' untranslated region (3'UTR) into multiple overlapping fragments, we identified a small 100-nucleotide-long cis-acting region as being necessary and sufficient for post-transcriptional repression of PD-L1 expression in gastric cancer. In parallel, we performed a correlation analysis between PD-L1 expression and all host miRNAs in stomach cancer patient samples. A single miRNA, miR-105-5p, was predicted to bind to the identified cis-acting 3'UTR region and to negatively correlate with PD-L1 expression. Overexpression of miR-105-5p in gastric cancer cell lines resulted in decreased expression of PD-L1, both at the total protein and surface expression levels, and induced CD8+ T cell activation in co-culture assays. Finally, we show that expression of miR-105-5p in gastric cancer is partly controlled by DNA methylation of a cancer- and germline-specific promoter of its host gene, GABRA3. Dysregulation of miR-105-5p is observed in many cancer types and this study shows the importance of this miRNA in controlling the immunogenicity of cancer cells, thus highlighting it as a potential biomarker for PD-1/PD-L1 therapy and target for combinatorial immunotherapy.
Collapse
Affiliation(s)
- Christos Miliotis
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
88
|
Abhimanyu, Ontiveros CO, Guerra-Resendez RS, Nishiguchi T, Ladki M, Hilton IB, Schlesinger LS, DiNardo AR. Reversing Post-Infectious Epigenetic-Mediated Immune Suppression. Front Immunol 2021; 12:688132. [PMID: 34163486 PMCID: PMC8215363 DOI: 10.3389/fimmu.2021.688132] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
The immune response must balance the pro-inflammatory, cell-mediated cytotoxicity with the anti-inflammatory and wound repair response. Epigenetic mechanisms mediate this balance and limit host immunity from inducing exuberant collateral damage to host tissue after severe and chronic infections. However, following treatment for these infections, including sepsis, pneumonia, hepatitis B, hepatitis C, HIV, tuberculosis (TB) or schistosomiasis, detrimental epigenetic scars persist, and result in long-lasting immune suppression. This is hypothesized to be one of the contributing mechanisms explaining why survivors of infection have increased all-cause mortality and increased rates of unrelated secondary infections. The mechanisms that induce epigenetic-mediated immune suppression have been demonstrated in-vitro and in animal models. Modulation of the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR), nuclear factor of activated T cells (NFAT) or nuclear receptor (NR4A) pathways is able to block or reverse the development of detrimental epigenetic scars. Similarly, drugs that directly modify epigenetic enzymes, such as those that inhibit histone deacetylases (HDAC) inhibitors, DNA hypomethylating agents or modifiers of the Nucleosome Remodeling and DNA methylation (NuRD) complex or Polycomb Repressive Complex (PRC) have demonstrated capacity to restore host immunity in the setting of cancer-, LCMV- or murine sepsis-induced epigenetic-mediated immune suppression. A third clinically feasible strategy for reversing detrimental epigenetic scars includes bioengineering approaches to either directly reverse the detrimental epigenetic marks or to modify the epigenetic enzymes or transcription factors that induce detrimental epigenetic scars. Each of these approaches, alone or in combination, have ablated or reversed detrimental epigenetic marks in in-vitro or in animal models; translational studies are now required to evaluate clinical applicability.
