51
|
Gao H, Smith BN. Tonic GABAA receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus. J Neurophysiol 2009; 103:904-14. [PMID: 20018836 DOI: 10.1152/jn.00511.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type A gamma-aminobutyric acid (GABA(A)) receptors expressed in the dorsal motor nucleus of vagus (DMV) critically regulate the activity of vagal motor neurons and, by inference, the gastrointestinal (GI) tract. Two types of GABA(A) receptor-mediated inhibition have been identified in the brain, represented by phasic (I(phasic)) and tonic (I(tonic)) inhibitory currents. The hypothesis that I(tonic) regulates neuron activity was tested in the DMV using whole cell patch-clamp recordings in transverse brain stem slices from rats. An I(tonic) was present in a subset of DMV neurons, which was determined to be mediated by different receptors than those mediating fast, synaptic currents. Preapplication of tetrodotoxin significantly decreased the resting I(tonic) amplitude in DMV neurons, suggesting that most of the current was due to action potential (AP)-dependent GABA release. Blocking GABA transport enhanced I(tonic) and multiple GABA transporters cooperated to regulate I(tonic). The I(tonic) was composed of both a gabazine-insensitive component that was nearly saturated under basal conditions and a gabazine-sensitive component that was activated when extracellular GABA concentration was elevated. Perfusion of THIP (10 muM) significantly increased I(tonic) amplitude without increasing I(phasic) amplitude. The I(tonic) played a major role in determining the overall excitability of DMV neurons by contributing to resting membrane potential and AP frequency. Our results indicate that I(tonic) contributes to DMV neuron membrane potential and activity and is thus an important regulator of vagally mediated GI function.
Collapse
Affiliation(s)
- Hong Gao
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | | |
Collapse
|
52
|
Tolman JA, Faulkner MA. Vigabatrin: a comprehensive review of drug properties including clinical updates following recent FDA approval. Expert Opin Pharmacother 2009; 10:3077-89. [DOI: 10.1517/14656560903451690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
53
|
Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, Steve White H. Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 2009; 109 Suppl 1:139-44. [DOI: 10.1111/j.1471-4159.2009.05982.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
54
|
Abstract
OBJECTIVES Chronic pancreatitis (CP) and pancreatic cancer (CA) have been associated with intestinal malabsorption and inflammation. However, little is known about the changes in amino acid metabolism in such patients. METHODS The circulating amino acid levels were determined in 12 patients with CP, 12 CA patients, and 12 controls. RESULTS Total amino acid concentrations were 2850 +/- 71 micromol/L in controls, 2640 +/- 96 micromol/L in CP patients, and 2210 +/- 123 micromol/L in CA patients (P < 0.001). In CP patients, significant reductions in the concentrations of citrulline, gamma-aminobutyric acid, taurine, and aspartic acid were found (P < 0.05), whereas in CA patients, the levels of phosphoethanolamine, gamma-aminobutyric acid, aspartic acid, taurine, arginine, threonine, alanine, citrulline, and tryptophan were reduced. There was a significant inverse relationship between the total amino acid levels and the white blood cell counts (r = -0.44, P = 0.008). CONCLUSIONS Both patients with CP and with CA exhibit alterations in amino acid levels. The mechanisms underlying these defects may involve intestinal malabsorption as well as systemic inflammation. Providing selective amino acid supplementation to such patients may minimize the excess morbidity and mortality associated with protein malnutrition.
Collapse
|
55
|
Yatsenko LN, Storchak LG, Parkhomenko NT, Himmelreich NH. Transmembrane Transport and Release of GABA in the Brain of Rats Subjected to Postnatal Hypoxia. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Inactivation of GABA transaminase by 3-chloro-1-(4-hydroxyphenyl)propan-1-one. Bioorg Med Chem Lett 2009; 19:731-4. [DOI: 10.1016/j.bmcl.2008.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 11/05/2008] [Accepted: 12/06/2008] [Indexed: 11/21/2022]
|
57
|
Demonstration of Neuron-Glia Transfer of Precursors for Gaba Biosynthesis in a Co-Culture System of Dissociated Mouse Cerebral Cortex. Neurochem Res 2008; 33:2629-35. [DOI: 10.1007/s11064-008-9814-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
|
58
|
The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders. J Neural Transm (Vienna) 2008; 116:649-57. [PMID: 18607529 PMCID: PMC2694916 DOI: 10.1007/s00702-008-0075-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/30/2008] [Indexed: 12/18/2022]
Abstract
Recent evidence suggests that the GABA transporter 1 (GAT-1; SLC6A1) plays a role in the pathophysiology and treatment of anxiety disorders. In order to understand the impact of genetic variation within SLC6A1 on pathological anxiety, we performed a case–control association study with anxiety disorder patients with and without syndromal panic attacks. Using the method of sequential addition of cases, we found that polymorphisms in the 5′ flanking region of SLC6A1 are highly associated with anxiety disorders when considering the severity of syndromal panic attacks as phenotype covariate. Analysing the effect size of the association, we observed a constant increase in the odds ratio for disease susceptibility with an increase in panic severity (OR ~ 2.5 in severely affected patients). Nominally significant association effects were observed considering the entire patient sample. These data indicate a high load of genetic variance within SLC6A1 on pathological anxiety and highlight GAT-1 as a promising target for treatment of anxiety disorders with panic symptoms.
