51
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
52
|
Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/FeO4-PCL/DNA micelles for gene delivery into MCF-7 cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Mu S, Zhu Y, Wang Y, Qu S, Huang Y, Zheng L, Duan S, Yu B, Qin M, Xu FJ. Cationic Polysaccharide Conjugates as Antibiotic Adjuvants Resensitize Multidrug-Resistant Bacteria and Prevent Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204065. [PMID: 35962720 DOI: 10.1002/adma.202204065] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
In recent years, traditional antibiotic efficacy has rapidly diminished due to the advent of multidrug-resistant (MDR) bacteria, which poses severe threat to human life and globalized healthcare. Currently, the development cycle of new antibiotics cannot match the ongoing MDR infection crisis. Therefore, novel strategies are required to resensitize MDR bacteria to existing antibiotics. In this study, novel cationic polysaccharide conjugates Dextran-graft-poly(5-(1,2-dithiolan-3-yl)-N-(2-guanidinoethyl)pentanamide) (Dex-g-PSSn ) is synthesized using disulfide exchange polymerization. Critically, bacterial membranes and efflux pumps are disrupted by a sub-inhibitory concentration of Dex-g-PSS30 , which enhances rifampicin (RIF) accumulation inside bacteria and restores its efficacy. Combined Dex-g-PSS30 and RIF prevents bacterial resistance in bacteria cultured over 30 generations. Furthermore, Dex-g-PSS30 restores RIF effectiveness, reduces inflammatory reactions in a pneumonia-induced mouse model, and exhibits excellent in vivo biological absorption and degradation capabilities. As an antibiotic adjuvant, Dex-g-PSS30 provides a novel resensitizing strategy for RIF against MDR bacteria and bacterial resistance. This Dex-g-PSS30 research provides a solid platform for future MDR applications.
Collapse
Affiliation(s)
- Shaowei Mu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Wang
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuang Qu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yichun Huang
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Zheng
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Qin
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
54
|
Hajebi S, Yousefiasl S, Rahimmanesh I, Dahim A, Ahmadi S, Kadumudi FB, Rahgozar N, Amani S, Kumar A, Kamrani E, Rabiee M, Borzacchiello A, Wang X, Rabiee N, Dolatshahi‐Pirouz A, Makvandi P. Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications. Adv Healthc Mater 2022; 11:e2201583. [PMID: 35916145 PMCID: PMC11481035 DOI: 10.1002/adhm.202201583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/28/2023]
Abstract
Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer EngineeringSahand University of TechnologyTabriz51335‐1996Iran
- Institute of Polymeric MaterialsSahand University of TechnologyTabriz51335‐1996Iran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Alireza Dahim
- Department of AnesthesiaJundishapur University of Medical SciencesAhvaz61357‐15794Iran
| | - Sepideh Ahmadi
- Department of BiologyFaculty of SciencesUniversity of ZabolSistan and BaluchestanZabol98613‐35856Iran
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Nikta Rahgozar
- Department of ChemistryAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Sanaz Amani
- Department of Chemical EngineeringSahand University of TechnologyTabriz51335‐1996Iran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityHimachal Pradesh174 103India
| | - Ehsan Kamrani
- Harvard‐MIT Health Science and TechnologyCambridgeMA02139USA
- Wellman Center for PhotomedicineHarvard Medical SchoolBostonMA02139USA
| | - Mohammad Rabiee
- Biomaterials GroupDepartment of Biomedical EngineeringAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and BiomaterialsNational Research CouncilIPCB‐CNRNaples80125Italy
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghai200032China
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | | | - Pooyan Makvandi
- Centre for Materials InterfacesIstituto Italiano di TecnologiaPontederaPisa56025Italy
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People’s HospitalQuzhouZhejiang324000China
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| |
Collapse
|
55
|
Hachim D, Zhao J, Bhankharia J, Nuñez-Toldra R, Brito L, Seong H, Becce M, Ouyang L, Grigsby CL, Higgins SG, Terracciano CM, Stevens MM. Polysaccharide-Polyplex Nanofilm Coatings Enhance Nanoneedle-Based Gene Delivery and Transfection Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202303. [PMID: 35770803 PMCID: PMC7615482 DOI: 10.1002/smll.202202303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Non-viral vectors represent versatile and immunologically safer alternatives for nucleic acid delivery. Nanoneedles and high-aspect ratio nanostructures are unconventional but interesting delivery systems, in which delivery is mediated by surface interactions. Herein, nanoneedles are synergistically combined with polysaccharide-polyplex nanofilms and enhanced transfection efficiency is observed, compared to polyplexes in suspension. Different polyplex-polyelectrolyte nanofilm combinations are assessed and it is found that transfection efficiency is enhanced when using polysaccharide-based polyanions, rather than being only specific for hyaluronic acid, as suggested in earlier studies. Moreover, results show that enhanced transfection is not mediated by interactions with the CD44 receptor, previously hypothesized as a major mechanism mediating enhancement via hyaluronate. In cardiac tissue, nanoneedles are shown to increase the transfection efficiency of nanofilms compared to flat substrates; while in vitro, high transfection efficiencies are observed in nanostructures where cells present large interfacing areas with the substrate. The results of this study demonstrate that surface-mediated transfection using this system is efficient and safe, requiring amounts of nucleic acid with an order of magnitude lower than standard culture transfection. These findings expand the spectrum of possible polyelectrolyte combinations that can be used for the development of suitable non-viral vectors for exploration in further clinical trials.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Juzhi Zhao
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Jash Bhankharia
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Raquel Nuñez-Toldra
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Liliana Brito
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Hyejeong Seong
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Michele Becce
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Liliang Ouyang
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Christopher L. Grigsby
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 65, Sweden
| | - Stuart G. Higgins
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | | | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
56
|
New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022; 14:pharmaceutics14081700. [PMID: 36015325 PMCID: PMC9416043 DOI: 10.3390/pharmaceutics14081700] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 12/20/2022] Open
Abstract
In the last decade, nanomedicine has arisen as an emergent area of medicine, which studies nanometric systems, namely polymeric micelles (PMs), that increase the solubility and the stability of the encapsulated drugs. Furthermore, their application in dermal drug delivery is also relevant. PMs present unique characteristics because of their unique core-shell architecture. They are colloidal dispersions of amphiphilic compounds, which self-assemble in an aqueous medium, giving a structure-type core-shell, with a hydrophobic core (that can encapsulate hydrophobic drugs), and a hydrophilic shell, which works as a stabilizing agent. These features offer PMs adequate steric protection and determine their hydrophilicity, charge, length, and surface density properties. Furthermore, due to their small size, PMs can be absorbed by the intestinal mucosa with the drug, and they transport the drug in the bloodstream until the therapeutic target. Moreover, PMs improve the pharmacokinetic profile of the encapsulated drug, present high load capacity, and are synthesized by a reproducible, easy, and low-cost method. In silico approaches have been explored to improve the physicochemical properties of PMs. Based on this, a computer-aided strategy was developed and validated to enable the delivery of poorly soluble drugs and established critical physicochemical parameters to maximize drug loading, formulation stability, and tumor exposure. Poly(2-oxazoline) (POx)-based PMs display unprecedented high loading concerning water-insoluble drugs and over 60 drugs have been incorporated in POx PMs. Among various stimuli, pH and temperature are the most widely studied for enhanced drug release at the site of action. Researchers are focusing on dual (pH and temperature) responsive PMs for controlled and improved drug release at the site of action. These dual responsive systems are mainly evaluated for cancer therapy as certain malignancies can cause a slight increase in temperature and a decrease in the extracellular pH around the tumor site. This review is a compilation of updated therapeutic applications of PMs, such as PMs that are based on Pluronics®, micelleplexes and Pox-based PMs in several biomedical applications.
