51
|
Lietzén N, Hirvonen K, Honkimaa A, Buchacher T, Laiho JE, Oikarinen S, Mazur MA, Flodström-Tullberg M, Dufour E, Sioofy-Khojine AB, Hyöty H, Lahesmaa R. Coxsackievirus B Persistence Modifies the Proteome and the Secretome of Pancreatic Ductal Cells. iScience 2019; 19:340-357. [PMID: 31404834 PMCID: PMC6699423 DOI: 10.1016/j.isci.2019.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
The group B Coxsackieviruses (CVB), belonging to the Enterovirus genus, can establish persistent infections in human cells. These persistent infections have been linked to chronic diseases including type 1 diabetes. Still, the outcomes of persistent CVB infections in human pancreas are largely unknown. We established persistent CVB infections in a human pancreatic ductal-like cell line PANC-1 using two distinct CVB1 strains and profiled infection-induced changes in cellular protein expression and secretion using mass spectrometry-based proteomics. Persistent infections, showing characteristics of carrier-state persistence, were associated with a broad spectrum of changes, including changes in mitochondrial network morphology and energy metabolism and in the regulated secretory pathway. Interestingly, the expression of antiviral immune response proteins, and also several other proteins, differed clearly between the two persistent infections. Our results provide extensive information about the protein-level changes induced by persistent CVB infection and the potential virus-associated variability in the outcomes of these infections.
Collapse
Affiliation(s)
- Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Jutta E Laiho
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Magdalena A Mazur
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 Tampere, Finland
| | | | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; Fimlab Laboratories, Pirkanmaa Hospital District, FI-33520 Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland.
| |
Collapse
|
52
|
Luo Z, Soläng C, Mejia‐Cordova M, Thorvaldson L, Blixt M, Sandler S, Singh K. Kinetics of immune cell responses in the multiple low-dose streptozotocin mouse model of type 1 diabetes. FASEB Bioadv 2019; 1:538-549. [PMID: 32123849 PMCID: PMC6996374 DOI: 10.1096/fba.2019-00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022] Open
Abstract
In type 1 diabetes (T1D), the insulin-producing β cells are destructed by immune mechanisms. It has been hypothesized that the very first immune response in T1D onset comes from innate immune cells, which further activates the adaptive immune cells to attack the islets. Despite intensive research on characterization of islet-infiltrating immune cells, the kinetics of different immune cells in multiple low-dose streptozotocin (MLDSTZ)-induced T1D mouse model is still much unclear. Therefore, we investigated the proportions of innate immune cells such as neutrophils, dendritic cells (DCs), plasmacytoid dendritic cells (pDCs), macrophages, natural killer (NK) cells, and adaptive immune cells (T and B lymphocytes) in thymi, pancreatic-draining lymph nodes, and spleens of MLDSTZ mice on days 3, 7, 10, and 21 after the first injection of STZ by flow cytometry. The proportions of DCs and B cells were increased from day 3, while the proportions of B-1a lymphocytes and interferon-γ+ cells among NK cells were increased, but NK cells were decreased on day 10 in MLDSTZ-treated mice, illustrating that the initial immune response is induced by DCs and B cells. Later, the proportions of T helper 1 and cytotoxic T cells were increased from day 7, suggesting that the innate immune cells precede adaptive immune cell response in MLDSTZ mice. Altogether, our data demonstrate a possible sequence of events regarding the involvement of DCs, pDCs, NK cells, B-1a lymphocytes, B, and T cells at the early stage of T1D development.
Collapse
Affiliation(s)
- Zhengkang Luo
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Charlotte Soläng
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | | | - Lina Thorvaldson
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Martin Blixt
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Stellan Sandler
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Kailash Singh
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
53
|
Townsend SE, Gannon M. Extracellular Matrix-Associated Factors Play Critical Roles in Regulating Pancreatic β-Cell Proliferation and Survival. Endocrinology 2019; 160:1885-1894. [PMID: 31271410 PMCID: PMC6656423 DOI: 10.1210/en.2019-00206] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes formation of the islet basement membrane and the function of extracellular matrix (ECM) components in β-cell proliferation and survival. Implications for islet transplantation are discussed. The insulin-producing β-cell is key for maintaining glucose homeostasis. The islet microenvironment greatly influences β-cell survival and proliferation. Within the islet, β-cells contact the ECM, which is deposited primarily by intraislet endothelial cells, and this interaction has been shown to modulate proliferation and survival. ECM-localized growth factors, such as vascular endothelial growth factor and cellular communication network 2, signal through specific receptors and integrins on the β-cell surface. Further understanding of how the ECM functions to influence β-cell proliferation and survival will provide targets for enhancing functional β-cell mass for the treatment of diabetes.
Collapse
Affiliation(s)
- Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Correspondence: Maureen Gannon, PhD, Vanderbilt University Medical Center, 2213 Garland Avenue, MRB IV 7465, Nashville, Tennessee 37232. E-mail:
| |
Collapse
|
54
|
Hoveizi E, Tavakol S, Shirian S, Sanamiri K. Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies. Curr Stem Cell Res Ther 2019; 14:152-168. [PMID: 30338744 DOI: 10.2174/1574888x13666181018150107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/11/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus is an autoimmune disease which causes loss of insulin secretion producing hyperglycemia by promoting progressive destruction of pancreatic β cells. An ideal therapeutic approach to manage diabetes mellitus is pancreatic β cells replacement. The aim of this review article was to evaluate the role of nanofibrous scaffolds and stem cells in the treatment of diabetes mellitus. Various studies have pointed out that application of electrospun biomaterials has considerably attracted researchers in the field of tissue engineering. The principles of cell therapy for diabetes have been reviewed in the first part of this article, while the usability of tissue engineering as a new therapeutic approach is discussed in the second part.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Research Center, Dr. Daneshbod Pathology Lab, Shiraz, Iran
| | - Khadije Sanamiri
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
55
|
Nagy N, Sunkari VG, Kaber G, Hasbun S, Lam DN, Speake C, Sanda S, McLaughlin TL, Wight TN, Long SR, Bollyky PL. Hyaluronan levels are increased systemically in human type 2 but not type 1 diabetes independently of glycemic control. Matrix Biol 2019; 80:46-58. [PMID: 30196101 PMCID: PMC6401354 DOI: 10.1016/j.matbio.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/19/2023]
Abstract
Hyaluronan (HA), an extracellular matrix glycosaminoglycan, is implicated in the pathogenesis of both type 1 diabetes (T1D) as well as type 2 diabetes (T2D) and has been postulated to be increased in these diseases due to hyperglycemia. We have examined the serum and tissue distribution of HA in human subjects with T1D and T2D and in mouse models of these diseases and evaluated the relationship between HA levels and glycemic control. We found that serum HA levels are increased in T2D but not T1D independently of hemoglobin-A1c, C-peptide, body mass index, or time since diabetes diagnosis. HA is likewise increased in skeletal muscle in T2D subjects relative to non-diabetic controls. Analogous increases in serum and muscle HA are seen in diabetic db/db mice (T2D), but not in diabetic DORmO mice (T1D). Diabetes induced by the β-cell toxin streptozotozin (STZ) lead to an increase in blood glucose but not to an increase in serum HA. These data indicate that HA levels are increased in multiple tissue compartments in T2D but not T1D independently of glycemic control. Given that T2D but not T1D is associated with systemic inflammation, these patterns are consistent with inflammatory factors and not hyperglycemia driving increased HA. Serum HA may have value as a biomarker of systemic inflammation in T2D.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Vivekananda G. Sunkari
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Sonia Hasbun
- Department of Cardiology, Good Samaritan Regional Medical Center, 3600 NW Samaritan Dr, Corvallis, OR, 97330
| | - Dung N. Lam
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, 1201 Ninth Ave, Seattle, WA, 98101
| | - Srinath Sanda
- Department of Pediatrics, UCSF School of Medicine, 513 Parnassus Avenue, San Francisco, CA, 94143
| | - Tracey L. McLaughlin
- Department of Medicine, Medicine – Endocrinology, Endocrine Clinic, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Ave, Seattle, WA, 98101
| | - Steven R. Long
- Department of Pathology, Stanford University School of Medicine, Lane 235, 300 Pasteur Drive, Stanford, CA, 94305
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| |
Collapse
|
56
|
Park HS, Kim HZ, Park JS, Lee J, Lee SP, Kim H, Ahn CW, Nakaoka Y, Koh GY, Kang S. β-Cell-Derived Angiopoietin-1 Regulates Insulin Secretion and Glucose Homeostasis by Stabilizing the Islet Microenvironment. Diabetes 2019; 68:774-786. [PMID: 30728183 DOI: 10.2337/db18-0864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/26/2019] [Indexed: 11/13/2022]
Abstract
Islets are highly vascularized for prompt insulin secretion. Although angiopoietin-1 (Ang1) is a well-known angiogenic factor, its role in glucose homeostasis remains largely unknown. The objective of this study was to investigate whether and how Ang1 contributes to glucose homeostasis in response to metabolic challenge. We used inducible systemic Ang1 knockout (Ang1sys-/-) and β-cell-specific Ang1 knockout (Ang1β-cell-/-) mice fed a high-fat diet for 24 weeks. Although the degree of insulin sensitivity did not differ between Ang1sys-/- and Ang1sys+/+ mice, serum insulin levels were lower in Ang1sys-/- mice, resulting in significant glucose intolerance. Similar results were observed in Ang1β-cell-/- mice, suggesting a critical role of β-cell-derived Ang1 in glucose homeostasis. There were no differences in β-cell area or vasculature density, but glucose-stimulated insulin secretion was significantly decreased, and PDX-1 expression and GLUT2 localization were altered in Ang1β-cell-/- compared with Ang1β-cell+/+ mice. These effects were associated with less pericyte coverage, disorganized endothelial cell ultrastructure, and enhanced infiltration of inflammatory cells and upregulation of adhesion molecules in the islets of Ang1β-cell-/- mice. In conclusion, β-cell-derived Ang1 regulates insulin secretion and glucose homeostasis by stabilizing the blood vessels in the islet and may be a novel therapeutic target for diabetes treatment in the future.