Collapse
|
59
|
Riera JJ, Schousboe A, Waagepetersen HS, Howarth C, Hyder F. The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism. Neuroimage 2008; 40:1436-59. [PMID: 18343162 PMCID: PMC4348032 DOI: 10.1016/j.neuroimage.2007.12.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/22/2023] Open
Abstract
In order to interpret/integrate data obtained with different functional neuroimaging modalities (e.g. fMRI, EEG/MEG, PET/SPECT, fNIRS), forward-generative models of a diversity of brain mechanisms at the mesoscopic level are considered necessary. For the cerebral cortex, the brain structure with possibly the most relevance for functional neuroimaging, a variety of such biophysical models has been proposed over the last decade. The development of technological tools to investigate in vitro the physiological, anatomical and biochemical principles at the microscopic scale in comparative studies formed the basis for such theoretical progresses. However, with the most recent introduction of systems to record electrical (e.g. miniaturized probes chronically/acutely implantable in the brain), optical (e.g. two-photon laser scanning microscopy) and atomic nuclear spectral (e.g. nuclear magnetic resonance spectroscopy) signals using living laboratory animals, the field is receiving even greater attention. Major advances have been achieved by combining such sophisticated recording systems with new experimental strategies (e.g. transgenic/knock-out animals, high resolution stereotaxic manipulation systems for probe-guidance and cellular-scale chemical-delivery). Theoreticians may now be encouraged to re-consider previously formulated mesoscopic level models in order to incorporate important findings recently made at the microscopic scale. In this series of reviews, we summarize the background at the microscopic scale, which we suggest will constitute the foundations for upcoming representations at the mesoscopic level. In this first part, we focus our attention on the nerve ending particles in order to summarize basic principles and mechanisms underlying cellular metabolism in the cerebral cortex. It will be followed by two parts highlighting major features in its organization/working-principles to regulate both cerebral blood circulation and neuronal activity, respectively. Contemporary theoretical models for functional neuroimaging will be revised in the fourth part, with particular emphasis in their applications, advantages/limitations and future prospects.
Collapse
Affiliation(s)
- Jorge J Riera
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
60
|
Smith MD, Saunders GW, Clausen RP, Frølund B, Krogsgaard-Larsen P, Larsson OM, Schousboe A, Wilcox KS, White HS. Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Res 2008; 79:6-13. [PMID: 18262393 PMCID: PMC4314296 DOI: 10.1016/j.eplepsyres.2007.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 11/24/2022]
Abstract
Disruptions in GABAergic neurotransmission have been implicated in numerous CNS disorders, including epilepsy and neuropathic pain. Selective inhibition of neuronal and glial GABA transporter subtypes may offer unique therapeutic options for regaining balance between inhibitory and excitatory systems. The ability of two GABA transport inhibitors to modulate inhibitory tone via inhibition of mGAT1 (tiagabine) or mGAT2/BGT-1 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-4-(methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol), also known as EF1502) was evaluated using an in vitro model of spontaneous interictal-like bursting (SB). SBs were recorded extracellularly in combined mEC-HC horizontal brain slices (400 microm; 31+/-1 degrees C) obtained from KA-treated rats. Slice recordings demonstrated that EF1502 exhibited a concentration-dependent reduction in SB frequency. EF1502 significantly reduced SB rate to 32% of control at the 30 microM concentration, while reducing the area and duration of SB activity to 60% and 46% of control, respectively, at the 10 microM concentration. In contrast, the GAT1 selective inhibitor tiagabine (3, 10, and 30 microM) was unable to significantly reduce the frequency of SB activity in the mEC, despite significantly reducing both the duration (51% of control) and area (58% of control) of the SB at concentrations as low as 3 microM. The ability of EF1502, but not tiagabine, to inhibit SBs in the mEC suggests that this in vitro model of pharmacoresistant SB activity is useful to differentiate between novel anticonvulsants with similar mechanisms of action and suggests a therapeutic potential for non-GAT1 transport inhibitors.
Collapse
Affiliation(s)
- Misty D Smith
- Pharmacology & Toxicology, University of Utah Anticonvulsant Drug Development Program, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
This review assesses the parallel data on the role of gamma-aminobutyric acid (GABA) in depression and anxiety. We review historical and new data from both animal and human experimentation which have helped define the key role for this transmitter in both these mental pathologies. By exploring the overlap in these conditions in terms of GABAergic neurochemistry, neurogenetics, brain circuitry, and pharmacology, we develop a theory that the two conditions are intrinsically interrelated. The role of GABAergic agents in demonstrating this interrelationship and in pointing the way to future research is discussed.