Collapse
|
57
|
Lin ZI, Tsai HL, Liu GL, Lu XH, Cheng PW, Chi PL, Wang CK, Tsai TH, Wang CC, Yang JHC, Ko BT, Chen CK. Preparation of CO 2 -based Cationic Polycarbonate/Polyacrylonitrile Nanofibers with an Optimal Fibrous Microstructure for Antibacterial Applications. Macromol Biosci 2022; 22:e2200178. [PMID: 35902381 DOI: 10.1002/mabi.202200178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 11/12/2022]
Abstract
Utilizing CO2 as one of the monomer resource, poly(vinylcyclohexene carbonates) (PVCHCs) are used as the precursor for preparing cationic PVCHCs (CPVCHCs) via thiol-ene click functionalization. Through the functionalization, CPVCHC-43 with a tertiary amine density of 43% relative to the backbone is able to display a significantly antibacterial ability against Staphylococcus aureus (S. aureus). Blending CPVCHC-43 with polyacrylonitrile (PAN), CPVCHC/PAN nanofiber meshes (NFMs) have been successfully prepared by electrospinning. More importantly, two crucial fibrous structural factors including CPVCHC/PAN weight ratio and fiber diameter have been systematically investigated for the effects on the antibacterial performance of the NFMs. Sequentially, a quaternization treatment has been employed on the NFMs with an optimal fibrous structure to enhance the antibacterial ability. The resulting quaternized NFMs have demonstrated the great biocidal effects against Gram-positive and Gram-negative bacteria. Moreover, the excellent biocompatibility of the quaternized NFMs have also been thoroughly evaluated and verified. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Han-Lin Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Xie-Hong Lu
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Chih-Kuang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Chih-Chia Wang
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, 33509, Taiwan.,System Engineering and Technology Program, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
58
|
Gholami L, Mahmoudi A, Kazemi Oskuee R, Malaekeh-Nikouei B. An overview of polyallylamine applications in gene delivery. Pharm Dev Technol 2022; 27:714-724. [PMID: 35880621 DOI: 10.1080/10837450.2022.2107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A chief objective of gene transportation studies is to manipulate clinically accepted carriers that can be utilized to combat incurable diseases. Despite various strategies, efficiency and application of these vectors have been hindered, owing to different obstacles. Polyallylamine (PAA) is a synthetic water-soluble, weak base cationic polymer with different properties that could be administrated as an ideal candidate for biomedical applications such as gene delivery, drug delivery, or even tissue engineering. However, some intrinsic properties of this polymer limit its application. The two associated problems with the use of PAA in gene delivery are low transfection efficiency (because of low buffering capacity) and cytotoxic effects attributed to intense cationic character. Most of the strategies for structural modification of the PAA structure have focused on introducing hydrophobic groups to the polymeric backbone that target both cytotoxicity and transfection. In this perspective, we concentrate on PAA as a gene delivery vehicle and the existing approaches for modification of this cationic polymer to give insight to researchers for exploitation of PAA as an efficient carrier in biomedical applications.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
59
|
Soh WWM, Teoh RYP, Zhu J, Xun Y, Wee CY, Ding J, Thian ES, Li J. Facile Construction of a Two-in-One Injectable Micelleplex-Loaded Thermogel System for the Prolonged Delivery of Plasmid DNA. Biomacromolecules 2022; 23:3477-3492. [PMID: 35878156 DOI: 10.1021/acs.biomac.2c00648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanoparticle-hydrogel systems have recently emerged as a class of interesting hybrid materials with immense potential for several biomedical applications. Remarkably, the incorporation of nanoparticles into a hydrogel may yield synergistic benefits lacking in a singular system. However, most synthetic strategies require laborious steps to achieve the system, severely restricting the process of translational research. Herein, a facile strategy to access a two-in-one system comprising two distinct polyurethane (PU)-based micellar systems is demonstrated and applied as a novel sustained gene delivery platform, where the two PUs are synthesized similarly but with slightly different compositions. One PU forms cationic micelles that complex with plasmid DNA (pDNA), which are loaded into a thermogel formed by another PU micellar system for the prolonged release of pDNA micelleplexes. Specifically, a thermogelling multiblock PU copolymer (denoted as EPH) was synthesized via the step-growth polymerization of poly(ethylene glycol), poly(propylene glycol), and poly(3-hydroxybutyrate). By further introducing a cationic extender, 3-(dimethylamino)-1,2-propanediol, into the reaction feed, a series of cationic PUs (denoted as EPHD) with varying compositions were obtained. The EPHDs formed positively charged micelles in aqueous solutions, efficiently condensed pDNA into nano-sized micelleplexes (<200 nm) at optimized w/w ratios, and mediated transient green fluorescence protein expression in HEK293T cells at 48 h post-transfection. On the other hand, aqueous EPH solution (4 wt %) was injectable at 4 °C and rapidly gelled upon heating to 37 °C to form a stable hydrogel depot. EPHD/pDNA micelleplexes were easily loaded into EPH by mixing the solutions at 4 °C, before heating to 37 °C, leading to the resultant hydrogel system. The in vitro release study revealed that while free pDNA loaded in the thermogel was completely released in 2 weeks, the release of EPHD/pDNA micelleplexes was prolonged to at least 28 days, suggesting substantial micelleplex-hydrogel interactions. Intact, bioactive, and noncytotoxic EPHD/pDNA micelleplexes in the release media were proved by gel retardation, in vitro gene transfection, and CCK-8 cytotoxicity assay results, respectively. Collectively, this work presents a simple approach to achieving and optimizing a novel two-in-one nanoparticle-hydrogel system for the prolonged delivery of pDNA and may be promising for long-term gene delivery applications.
Collapse
Affiliation(s)
- Wilson Wee Mia Soh
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Rachel Yun Pei Teoh
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.,NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yanran Xun
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Chien Yi Wee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Eng San Thian
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.,NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
60
|
Yuan X, Luo SZ, Chen L. Novel branched amphiphilic peptides for nucleic acids delivery. Int J Pharm 2022; 624:121983. [PMID: 35803534 DOI: 10.1016/j.ijpharm.2022.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Highly efficient and safe non-viral vectors for nucleic acids delivery have attracted much attention due to their potential applications in gene therapy, gene editing and vaccination against infectious diseases, and various materials have been investigated and designed as delivery vectors. Herein, we designed a series of branched amphiphilic peptides (BAPs) and tested their applications as pDNA/mRNA delivery vectors. The BAP structure was inspired by the phospholipids, in which lysine oligomers were used as the "polar head", segments containing phenylalanine, histidine and leucine were used as the "hydrophobic tails", and a lysine residue was used as the branching point. By comparing the gel retardation, particle sizes and zeta potentials of the BAP/pDNA complexes of the short-branch BAPs (BAP-V1 ∼ BAP-V4), we determined the optimal lysine oligomer was K6. However, their cell transfection efficiencies were not satisfactory, and thus three long-branch BAPs (BAP-V5 ∼ BAP-V7) were further designed. In these long-branch BAPs, more hydrophobic residues were added and the overall amphiphilicity increased accordingly. The results showed that these three BAPs could effectively compact the nucleic acids, including both pDNA and mRNA, and all could transfect nucleic acids into HEK 293 cells, with low cytotoxicity. Among the three long-branch BAPs, BAP-V7 (bis(FFLFFHHH)-K-K6) showed the best transfection efficiency at N/P = 10, which was better than the commercial transfection reagent PEI-25 K. These results indicate that increased amphiphilicity would also benefit for BAP mediated nucleic acid delivery. The designed BAPs provide more documents of such novel type of nucleic acids delivery vectors, which is worth of further investigation as a new gene theranostic platforms.