Collapse
Affiliation(s)
- Ho Seon Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| | - Hak Zoo Kim
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| | - Jong Suk Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| | - Junyeop Lee
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Seung-Pyo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, South Korea
| | - Chul Woo Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, South Korea
- Center for Vascular Research, Institute for Basic Science, Daejon, South Korea
| | - Shinae Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
57
|
Becker MW, Simonovich JA, Phelps EA. Engineered microenvironments and microdevices for modeling the pathophysiology of type 1 diabetes. Biomaterials 2019; 198:49-62. [DOI: 10.1016/j.biomaterials.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/21/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
|
58
|
|
59
|
Wang YJ, Traum D, Schug J, Gao L, Liu C, Atkinson MA, Powers AC, Feldman MD, Naji A, Chang KM, Kaestner KH. Multiplexed In Situ Imaging Mass Cytometry Analysis of the Human Endocrine Pancreas and Immune System in Type 1 Diabetes. Cell Metab 2019; 29:769-783.e4. [PMID: 30713110 PMCID: PMC6436557 DOI: 10.1016/j.cmet.2019.01.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/15/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
The interaction between the immune system and endocrine cells in the pancreas is crucial for the initiation and progression of type 1 diabetes (T1D). Imaging mass cytometry (IMC) enables multiplexed assessment of the abundance and localization of more than 30 proteins on the same tissue section at 1-μm resolution. Herein, we have developed a panel of 33 antibodies that allows for the quantification of key cell types including pancreatic exocrine cells, islet cells, immune cells, and stromal components. We employed this panel to analyze 12 pancreata obtained from donors with clinically diagnosed T1D and 6 pancreata from non-diabetic controls. In the pancreata from donors with T1D, we simultaneously visualized significant alterations in islet architecture, endocrine cell composition, and immune cell presentation. Indeed, we demonstrate the utility of IMC to investigate complex events on the cellular level that will provide new insights on the pathophysiology of T1D.
Collapse
Affiliation(s)
- Yue J Wang
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Traum
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Long Gao
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
| | - Alvin C Powers
- Department of Medicine, Department of Molecular Physiology and Biophysics, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center VA, Tennessee Valley Healthcare, Nashville, TN, USA
| | - Michael D Feldman
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
60
|
Olaniru OE, Persaud SJ. Adhesion G-protein coupled receptors: Implications for metabolic function. Pharmacol Ther 2019; 198:123-134. [PMID: 30825474 DOI: 10.1016/j.pharmthera.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adhesion G-protein coupled receptors (aGPCRs) are emerging as important actors in energy homeostasis. Recent biochemical and functional studies using transgenic mice indicate that aGPCRs play important roles in endocrine and metabolic functions including β-cell differentiation, insulin secretion, adipogenesis and whole body fuel homeostasis. Most aGPCRs are orphans, for which endogenous ligands have not yet been identified, and many of the endogenous ligands of the already de-orphanised aGPCRs are components of the extracellular matrix (ECM). In this review we focus on aGPCR expression in metabolically active tissues, their activation by ECM proteins, and current knowledge of their potential roles in islet development, insulin secretion, adipogenesis and muscle function.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Diabetes Research Group, Department of Diabetes, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Shanta J Persaud
- Diabetes Research Group, Department of Diabetes, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
61
|
Morgan NG, Richardson SJ. Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. Diabetologia 2018; 61:2499-2506. [PMID: 30255378 PMCID: PMC6223849 DOI: 10.1007/s00125-018-4731-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/13/2018] [Indexed: 10/30/2022]
Abstract
Type 1 diabetes is increasing in incidence in many parts of the world and it might be imagined that the pathological processes that underlie disease progression are firmly understood. However, this is not the case; rather, our collective understanding is still surprisingly rudimentary. There are various reasons for this but one of the most important is that the target organ (the pancreas) has been examined at, or soon after, diagnosis in only a small number of cases worldwide over the past half a century. This review provides a summary of some of the insights gained from these studies and highlights areas of ongoing uncertainty. In particular, it considers the process of insulitis (a form of islet inflammation that occurs characteristically in type 1 diabetes) and discusses the factors that may influence the access of immune cells to the beta cells. Attention is also drawn to recent evidence implying that two distinct profiles of insulitis exist, which occur differentially in people who develop type 1 diabetes at increasing ages. Emphasis is also placed on the emerging (and somewhat surprising) consensus that the extent of beta cell loss is variable among people with type 1 diabetes and that many (especially those who are older at onset) retain significant numbers of insulin-producing cells long after diagnosis. We conclude by emphasising the importance of renewed efforts to study the human pancreas at disease onset and consider how the current insights may inform the design of future strategies to slow or halt the rate of beta cell loss.