Collapse
Affiliation(s)
- Allan V Kalueff
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, Maryland, USA
| | | |
Collapse
|
62
|
Kazzi ZN, Jones CC, Morgan BW. Seizures in a pediatric patient with a tiagabine overdose. J Med Toxicol 2008; 2:160-2. [PMID: 18072137 DOI: 10.1007/bf03161185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Tiagabine (TGB) is a novel antiepileptic that decreases GABA uptake. The literature contains one report of an adult with epilepsy who ingested up to 1 gram of TGB and developed status epilepticus. We reported on a pediatric patient who ingested significantly less TGB but still developed tonic-clonic seizures. CASE REPORT A previously healthy, 13 kg, two-year-old girl developed generalized tonic-clonic seizure activity at home approximately 1 hour after ingesting 90 mg of her grandmother's TGB (forty five 2 mg tablets). At the hospital she had two 5 minute seizures at 1.5 and 3.5 hours post ingestion. Her serum TGB levels were 530 and 130 ng/ml approximately 5 and 11 hours post-ingestion (5-70 ng/ml trough levels with most probable range for seizure control). She was discharged 27 hours post ingestion, and she was in good condition. CONCLUSION An overdose of TGB, a novel anti-epileptic, can cause convulsive seizures.
Collapse
Affiliation(s)
- Ziad N Kazzi
- Department of Emergency Medicine, University of Alabama at Birmingham, USA.
| | | | | |
Collapse
|
63
|
Madsen KK, Larsson OM, Schousboe A. Regulation of excitation by GABA neurotransmission: focus on metabolism and transport. Results Probl Cell Differ 2008; 44:201-21. [PMID: 17579816 DOI: 10.1007/400_2007_036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The vast majority of excitatory synapses in the central nervous system (CNS) utilize glutamate as the neurotransmitter. The level of excitation appears to be under regulatory control by the major inhibitory neurotransmitter GABA, which is synthesized from glutamate by its decarboxylation catalysed by glutamate decarboxylase (GAD). The inactivation of GABA is brought about by high affinity GABA transporters located in the presynaptic GABAergic neurons as well as surrounding astrocytes and subsequently GABA may be metabolized by GABA-transaminase (GABA-T) ultimately allowing the carbon skeleton to enter the tricarboxylic acid (TCA) cycle for oxidative metabolism. In the presynaptic GABAergic neuron, GABA taken up seems, however, preferentially to enter the vesicular GABA pool and hence it is recycled as a transmitter. It has become clear that compounds acting as inhibitors at either the transporters or GABA-T are capable of regulating the inhibitory tonus thus controlling excitation. This has led to development of clinically efficatious antiepileptic drugs. This paper shall review recent progress in targeting these pharmacological entities.
Collapse
Affiliation(s)
- Karsten K Madsen
- Department of Pharmacology, Danish University of Pharmaceutical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
64
|
Christiansen B, Meinild AK, Jensen AA, Braüner-Osborne H. Cloning and Characterization of a Functional Human γ-Aminobutyric Acid (GABA) Transporter, Human GAT-2. J Biol Chem 2007; 282:19331-41. [PMID: 17502375 DOI: 10.1074/jbc.m702111200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human. The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable and dependent on both Na(+) and Cl(-). Pharmacologically the transporter is distinct from the other human GABA transporters and similar to rat GAT-2 and mouse GAT3 with high sensitivity toward GABA and beta-alanine. Furthermore the GABA transport inhibitor (S)-SNAP-5114 displayed some inhibitory activity at the transporter. Expression analysis by reverse transcription-PCR showed that GAT-2 mRNA is present in human brain, kidney, lung, and testis. The finding of the human GAT-2 demonstrates for the first time that the four plasma membrane GABA transporters identified in several mammalian species are all conserved in human. Furthermore the availability of human GAT-2 enables the use of all human clones of the GABA transporters in drug development programs and functional characterization of novel inhibitors of GABA transport.
Collapse
Affiliation(s)
- Bolette Christiansen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
65
|
Dannhardt G, Kiefer W. [Antiepileptics--action principles and structural parameters]. PHARMAZIE IN UNSERER ZEIT 2007; 36:270-81. [PMID: 17623317 DOI: 10.1002/pauz.200600225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Gerd Dannhardt
- Institut für Pharmazie der Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55099 Mainz.