Collapse
Affiliation(s)
- Abhimanyu
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Carlos O Ontiveros
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States.,UT Health San Antonio, San Antonio, TX, United States
| | - Rosa S Guerra-Resendez
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Malik Ladki
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Isaac B Hilton
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Department of BioSciences, Rice University, Houston, TX, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Andrew R DiNardo
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
89
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:184. [PMID: 34088360 PMCID: PMC8178863 DOI: 10.1186/s13046-021-01987-7] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023]
Abstract
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed death 1 (PD-1)/ programmed cell death-ligand 1 (PD-L1) are two most representative immune checkpoint pathways, which negatively regulate T cell immune function during different phases of T-cell activation. Inhibitors targeting CTLA-4/B7 and PD1/PD-L1 pathways have revolutionized immunotherapies for numerous cancer types. Although the combined anti-CTLA-4/B7 and anti-PD1/PD-L1 therapy has demonstrated promising clinical efficacy, only a small percentage of patients receiving anti-CTLA-4/B7 or anti-PD1/PD-L1 therapy experienced prolonged survival. Regulation of the expression of PD-L1 and CTLA-4 significantly impacts the treatment effect. Understanding the in-depth mechanisms and interplays of PD-L1 and CTLA-4 could help identify patients with better immunotherapy responses and promote their clinical care. In this review, regulation of PD-L1 and CTLA-4 is discussed at the levels of DNA, RNA, and proteins, as well as indirect regulation of biomarkers, localization within the cell, and drugs. Specifically, some potential drugs have been developed to regulate PD-L1 and CTLA-4 expressions with high efficiency.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
90
|
Abstract
The epigenetic landscape, which in part includes DNA methylation, chromatin organization, histone modifications, and noncoding RNA regulation, greatly contributes to the heterogeneity that makes developing effective therapies for lung cancer challenging. This review will provide an overview of the epigenetic alterations that have been implicated in all aspects of cancer pathogenesis and progression as well as summarize clinical applications for targeting epigenetics in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yvonne L Chao
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
91
|
Molecular Tumor Subtypes of HPV-Positive Head and Neck Cancers: Biological Characteristics and Implications for Clinical Outcomes. Cancers (Basel) 2021; 13:cancers13112721. [PMID: 34072836 PMCID: PMC8198180 DOI: 10.3390/cancers13112721] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/18/2023] Open
Abstract
Until recently, research on the molecular signatures of Human papillomavirus (HPV)-associated head and neck cancers mainly focused on their differences with respect to HPV-negative head and neck squamous cell carcinomas (HNSCCs). However, given the continuing high incidence level of HPV-related HNSCC, the time is ripe to characterize the heterogeneity that exists within these cancers. Here, we review research thus far on HPV-positive HNSCC molecular subtypes, and their relationship with clinical characteristics and HPV integration into the host genome. Different omics data including host transcriptomics and epigenomics, as well as HPV characteristics, can provide complementary viewpoints. Keratinization, mesenchymal differentiation, immune signatures, stromal cells and oxidoreductive processes all play important roles.
Collapse
|
92
|
Licht JD, Bennett RL. Leveraging epigenetics to enhance the efficacy of immunotherapy. Clin Epigenetics 2021; 13:115. [PMID: 34001289 PMCID: PMC8130138 DOI: 10.1186/s13148-021-01100-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Background Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. Main body Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. Conclusions Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Jonathan D Licht
- Division of Hematology/Oncology, Department of Medicine, University of Florida Health Cancer Center, Cancer Genetics Research Complex, University of Florida, 2033 Mowry Road, Box 103633, Gainesville, FL, 32610, USA
| | - Richard L Bennett
- Division of Hematology/Oncology, Department of Medicine, University of Florida Health Cancer Center, Cancer Genetics Research Complex, University of Florida, 2033 Mowry Road, Box 103633, Gainesville, FL, 32610, USA.
| |
Collapse
|
93
|
Li D, Zhao W, Zhang X, Lv H, Li C, Sun L. NEFM DNA methylation correlates with immune infiltration and survival in breast cancer. Clin Epigenetics 2021; 13:112. [PMID: 34001208 PMCID: PMC8130356 DOI: 10.1186/s13148-021-01096-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background This study aims to determine whether NEFM (neurofilament medium) DNA methylation correlates with immune infiltration and prognosis in breast cancer (BRCA) and to explore NEFM-connected immune gene signature. Methods NEFM transcriptional expression was analyzed in BRCA and normal breast tissues using Oncomine and Tumor Immune Estimation Resource (TIMER) databases. The relationship between NEFM DNA methylation and NEFM transcriptional expression was investigated in TCGA. Potential influence of NEFM DNA methylation/expression on clinical outcome was evaluated using TCGA BRCA, The Human Protein Atlas and Kaplan–Meier plotter databases. Association of NEFM transcriptional expression/DNA methylation with cancer immune infiltration was investigated using TIMER and TISIDB databases. Results High expression of NEFM correlated with better overall survival (OS) and recurrence-free survival (RFS) in TCGA BRCA and Kaplan–Meier plotter, whereas NEFM DNA methylation with worse OS in TCGA BRCA. NEFM transcriptional expression negatively correlated with DNA methylation. NEFM DNA methylation significantly negatively correlated with infiltrating levels of B, CD8+ T/CD4+ T cells, macrophages, neutrophils and dendritic cells in TIMER and TISIDB. NEFM expression positively correlated with macrophage infiltration in TIMER and TISIDB. After adjusted with tumor purity, NEFM expression weekly negatively correlated with infiltration level of B cells, whereas positively correlated with CD8+ T cell infiltration in TIMER gene modules. NEFM expression/DNA methylation correlated with diverse immune markers in TCGA and TISIDB. Conclusions NEFM low-expression/DNA methylation correlates with poor prognosis. NEFM expression positively correlates with macrophage infiltration. NEFM DNA methylation strongly negatively correlates with immune infiltration in BRCA. Our study highlights novel potential functions of NEFM expression/DNA methylation in regulation of tumor immune microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01096-4.