Collapse
Affiliation(s)
- Noel G. Morgan
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW UK
| | - Sarah J. Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW UK
| |
Collapse
|
62
|
Olaniru OE, Pingitore A, Giera S, Piao X, Castañera González R, Jones PM, Persaud SJ. The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve β-cell function. Cell Mol Life Sci 2018; 75:4007-4019. [PMID: 29855662 PMCID: PMC6182347 DOI: 10.1007/s00018-018-2846-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
AIMS G-protein coupled receptor 56 (GPR56) is the most abundant islet-expressed G-protein coupled receptor, suggesting a potential role in islet function. This study evaluated islet expression of GPR56 and its endogenous ligand collagen III, and their effects on β-cell function. METHODS GPR56 and collagen III expression in mouse and human pancreas sections was determined by fluorescence immunohistochemistry. Effects of collagen III on β-cell proliferation, apoptosis, intracellular calcium ([Ca2+]i) and insulin secretion were determined by cellular BrdU incorporation, caspase 3/7 activities, microfluorimetry and radioimmunoassay, respectively. The role of GPR56 in islet vascularisation and innervation was evaluated by immunohistochemical staining for CD31 and TUJ1, respectively, in pancreases from wildtype (WT) and Gpr56-/- mice, and the requirement of GPR56 for normal glucose homeostasis was determined by glucose tolerance tests in WT and Gpr56-/- mice. RESULTS Immunostaining of mouse and human pancreases revealed that GPR56 was expressed by islet β-cells while collagen III was confined to the peri-islet basement membrane and islet capillaries. Collagen III protected β-cells from cytokine-induced apoptosis, triggered increases in [Ca2+]i and potentiated glucose-induced insulin secretion from WT islets but not from Gpr56-/- islets. Deletion of GPR56 did not affect glucose-induced insulin secretion in vitro and it did not impair glucose tolerance in adult mice. GPR56 was not required for normal islet vascularisation or innervation. CONCLUSION We have demonstrated that collagen III improves islet function by increasing insulin secretion and protecting against apoptosis. Our data suggest that collagen III may be effective in optimising islet function to improve islet transplantation outcomes, and GPR56 may be a target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Attilio Pingitore
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ramón Castañera González
- Department of General Surgery, Rio Carrión Hospital, University Hospital Complex of Palencia, Palencia, Spain
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW We provide an overview of pancreas pathology in type 1 diabetes (T1D) in the context of its clinical stages. RECENT FINDINGS Recent studies of pancreata from organ donors with T1D and non-diabetic donors expressing T1D-associated autoantibodies reveal pathological changes/disease mechanisms beyond the well-known loss of β cells and lymphocytic infiltrates of the islets (insulitis), including β-cell stress, dysfunction, and viral infections. Pancreas pathology evolves through disease stages, is asynchronous, and demonstrates a chronic disease that remains active years after diagnosis. Critically, β-cell loss is not complete at onset, although young age is associated with increased severity. The recognition of multiple pathogenic alterations and the chronic nature of disease mechanisms during and after the development of T1D inform improved clinical trial design and reveal additional targets for therapeutic manipulation, in the context of an expanded time window for intervention.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology, Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA.
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
64
|
Beutel B, Song J, Konken CP, Korpos E, Schinor B, Gerwien H, Vidyadharan R, Burmeister M, Li L, Haufe G, Sorokin L. New in Vivo Compatible Matrix Metalloproteinase (MMP)-2 and MMP-9 Inhibitors. Bioconjug Chem 2018; 29:3715-3725. [DOI: 10.1021/acs.bioconjchem.8b00618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bernd Beutel
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Christian Paul Konken
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Benjamin Schinor
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Hanna Gerwien
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Reshma Vidyadharan
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Miriam Burmeister
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW Engineering endocrine pancreatic tissue is an emerging topic in type 1 diabetes with the intent to overcome the current limitation of β cell transplantation. During islet isolation, the vascularized structure and surrounding extracellular matrix (ECM) are completely disrupted. Once implanted, islets slowly engraft and mostly are lost for the initial avascular phase. This review discusses the main building blocks required to engineer the endocrine pancreas: (i) islet niche ECM, (ii) islet niche vascular network, and (iii) new available sources of endocrine cells. RECENT FINDINGS Current approaches include the following: tissue engineering of endocrine grafts by seeding of native or synthetic ECM scaffolds with human islets, vascularization of native or synthetic ECM prior to implantation, vascular functionalization of ECM structures to enhance angiogenesis after implantation, generation of engineered animals as human organ donors, and embryonic and pluripotent stem cell-derived endocrine cells that may be encapsulated or genetically engineered to be immunotolerated. Substantial technological improvements have been made to regenerate or engineer endocrine pancreatic tissue; however, significant hurdles remain, and more research is needed to develop a technology to integrate all components of viable endocrine tissue for clinical application.
Collapse
Affiliation(s)
- Antonio Citro
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 4700, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
66
|
Medina CO, Nagy N, Bollyky PL. Extracellular matrix and the maintenance and loss of peripheral immune tolerance in autoimmune insulitis. Curr Opin Immunol 2018; 55:22-30. [PMID: 30248522 DOI: 10.1016/j.coi.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
There is a growing appreciation that the extracellular matrix (ECM) contributes to both the maintenance of immune tolerance in healthy tissues and to its loss at sites of autoimmunity. Here, we review recent literature on the role of ECM and particularly the glycosaminoglycans hyaluronan and heparan sulfate in the development of autoimmune, type 1 diabetes (T1D). Data from transplant models suggest that healthy islets are embedded within an intact ECM that supports beta-cell homeostasis and provides physical and immunoregulatory barriers against immune infiltration. However, studies of human insulitis as well as the non-obese diabetic (NOD) and DORmO mouse models of T1D indicate that autoimmune insulitis is associated with the degradation of basement membrane structures, the catabolism of the islet interstitium, and the accumulation of a hyaluronan-rich, pro-inflammatory ECM. Moreover, in these models of autoimmune diabetes, either the pharmacologic inhibition of heparan sulfate catabolism, the reduction of hyaluronan synthesis, or the targeting of the pathways that sense these ECM changes can all prevent beta-cell destruction. Together these data support an emerging paradigm that in healthy islets the local ECM contributes to both immune tolerance and beta-cell homeostasis while in chronic inflammation the islet ECM is permissive to immune infiltration and beta-cell destruction. Therapies that support ECM-mediated 'barrier tolerance' may have potential as adjunctive agents in combination regimens designed to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Carlos O Medina
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305, United States
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305, United States
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305, United States.
| |
Collapse
|
67
|
Breuer J, Korpos E, Hannocks MJ, Schneider-Hohendorf T, Song J, Zondler L, Herich S, Flanagan K, Korn T, Zarbock A, Kuhlmann T, Sorokin L, Wiendl H, Schwab N. Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus. J Neuroinflammation 2018; 15:236. [PMID: 30134924 PMCID: PMC6106934 DOI: 10.1186/s12974-018-1276-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background Very late antigen 4 (VLA-4; integrin α4β1) is critical for transmigration of T helper (TH) 1 cells into the central nervous system (CNS) under inflammatory conditions such as multiple sclerosis (MS). We have previously shown that VLA-4 and melanoma cell adhesion molecule (MCAM) are important for trans-endothelial migration of human TH17 cells in vitro and here investigate their contribution to pathogenic CNS inflammation. Methods Antibody blockade of VLA-4 and MCAM is assessed in murine models of CNS inflammation in conjunction with conditional ablation of α4-integrin expression in T cells. Effects of VLA-4 and MCAM blockade on lymphocyte migration are further investigated in the human system via in vitro T cell transmigration assays. Results Compared to the broad effects of VLA-4 blockade on encephalitogenic T cell migration over endothelial barriers, MCAM blockade impeded encephalitogenic T cell migration in murine models of MS that especially depend on CNS migration across the choroid plexus (CP). In transgenic mice lacking T cell α4-integrin expression (CD4::Itga4−/−), MCAM blockade delayed disease onset. Migration of MCAM-expressing T cells through the CP into the CNS was restricted, where laminin 411 (composed of α4, β1, γ1 chains), the proposed major ligand of MCAM, is detected in the endothelial basement membranes of murine CP tissue. This finding was translated to the human system; blockade of MCAM with a therapeutic antibody reduced in vitro transmigration of MCAM-expressing T cells across a human fibroblast-derived extracellular matrix layer and a brain-derived endothelial monolayer, both expressing laminin α4. Laminin α4 was further detected in situ in CP endothelial-basement membranes in MS patients’ brain tissue. Conclusions Our findings suggest that MCAM-laminin 411 interactions facilitate trans-endothelial migration of MCAM-expressing T cells into the CNS, which seems to be highly relevant to migration via the CP and to potential future clinical applications in neuroinflammatory disorders. Electronic supplementary material The online version of this article (10.1186/s12974-018-1276-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johanna Breuer
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Lisa Zondler
- Department of Anesthesiology, University of Münster, Münster, Germany
| | - Sebastian Herich
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Ken Flanagan
- Prothena Biosciences Inc., South San Francisco, CA, USA
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexander Zarbock
- Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany.,Department of Anesthesiology, University of Münster, Münster, Germany
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany.