| | | |
Collapse
|
66
|
Schousboe A, Waagepetersen HS. GABA: Homeostatic and pharmacological aspects. PROGRESS IN BRAIN RESEARCH 2007; 160:9-19. [PMID: 17499106 DOI: 10.1016/s0079-6123(06)60002-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) operates by a fine-tuned balance between excitatory and inhibitory signalling. In this context, the inhibitory neurotransmission may be of particular interest as it has been suggested that such neuronal pathways may constitute 'command pathways' and the principle of 'dis-inhibition' leading ultimately to excitation may play a fundamental role (Roberts, E. (1974). Adv. Neurol., 5: 127-143). The neurotransmitter responsible for this signalling is gamma-aminobutyrate (GABA) which was first discovered in the CNS as a curious amino acid (Roberts, E., Frankel, S. (1950). J. Biol. Chem., 187: 55-63) and later proposed as an inhibitory neurotransmitter (Curtis, D.R., Watkins, J.C. (1960). J. Neurochem., 6: 117-141; Krnjevic, K., Schwartz, S. (1967). Exp. Brain Res., 3: 320-336). The present review will describe aspects of GABAergic neurotransmission related to homeostatic mechanisms such as biosynthesis, metabolism, release and inactivation. Additionally, pharmacological and therapeutic aspects of this will be discussed.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Pharmacology and Pharmacotherapy, The Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
67
|
Ait-Daoud N, Malcolm RJ, Johnson BA. An overview of medications for the treatment of alcohol withdrawal and alcohol dependence with an emphasis on the use of older and newer anticonvulsants. Addict Behav 2006; 31:1628-49. [PMID: 16472931 DOI: 10.1016/j.addbeh.2005.12.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 11/07/2005] [Accepted: 12/19/2005] [Indexed: 11/17/2022]
Abstract
There is a growing interest in the development of new pharmacological tools for treating alcohol withdrawal and dependence. A number of anticonvulsants including valproate and carbamazepine have been shown to be safe and effective alternatives to benzodiazepines for treating alcohol withdrawal. These agents are relatively safe, are free from demonstrated abuse liability, and do not usually potentiate the psychomotor and cognitive effects of alcohol. For the treatment of alcohol dependence, there is a growing literature on the utility of medications that have neurochemical effects at opioid, serotonergic, GABAergic, and glutamate receptors. Furthermore, as a class of medication, there appears to be a growing interest in investigating the utility of novel anticonvulsants such as topiramate for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Nassima Ait-Daoud
- Department of Psychiatric Medicine, University of Virginia, P.O. Box 800623, Charlottesville, VA 22908-0623, USA.
| | | | | |
Collapse
|
68
|
Tao YH, Xu HB, Yang XL. Inactivation of GABA transaminase by 4-acryloylphenol. Bioorg Med Chem Lett 2006; 16:3719-22. [PMID: 16690313 DOI: 10.1016/j.bmcl.2006.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/22/2006] [Accepted: 04/20/2006] [Indexed: 11/16/2022]
Abstract
Previous study showed that 4-hydroxybenzaldehyde is a competitive inhibitor of GABA transaminase. As a result, 4-acryloylphenol was synthesized as a 4-hydroxybenzaldehyde analogue, and shown to inactivate potently the enzyme in a time-dependent manner. The inactivation was protected by alpha-ketoglutarate, indicating that it occurs at the active site of the enzyme. Beta-mercaptoethanol also prevented the enzyme from inactivation. The possible mechanism involving a Michael addition was proposed to rationalize the inactivation.
Collapse
Affiliation(s)
- Yun-Hai Tao
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | | |
Collapse
|
69
|
Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 2006; 98:641-53. [PMID: 16787421 DOI: 10.1111/j.1471-4159.2006.03913.x] [Citation(s) in RCA: 803] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism. Discussions of stoichiometry, the relative role of glutamate vs. GABA and pathological conditions affecting the glutamate/GABA-glutamine cycling are presented. Furthermore, a section is devoted to the accompanying ammonia homeostasis of the glutamate/GABA-glutamine cycle, examining the possible means of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must be seen as a bi-directional transfer of not only carbon units but also nitrogen units.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark.
| | | | | |
Collapse
|
70
|
Beleboni RO, Guizzo R, Fontana ACK, Pizzo AB, Carolino ROG, Gobbo-Neto L, Lopes NP, Coutinho-Netto J, Dos Santos WF. Neurochemical characterization of a neuroprotective compound from Parawixia bistriata spider venom that inhibits synaptosomal uptake of GABA and glycine. Mol Pharmacol 2006; 69:1998-2006. [PMID: 16551783 DOI: 10.1124/mol.105.017319] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The major contribution of this work is the isolation of a neuroprotective compound referred to as 2-amino-5-ureidopentanamide (FrPbAII) (M(r) = 174) from Parawixia bistriata spider venom and an investigation of its mode of action. FrPbAII inhibits synaptosomal GABA uptake in a dose-dependent manner and probably does not act on Na(+), K(+), and Ca(2+) channels, GABA(B) receptors, or gamma-aminobutyrate:alpha-ketoglutarate aminotransferase enzyme; therefore, it is not directly dependent on these structures for its action. Direct increase of GABA release and reverse transport are also ruled out as mechanisms of FrPbAII activities as well as unspecific actions on pore membrane formation. Moreover, FrPbAII is selective for GABA and glycine transporters, having slight or no effect on monoamines or glutamate transporters. According to our experimental glaucoma data in rat retina, FrPbAII is able to cross the blood-retina barrier and promote effective protection of retinal layers submitted to ischemic conditions. These studies are of relevance by providing a better understanding of neurochemical mechanisms involved in brain function and for possible development of new neuropharmacological and therapeutic tools.