Collapse
Affiliation(s)
- Xiushuang Yuan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
61
|
Hamdy NM, Shaker FH, Zhan X, Basalious EB. Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve? EPMA J 2022; 13:261-284. [PMID: 35668839 PMCID: PMC9160520 DOI: 10.1007/s13167-022-00285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
COVID-19-caused neurological problems are the important post-CoV-2 infection complications, which are recorded in ~ 40% of critically ill COVID-19 patients. Neurodegeneration (ND) is one of the most serious complications. It is necessary to understand its molecular mechanism(s), define research gaps to direct research to, hopefully, design new treatment modalities, for predictive diagnosis, patient stratification, targeted prevention, prognostic assessment, and personalized medical services for this type of complication. Individualized nano-bio-medicine combines nano-medicine (NM) with clinical and molecular biomarkers based on omics data to improve during- and post-illness management or post-infection prognosis, in addition to personalized dosage profiling and drug selection for maximum treatment efficacy, safety with least side-effects. This review will enumerate proteins, receptors, and enzymes involved in CoV-2 entrance into the central nervous system (CNS) via the blood–brain barrier (BBB), and list the repercussions after that entry, ranging from neuroinflammation to neurological symptoms disruption mechanism. Moreover, molecular mechanisms that mediate the host effect or viral detrimental effect on the host are discussed here, including autophagy, non-coding RNAs, inflammasome, and other molecular mechanisms of CoV-2 infection neuro-affection that are defined here as hallmarks of neuropathology related to COVID-19 infection. Thus, a couple of questions are raised; for example, “What are the hallmarks of neurodegeneration during COVID-19 infection?” and “Are epigenetics promising solution against post-COVID-19 neurodegeneration?” In addition, nano-formulas might be a better novel treatment for COVID-19 neurological complications, which raises one more question, “What are the challenges of nano-bio-based nanocarriers pre- or post-COVID-19 infection?” especially in the light of omics-based changes/challenges, research, and clinical practice in the framework of predictive preventive personalized medicine (PPPM / 3P medicine).
Collapse
Affiliation(s)
- Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Fatma H Shaker
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People's Republic of China
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr AlAiny, Cairo, 11562 Egypt
| |
Collapse
|
62
|
Liu F, Su H, Li M, Xie W, Yan Y, Shuai Q. Zwitterionic Modification of Polyethyleneimine for Efficient In Vitro siRNA Delivery. Int J Mol Sci 2022; 23:ijms23095014. [PMID: 35563405 PMCID: PMC9100541 DOI: 10.3390/ijms23095014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Polyethylenimine (PEI) has been widely used in gene delivery. However, its high cytotoxicity and undesired non-specific protein adsorption hinder the overall delivery efficacy and the practical applications of PEI-based gene delivery systems. In this study, we prepared hydrophobically modified PEIs (H-PEIs) via the reaction of octanal with 40% of primary amines in PEI25k and PEI10k, respectively. Two common zwitterionic molecules, 1,3-propanesultone and β-propiolactone, were then used for the modification of the resulting H-PEIs to construct polycationic gene carriers with zwitterionic properties (H-zPEIs). The siRNA delivery efficiency and cytotoxicity of these materials were evaluated in Hela-Luc and A549-Luc cell lines. Compared with their respective parental H-PEIs, different degrees of zwitterionic modification showed different effects in reducing cytotoxicity and delivery efficiency. All zwitterion-modified PEIs showed excellent siRNA binding capacity, reduced nonspecific protein adsorption, and enhanced stability upon nuclease degradation. It is concluded that zwitterionic molecular modification is an effective method to construct efficient vectors by preventing undesired interactions between polycationic carriers and biomacromolecules. It may offer insights into the modification of other cationic carriers of nucleic acid drugs.
Collapse
Affiliation(s)
- Fengfan Liu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (F.L.); (H.S.); (M.L.); (W.X.)
| | - Huahui Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (F.L.); (H.S.); (M.L.); (W.X.)
| | - Mengqian Li
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (F.L.); (H.S.); (M.L.); (W.X.)
| | - Wanxuan Xie
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (F.L.); (H.S.); (M.L.); (W.X.)
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (Y.Y.); (Q.S.)
| | - Qi Shuai
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (F.L.); (H.S.); (M.L.); (W.X.)
- Correspondence: (Y.Y.); (Q.S.)
| |
Collapse
|
63
|
Iqbal S, Martins AF, Sohail M, Zhao J, Deng Q, Li M, Zhao Z. Synthesis and Characterization of Poly (β-amino Ester) and Applied PEGylated and Non-PEGylated Poly (β-amino ester)/Plasmid DNA Nanoparticles for Efficient Gene Delivery. Front Pharmacol 2022; 13:854859. [PMID: 35462891 PMCID: PMC9023864 DOI: 10.3389/fphar.2022.854859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Polymer-based nanocarriers require extensive knowledge of their chemistries to learn functionalization strategies and understand the nature of interactions that they establish with biological entities. In this research, the poly (β-amino ester) (PβAE-447) was synthesized and characterized, aimed to identify the influence of some key parameters in the formulation process. Initially; PβAE-447 was characterized for aqueous solubility, swelling capacity, proton buffering ability, and cytotoxicity study before nanoparticles formulation. Interestingly, the polymer-supported higher cell viability than the Polyethylenimine (PEI) at 100 μg/ml. PβAE-447 complexed with GFP encoded plasmid DNA (pGFP) generated nanocarriers of 184 nm hydrodynamic radius (+7.42 mV Zeta potential) for cell transfection. Transfection assays performed with PEGylated and lyophilized PβAE-447/pDNA complexes on HEK-293, BEAS-2B, and A549 cell lines showed better transfection than PEI. The outcomes toward A549 cells (above 66%) showed the highest transfection efficiency compared to the other cell lines. Altogether, these results suggested that characterizing physicochemical properties pave the way to design a new generation of PβAE-447 for gene delivery.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, Brazil.,Group of Polymers and Composite Materials (GMPC), Department of Chemistry, State University of Maringá (UEM), Maringá, Brazil.,Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, United States
| | - Muhammad Sohail
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Jingjing Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Deng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Muhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key University Laboratory of Pharmaceutics and Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, China.,Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, China
| |
Collapse
|
64
|
Chen Q, Su L, He X, Li J, Cao Y, Wu Q, Qin J, He Z, Huang X, Yang H, Li J. Poly(beta-amino ester)-Based Nanoparticles Enable Nonviral Delivery of Base Editors for Targeted Tumor Gene Editing. Biomacromolecules 2022; 23:2116-2125. [PMID: 35388688 DOI: 10.1021/acs.biomac.2c00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Base editing is an emerging genome editing technology with the advantages of precise base corrections, no double-strand DNA breaks, and no need for templates, which provides an alternative treatment option for tumors with point mutations. However, effective nonviral delivery systems for base editors (BEs) are still limited. Herein, a series of poly(beta-amino esters) (PBAEs) with varying backbones, side chains, and end caps were synthesized to deliver plasmids of BEs and sgRNA. Efficient transfection and base editing were achieved in HEK-293T-sEGFP and U87-MG-sEGFP reporter cell lines by using lead PBAEs, which were superior to PEI and lipo3k. A single intratumor injection of PBAE/pDNA nanoparticles induced the robust conversion of stopped-EGFP into EGFP in mice bearing xenograft glioma tumors, indicating successful gene editing by ABEmax-NG. Overall, these results demonstrated that PBAEs can efficiently deliver BEs for tumor gene editing both in vitro and in vivo.