| |
Collapse
|
68
|
Haque MR, Jeong JH, Lee KW, Shin DY, Kim GS, Kim SJ, Byun Y. Effects of Transplanted Islets Nano-Encapsulated with Hyperbranched Polyethylene Glycol and Heparin on Microenvironment Reconstruction and Glucose Control. Bioconjug Chem 2018; 29:2945-2953. [PMID: 29985588 DOI: 10.1021/acs.bioconjchem.8b00364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microenvironment of pancreatic islets gets disrupted during enzyme digestion and causes islets to remain in a vulnerable state, leading to poor outcome in the initial days of transplantation. To avoid immune invasion while allowing the reconstruction of the microenvironment of the transplanted site, we propose immunoisolation polymers, which can nanoencapsulate islets quickly without cytotoxicity. Here, nonhuman primate (NHP) islets were nanoencapsulated with hyperbranched polyethylene glycol (hb-PEG) and heparin by layer-by-layer technology and transplanted into the kidney subcapsular space of diabetic C57BL/6 mice. An immunosuppressive drug protocol was applied to increase the survival time until the animals were sacrificed. The recipients of NHP islets exhibited high nonfasting blood glucose level (BGL) for 2-3 weeks, which was normalized afterward. Immunohistochemical (IHC) analysis revealed an immature vascular basement membrane and cell surface integrins directly associated with poor initial insulin production. The transplanted grafts regained their own microenvironment within a month without any outside stimuli. No lymphocyte infiltration was observed in the grafts at any time. Humoral and cell-mediated immune responses were prominently diminished by the hb-PEG/Heparin nanoencapsulated islets. Immunoisolation accompanied by an immunosuppressive drug protocol protects islets by helping them avoid immunogenesis while at the same time allowing them to reconstruct their microenvironment.
Collapse
Affiliation(s)
| | - Jee-Heon Jeong
- College of Pharmacy , Yeungnam University , Gyeongsan , Gyeongbuk 712-749 , Republic of Korea
| | - Kyo Won Lee
- Transplantation Research Center , Samsung Biomedical Research Institute , 81 Ilwon-ro , Gangnam-gu, Seoul 06351 , Republic of Korea.,Department of Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea
| | - Du Yeon Shin
- Transplantation Research Center , Samsung Biomedical Research Institute , 81 Ilwon-ro , Gangnam-gu, Seoul 06351 , Republic of Korea.,Department of Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea.,Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Republic of Korea.,Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology, Graduate School , Sungkyunkwan University , Seoul 06351 , Republic of Korea
| | - Geun-Soo Kim
- Transplantation Research Center , Samsung Biomedical Research Institute , 81 Ilwon-ro , Gangnam-gu, Seoul 06351 , Republic of Korea.,Department of Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea.,Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Republic of Korea.,Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology, Graduate School , Sungkyunkwan University , Seoul 06351 , Republic of Korea
| | - Sung Joo Kim
- Transplantation Research Center , Samsung Biomedical Research Institute , 81 Ilwon-ro , Gangnam-gu, Seoul 06351 , Republic of Korea.,Department of Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea.,Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Republic of Korea.,Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology, Graduate School , Sungkyunkwan University , Seoul 06351 , Republic of Korea
| | | |
Collapse
|
69
|
Llacua LA, Faas MM, de Vos P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 2018; 61:1261-1272. [PMID: 29306997 PMCID: PMC6449002 DOI: 10.1007/s00125-017-4524-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Extracellular matrix (ECM) molecules are responsible for structural and biochemical support, as well as for regulation of molecular signalling and tissue repair in many organ structures, including the pancreas. In pancreatic islets, collagen type IV and VI, and laminins are the most abundant molecules, but other ECM molecules are also present. The ECM interacts with specific combinations of integrin α/β heterodimers on islet cells and guides many cellular processes. More specifically, some ECM molecules are involved in beta cell survival, function and insulin production, while others can fine tune the susceptibility of islet cells to cytokines. Further, some ECM induce release of growth factors to facilitate tissue repair. During enzymatic isolation of islets for transplantation, the ECM is damaged, impacting islet function. However, restoration of the ECM in human islets (for example by adding ECM to the interior of immunoprotective capsules) has been shown to enhance islet function. Here, we provide current insight into the role of ECM molecules in islet function and discuss the clinical potential of ECM manipulation to enhance pancreatic islet function and survival.
Collapse
Affiliation(s)
- L Alberto Llacua
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1 EA11, 9700 RB, Groningen, the Netherlands.
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Marijke M Faas
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1 EA11, 9700 RB, Groningen, the Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1 EA11, 9700 RB, Groningen, the Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
70
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
71
|
Manzoli V, Villa C, Bayer AL, Morales L, Molano RD, Torrente Y, Ricordi C, Hubbell JA, Tomei AA. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Am J Transplant 2018; 18:590-603. [PMID: 29068143 PMCID: PMC5820142 DOI: 10.1111/ajt.14547] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 01/25/2023]
Abstract
Islet encapsulation may allow transplantation without immunosuppression, but thus far islets in large microcapsules transplanted in the peritoneal cavity have failed to reverse diabetes in humans. We showed that islet transplantation in confined well-vascularized sites like the epididymal fat pad (EFP) improved graft outcomes, but only conformal coated (CC) islets can be implanted in these sites in curative doses. Here, we showed that CC using polyethylene glycol (PEG) and alginate (ALG) was not immunoisolating because of its high permselectivity and strong allogeneic T cell responses. We refined the CC composition and explored PEG and islet-like extracellular matrix (Matrigel; MG) islet encapsulation (PEG MG) to improve capsule immunoisolation by decreasing its permselectivity and immunogenicity while allowing physiological islet function. Although the efficiency of diabetes reversal of allogeneic but not syngeneic CC islets was lower than that of naked islets, we showed that CC (PEG MG) islets from fully MHC-mismatched Balb/c mice supported long-term (>100 days) survival after transplantation into diabetic C57BL/6 recipients in the EFP site (750-1000 islet equivalents/mouse) in the absence of immunosuppression. Lack of immune cell penetration and T cell allogeneic priming was observed. These studies support the use of CC (PEG MG) for islet encapsulation and transplantation in clinically relevant sites without chronic immunosuppression.
Collapse
Affiliation(s)
- Vita Manzoli
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Electronics, Information and Bioengineering – Politecnico di Milano – Italy
| | - Chiara Villa
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy,Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Italy
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Morales
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yvan Torrente
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy,Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA,Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | | | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA,Department of Biomedical Engineering, University of Miami, Miami, FL, USA,Corresponding author: Alice A. Tomei, 1450 NW 10 Avenue, Miami, FL-33136, USA; Phone: +1 305-243-3469;
| |
Collapse
|
72
|
Simeonovic CJ, Popp SK, Starrs LM, Brown DJ, Ziolkowski AF, Ludwig B, Bornstein SR, Wilson JD, Pugliese A, Kay TWH, Thomas HE, Loudovaris T, Choong FJ, Freeman C, Parish CR. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans. PLoS One 2018; 13:e0191360. [PMID: 29415062 PMCID: PMC5802856 DOI: 10.1371/journal.pone.0191360] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.
Collapse
Affiliation(s)
- Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lora M. Starrs
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew F. Ziolkowski
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Barbara Ludwig
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - J. Dennis Wilson
- Department of Endocrinology, The Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Alberto Pugliese
- Diabetes Research Institute, Departments of Medicine, Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Thomas W. H. Kay
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Helen E. Thomas
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Thomas Loudovaris
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Fui Jiun Choong
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Craig Freeman
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher R. Parish
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
73
|
Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A, Moles A, Pavone LM. The Multifaceted Role of the Lysosomal Protease Cathepsins in Kidney Disease. Front Cell Dev Biol 2017; 5:114. [PMID: 29312937 PMCID: PMC5742100 DOI: 10.3389/fcell.2017.00114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Kidney disease is worldwide the 12th leading cause of death affecting 8–16% of the entire population. Kidney disease encompasses acute (short-lasting episode) and chronic (developing over years) pathologies both leading to renal failure. Since specific treatments for acute or chronic kidney disease are limited, more than 2 million people a year require dialysis or kidney transplantation. Several recent evidences identified lysosomal proteases cathepsins as key players in kidney pathophysiology. Cathepsins, originally found in the lysosomes, exert important functions also in the cytosol and nucleus of cells as well as in the extracellular space, thus participating in a wide range of physiological and pathological processes. Based on their catalytic active site residue, the 15 human cathepsins identified up to now are classified in three different families: serine (cathepsins A and G), aspartate (cathepsins D and E), or cysteine (cathepsins B, C, F, H, K, L, O, S, V, X, and W) proteases. Specifically in the kidney, cathepsins B, D, L and S have been shown to regulate extracellular matrix homeostasis, autophagy, apoptosis, glomerular permeability, endothelial function, and inflammation. Dysregulation of their expression/activity has been associated to the onset and progression of kidney disease. This review summarizes most of the recent findings that highlight the critical role of cathepsins in kidney disease development and progression. A better understanding of the signaling pathways governed by cathepsins in kidney physiopathology may yield novel selective biomarkers or therapeutic targets for developing specific treatments against kidney disease.