Collapse
Affiliation(s)
- Renê Oliveira Beleboni
- Department of Biology, Faculty of Philosophy, Sciences, and Literature, University of São Paulo, Av. Bandeirantes, 3900-Ribeirão Preto, São Paulo, Brazil, 14040-901
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Alexander SPH, Mathie A, Peters JA. GABA. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
72
|
Ricci L, Frosini M, Gaggelli N, Valensin G, Machetti F, Sgaragli G, Valoti M. Inhibition of rabbit brain 4-aminobutyrate transaminase by some taurine analogues: a kinetic analysis. Biochem Pharmacol 2006; 71:1510-9. [PMID: 16540097 DOI: 10.1016/j.bcp.2006.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/27/2022]
Abstract
The use of the antiepileptic drug, 4-aminobutyrate transaminase (GABA-T) inhibitor vigabatrin (VIGA), has been recently cautioned because it is associated to irreversible field defects from damage of the retina. Since novel GABA-T inhibitors might prove useful in epilepsy or other CNS pathologies as VIGA substitutes, the aim of the present investigation was to characterize the biochemical properties of some taurine analogues (TA) previously shown to act as GABA-T inhibitors. These include (+/-)piperidine-3-sulfonic acid (PSA), 2-aminoethylphosphonic acid (AEP), (+/-)2-acetylaminocyclohexane sulfonic acid (ATAHS) and 2-aminobenzenesulfonate (ANSA). Kinetic analysis of the activity of partially purified rabbit brain GABA-T in the presence of VIGA and TA showed that PSA and AEP caused a linear, mixed-type inhibition (Ki values 364 and 1010 microM, respectively), whereas VIGA, ANSA and ATAHS behaved like competitive inhibitors (Ki values 320, 434 and 598 microM, respectively). Among the compounds studied, only VIGA exerted a time-dependent, irreversible inhibition of the enzyme, with Ki and k(inact) values of 773 microM and 0.14 min(-1), respectively. Furthermore, the ability of VIGA and TA to enhance GABA-ergic transmission was assessed in rabbit brain cortical slices by NMR quantitative analysis. The results demonstrate that VIGA as well as all TA promoted a significant increase of GABA content. In conclusion, PSA, ANSA and ATAHS, reversible GABA-T inhibitors with Ki values close to that of VIGA, represent a new class of compounds, susceptible of therapeutic exploitation in many disorders associated with low levels of GABA in brain tissues.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Dipartimento di Scienze Biomediche, Sezione di Farmacologia, Università di Siena, viale A. Moro 2, lotto C, 53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
73
|
Draguhn A, Hartmann K. GABAergic Synaptic Transmission. ADVANCES IN MOLECULAR AND CELL BIOLOGY 2006. [DOI: 10.1016/s1569-2558(06)38009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
74
|
Kopec KK, McKenna BA, Pauletti D. A Homogeneous Assay to Assess GABA Transporter Activity. ACTA ACUST UNITED AC 2005; Chapter 1:Unit1.32. [PMID: 21953387 DOI: 10.1002/0471141755.ph0132s30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
75
|
Weng HR, Dougherty PM. Response properties of dorsal root reflexes in cutaneous C fibers before and after intradermal capsaicin injection in rats. Neuroscience 2005; 132:823-31. [PMID: 15837142 DOI: 10.1016/j.neuroscience.2005.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2005] [Indexed: 11/30/2022]
Abstract
C fiber dorsal root reflexes (DRR) contribute to neurogenic inflammation and possibly also to touch-evoked pain (allodynia) induced by intradermal capsaicin. The responses of C fibers in the sural nerve to graded mechanical stimuli before and following intradermal capsaicin were studied in 39 adult male rats. Two-thirds of 111 fibers were without spontaneous activity, while the remaining fibers averaged 1.41+/-0.25 spontaneous antidromic spikes per second. Among the quiescent C fibers only two had excitatory receptive fields, whereas the active C fibers showed three patterns of activity, an excitatory response, an inhibitory response, or no response to mechanical stimulation. The excitatory responses were to high intensity mechanical stimuli alone, while inhibitory responses were evoked in a graded fashion by both noxious and innocuous mechanical stimuli. Intradermal injection of capsaicin increased spontaneous and evoked DRRs in all C fibers with excitatory responses to mechanical stimuli, but none acquired responses to innocuous stimuli. Capsaicin initially produced inhibition of spontaneous activity in C fibers with inhibitory or no receptive fields, but this later resumed and achieved a rate higher than baseline. Mechanical stimuli re-applied following the resumption of spontaneous discharges failed to produce any response. Spontaneous DRRs were increased by topical application of 1 mM beta-alanine (a competitive antagonist for GABA transporters) and abolished by ipsilateral spinal nerve L5 lesion, verifying antidromic origin. The role of C fiber DRRs in normal sensory transmission and during hyperalgesia is discussed.