Collapse
Affiliation(s)
- Qimingxing Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Su
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinwei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Cao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingxia Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianchao Qin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zongxing He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianfeng Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
65
|
H 2O 2-responsive VEGF/NGF gene co-delivery nano-system achieves stable vascularization in ischemic hindlimbs. J Nanobiotechnology 2022; 20:145. [PMID: 35305670 PMCID: PMC8934504 DOI: 10.1186/s12951-022-01328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Peripheral vascular disease (PVD) is a common clinical manifestation of atherosclerosis. Vascular endothelial growth factor (VEGF) gene therapy is a promising approach for PVD treatment. However, due to single-gene therapy limitations and high H2O2 pathological microenvironment, VEGF gene therapy are not as expectations and its clinical application are limited. Synergistic effects of Nerve factors and vascular factors in angiogenesis have attracted attention in recent years. In this study, VEGF and nerve growth factor (NGF) genes co-delivery nanoparticles (VEGF/NGF-NPs) were prepared by using H2O2 responsive 6s-PLGA-Po-PEG as a carrier. 6s-PLGA-Po-PEG could react with H2O2 specifically due to the internal peroxalate bond. Angiogenic effects of VEGF/NGF-NPs has been evaluated in cells and hindlimb ischemia mice model. Results showed that VEGF/NGF-NPs promoted VEGF and NGF co-expression simultaneously, eliminated excessive H2O2, strengthened reactions between SH-SY5Ys and HUVECs, and finally enhanced migration, tube formation, proliferation and H2O2 damage resistance of HUVECs. VEGF/NGF-NPs also recovered blood perfusion, promoted the expression of VEGF, NGF, eNOS and NO, and enhanced vascular coverage of pericytes. Treatment effects of VEGF/NGF-NPs may related to VEGF/eNOS/NO pathway. Altogether, VEGF/NGF-NPs eliminated excessive H2O2 while achieving gene co-delivery, and promoted stable angiogenesis. It’s a promising way for PVD treatment by using VEGF/NGF-NPs.
Collapse
|
66
|
Yang C, Huang H, Singh NM, Zhou C, Yang G, Xu Z, Lin H, Xu G, Yong KT, Bazan GC. Synthetic Conjugated Oligoelectrolytes Are Effective siRNA Transfection Carriers: Relevance to Pancreatic Cancer Gene Therapy. Biomacromolecules 2022; 23:1259-1268. [PMID: 35138828 DOI: 10.1021/acs.biomac.1c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugated oligoelectrolyte COE-S6 contains an elongated conjugated core with three cationic charges at each termini of the internal core. As an analogue of bolaamphiphiles, these structural attributes lead to the formation of spherical nanoplexes with Dh = 205 ± 5.0 nm upon mixing with small interfering RNA (siRNA). COE-S6/siRNA nanocomplexes were shown to be protective toward RNase, stimulate endosome escape, and achieve transfection efficiencies comparable to those achieved with commercially available LIP3000. Moreover, COE-S6/siRNA nanocomplexes enabled efficient silencing of the K-ras gene in pancreatic cancer cells and significant inhibition of cancer tumor growth with negligible in vitro toxicities. More importantly, cell invasion and colony formation of the Panc-1 cells were significantly inhibited, and apoptosis of the pancreatic cancer cells was also promoted. We also note that COE-S6 is much less toxic relative to commercial lipid formulations, and it provides optical signatures that can enable subsequent mechanistic work without the need to label nucleotides. COE-S6-based nanoplexes are thus a promising candidate as nonviral vectors for gene delivery.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Nishtha Manish Singh
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Cheng Zhou
- Departments of Chemistry and Chemical Engineering, National University of Singapore, 119077 Singapore
| | - Guang Yang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haoming Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical Engineering, National University of Singapore, 119077 Singapore
| |
Collapse
|
67
|
Thambi T, Lee J, Yoon AR, Kasala D, Yun CO. A pH- and Bioreducible Cationic Copolymer with Amino Acids and Piperazines for Adenovirus Delivery. Pharmaceutics 2022; 14:pharmaceutics14030597. [PMID: 35335972 PMCID: PMC8950541 DOI: 10.3390/pharmaceutics14030597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Adenoviruses (Ads) are attractive nonviral vectors and show great potential in cancer gene therapy. However, inherent properties of Ads, including immunogenicity, nonspecific toxicity, and coxsackie and adenovirus receptor (CAR)-dependent cell uptake, limit their clinical use. To surmount these issues, we developed a pH- and glutathione-responsive poly(ethylene glycol)-poly(ꞵ-aminoester)-polyethyleneimine (PPA) for conjugation with Ad. The pH sensitivity of the PPA copolymer was elegantly tuned by substitution with different amino acids (arginine, histidine, and tryptophan), piperazines (Pip1, Pip2, and Pip3), and guanidine residues in the backbone of the PPA conjugate. PPA copolymer was further functionalized with short-chain cross-linker succinimidyl 3-(2-pyridyldithio)propionate) (SPDP) to obtain PPA-SPDP for facile conjugation with Ad. The PPA-conjugated Ad (PPA-Ad) conjugate was obtained by reacting PPA-SPDP conjugate with thiolated Ad (Ad-SH). Ad-SH was prepared by reacting Ad with 2-iminothiolane. The size distribution and zeta potential results of PPA-Ad conjugate showed an increasing trend with an increase in copolymer dose. From in vitro test, it was found that the transduction efficiency of PPA-Ad conjugate in CAR-positive cells (A549 and H460 cells) was remarkably increased at the acidic pH condition (pH 6.2) when compared with PPA-Ad conjugate incubated under the physiological condition (pH 7.4). Interestingly, the increase in transduction efficiency was evidenced in CAR-negative cells (MDA-MB-231 and T24 cells). These results demonstrated that biocompatible and biodegradable PPA copolymers can efficiently cover the surface of Ad and can increase the transduction efficiency, and hence PPA copolymers can be a useful nanomaterial for viral vector delivery in cancer therapy.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
| | - Jeongmin Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Korea
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2220-0491; Fax: +82-2-2220-4850
| |
Collapse
|
68
|
Leiro V, Spencer AP, Magalhães N, Pêgo AP. Versatile fully biodegradable dendritic nanotherapeutics. Biomaterials 2022; 281:121356. [DOI: 10.1016/j.biomaterials.2021.121356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
|
69
|
Zeynaloo E, Stone LD, Dikici E, Ricordi C, Deo SK, Bachas LG, Daunert S, Lanzoni G. Delivery of therapeutic agents and cells to pancreatic islets: Towards a new era in the treatment of diabetes. Mol Aspects Med 2022; 83:101063. [PMID: 34961627 PMCID: PMC11328325 DOI: 10.1016/j.mam.2021.101063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic islet cells, and in particular insulin-producing beta cells, are centrally involved in the pathogenesis of diabetes mellitus. These cells are of paramount importance for the endocrine control of glycemia and glucose metabolism. In Type 1 Diabetes, islet beta cells are lost due to an autoimmune attack. In Type 2 Diabetes, beta cells become dysfunctional and insufficient to counterbalance insulin resistance in peripheral tissues. Therapeutic agents have been developed to support the function of islet cells, as well as to inhibit deleterious immune responses and inflammation. Most of these agents have undesired effects due to systemic administration and off-target effects. Typically, only a small fraction of therapeutic agent reaches the desired niche in the pancreas. Because islets and their beta cells are scattered throughout the pancreas, access to the niche is limited. Targeted delivery to pancreatic islets could dramatically improve the therapeutic effect, lower the dose requirements, and lower the side effects of agents administered systemically. Targeted delivery is especially relevant for those therapeutics for which the manufacturing is difficult and costly, such as cells, exosomes, and microvesicles. Along with therapeutic agents, imaging reagents intended to quantify the beta cell mass could benefit from targeted delivery. Several methods have been developed to improve the delivery of agents to pancreatic islets. Intra-arterial administration in the pancreatic artery is a promising surgical approach, but it has inherent risks. Targeted delivery strategies have been developed based on ligands for cell surface molecules specific to islet cells or inflamed vascular endothelial cells. Delivery methods range from nanocarriers and vectors to deliver pharmacological agents to viral and non-viral vectors for the delivery of genetic constructs. Several strategies demonstrated enhanced therapeutic effects in diabetes with lower amounts of therapeutic agents and lower off-target side effects. Microvesicles, exosomes, polymer-based vectors, and nanocarriers are gaining popularity for targeted delivery. Notably, liposomes, lipid-assisted nanocarriers, and cationic polymers can be bioengineered to be immune-evasive, and their advantages to transport cargos into target cells make them appealing for pancreatic islet-targeted delivery. Viral vectors have become prominent tools for targeted gene delivery. In this review, we discuss the latest strategies for targeted delivery of therapeutic agents and imaging reagents to pancreatic islet cells.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Chemistry, University of Miami, FL, USA.