Collapse
Affiliation(s)
- Dandan Li
- Department of Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenhao Zhao
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xinyu Zhang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Hanning Lv
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Chunhong Li
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Lichun Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
94
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
95
|
The Role of Epigenetics in the Progression of Clear Cell Renal Cell Carcinoma and the Basis for Future Epigenetic Treatments. Cancers (Basel) 2021; 13:cancers13092071. [PMID: 33922974 PMCID: PMC8123355 DOI: 10.3390/cancers13092071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The accumulated evidence on the role of epigenetic markers of prognosis in clear cell renal cell carcinoma (ccRCC) is reviewed, as well as state of the art on epigenetic treatments for this malignancy. Several epigenetic markers are likely candidates for clinical use, but still have not passed the test of prospective validation. Development of epigenetic therapies, either alone or in combination with tyrosine-kinase inhibitors of immune-checkpoint inhibitors, are still in their infancy. Abstract Clear cell renal cell carcinoma (ccRCC) is curable when diagnosed at an early stage, but when disease is non-confined it is the urologic cancer with worst prognosis. Antiangiogenic treatment and immune checkpoint inhibition therapy constitute a very promising combined therapy for advanced and metastatic disease. Many exploratory studies have identified epigenetic markers based on DNA methylation, histone modification, and ncRNA expression that epigenetically regulate gene expression in ccRCC. Additionally, epigenetic modifiers genes have been proposed as promising biomarkers for ccRCC. We review and discuss the current understanding of how epigenetic changes determine the main molecular pathways of ccRCC initiation and progression, and also its clinical implications. Despite the extensive research performed, candidate epigenetic biomarkers are not used in clinical practice for several reasons. However, the accumulated body of evidence of developing epigenetically-based biomarkers will likely allow the identification of ccRCC at a higher risk of progression. That will facilitate the establishment of firmer therapeutic decisions in a changing landscape and also monitor active surveillance in the aging population. What is more, a better knowledge of the activities of chromatin modifiers may serve to develop new therapeutic opportunities. Interesting clinical trials on epigenetic treatments for ccRCC associated with well established antiangiogenic treatments and immune checkpoint inhibitors are revisited.
Collapse
|
96
|
Weng RR, Lu HH, Lin CT, Fan CC, Lin RS, Huang TC, Lin SY, Huang YJ, Juan YH, Wu YC, Hung ZC, Liu C, Lin XH, Hsieh WC, Chiu TY, Liao JC, Chiu YL, Chen SY, Yu CJ, Tsai HC. Epigenetic modulation of immune synaptic-cytoskeletal networks potentiates γδ T cell-mediated cytotoxicity in lung cancer. Nat Commun 2021; 12:2163. [PMID: 33846331 PMCID: PMC8042060 DOI: 10.1038/s41467-021-22433-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
γδ T cells are a distinct subgroup of T cells that bridge the innate and adaptive immune system and can attack cancer cells in an MHC-unrestricted manner. Trials of adoptive γδ T cell transfer in solid tumors have had limited success. Here, we show that DNA methyltransferase inhibitors (DNMTis) upregulate surface molecules on cancer cells related to γδ T cell activation using quantitative surface proteomics. DNMTi treatment of human lung cancer potentiates tumor lysis by ex vivo-expanded Vδ1-enriched γδ T cells. Mechanistically, DNMTi enhances immune synapse formation and mediates cytoskeletal reorganization via coordinated alterations of DNA methylation and chromatin accessibility. Genetic depletion of adhesion molecules or pharmacological inhibition of actin polymerization abolishes the potentiating effect of DNMTi. Clinically, the DNMTi-associated cytoskeleton signature stratifies lung cancer patients prognostically. These results support a combinatorial strategy of DNMTis and γδ T cell-based immunotherapy in lung cancer management.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/metabolism
- Animals
- Cell Line, Tumor
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/genetics
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Decitabine/pharmacology
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunological Synapses/drug effects
- Immunological Synapses/genetics
- Isotope Labeling
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Lymphocyte Subsets/drug effects
- Lymphocyte Subsets/metabolism
- Male
- Mice, Inbred NOD
- Phosphotyrosine/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Survival Analysis
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Rueyhung R Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsuan-Hsuan Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Lin