Collapse
Affiliation(s)
- H-R Weng
- The Department of Anesthesiology and Pain Medicine, The Division of Anesthesiology and Critical Care, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
76
|
Olsen M, Sarup A, Larsson OM, Schousboe A. Effect of Hyperosmotic Conditions on the Expression of the Betaine-GABA-Transporter (BGT-1) in Cultured Mouse Astrocytes. Neurochem Res 2005; 30:855-65. [PMID: 16187220 DOI: 10.1007/s11064-005-6879-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2005] [Indexed: 11/30/2022]
Abstract
The adaptation of cells to hyperosmotic conditions involves accumulation of organic osmolytes to achieve osmotic equilibrium and maintenance of cell volume. The Na+ and Cl(-)-coupled betaine/GABA transporter, designated BGT-1, is responsible for the cellular accumulation of betaine and has been proposed to play a role in osmoregulation in the brain. BGT-1 is also called GAT2 (GABA transporter 2) when referring to the mouse transporter homologue. Using Western Blotting the expression of the mouse GAT2 protein was investigated in astrocyte primary cultures exposed to a growth medium made hyperosmotic (353+/-2.5 mosmol/kg) by adding sodium chloride. A polyclonal anti-BGT-1 antibody revealed the presence of two characteristic bands at 69 and 138 kDa. When astrocytes were grown for 24 h under hyperosmotic conditions GAT2 protein was up-regulated 2-4-fold compared to the level of the isotonic control. Furthermore, the expected dimer of GAT2 was also up-regulated after 24 h under the hyperosmotic conditions. The [3H]GABA uptake was examined in the hyperosmotic treated astrocytes, and characterized using different selective GABA transport inhibitors. The up-regulation of GAT2 protein was not affecting total GABA uptake but the hyperosmotic condition did change total GABA uptake possibly involving GAT1. Immunocytochemical studies revealed cell membrane localization of GAT2 throughout astroglial processes. Taken together, these results indicate that astroglial GAT2 expression and function may be regulated by hyperosmolarity in cultured mouse astrocytes, suggesting a role of GAT2 in osmoregulation in neural cells.
Collapse
Affiliation(s)
- Mads Olsen
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | | | | | | |
Collapse
|
77
|
Pow DV, Sullivan RKP, Williams SM, Scott HL, Dodd PR, Finkelstein D. Differential expression of the GABA transporters GAT-1 and GAT-3 in brains of rats, cats, monkeys and humans. Cell Tissue Res 2005; 320:379-92. [PMID: 15821932 DOI: 10.1007/s00441-004-0928-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 05/25/2004] [Indexed: 10/25/2022]
Abstract
The homeostasis of GABA is critical to normal brain function. Extracellular levels of GABA are regulated mainly by plasmalemmal gamma-aminobutyric acid (GABA) transporters. Whereas the expression of GABA transporters has been extensively studied in rodents, validation of this data in other species, including humans, has been limited. As this information is crucial for our understanding of therapeutic options in human diseases such as epilepsy, we have compared, by immunocytochemistry, the distributions of the GABA transporters GAT-1 and GAT-3 in rats, cats, monkeys and humans. We demonstrate subtle differences between the results reported in the literature and our results, such as the predominance of GAT-1 labelling in neurons rather than astrocytes in the rat cortex. We note that the optimal localisation of GAT-1 in cats, monkeys and humans requires the use of an antibody against the human sequence carboxyl terminal region of GAT-1 rather than against the slightly different rat sequence. We demonstrate that GAT-3 is localised mainly to astrocytes in hindbrain and midbrain regions of rat brains. However, in species such as cats, monkeys and humans, additional strong immunolabelling of oligodendrocytes has also been observed. We suggest that differences in GAT distribution, especially the expression of GAT-3 by oligodendrocytes in humans, must be accommodated in extrapolating rodent models of GABA homeostasis to humans.
Collapse
Affiliation(s)
- David V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia.
| | | | | | | | | | | |
Collapse
|
78
|
White HS, Watson WP, Hansen SL, Slough S, Perregaard J, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frølund B, Falch E, Krogsgaard-Larsen P, Schousboe A. First demonstration of a functional role for central nervous system betaine/{gamma}-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 2005; 312:866-74. [PMID: 15550575 DOI: 10.1124/jpet.104.068825] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a recent study, EF1502 [N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo [d]isoxazol-3-ol], which is an N-substituted analog of the GAT1-selective GABA uptake inhibitor exo-THPO (4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol), was found to inhibit GABA transport mediated by both GAT1 and GAT2 in human embryonic kidney (HEK) cells expressing the mouse GABA transporters GAT1 to 4 (mGAT1-4). In the present study, EF1502 was found to possess a broad-spectrum anticonvulsant profile in animal models of generalized and partial epilepsy. When EF1502 was tested in combination with the clinically effective GAT1-selective inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]nipecotic acid] or LU-32-176B [N-[4,4-bis(4-fluorophenyl)-butyl]-3-hydroxy-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol], another GAT1-selective N-substituted analog of exo-THPO, a synergistic rather than additive anticonvulsant interaction was observed in the Frings audiogenic seizure-susceptible mouse and the pentylenetetrazol seizure threshold test. In contrast, combination of the two mGAT1-selective inhibitors, tiagabine and LU-32-176B, resulted in only an additive anticonvulsant effect. Importantly, the combination of EF1502 and tiagabine did not result in a greater than additive effect in the rotarod behavioral impairment test. In subsequent in vitro studies conducted in HEK-293 cells expressing the cloned mouse GAT transporters mGAT1 and mGAT2, EF1502 was found to noncompetitively inhibit both mGAT1 and the betaine/GABA transporter mGAT2 (K(i) of 4 and 5 muM, respectively). Furthermore, in a GABA release study conducted in neocortical neurons, EF1502 did not act as a substrate for the GABA carrier. Collectively, these findings support a functional role for mGAT2 in the control of neuronal excitability and suggest a possible utility for mGAT2-selective inhibitors in the treatment of epilepsy.