| | - Logan D Stone
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA; Clinical and Translational Science Institute, University of Miami, Miami, FL, USA
| | - Giacomo Lanzoni
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA.
| |
Collapse
|
70
|
Iqbal S, Zhao Z. Poly (β amino esters) copolymers: Novel potential vectors for delivery of genes and related therapeutics. Int J Pharm 2022; 611:121289. [PMID: 34775041 DOI: 10.1016/j.ijpharm.2021.121289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
The unique properties of polymers have performed an essential contribution to the drug delivery system by providing an outstanding platform for the delivery of macromolecules and genes. However, the block copolymers have been the subject of many recently published works whose results have demonstrated excellent performance in drug targeting. Poly(β-amino esters) (PβAEs) copolymers are the synthetic cationic polymers that are tailored by chemically joining PβAEs with other additives to demonstrate extraordinary efficiency in designing pre-defined and pre-programmed nanostructures, site-specific delivery, andovercoming the distinct cellular barriers. Different compositional and structural libraries could be generated by combinatorial chemistry and by the addition of various novel functional additives that fulfill the multiple requirements of targeted delivery. These intriguing attributes allow PβAE-copolymers to have customized therapeutic functions such as excellent encapsulation capacity, high stability, and stimuli-responsive release. Here, we give an overview of PβAE copolymers-based formulations along with focusing on most notable improvements such as structural modifications, bio-conjugations, and stimuli-responsive approaches, for safe and effective nucleic acids delivery.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
71
|
Bakshi HA, Quinn GA, Aljabali AAA, Hakkim FL, Farzand R, Nasef MM, Abuglela N, Ansari P, Mishra V, Serrano-Aroca Á, Tambuwala MM. Exploiting the Metabolism of the Gut Microbiome as a Vehicle for Targeted Drug Delivery to the Colon. Pharmaceuticals (Basel) 2021; 14:ph14121211. [PMID: 34959610 PMCID: PMC8709317 DOI: 10.3390/ph14121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of colon-associated diseases has increased significantly over the past several decades, as evidenced by accumulated literature on conditions such as Crohn’s disease, irritable bowel syndrome, colorectal cancer, and ulcerative colitis. Developing therapeutics for these diseases is challenging due to physiological barriers of the colon, systemic side effects, and the intestinal environment. Therefore, in a search for novel methods to overcome some of these problems, researchers discovered that microbial metabolism by gut microbiotia offers a potential method for targeted drug delivery This overview highlights several drug delivery systems used to modulate the microbiota and improve colon-targeted drug delivery. This technology will be important in developing a new generation of therapies which harness the metabolism of the human gut microflora.
Collapse
Affiliation(s)
- Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Institute of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (G.A.Q.); (P.A.)
- Correspondence: (H.A.B.); (M.M.T.)
| | - Gerry A. Quinn
- School of Pharmacy and Pharmaceutical Sciences, Institute of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (G.A.Q.); (P.A.)
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 566, Jordan;
| | - Faruck L. Hakkim
- The Hormel Institute, University of Minnesota, Austin, MN 559122, USA;
| | - Rabia Farzand
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (R.F.); (M.M.N.); (N.A.)
| | - Mohamed M. Nasef
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (R.F.); (M.M.N.); (N.A.)
| | - Naji Abuglela
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (R.F.); (M.M.N.); (N.A.)
| | - Prawej Ansari
- School of Pharmacy and Pharmaceutical Sciences, Institute of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (G.A.Q.); (P.A.)
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Institute of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (G.A.Q.); (P.A.)
- Correspondence: (H.A.B.); (M.M.T.)
| |
Collapse
|
72
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
73
|
He J, Yu T, Chen S, Li Y. Soil degradation behavior of ramie/thermoset poly(lactic acid) composites. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
74
|
Mekuria SL, Li J, Song C, Gao Y, Ouyang Z, Shen M, Shi X. Facile Formation of PAMAM Dendrimer Nanoclusters for Enhanced Gene Delivery and Cancer Gene Therapy. ACS APPLIED BIO MATERIALS 2021; 4:7168-7175. [PMID: 35006948 DOI: 10.1021/acsabm.1c00743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Preparation of versatile and safe nanovectors for efficient cancer gene therapy remains to be challenging in the current nanomedicine. Herein, we report the formation of dendrimer nanoclusters for enhanced gene delivery toward gene therapy of cancer. Here, poly(amidoamine) (PAMAM) dendrimers of generation 3 (G3) were cross-linked with 4,4'-dithiodibutryic acid (DA) to form nanoclusters (NCs) through 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride-induced covalent bonding. The synthesized G3-DA NCs having a hydrodynamic size of 219.3 nm possess good colloidal stability and can condense pDNA, encoding both enhanced green fluorescent protein and tumor suppressor p53 gene to form polyplexes with good cytocompatibility. Strikingly, the created NCs/pDNA polyplexes enable 2.3 and 2.1 times higher gene transfection to cancer cells than the counterpart materials of single G3 and G5 PAMAM dendrimers, respectively, under the same conditions. Furthermore, polyplex-treated cancer cells have upregulated p53 and p21 protein and mRNA expression levels and downregulated Cyclin-D1 and CDK-4 protein and mRNA expressions, thus arresting the cell cycle to the G1 phase in vitro to achieve cancer cell gene therapy. The gene delivery efficiency of the polyplexes was further validated through the in vivo tumor therapy without systemic toxicity. The synthesized highly efficient dendrimer NC-based vector system with low cytotoxicity may be extended to tackle various types of diseases related to genetic disorders.
Collapse
Affiliation(s)
- Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.,Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar 196, Ethiopia
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Cong Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
75
|
Senapati S, Upadhyaya A, Dhruw S, Giri D, Maiti P. Controlled DNA Delivery Using Poly(lactide) Nanoparticles and Understanding the Binding Interactions. J Phys Chem B 2021; 125:10009-10017. [PMID: 34436883 DOI: 10.1021/acs.jpcb.1c06520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cationic polymer-based gene delivery vectors suffer from several limitations such as low DNA-loading capacity, poor transfection, toxicity, environmental degradations, etc. Again, very limited works are available addressing the binding interactions in detail at the atomic level explaining the loading capacity, protection ability against harsh environments, and controlled release behavior of the DNA-encapsulated vehicles. Here, a poly(l-lactide) (PLA) nanoparticle-based controlled DNA release system is proposed. The developed vehicle possesses a high DNA-loading capacity and can release the loaded DNA in a controlled manner. Spectroscopic, physicochemical, and molecular simulation techniques (AM1 and atomistic molecular dynamics) have been employed to understand the binding interactions between PLA and DNA molecules enabling high DNA loading, protection against external harsh environments, and controlled DNA release behavior. Methyl thiazolyl tetrazolium (MTT) assay experiments confirm the biocompatible nature of the vehicle. Cellular uptake efficiency and endo-lysosomal escape capabilities have been investigated against HeLA cells. This study, therefore, demonstrates the development of a promising nonviral DNA delivery vector and includes a detailed investigation of the atomic-level interaction behavior between PLA and DNA molecules.