- Tai Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
- Pell Biomedical Technology Ltd, Taipei, Taiwan
| | - Chia-Chi Fan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Shan Lin
- Tai Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
- Pell Biomedical Technology Ltd, Taipei, Taiwan
| | - Tai-Chung Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Yung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Jhen Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chieh Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zheng-Ci Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Xuan-Hui Lin
- Tai Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
- Pell Biomedical Technology Ltd, Taipei, Taiwan
| | - Wan-Chen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yuan Chiu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Ling Chiu
- Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsing-Chen Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
97
|
Song N, Hsu CW, Pan H, Zheng Y, Hou L, Sim JA, Li Z, Mulder H, Easton J, Walker E, Neale G, Wilson CL, Ness KK, Krull KR, Srivastava DK, Yasui Y, Zhang J, Hudson MM, Robison LL, Huang IC, Wang Z. Persistent variations of blood DNA methylation associated with treatment exposures and risk for cardiometabolic outcomes in long-term survivors of childhood cancer in the St. Jude Lifetime Cohort. Genome Med 2021; 13:53. [PMID: 33823916 PMCID: PMC8025387 DOI: 10.1186/s13073-021-00875-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It is well-established that cancer treatment substantially increases the risk of long-term adverse health outcomes among childhood cancer survivors. However, there is limited research on the underlying mechanisms. To elucidate the pathophysiology and a possible causal pathway from treatment exposures to cardiometabolic conditions, we conducted epigenome-wide association studies (EWAS) to identify the DNA methylation (DNAm) sites associated with cancer treatment exposures and examined whether treatment-associated DNAm sites mediate associations between specific treatments and cardiometabolic conditions. METHODS We included 2052 survivors (median age 33.7 years) of European ancestry from the St. Jude Lifetime Cohort Study, a retrospective hospital-based study with prospective clinical follow-up. Cumulative doses of chemotherapy and region-specific radiation were abstracted from medical records. Seven cardiometabolic conditions were clinically assessed. DNAm profile was measured using MethylationEPIC BeadChip with blood-derived DNA. RESULTS By performing multiple treatment-specific EWAS, we identified 935 5'-cytosine-phosphate-guanine-3' (CpG) sites mapped to 538 genes/regions associated with one or more cancer treatments at the epigenome-wide significance level (p < 9 × 10-8). Among the treatment-associated CpGs, 8 were associated with obesity, 63 with hypercholesterolemia, and 17 with hypertriglyceridemia (false discovery rate-adjusted p < 0.05). We observed substantial mediation by methylation at four independent CpGs (cg06963130, cg21922478, cg22976567, cg07403981) for the association between abdominal field radiotherapy (abdominal-RT) and risk of hypercholesterolemia (70.3%) and by methylation at three CpGs (cg19634849, cg13552692, cg09853238) for the association between abdominal-RT and hypertriglyceridemia (54.6%). In addition, three CpGs (cg26572901, cg12715065, cg21163477) partially mediated the association between brain-RT and obesity with a 32.9% mediation effect, and two CpGs mediated the association between corticosteroids and obesity (cg22351187, 14.2%) and between brain-RT and hypertriglyceridemia (cg13360224, 10.5%). Notably, several mediator CpGs reside in the proximity of well-established dyslipidemia genes: cg21922478 (ITGA1) and cg22976567 (LMNA). CONCLUSIONS In childhood cancer survivors, cancer treatment exposures are associated with DNAm patterns present decades following the exposure. Treatment-associated DNAm sites may mediate the causal pathway from specific treatment exposures to certain cardiometabolic conditions, suggesting the utility of DNAm sites as risk predictors and potential mechanistic targets for future intervention studies.
Collapse
Affiliation(s)
- Nan Song
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
- Department of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chia-Wei Hsu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haitao Pan
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Jin-Ah Sim
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Zhenghong Li
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Walker
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Kevin R Krull
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Deo Kumar Srivastava
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - I-Chan Huang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA.