Collapse
Affiliation(s)
- H Steve White
- University of Utah, Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, 20 S. 2030 E., Room 408, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Jelitai M, Madarasz E. The role of GABA in the early neuronal development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:27-62. [PMID: 16512345 DOI: 10.1016/s0074-7742(05)71002-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Jelitai
- Laboratory of Neural Cell and Developmental Biology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
80
|
Gibbs ME, Johnston GAR. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience 2005; 131:567-76. [PMID: 15730863 DOI: 10.1016/j.neuroscience.2004.11.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Avoidance Learning/drug effects
- Behavior, Animal/drug effects
- Bicuculline/pharmacology
- Chickens/physiology
- Dose-Response Relationship, Drug
- Drug Interactions
- GABA Antagonists/pharmacology
- GABA-A Receptor Antagonists
- Inhibition, Psychological
- Male
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Organophosphates/pharmacology
- Phosphinic Acids/pharmacology
- Pyridines/pharmacology
- Receptors, GABA/physiology
- Receptors, GABA-A/physiology
- Reinforcement, Psychology
- Retention, Psychology/drug effects
- Time Factors
- gamma-Aminobutyric Acid/pharmacology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- M E Gibbs
- Department of Pharmacology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
81
|
Beleboni RO, Carolino ROG, Pizzo AB, Castellan-Baldan L, Coutinho-Netto J, dos Santos WF, Coimbra NC. Pharmacological and biochemical aspects of GABAergic neurotransmission: pathological and neuropsychobiological relationships. Cell Mol Neurobiol 2004; 24:707-28. [PMID: 15672674 PMCID: PMC11529967 DOI: 10.1007/s10571-004-6913-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders. 2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance. 3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.
Collapse
Affiliation(s)
- Renê Oliveira Beleboni
- Departament of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ruither Oliveira Gomes Carolino
- Departament of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Andrea Baldocchi Pizzo
- Departament of Biology, Ribeirão Preto Faculty of Philosophy, Sciences and Literature, University of São Paulo, São Paulo, Brazil
| | - Lissandra Castellan-Baldan
- Laboratory of Neuroanatomy and Neuropsychobiology, Departament of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Joaquim Coutinho-Netto
- Departament of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Wagner Ferreira dos Santos
- Departament of Biology, Ribeirão Preto Faculty of Philosophy, Sciences and Literature, University of São Paulo, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Departament of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
82
|
Jiang G, Zhuang L, Miyauchi S, Miyake K, Fei YJ, Ganapathy V. A Na+/Cl- -coupled GABA transporter, GAT-1, from Caenorhabditis elegans: structural and functional features, specific expression in GABA-ergic neurons, and involvement in muscle function. J Biol Chem 2004; 280:2065-77. [PMID: 15542610 DOI: 10.1074/jbc.m408470200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA functions as an inhibitory neurotransmitter in body muscles and as an excitatory neurotransmitter in enteric muscles in Caenorhabditis elegans. Whereas many of the components of the GABA-ergic neurotransmission in this organism have been identified at the molecular and functional levels, no transporter specific for this neurotransmitter has been identified to date. Here we report on the cloning and functional characterization of a GABA transporter from C. elegans (ceGAT-1) and on the functional relevance of the transporter to the biology of body muscles and enteric muscles. ceGAT-1 is coded by snf-11 gene, a member of the sodium-dependent neurotransmitter symporter gene family in C. elegans. The cloned ceGAT-1 functions as a Na(+)/Cl(-)-coupled high-affinity transporter selective for GABA with a K(t) of approximately 15 microm. The Na(+):Cl(-):GABA stoichiometry for ceGAT-1-mediated transport process is 2:1:1. The transport process is electrogenic as evidenced from GABA-induced inward currents in Xenopus laevis oocytes that express ceGAT-1 heterologously. The transporter is expressed exclusively in GABA-ergic neurons and in two other additional neurons. We also investigated the functional relevance of ceGAT-1 to the biology of body muscles and enteric muscles by ceGAT-1-specific RNA interference (RNAi) in rrf-3 mutant, a strain of C. elegans in which neurons are not refractory to RNAi as in the wild type strain. The down-regulation of ceGAT-1 by RNAi leads to an interesting phenotype associated with altered function of body muscles (as evident from changes in thrashing frequency) and enteric muscles (as evident from the rates of defecation failure) and also with altered sensitivity to aldicarb-induced paralysis. These findings provide unequivocal evidence for a modulatory role of GABA and ceGAT-1 in the biology of cholinergic neurons and in the function of body muscles and enteric muscles in this organism.