Collapse
Affiliation(s)
- Sudipta Senapati
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Anurag Upadhyaya
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Somnath Dhruw
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Debaprasad Giri
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| |
Collapse
|
76
|
Key considerations in formulation development for gene therapy products. Drug Discov Today 2021; 27:292-303. [PMID: 34500102 DOI: 10.1016/j.drudis.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/13/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy emerged as an important area of research and led to the success of multiple product approvals in the clinic. The number of clinical trials for this class of therapeutics is expected to grow over the next decade. Gene therapy products are complex and heterogeneous, employ different types of vectors and are susceptible to degradation. The product development process for commercially viable gene-based pharmaceuticals remains challenging. In this review, challenges, stability, and drug product formulation development strategies using viral or non-viral vectors, as well as accelerated regulatory approval pathways for gene therapy products are discussed.
Collapse
|
77
|
Zhang X, Lin ZI, Yang J, Liu GL, Hu Z, Huang H, Li X, Liu Q, Ma M, Xu Z, Xu G, Yong KT, Tsai WC, Tsai TH, Ko BT, Chen CK, Yang C. Carbon Dioxide-Derived Biodegradable and Cationic Polycarbonates as a New siRNA Carrier for Gene Therapy in Pancreatic Cancer. NANOMATERIALS 2021; 11:nano11092312. [PMID: 34578632 PMCID: PMC8472555 DOI: 10.3390/nano11092312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is an aggressive malignancy associated with poor prognosis and a high tendency in developing infiltration and metastasis. K-ras mutation is a major genetic disorder in pancreatic cancer patient. RNAi-based therapies can be employed for combating pancreatic cancer by silencing K-ras gene expression. However, the clinical application of RNAi technology is appreciably limited by the lack of a proper siRNA delivery system. To tackle this hurdle, cationic poly (cyclohexene carbonate) s (CPCHCs) using widely sourced CO2 as the monomer are subtly synthesized via ring-opening copolymerization (ROCOP) and thiol-ene functionalization. The developed CPCHCs could effectively encapsulate therapeutic siRNA to form CPCHC/siRNA nanoplexes (NPs). Serving as a siRNA carrier, CPCHC possesses biodegradability, negligible cytotoxicity, and high transfection efficiency. In vitro study shows that CPCHCs are capable of effectively protecting siRNA from being degraded by RNase and promoting a sustained endosomal escape of siRNA. After treatment with CPCHC/siRNA NPs, the K-ras gene expression in both pancreatic cancer cell line (PANC-1 and MiaPaCa-2) are significantly down-regulated. Subsequently, the cell growth and migration are considerably inhibited, and the treated cells are induced into cell apoptotic program. These results demonstrate the promising potential of CPCHC-mediated siRNA therapies in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
| | - Zulu Hu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Xiang Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (W.-C.T.); (T.-H.T.)
| | - Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (W.-C.T.); (T.-H.T.)
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| |
Collapse
|
78
|
Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:9118. [PMID: 34502028 PMCID: PMC8431379 DOI: 10.3390/ijms22179118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the primary causes of worldwide human deaths. Most cancer patients receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment. The application of nanotechnology has facilitated the development of nano-drug delivery systems (NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs. In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery, gene therapy, and early diagnostics for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| |
Collapse
|
79
|
Gupta SS, Mishra V, Mukherjee MD, Saini P, Ranjan KR. Amino acid derived biopolymers: Recent advances and biomedical applications. Int J Biol Macromol 2021; 188:542-567. [PMID: 34384802 DOI: 10.1016/j.ijbiomac.2021.08.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/19/2023]
Abstract
Over the past few years, amino acids (AA) have emerged as promising biomaterials for the synthesis of functional polymers. Owing to the diversity of functional groups in amino acids, various polymerization methods may be used to make a wide range of well-defined functional amino-acid/peptide-based optically active polymers with varying polymer lengths, compositions, and designs. When incorporated with chirality and self-assembly, they offer a wide range of applications and are particularly appealing in the field of drug delivery, tissue engineering, and biosensing. There are several classes of these polymers that include polyamides (PA), polyesters (PE), poly(ester-amide)s (PEA)s, polyurethanes (PU)s, poly(depsipeptide)s (PDP)s, etc. They offer the ability to control functionality, conjugation, crosslinking, stimuli responsiveness, and tuneable mechanical/thermal properties. In this review, we present the recent advancements in the synthesis strategies for obtaining these amino acid-derived bio-macromolecules, their self-assembly properties, and the wealth of prevalent applications.
Collapse
Affiliation(s)
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, NOIDA, India.
| | | | | | - Kumar Rakesh Ranjan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, NOIDA, India.
| |
Collapse
|
80
|
Photo- and pH-responsive drug delivery nanocomposite based on o-nitrobenzyl functionalized upconversion nanoparticles. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
81
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
82
|
Saeed RM, Abdullah M, Ahram M, Taha MO. Novel Ellipsoid Chitosan-Phthalate Lecithin Nanoparticles for siRNA Delivery. Front Bioeng Biotechnol 2021; 9:695371. [PMID: 34395401 PMCID: PMC8355739 DOI: 10.3389/fbioe.2021.695371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Small interfering RNA (siRNA) has received increased interest as a gene therapeutic agent. However, instability and lack of safe, affordable, and effective carrier systems limit siRNA's widespread clinical use. To tackle this issue, synthetic vectors such as liposomes and polymeric nanoparticles have recently been extensively investigated. In this study, we exploited the advantages of reduced cytotoxicity and enhanced cellular penetration of chitosan-phthalate (CSP) together with the merits of lecithin (LC)-based nanoparticles (NPs) to create novel, ellipsoid, non-cytotoxic, tripolyphosphate (TPP)-crosslinked NPs capable of delivering siRNA efficiently. The resulting NPs were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and were found to be ellipsoid in the shape of ca. 180 nm in size, exhibiting novel double-layer shells, with excellent stability at physiological pH and in serum solutions. MTT assay and confocal fluorescence microscopy showed that CSP-LC-TPP NPs are non-cytotoxic and efficiently penetrate cancer cells in vitro. They achieved 44% silencing against SLUG protein in MDA-MB-453 cancer cells and were significantly superior to a commercial liposome-based transfection agent that achieved only 30% silencing under comparable conditions. Moreover, the NPs protected their siRNA cargos in 50% serum and from being displaced by variable concentrations of heparin. In fact, CSP-LC-TPP NPs achieved 26% transfection efficiency in serum containing cell culture media. Real-time wide-field fluorescence microscopy showed siRNA-loaded CSP-LC-TPP NPs to successfully release their cargo intracellularly. We found that the amphoteric nature of chitosan-phthalate polymer promotes the endosomal escape of siRNA and improves the silencing efficiency.
Collapse
Affiliation(s)
- Ramzi Mukred Saeed
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammed Abdullah
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
83
|
Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1939715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chandan Adhikari
- School of Basic Science and Humanities, Institute of Engineering & Management, Kolkata, India
| |
Collapse
|
84
|
Hevilla V, Sonseca A, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Enzymatic Synthesis of Polyesters and Their Bioapplications: Recent Advances and Perspectives. Macromol Biosci 2021; 21:e2100156. [PMID: 34231313 DOI: 10.1002/mabi.202100156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Indexed: 01/17/2023]
Abstract
This article reviews the most important advances in the enzymatic synthesis of polyesters. In first place, the different processes of polyester enzymatic synthesis, i.e., polycondensation, ring opening, and chemoenzymatic polymerizations, and the key parameters affecting these reactions, such as enzyme, concentration, solvent, or temperature, are analyzed. Then, the latest articles on the preparation of polyesters either by direct synthesis or via modification are commented. Finally, the main bioapplications of enzymatically obtained polyesters, i.e., antimicrobial, drug delivery, or tissue engineering, are described. It is intended to point out the great advantages that enzymatic polymerization present to obtain polymers and the disadvantages found to develop applied materials.