Collapse
Affiliation(s)
- Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Anne Pizard
- Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Anna Moles
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
74
|
Andersen PL, Vermette P. Biomimetic Surfaces Supporting Dissociated Pancreatic Islet Cultures. Colloids Surf B Biointerfaces 2017; 159:166-173. [DOI: 10.1016/j.colsurfb.2017.07.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/25/2022]
|
75
|
Manzoli V, Colter DC, Dhanaraj S, Fornoni A, Ricordi C, Pileggi A, Tomei AA. Engineering human renal epithelial cells for transplantation in regenerative medicine. Med Eng Phys 2017; 48:3-13. [DOI: 10.1016/j.medengphy.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Accepted: 03/26/2017] [Indexed: 12/16/2022]
|
76
|
Buchwald P, Tamayo-Garcia A, Ramamoorthy S, Garcia-Contreras M, Mendez AJ, Ricordi C. Comprehensive Metabolomics Study To Assess Longitudinal Biochemical Changes and Potential Early Biomarkers in Nonobese Diabetic Mice That Progress to Diabetes. J Proteome Res 2017; 16:3873-3890. [PMID: 28799767 DOI: 10.1021/acs.jproteome.7b00512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A global nontargeted longitudinal metabolomics study was carried out in male and female NOD mice to characterize the time-profile of the changes in the metabolic signature caused by onset of type 1 diabetes (T1D) and identify possible early biomarkers in T1D progressors. Metabolomics profiling of samples collected at five different time-points identified 676 and 706 biochemicals in blood and feces, respectively. Several metabolites were expressed at significantly different levels in progressors at all time-points, and their proportion increased strongly following onset of hyperglycemia. At the last time-point, when all progressors were diabetic, a large percentage of metabolites had significantly different levels: 57.8% in blood and 27.8% in feces. Metabolic pathways most strongly affected included the carbohydrate, lipid, branched-chain amino acid, and oxidative ones. Several biochemicals showed considerable (>4×) change. Maltose, 3-hydroxybutyric acid, and kojibiose increased, while 1,5-anhydroglucitol decreased more than 10-fold. At the earliest time-point (6-week), differences between the metabolic signatures of progressors and nonprogressors were relatively modest. Nevertheless, several compounds had significantly different levels and show promise as possible early T1D biomarkers. They include fatty acid phosphocholine derivatives from the phosphatidylcholine subpathway (elevated in both blood and feces) as well as serotonin, ribose, and arabinose (increased) in blood plus 13-HODE, tocopherol (increased), diaminopimelate, valerate, hydroxymethylpyrimidine, and dulcitol (decreased) in feces. A combined metabolic signature based on these compounds might serve as an early predictor of T1D-progressors.
Collapse
|
77
|
Morgan NG. Bringing the human pancreas into focus: new paradigms for the understanding of Type 1 diabetes. Diabet Med 2017; 34:879-886. [PMID: 28429491 DOI: 10.1111/dme.13365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes affects increasingly large numbers of people globally (including at least half a million children under the age of 14 years) and it remains an illness with life-long and often devastating consequences. It is surprising, therefore, that the underlying aetiology of Type 1 diabetes remains poorly understood. This is largely because the cellular and molecular processes leading to the loss of β cells in the pancreas have rarely been studied at, or soon after, the onset of disease. Where such studies have been undertaken, a number of surprises have emerged which serve to challenge conventional wisdom. In particular, it is increasingly understood that the process of islet inflammation (insulitis) is much less florid in humans than in certain animal models. Moreover, the profile of immune cells involved in the inflammatory attack on β cells is variable and this variation occurs at the level of individual patients. As a result, two distinct profiles of insulitis have now been defined that are differentially aggressive and that might, therefore, require specifically tailored therapeutic approaches to slow the progression of disease. In addition, the outcomes are also different in that the more aggressive form (termed 'CD20Hi') is associated with extensive β-cell loss and an early age of disease onset (<7 years), while the less aggressive profile (known as 'CD20Lo') is associated with later onset (>13 years) and the retention of a higher proportion of residual β cells. In the present review, these new findings are explained and their implications evaluated in terms of future therapies.
Collapse
Affiliation(s)
- N G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
78
|
Arous C, Wehrle-Haller B. Role and impact of the extracellular matrix on integrin-mediated pancreatic β-cell functions. Biol Cell 2017; 109:223-237. [PMID: 28266044 DOI: 10.1111/boc.201600076] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Understanding the organisation and role of the extracellular matrix (ECM) in islets of Langerhans is critical for maintaining pancreatic β-cells, and to recognise and revert the physiopathology of diabetes. Indeed, integrin-mediated adhesion signalling in response to the pancreatic ECM plays crucial roles in β-cell survival and insulin secretion, two major functions, which are affected in diabetes. Here, we would like to present an update on the major components of the pancreatic ECM, their role during integrin-mediated cell-matrix adhesions and how they are affected during diabetes. To treat diabetes, a promising approach consists in replacing β-cells by transplantation. However, efficiency is low, because β-cells suffer of anoikis, due to enzymatic digestion of the pancreatic ECM, which affects the survival of insulin-secreting β-cells. The strategy of adding ECM components during transplantation, to reproduce the pancreatic microenvironment, is a challenging task, as many of the regulatory mechanisms that control ECM deposition and turnover are not sufficiently understood. A better comprehension of the impact of the ECM on the adhesion and integrin-dependent signalling in β-cells is primordial to improve the healthy state of islets to prevent the onset of diabetes as well as for enhancing the efficiency of the islet transplantation therapy.
Collapse
Affiliation(s)
- Caroline Arous
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Geneva, Switzerland
| |
Collapse
|
79
|
Phelps EA, Cianciaruso C, Santo-Domingo J, Pasquier M, Galliverti G, Piemonti L, Berishvili E, Burri O, Wiederkehr A, Hubbell JA, Baekkeskov S. Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation. Sci Rep 2017; 7:45961. [PMID: 28401888 PMCID: PMC5388888 DOI: 10.1038/srep45961] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
A robust and reproducible method for culturing monolayers of adherent and well-spread primary islet cells on glass coverslips is required for detailed imaging studies by super-resolution and live-cell microscopy. Guided by an observation that dispersed islet cells spread and adhere well on glass surfaces in neuronal co-culture and form a monolayer of connected cells, we demonstrate that in the absence of neurons, well-defined surface coatings combined with components of neuronal culture media collectively support robust attachment and growth of primary human or rat islet cells as monolayers on glass surfaces. The islet cell monolayer cultures on glass stably maintain distinct mono-hormonal insulin+, glucagon+, somatostatin+ and PP+ cells and glucose-responsive synchronized calcium signaling as well as expression of the transcription factors Pdx-1 and NKX-6.1 in beta cells. This technical advance enabled detailed observation of sub-cellular processes in primary human and rat beta cells by super-resolution microscopy. The protocol is envisaged to have broad applicability to sophisticated analyses of pancreatic islet cells that reveal new biological insights, as demonstrated by the identification of an in vitro protocol that markedly increases proliferation of primary beta cells and is associated with a reduction in ciliated, ostensibly proliferation-suppressed beta cells.