Collapse
Affiliation(s)
- Guoliang Jiang
- Department of Biochemistry and Molecular Biology and Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
83
|
Schousboe A, Larsson OM, Sarup A, White HS. Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur J Pharmacol 2004; 500:281-7. [PMID: 15464040 DOI: 10.1016/j.ejphar.2004.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Inactivation of gamma-aminobutric acid (GABA) as a neurotransmitter is mediated by diffusion in the synaptic cleft followed by binding to transporter sites and translocation into the intracellular compartment. The GABA transporters of which four subtypes have been cloned (GAT1-4) are distributed at presynaptic nerve endings as well as extrasynaptically on astrocytic and neuronal elements. This anatomical arrangement of the transporters appears to be of critical functional importance for the maintenance of GABAergic neurotransmission. Pharmacological characterization of the GABA transporters using a large number of GABA analogs having restricted conformation and lipophilic character has been of instrumental importance for elucidation of the functional importance of the different transporters. One such analog EF1502 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) has been shown to selectively inhibit GAT1 (GABA transporter 1) and GAT2/BGT-1 (betaine/GABA transporter). Moreover, this GABA analog exhibits an unusually high efficiency as an anticonvulsant suggesting a novel role of the betaine/GABA transporter in epileptic seizure control. It is hypothesized that extrasynaptic actions of GABA may be involved in this phenomenon.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
84
|
Schousboe A, Sarup A, Larsson OM, White HS. GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol 2004; 68:1557-63. [PMID: 15451399 DOI: 10.1016/j.bcp.2004.06.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 06/22/2004] [Indexed: 11/26/2022]
Abstract
The identification and subsequent development of the GABA transport inhibitor tiagabine has confirmed the important role that GABA transporters play in the control of CNS excitability. Tiagabine was later demonstrated to be a selective inhibitor of the GABA transporter GAT1. Although selective for GAT1, tiagabine lacks cell type selectivity and is an equipotent inhibitor of neuronal and glial GAT1. To date, four GABA transporters have been cloned, i.e., GAT1-4. The finding that some of these display differential cellular and regional expression patterns suggests that drugs targeting GABA transporters other than GAT1 might offer some therapeutic advantage over GAT1 selective inhibitors. Furthermore, it is particularly interesting that several recently defined GABA transport inhibitors have been demonstrated to display a preferential selectivity for the astrocytic GAT1 transporter. That cellular heterogeneity of GAT1 plays a role in the control of CNS function is confirmed by the demonstration that inhibition of astrocytic GABA uptake is highly correlated to anticonvulsant activity. At the present time, a functional role for the other GABA transporters is less well defined. However, recent findings have suggested a role for the mouse GAT2 (homologous to the human betaine transporter) in the control of seizure activity. In these studies, the non-selective GAT1 and mouse GAT2 transport inhibitor EF1502 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) was found to exert a synergistic anticonvulsant action when tested in combination with the GAT1 selective inhibitors tiagabine and LU-32-176B (N-[4,4-bis(4-fluorophenyl)-butyl]-3-hydroxy-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol). Additional studies will be required to define a role for the other GABA transporters and to further identify the functional importance of their demonstrated cellular and regional heterogeneity. A summary of these and other issues are discussed in this brief review.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
85
|
Schousboe A, Sarup A, Bak LK, Waagepetersen HS, Larsson OM. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem Int 2004; 45:521-7. [PMID: 15186918 DOI: 10.1016/j.neuint.2003.11.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways at transcriptional, translational and post-translational levels. This opens for a number of therapeutic strategies by which the efficacy of excitatory and inhibitory neurotransmission may be manipulated.
Collapse
Affiliation(s)
- A Schousboe
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Neuroscience Research Center, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
86
|
Affiliation(s)
- Michael A Rogawski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
87
|
Leal SM, Kumar N, Neckameyer WS. GABAergic modulation of motor-driven behaviors in juvenileDrosophila and evidence for a nonbehavioral role for GABA transport. ACTA ACUST UNITED AC 2004; 61:189-208. [PMID: 15389689 DOI: 10.1002/neu.20061] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have identified specific GABAergic-modulated behaviors in the juvenile stage of the fruit fly, Drosophila melanogaster via systemic treatment of second instar larvae with the potent GABA transport inhibitor DL-2,4-diaminobutyric acid (DABA). DABA significantly inhibited motor-controlled body wall and mouth hook contractions and impaired rollover activity and contractile responses to touch stimulation. The perturbations in locomotion and rollover activity were reminiscent of corresponding DABA-induced deficits in locomotion and the righting reflex observed in adult flies. The effects were specific to these motor-controlled behaviors, because DABA-treated larvae responded normally in olfaction and phototaxis assays. Recovery of these behaviors was achieved by cotreatment with the vertebrate GABA(A) receptor antagonist picrotoxin. Pharmacological studies performed in vitro with plasma membrane vesicles isolated from second instar larval tissues verified the presence of high-affinity, saturable GABA uptake mechanisms. GABA uptake was also detected in plasma membrane vesicles isolated from behaviorally quiescent stages. Competitive inhibition studies of [3H]-GABA uptake into plasma membrane vesicles from larval and pupal tissues with either unlabeled GABA or the transport inhibitors DABA, nipecotic acid, or valproic acid, revealed differences in affinities. GABAergic-modulation of motor behaviors is thus conserved between the larval and adult stages of Drosophila, as well as in mammals and other vertebrate species. The pharmacological studies reveal shared conservation of GABA transport mechanisms between Drosophila and mammals, and implicate the involvement of GABA and GABA transporters in regulating physiological processes distinct from neurotransmission during behaviorally quiescent stages of development.
Collapse
Affiliation(s)
- Sandra M Leal
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, Missouri 63103, USA
| | | | | |
Collapse
|