Collapse
Affiliation(s)
- Víctor Hevilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Agueda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
| | - Coro Echeverría
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Alexandra Muñoz-Bonilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Marta Fernández-García
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| |
Collapse
|
85
|
Digiacomo L, Giulimondi F, Capriotti AL, Piovesana S, Montone CM, Chiozzi RZ, Laganà A, Mahmoudi M, Pozzi D, Caracciolo G. Optimal centrifugal isolating of liposome-protein complexes from human plasma. NANOSCALE ADVANCES 2021; 3:3824-3834. [PMID: 36133013 PMCID: PMC9418580 DOI: 10.1039/d1na00211b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/15/2021] [Indexed: 05/14/2023]
Abstract
In the past few years, characterization of the protein corona (PC) that forms around liposomal systems has gained increasing interest for the development of novel therapeutic and diagnostic technologies. At the crossroads of fast-moving research fields, the interdisciplinarity of protein corona investigations poses challenges for experimental design and reporting. Isolation of liposome-protein complexes from biological fluids has been identified as a fundamental step of the entire workflow of PC characterization but exact specifications for conditions to optimize pelleting remain elusive. In the present work, key factors affecting precipitation of liposome-protein complexes by centrifugation, including time of centrifugation, total sample volume, lipid : protein ratio and contamination from biological NPs were comprehensively evaluated. Here we show that the total amount of isolated liposome-protein complexes and the extent of contamination from biological NPs may vary with influence factors. Our results provide protein corona researchers with precise indications to separate liposome-protein complexes from protein-rich fluids and include proper controls, thus they are anticipated to catalyze improved consistency of data mining and computational modelling of protein corona composition.
Collapse
Affiliation(s)
- Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences Utrecht University Heidelberglaan 8 3584 CS Utrecht The Netherlands
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Morteza Mahmoudi
- Department of Radiology, Precision Health Program, Michigan State University MI USA
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| |
Collapse
|
86
|
Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021; 7:2150-2176. [PMID: 33979143 PMCID: PMC8130531 DOI: 10.1021/acsbiomaterials.1c00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Human respiratory viral infections are the leading cause of morbidity and mortality around the world. Among the various respiratory viruses, coronaviruses (e.g., SARS-CoV-2) have created the greatest challenge and most frightening health threat worldwide. Human coronaviruses typically infect the upper respiratory tract, causing illnesses that range from common cold-like symptoms to severe acute respiratory infections. Several promising vaccine formulations have become available since the beginning of 2021. Nevertheless, achievement of herd immunity is still far from being realized. Social distancing remains the only effective measure against SARS-CoV-2 infection. Nanobiotechnology enables the design of nanobiosensors. These nanomedical diagnostic devices have opened new vistas for early detection of viral infections. The present review outlines recent research on the effectiveness of nanoplatforms as diagnostic and antiviral tools against coronaviruses. The biological properties of coronavirus and infected host organs are discussed. The challenges and limitations encountered in combating SARS-CoV-2 are highlighted. Potential nanodevices such as nanosensors, nanobased vaccines, and smart nanomedicines are subsequently presented for combating current and future mutated versions of coronaviruses.
Collapse
Affiliation(s)
- Elham Bidram
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Yasaman Esmaeili
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Abbas Amini
- Centre
for Infrastructure Engineering, Western
Sydney University, Locked
Bag 1797, Penrith 2751, New South Wales, Australia
- Department
of Mechanical Engineering, Australian College
of Kuwait, Al Aqsa Mosque
Street, Mishref, Safat 13015, Kuwait
| | - Rossella Sartorius
- Institute
of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, Naples 80131, Italy
| | - Franklin R. Tay
- The
Graduate
School, Augusta University, 1120 15th Street, Augusta, Georgia 30912, United States
| | - Laleh Shariati
- Applied
Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
- Department
of Biomaterials, Nanotechnology and Tissue Engineering, School of
Advanced Technologies in Medicine, Isfahan
University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Pooyan Makvandi
- Centre
for Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, Pontedera 56025, Pisa, Italy
| |
Collapse
|
87
|
Zu H, Gao D. Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS JOURNAL 2021; 23:78. [PMID: 34076797 PMCID: PMC8171234 DOI: 10.1208/s12248-021-00608-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Gene therapy has been experiencing a breakthrough in recent years, targeting various specific cell groups in numerous therapeutic areas. However, most recent clinical studies maintain the use of traditional viral vector systems, which are challenging to manufacture cost-effectively at a commercial scale. Non-viral vectors have been a fast-paced research topic in gene delivery, such as polymers, lipids, inorganic particles, and combinations of different types. Although non-viral vectors are low in their cytotoxicity, immunogenicity, and mutagenesis, attracting more and more researchers to explore the promising delivery system, they do not carry ideal characteristics and have faced critical challenges, including gene transfer efficiency, specificity, gene expression duration, and safety. This review covers the recent advancement in non-viral vectors research and formulation aspects, the challenges, and future perspectives.
Collapse
Affiliation(s)
- Hui Zu
- Abbvie Inc., 1 N. Waukegan Rd, North Chicago, Illinois, 60064, USA
| | - Danchen Gao
- Abbvie Inc., 1 N. Waukegan Rd, North Chicago, Illinois, 60064, USA.
| |
Collapse
|
88
|
Singh R, Kumar P. Disaccharide-polyethylenimine organic nanoparticles as non-toxic in vitro gene transporters and their anticancer potential. Bioorg Chem 2021; 112:104918. [PMID: 33932768 DOI: 10.1016/j.bioorg.2021.104918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022]
Abstract
Polyethylenimines (PEIs) have been shown as efficient gene delivery vectors due to their unique properties, however, toxicity as well as non-specific interactions with the tissues/cells because of high charge density have hampered their use in clinical applications. To counter these concerns, here, we have prepared disachharide-PEI organic nanoparticles by mixing PEIs with non-reducing disaccharides, i.e. trehalose (TPONs) and sucrose (SPONs), under mild conditions. The fabricated nanoparticles were complexed with pDNA and size of these complexes was found in the range of ~130-162 nm with zeta potential ~ +8-25 mV. Further evaluation of these nanoparticles revealed that substitution of disaccharides on PEIs successfully augmented cell viability. Transfection efficiency exhibited by these complexes was significantly higher than the unmodified polymer and the standard, Lipofectamine, complexes. Fabrication of organic nanoparticles did not alter the buffering capacity considerably which was found to be instrumental during endosomal escape of the complexes. Among both the series of nanoparticles, trehalose-PEI organic nanoparticles (TPONs) exhibited greater pDNA transportation potential than sucrose-PEI organic nanoparticles (SPONs) which was also established by flow cytometric data, wherein percent cells expressing GFP was higher in case of TP/pDNA complexes as compared to SP/pDNA complexes. Interestingly, TPONs also showed promising anticancer activity on cancer cell lines i.e. Mg63, MCF-7 and HepG2. Overall, the results advocate promising potential of disaccharide-PEI organic nanoparticles as efficient gene delivery agents which can be used effectively in future gene therapy applications along with anti-cancer competence of TPONs.
Collapse
Affiliation(s)
- Reena Singh
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
89
|
Grun MK, Suberi A, Shin K, Lee T, Gomerdinger V, Moscato ZM, Piotrowski-Daspit AS, Saltzman WM. PEGylation of poly(amine-co-ester) polyplexes for tunable gene delivery. Biomaterials 2021; 272:120780. [PMID: 33813260 DOI: 10.1016/j.biomaterials.2021.120780] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/17/2023]
Abstract
There is growing interest in PEGylation of cationic polymeric vehicles for gene delivery in order to improve vehicle stability and reduce toxicity, but little is known about the effects of PEG coatings on transfection. We used a polymer from the poly(amine-co-ester) (PACE) family blended with PEG-conjugated PACE at different ratios in order to explore the effects of polyplex PEGylation on the transfection efficiency of plasmid DNA, mRNA, and siRNA in vitro and mRNA in vivo. We discovered that concentrations of PACE-PEG as low as 0.25% by weight improved polyplex stability but also inhibited transfection in vitro. In vivo, the effect of PACE-PEG incorporation on mRNA transfection varied by delivery route; the addition of PACE-PEG improved local delivery to the lung, but PEGylation had little effect on intravenous systemic delivery. By both delivery routes, transfection was inhibited at concentrations higher than 5 wt% PACE-PEG. These results demonstrate that excess PEGylation can be detrimental to vehicle function, and suggest that PEGylation of cationic vehicles must be optimized by PEG content, cargo type, and delivery route.