Collapse
Affiliation(s)
- Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jaime Santo-Domingo
- Nestlé Institute of Health Sciences S.A., EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Miriella Pasquier
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Gabriele Galliverti
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lorenzo Piemonti
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, CH-1211 Geneva, Switzerland
| | - Olivier Burri
- BioImaging and Optics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences S.A., EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Chicago, IL 60615, USA
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
80
|
Abou-El-Hassan H, Sukhon F, Assaf EJ, Bahmad H, Abou-Abbass H, Jourdi H, Kobeissy FH. Degradomics in Neurotrauma: Profiling Traumatic Brain Injury. Methods Mol Biol 2017; 1598:65-99. [PMID: 28508358 DOI: 10.1007/978-1-4939-6952-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradomics has recently emerged as a subdiscipline in the omics era with a focus on characterizing signature breakdown products implicated in various disease processes. Driven by promising experimental findings in cancer, neuroscience, and metabolomic disorders, degradomics has significantly promoted the notion of disease-specific "degradome." A degradome arises from the activation of several proteases that target specific substrates and generate signature protein fragments. Several proteases such as calpains, caspases, cathepsins, and matrix metalloproteinases (MMPs) are involved in the pathogenesis of numerous diseases that disturb the physiologic balance between protein synthesis and protein degradation. While regulated proteolytic activities are needed for development, growth, and regeneration, uncontrolled proteolysis initiated under pathological conditions ultimately culminates into apoptotic and necrotic processes. In this chapter, we aim to review the protease-substrate repertoires in neural injury concentrating on traumatic brain injury. A striking diversity of protease substrates, essential for neuronal and brain structural and functional integrity, namely, encryptic biomarker neoproteins, have been characterized in brain injury. These include cytoskeletal proteins, transcription factors, cell cycle regulatory proteins, synaptic proteins, and cell junction proteins. As these substrates are subject to proteolytic fragmentation, they are ceaselessly exposed to activated proteases. Characterization of these molecules allows for a surge of "possible" therapeutic approaches of intervention at various levels of the proteolytic cascade.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Fares Sukhon
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Edwyn Jeremy Assaf
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Bahmad
- Faculty of Medical, Neuroscience Research Center, Beirut Arab University, Beirut, Lebanon
- Faculty of Medicine, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hussein Abou-Abbass
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussam Jourdi
- Faculty of Science¸ Department of Biology, University of Balamand, Souk-el-Gharb Campus, Aley, Lebanon
| | - Firas H Kobeissy
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
81
|
Wedgwood KCA, Richardson SJ, Morgan NG, Tsaneva-Atanasova K. Spatiotemporal Dynamics of Insulitis in Human Type 1 Diabetes. Front Physiol 2016; 7:633. [PMID: 28082906 PMCID: PMC5186767 DOI: 10.3389/fphys.2016.00633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disease characterized by the selective destruction of the insulin secreting beta cells in the pancreas during an inflammatory phase known as insulitis. Patients with T1D are typically dependent on the administration of externally provided insulin in order to manage blood glucose levels. Whilst technological developments have significantly improved both the life expectancy and quality of life of these patients, an understanding of the mechanisms of the disease remains elusive. Animal models, such as the NOD mouse model, have been widely used to probe the process of insulitis, but there exist very few data from humans studied at disease onset. In this manuscript, we employ data from human pancreases collected close to the onset of T1D and propose a spatio-temporal computational model for the progression of insulitis in human T1D, with particular focus on the mechanisms underlying the development of insulitis in pancreatic islets. This framework allows us to investigate how the time-course of insulitis progression is affected by altering key parameters, such as the number of the CD20+ B cells present in the inflammatory infiltrate, which has recently been proposed to influence the aggressiveness of the disease. Through the analysis of repeated simulations of our stochastic model, which track the number of beta cells within an islet, we find that increased numbers of B cells in the peri-islet space lead to faster destruction of the beta cells. We also find that the balance between the degradation and repair of the basement membrane surrounding the islet is a critical component in governing the overall destruction rate of the beta cells and their remaining number. Our model provides a framework for continued and improved spatio-temporal modeling of human T1D.
Collapse
Affiliation(s)
- Kyle C. A. Wedgwood
- Centre for Biomedical Modelling and Analysis, University of ExeterExeter, UK
| | | | - Noel G. Morgan
- University of Exeter Medical School, University of ExeterExeter, UK
| | - Krasimira Tsaneva-Atanasova
- College for Engineering, Mathematics and Physical Sciences, University of ExeterExeter, UK
- Engineering and Physical Sciences Research Council Centre for Predictive Modelling in Healthcare, University of ExeterExeter, UK
| |
Collapse
|
82
|
Boldison J, Wong FS. Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab 2016; 27:856-867. [PMID: 27659143 DOI: 10.1016/j.tem.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
The autoimmune destruction of the pancreatic islet β cells is due to a targeted lymphocyte attack. Different T cell subsets communicate with each other and with the insulin-producing β cells in this process, with evidence not only of damage to the tissue cells but also of lymphocyte regulation. Here we explore the various components of the immune response as well as the cellular interactions that are involved in causing or reducing immune damage to the β cells. We consider these in the light of the possibility that understanding them may help us identify therapeutic targets to reduce the damage and destruction leading to type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
83
|
Gerwien H, Hermann S, Zhang X, Korpos E, Song J, Kopka K, Faust A, Wenning C, Gross CC, Honold L, Melzer N, Opdenakker G, Wiendl H, Schafers M, Sorokin L. Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Sci Transl Med 2016; 8:364ra152. [DOI: 10.1126/scitranslmed.aaf8020] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
|
84
|
Vigier S, Gagnon H, Bourgade K, Klarskov K, Fülöp T, Vermette P. Composition and organization of the pancreatic extracellular matrix by combined methods of immunohistochemistry, proteomics and scanning electron microscopy. Curr Res Transl Med 2016; 65:31-39. [PMID: 28340694 DOI: 10.1016/j.retram.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
The epidemic expansion of diabetes is a major concern of public health. A promising treatment is the transplantation of islets of Langerhans isolated from the whole pancreas but the yields of islets isolation and the rates of successful engraftments still have to be improved to make this therapy effective. The extracellular matrix (ECM) of the pancreatic tissue is partially lost during the isolation process and a comprehensive knowledge of the pancreatic ECM composition and organization could identify targets to improve islets isolation and transplantation or highlight new therapeutics for pancreatic diseases. The organization, composition and three-dimensional architecture of the pancreatic ECM were analysed in mouse and pig by three different techniques. Laminin α-4 and β-2 chains are localized by immunohistochemistry in the exocrine tissue and inside islets of mouse pancreas but not around islets that are surrounded by an ECM made of collagen type IV and type V. Collagen type I, III, and VI were identified by proteomics as specific constituents of the pig pancreatic ECM along with the low-abundance isoforms α3(IV) α4(IV) α5(IV) and α1(V) α2(V) α3(V) of collagen type IV and type V respectively. The three-dimensional ECM architecture is analysed on decellularized mouse pancreas by scanning electron microscopy and is organized in honeycomb structures made of thin ECM fibers assembled in thicker bundles. The combination of immunohistochemistry, proteomics and scanning electron microscopy gives complementary perspective on the pancreatic ECM composition and organization. It represents a valuable toolbox for deeper investigations of ECMs and proposes clues in tissue engineering of the pancreas.