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
98
|
Yang Y, Wang Y. Role of Epigenetic Regulation in Plasticity of Tumor Immune Microenvironment. Front Immunol 2021; 12:640369. [PMID: 33868269 PMCID: PMC8051582 DOI: 10.3389/fimmu.2021.640369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME), an immunosuppressive niche, plays a pivotal role in contributing to the development, progression, and immune escape of various types of cancer. Compelling evidence highlights the feasibility of cancer therapy targeting the plasticity of TIME as a strategy to retrain the immunosuppressive immune cells, including innate immune cells and T cells. Epigenetic alterations, such as DNA methylation, histone post-translational modifications, and noncoding RNA-mediated regulation, regulate the expression of many human genes and have been reported to be accurate in the reprogramming of TIME according to vast majority of published results. Recently, mounting evidence has shown that the gut microbiome can also influence the colorectal cancer and even extraintestinal tumors via metabolites or microbiota-derived molecules. A tumor is a kind of heterogeneous disease with specificity in time and space, which is not only dependent on genetic regulation, but also regulated by epigenetics. This review summarizes the reprogramming of immune cells by epigenetic modifications in TIME and surveys the recent progress in epigenetic-based cancer clinical therapeutic approaches. We also discuss the ongoing studies and future areas of research that benefits to cancer eradication.
Collapse
Affiliation(s)
- Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
99
|
EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. ACTA ACUST UNITED AC 2021; 2:444-456. [PMID: 33899001 DOI: 10.1038/s43018-021-00185-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prostate cancers are considered to be immunologically 'cold' tumors given the very few patients who respond to checkpoint inhibitor (CPI) therapy. Recently, enrichment of interferon-stimulated genes (ISGs) predicted a favorable response to CPI across various disease sites. The enhancer of zeste homolog-2 (EZH2) is overexpressed in prostate cancer and known to negatively regulate ISGs. In the present study, we demonstrate that EZH2 inhibition in prostate cancer models activates a double-stranded RNA-STING-ISG stress response upregulating genes involved in antigen presentation, Th1 chemokine signaling and interferon response, including programmed cell death protein 1 (PD-L1) that is dependent on STING activation. EZH2 inhibition substantially increased intratumoral trafficking of activated CD8+ T cells and increased M1 tumor-associated macrophages, overall reversing resistance to PD-1 CPI. Our study identifies EZH2 as a potent inhibitor of antitumor immunity and responsiveness to CPI. These data suggest EZH2 inhibition as a therapeutic direction to enhance prostate cancer response to PD-1 CPI.
Collapse
|
100
|
Kordella C, Lamprianidou E, Kotsianidis I. Mechanisms of Action of Hypomethylating Agents: Endogenous Retroelements at the Epicenter. Front Oncol 2021; 11:650473. [PMID: 33768008 PMCID: PMC7985079 DOI: 10.3389/fonc.2021.650473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Abnormal DNA methylation patterns are thought to drive the pathobiology of high-risk myelodysplastic syndromes (HR-MDS) and acute myeloid leukemia (AML). Sixteen years after their initial approval, the hypomethylating agents (HMAs), 5-azacytidine (AZA) and 5-aza-2′-deoxycytidine, remain the mainstay of treatment for HR-MDS and AML. However, a connection of the hypomethylating or additional effects of HMAs with clinical responses remains yet to be shown, and the mode of action of HMAs remains obscure. Given the relatively short-lived responses and the inevitable development of resistance in HMAs, a thorough understanding of the antineoplastic mechanisms employed by HMAs holds critical importance. Recent data in cancer cell lines demonstrate that reactivation of endogenous retroelements (EREs) and induction of a cell-intrinsic antiviral response triggered by RNA neotranscripts may underlie the antitumor activity of HMAs. However, data on primary CD34+ cells derived from patients with HR-MDS failed to confirm a link between HMA-mediated ERE modulation and clinical response. Though difficult to reconcile the apparent discrepancy, it is possible that HMAs mediate their effects in more advanced levels of differentiation where cells become responsive to interferon, whereas, inter-individual variations in the process of RNA editing and, in particular, in the ADAR1/OAS/RNase L pathway may also confound the associations of clinical response with the induction of viral mimicry. Further ex vivo studies along with clinical correlations in well-annotated patient cohorts are warranted to decipher the role of ERE derepression in the antineoplastic mechanisms of HMAs.
Collapse
Affiliation(s)
- Chryssoula Kordella
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|