Collapse
Affiliation(s)
- Molly K Grun
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA
| | - Alexandra Suberi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Teresa Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Victoria Gomerdinger
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA
| | - Zoe M Moscato
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | | | - W Mark Saltzman
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, 06511, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
90
|
Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2021; 8:9621-9641. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China. and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China
| |
Collapse
|
91
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
92
|
Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marianne B. Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Richard M. England
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| |
Collapse
|
93
|
Plyusnin A, He J, Elschner C, Nakamura M, Kulkova J, Spickenheuer A, Scheffler C, Lassila LVJ, Moritz N. A Polymer for Application as a Matrix Phase in a Concept of In Situ Curable Bioresorbable Bioactive Load-Bearing Continuous Fiber Reinforced Composite Fracture Fixation Plates. Molecules 2021; 26:molecules26051256. [PMID: 33652632 PMCID: PMC7956420 DOI: 10.3390/molecules26051256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/04/2022] Open
Abstract
The use of bioresorbable fracture fixation plates made of aliphatic polyesters have good potential due to good biocompatibility, reduced risk of stress-shielding, and eliminated need for plate removal. However, polyesters are ductile, and their handling properties are limited. We suggested an alternative, PLAMA (PolyLActide functionalized with diMethAcrylate), for the use as the matrix phase for the novel concept of the in situ curable bioresorbable load-bearing composite plate to reduce the limitations of conventional polyesters. The purpose was to obtain a preliminary understanding of the chemical and physical properties and the biological safety of PLAMA from the prospective of the novel concept. Modifications with different molecular masses (PLAMA-500 and PLAMA-1000) were synthesized. The efficiency of curing was assessed by the degree of convergence (DC). The mechanical properties were obtained by tensile test and thermomechanical analysis. The bioresorbability was investigated by immersion in simulated body fluid. The biocompatibility was studied in cell morphology and viability tests. PLAMA-500 showed better DC and mechanical properties, and slower bioresorbability than PLAMA-1000. Both did not prevent proliferation and normal morphological development of cells. We concluded that PLAMA-500 has potential for the use as the matrix material for bioresorbable load-bearing composite fracture fixation plates.
Collapse
Affiliation(s)
- Artem Plyusnin
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Cindy Elschner
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku, FI-20014 Turku, Finland;
| | - Julia Kulkova
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
- Correspondence: ; Tel.: +358-44-974-91-83
| | - Axel Spickenheuer
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Christina Scheffler
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Lippo V. J. Lassila
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| | - Niko Moritz
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| |
Collapse
|
94
|
van den Berg AIS, Yun CO, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J Control Release 2021; 331:121-141. [PMID: 33453339 DOI: 10.1016/j.jconrel.2021.01.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy using nucleic acids has many clinical applications for the treatment of diseases with a genetic origin as well as for the development of innovative vaccine formulations. Since nucleic acids in their free form are rapidly degraded by nucleases present in extracellular matrices, have poor pharmacokinetics and hardly pass cellular membranes, carrier systems are required. Suitable carriers that protect the nucleic acid payload against enzymatic attack, prolong circulation time after systemic administration and assist in cellular binding and internalization are needed to develop nucleic acid based drug products. Viral vectors have been investigated and are also clinically used as delivery vehicles. However, some major drawbacks are associated with their use. Therefore there has been substantial attention on the use of non-viral carrier systems based on cationic lipids and polymers. This review focuses on the properties of polymer-based nucleic acid formulations, also referred as polyplexes. Different polymeric systems are summarized, and the cellular barriers polyplexes encounter and ways to tackle these are discussed. Finally attention is given to the clinical status of non-viral nucleic acid formulations.
Collapse
Affiliation(s)
- Annette I S van den Berg
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Chae-Ok Yun
- Institute of Nano Science and Technology, Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
95
|
Song H, Hart SL, Du Z. Assembly strategy of liposome and polymer systems for siRNA delivery. Int J Pharm 2021; 592:120033. [PMID: 33144189 DOI: 10.1016/j.ijpharm.2020.120033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, gene therapy has made tremendous progress in the development of disease treatment. Among them, siRNA offers specificity of gene silencing, ease of synthesis, and short development period, and has been intensively studied worldwide. However, siRNA as the hydrophilic polyanion is easily degraded in vivo and poorly taken up into cells and so, the benefits of its powerful gene silencing ability will not be realized until better carriers are developed that are capable of protecting siRNA and delivering it intact to the cytoplasm of the target cells. Cationic liposomes (CL) and cationic polymers (CP) are the main non-viral siRNA vectors, there have been a lot of reports on the use of these two carriers to deliver siRNA. Whereas, as far as we know, there have been few review articles that provide an in-depth summary of the siRNA loading principle and internal structures of the siRNA delivery system. We summarize the formation principle and assembly structure of the cationic liposome-siRNA and polymer-siRNA complexes, and point out their advantages and characteristics and also show how to perfect their assembly and improve their clinical application in the future. It supports some useful suggestions for siRNA therapy, specifically, safe and efficient delivery.
Collapse
Affiliation(s)
- Huiling Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Zixiu Du
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
96
|
Ullah A, Qazi J, Rahman L, Kanaras AG, Khan WS, Hussain I, Rehman A. Nanoparticles-assisted delivery of antiviral-siRNA as inhalable treatment for human respiratory viruses: A candidate approach against SARS-COV-2. NANO SELECT 2020; 1:612-621. [PMID: 34485978 PMCID: PMC7675679 DOI: 10.1002/nano.202000125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has challenged healthcare structures across the globe. Although a few therapies are approved by FDA, the search for better treatment options is continuously on rise. Clinical management includes infection prevention and supportive care such as supplemental oxygen and mechanical ventilatory support. Given the urgent nature of the pandemic and the number of companies and researchers developing COVID-19 related therapies, FDA has created an emergency program to move potential treatments with already approved drugs to patients as quickly as possible in parallel to the development of new drugs that must first pass the clinical trials. In this manuscript, we have reviewed the available literature on the use of sequence-specific degradation of viral genome using short-interfering RNA (siRNA) suggesting it as a possible treatment against SARS-CoV-2. Delivery of siRNA can be promoted by the use of FDA approved lipids, polymers or lipid-polymer hybrids. These nanoparticulate systems can be engineered to exhibit increased targetability and formulated as inhalable aerosols.
Collapse
Affiliation(s)
- Ata Ullah
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Javaria Qazi
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Lutfur Rahman
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Antonios G. Kanaras
- Physics and AstronomyInstitute for Life SciencesUniversity of SouthamptonSouthamptonSO171BJUK
| | - Waheed S. Khan
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)LahorePakistan
| | - Asma Rehman
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| |
Collapse
|
97
|
Methods of synthesis, characterization and biomedical applications of biodegradable poly(ester amide)s- A review. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
98
|
Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London, UK
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| |
Collapse
|
99
|
Chen CK, Liao MG, Wu YL, Fang ZY, Chen JA. Preparation of Highly Swelling/Antibacterial Cross-Linked N-Maleoyl-Functional Chitosan/Polyethylene Oxide Nanofiber Meshes for Controlled Antibiotic Release. Mol Pharm 2020; 17:3461-3476. [DOI: 10.1021/acs.molpharmaceut.0c00504] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Min-Gan Liao
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Yi-Ling Wu
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Zi-Yu Fang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
100
|
Pereira-Silva M, Jarak I, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J Control Release 2020; 323:442-462. [DOI: 10.1016/j.jconrel.2020.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/09/2023]
|