Collapse
Affiliation(s)
- S Vigier
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada.
| | - H Gagnon
- PhenoSwitch Bioscience, Faculty of Medicine and Health Sciences, Université de Sherbrooke, J1H 5N4 Sherbrooke, Québec, Canada
| | - K Bourgade
- Research Center on Aging, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada
| | - K Klarskov
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, J1H 5N4 Sherbrooke, Québec, Canada
| | - T Fülöp
- Research Center on Aging, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada
| | - P Vermette
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada
| |
Collapse
|
85
|
Christoffersson G, von Herrath MG. A Deeper Look into Type 1 Diabetes - Imaging Immune Responses during Onset of Disease. Front Immunol 2016; 7:313. [PMID: 27574523 PMCID: PMC4983548 DOI: 10.3389/fimmu.2016.00313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T lymphocytes execute the killing of insulin-producing beta cells during onset of type 1 diabetes mellitus (T1D). The research community has come far in dissecting the major events in the development of this disease, but still the trigger and high-resolved information of the immunological events leading up to beta cell loss are missing. During the past decades, intravital imaging of immune responses has led to significant scientific breakthroughs in diverse models of disease, including T1D. Dynamic imaging of immune cells at the pancreatic islets during T1D onset has been made possible through the development of both advanced microscopes, and animal models that allow long-term immobilization of the pancreas. The use of these modalities has revealed a milling microenvironment at the pancreatic islets during disease onset with a plethora of active players. Clues to answering the remaining questions in this disease may lie in intravital imaging, including how key immune cells traffic to and from the pancreas, and how cells interact at this target tissue. This review highlights and discusses recent studies, models, and techniques focused to understand the immune responses during T1D onset through intravital imaging.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Novo Nordisk Diabetes Research and Development Center, Seattle, WA, USA
| |
Collapse
|
86
|
Bogdani M. Thinking Outside the Cell: A Key Role for Hyaluronan in the Pathogenesis of Human Type 1 Diabetes. Diabetes 2016; 65:2105-14. [PMID: 27456615 DOI: 10.2337/db15-1750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/16/2016] [Indexed: 11/13/2022]
Affiliation(s)
- Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA
| |
Collapse
|
87
|
Pugliese A. Insulitis in the pathogenesis of type 1 diabetes. Pediatr Diabetes 2016; 17 Suppl 22:31-6. [PMID: 27411434 PMCID: PMC4948864 DOI: 10.1111/pedi.12388] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which autoreactive T-cells and inflammation cause severe loss of pancreatic beta cells. Insulitis, the pathologic hallmark of T1D, is an inflammatory lesion consisting of immune cell infiltrates around and within the islets. New research initiatives and methodologies are advancing our understanding of pancreas pathology. Studies have revealed the predominant cellular types that infiltrate the islets, novel molecular aspects associated with insulitis, and the coexistence of additional pathological abnormalities. While insulitis is a critical element of T1D pathology and pathogenesis, it is typically present only in a modest proportion of islets at any given time, even at diagnosis, with overall limited relation to disease duration. Thus, the relative importance of insulitis as a determining factor of diabetes symptoms at disease onset appears to have been overestimated; growing evidence also shows that beta cell loss at diagnosis is more modest than previously thought. Thus, the sole targeting of the immune system may not afford full therapeutic efficacy if dysfunction affects beta cells that are not under immune attack and this is a key contributor to symptoms. Combination therapies that promote both immunoregulation and address beta cell dysfunction should be more effective in treating this chronic disease process. It remains a major goal to clarify the relation of insulitis with the dynamics of beta cell loss and coexisting mechanisms of dysfunction, according to clinical stage; such improved understanding is key to design therapeutic strategies that target multiple pathogenic mechanisms.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research InstituteUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
88
|
Immunoprotection and Functional Improvement of Allogeneic Islets in Diabetic Mice, Using a Stable Indoleamine 2,3-Dioxygenase Producing Scaffold. Transplantation 2016; 99:1341-8. [PMID: 25769070 DOI: 10.1097/tp.0000000000000661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have previously shown that an immunomodulatory enzyme, indoleamine 2,3-dioxygenase (IDO) in dermal fibroblasts generates a tryptophan-deficient environment that selectively inhibits proliferation and induces apoptosis of bystander CD4+ and CD8+ T cells, but not pancreatic islets. Because these immune cells are involved in islet allograft rejection, we hypothesized that transplantation of islets embedded in a novel 3-dimensional composite scaffold within which stable IDO-expressing fibroblasts serve as source of local immunosuppression would lead to normoglycemia in a streptozotocin-induced diabetic mouse model. METHODS Islet grafts were prepared by embedding stable IDO-expressing fibroblasts and allogeneic islets into a protease-resistant composite scaffold. Islets function and survival were evaluated in vitro using immunohistochemistry. Allografts were transplanted under the kidney capsule of streptozotocin-induced diabetic mice; viability, function, and criteria for graft take were evaluated. Flow cytometry was performed to determine specific intragraft, draining lymph nodes and spleen T-cell population, and splenocytes alloantigen responsiveness of graft recipients. RESULTS The results of a series of in vitro experiments revealed that IDO-expressing fibroblasts do not compromise islet function or survival. The expression of IDO suppressed the proliferation of alloantigen-stimulated splenocytes. The in vivo experiments revealed that local IDO expression delivered by lentiviral vector prolonged islet allograft survival (51.0 ± 2.9 days) by increasing the population of FOXP3+ regulatory T cells at the graft site and graft-draining lymph nodes and preventing T-cell infiltration. CONCLUSIONS This study shows that incorporation of islets within our novel matrix that is equipped with stable IDO-expressing fibroblasts prolongs allograft survival.
Collapse
|
89
|
Abstract
The islets of Langerhans play a critical role in glucose homeostasis. Islets are predominantly composed of insulin-secreting beta cells and glucagon-secreting alpha cells. In type 1 diabetes, the beta cells are destroyed by autoimmune destruction of insulin producing beta cells resulting in hyperglycemia. This is a gradual process, taking from several months to decades. Much of the beta cell destruction takes place during a silent, asymptomatic phase. Type 1 diabetes becomes clinically evident upon destruction of approximately 70-80 % of beta cell mass. Studying the decline in beta cell mass and the cells which are responsible for their demise is difficult as pancreatic biopsies are not feasible in patients with type 1 diabetes. The relative size of islets and their dispersed location throughout the pancreas means in vivo imaging of human islets is currently not manageable. At present, there are no validated biomarkers which accurately track the decline in beta cell mass in individuals who are at risk of developing, or have already developed, type 1 diabetes. Therefore, studies of pancreatic tissue retrieved at autopsy from donors with type 1 diabetes, or donors with high risk markers of type 1 diabetes such as circulating islet-associated autoantibodies, is currently the best method for studying beta cells and the associated inflammatory milieu in situ. In recent years, concerted efforts have been made to source such tissues for histological studies, enabling great insights to be made into the relationship between islets and the inflammatory insult to which they are subjected. This article describes in detail, a robust immunohistochemical method which can be utilized to study both recent, and archival human pancreatic tissue, in order to examine islet endocrine cells and the surrounding immune cells.
Collapse
Affiliation(s)
- Abby Willcox
- Diabetes and Metabolism Unit, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism Unit, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK.
| |
Collapse
|
90
|
Hull RL, Bogdani M, Nagy N, Johnson PY, Wight TN. Hyaluronan: A Mediator of Islet Dysfunction and Destruction in Diabetes? J Histochem Cytochem 2015. [PMID: 26216136 DOI: 10.1369/0022155415576542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hyaluronan (HA) is an extracellular matrix (ECM) component that is present in mouse and human islet ECM. HA is localized in peri-islet and intra-islet regions adjacent to microvessels. HA normally exists in a high molecular weight form, which is anti-inflammatory. However, under inflammatory conditions, HA is degraded into fragments that are proinflammatory. HA accumulates in islets of human subjects with recent onset type 1 diabetes (T1D), and is associated with myeloid and lymphocytic islet infiltration, suggesting a possible role for HA in insulitis. A similar accumulation of HA, in amount and location, occurs in non-obese diabetic (NOD) and DORmO mouse models of T1D. Furthermore, HA accumulates in follicular germinal centers and in T-cell areas in lymph nodes and spleen in both human and mouse models of T1D, as compared with control tissues. Whether HA accumulates in islets in type 2 diabetes (T2D) or models thereof has not been previously described. Here we show evidence that HA accumulates in a mouse model of islet amyloid deposition, a well-known component of islet pathology in T2D. In summary, islet HA accumulation is a feature of both T1D and a model of T2D, and may represent a novel inflammatory mediator of islet pathology.
Collapse
Affiliation(s)
- Rebecca L Hull
- Division of Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System and University of Washington (RLH)
| | - Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington (MB, NN, PYJ, TNW)
| | - Nadine Nagy
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington (MB, NN, PYJ, TNW)
| | - Pamela Y Johnson
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington (MB, NN, PYJ, TNW)
| | - Thomas N Wight
- Department of Pathology, University of Washington, Seattle, Washington (TNW)
| |
Collapse
|
91
|
Kaddis JS, Pugliese A, Atkinson MA. A run on the biobank: what have we learned about type 1 diabetes from the nPOD tissue repository? Curr Opin Endocrinol Diabetes Obes 2015; 22:290-5. [PMID: 26087339 DOI: 10.1097/med.0000000000000171] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Since the inaugural year of its biobank in 2007, the Network for Pancreatic Organ Donors with Diabetes program has provided 70 370 human samples to 127 investigators worldwide for projects focused on the pathogenesis of type 1 diabetes (T1D). The purpose of this review was to highlight major advances in our understanding of T1D using works that contain original data from experiments utilizing biospecimens provided by the Network for Pancreatic Organ Donors with Diabetes program. A total of 15 studies, published between 1 June 2013 and 31 December 2014, were selected using various search and filter strategies. RECENT FINDINGS The type and frequency of B and/or T-cell immune markers in both the endocrine and exocrine compartments vary in T1D. Enterovirus signals have been identified as having new proteins in the extracellular matrix around infiltrated islets. Novel genes within human islet cell types have been shown to play a role in immunity, infiltration, inflammation, disease progression, cell mass and function. Various cytokines and a complement degradation product have also been detected in the blood or surrounding pancreatic ducts/vasculature. SUMMARY These findings, from T1D donors across the disease spectrum, emphasize the notion that pathogenic heterogeneity is a hallmark of the disorder.
Collapse
Affiliation(s)
- John S Kaddis
- aDepartment of Information Sciences, City of Hope, Duarte, California bDiabetes Research Institute and Departments of Medicine, Microbiology and Immunology, University of Miami Miller School of Medicine, Miami cDepartments of Pathology and Pediatrics, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
92
|
Hallmann R, Zhang X, Di Russo J, Li L, Song J, Hannocks MJ, Sorokin L. The regulation of immune cell trafficking by the extracellular matrix. Curr Opin Cell Biol 2015; 36:54-61. [PMID: 26189064 DOI: 10.1016/j.ceb.2015.06.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/04/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) comes in different structural forms and biochemical compositions, which determine both its biophysical properties and its ability to convey specific signals to immune cells encountering or navigating through it. Traditionally, the role of the individual ECM molecules on cell migration has been investigated independent of considerations such as the tension/mechanical strength constituted by the ECM. However, more recently, this aspect has attracted considerable attention and data suggest that rigidity and molecular signals derived from the ECM define the mode of cell migration. We here review the different types of ECM encountered by migrating immune cells in vivo, as well as current information on how both molecular components of the ECM and their supramolecular structure can impact on modes of immune cell migration.
Collapse
Affiliation(s)
- Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Xueli Zhang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany.
| |
Collapse
|
93
|
Abstract
INTRODUCTION Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. AREAS COVERED This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. EXPERT OPINION Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Collapse
Affiliation(s)
- Alice Anna Tomei
- University of Miami Miller School of Medicine, Diabetes Research Institute , 1450 NW 10th Avenue, Miami, FL 33136 , USA +1 305 243 3469 ;
| | | | | |
Collapse
|
94
|
Nassar W, Mostafa MA. Biopsy of the pancreas: the predictive value and therapeutic impact on autoimmune diabetes. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2015. [DOI: 10.4103/1110-7782.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
95
|
Abdi R, Moore R, Sakai S, Donnelly CB, Mounayar M, Sackstein R. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice. Stem Cells 2015; 33:1523-31. [PMID: 25641589 PMCID: PMC4447299 DOI: 10.1002/stem.1948] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/18/2014] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here, we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in nonobese diabetic (NOD) mice. Although murine MSCs natively do not express the E-selectin-binding determinant sialyl Lewis(x) (sLe(x) ), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLe(x) display uniquely on cell surface CD44 thereby creating hematopoietic cell E-/L-selectin ligand (HCELL), the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL(+) MSCs showed threefold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL(-) ) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays; however, although engraftment was temporary for both HCELL(+) and HCELL(-) MSCs, administration of HCELL(+) MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL(-) MSCs. Notably, exofucosylation of MSCs generated from CD44(-/-) mice induced prominent membrane expression of sLe(x) , but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. Stem Cells 2013;33:1523-1531.
Collapse
Affiliation(s)
- Reza Abdi
- Department of Medicine, Renal Division & Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Robert Moore
- Department of Medicine, Renal Division & Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Shinobu Sakai
- Department of Dermatology, Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Conor B. Donnelly
- Department of Dermatology, Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Marwan Mounayar
- Department of Medicine, Renal Division & Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Robert Sackstein
- Department of Dermatology, Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Harvard Medical School, MA 02115
| |
Collapse
|
96
|
Reddy S, Zeng N, Al-Diery H, Jung D, Yeu C, Joret MO, Merrilees MJ, Wu F. Analysis of peri-islet CD45-positive leucocytic infiltrates in long-standing type 1 diabetic patients. Diabetologia 2015; 58:1024-35. [PMID: 25687234 DOI: 10.1007/s00125-015-3519-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS The role of peri-islet CD45-positive leucocytes, as one component of insulitis, in beta cell death during human type 1 diabetes remains unclear. We undertook a case study, comparing and quantifying leucocytes in the peri- and intra-islet areas in insulin-positive and -negative islets, to assess whether peri-islet leucocytes are pathogenic to beta cells during type 1 diabetes. METHODS Pancreatic sections from 12 diabetic patients (0.25-12 years of disease) and 13 non-diabetic individuals with and without autoantibodies were triple-immunostained for islet leucocytes, insulin and glucagon cells. Islets were graded for insulitis, enumerated and mapped for the spatial distribution of leucocytes in peri- and intra-islet areas in relation to insulin- and glucagon-immunopositive cells. RESULTS In the non-diabetic autoantibody-negative group, the percentage of islets with insulitis was either absent or <1% in five out of eight cases and ranged from 1.3% to 19.4% in three cases. In the five non-diabetic autoantibody-positive cases, it varied from 1.5% to 16.9%. In the diabetic group, it was <1% in one case and 1.1-26.9% in 11 cases, with insulitis being absent in 68% of insulin-positive islets. Peri-islet leucocytes were more numerous than intra-islet leucocytes in islets with insulin positivity. Increasing numbers of exocrine leucocytes in non-diabetic autoantibody-positive and diabetic donors were also present. CONCLUSIONS/INTERPRETATION The prominence of peri-islet leucocytes in insulin-positive islets in most long-standing diabetic individuals suggests that they may be pathogenic to residual beta cells. Increasing numbers of leucocytes in the exocrine region may also participate in the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Shiva Reddy
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to summarize recent developments in the histopathology of recent-onset type 1 diabetes. RECENT FINDINGS Insulitis is considered to be the defining lesion in young type 1 diabetic patients, and insight into its pathogenic mechanism is crucial for the development of effective new therapies. The present overview highlights some recent developments including an international consensus guideline for the diagnosis of insulitis in type 1 diabetic patients, immunophenotyping of the insulitic lesions, evidence for a heterogeneity of the disease process and a discussion on the differences and similarities between insulitis in patients and in rodent models of the disease. SUMMARY We have reviewed recent data, published over the last year, on the nature and mechanism of insulitis in both patients and the nonobese diabetic mouse model.
Collapse
Affiliation(s)
- Peter in't Veld
- Department of Pathology, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
98
|
|
99
|
Yang EY, Kronenfeld JP, Stabler CL. Engineering biomimetic materials for islet transplantation. Curr Diabetes Rev 2015; 11:163-9. [PMID: 25776871 PMCID: PMC4447569 DOI: 10.2174/1573399811666150317130440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/30/2022]
Abstract
A closed-loop system that provides both the sensing of glucose and the appropriate dosage of insulin could dramatically improve treatment options for insulin-dependent diabetics. The intrahepatic implantation of allogeneic islets has the potential to provide this intimate control, by transplanting the very cells that have this inherent sensing and secretion capacity. Limiting islet transplantation, however, is the significant loss and dysfunction of islets following implantation, due to the poor engraftment environment and significant immunological attack. In this review, we outline approaches that seek to address these challenges via engineering biomimetic materials. These materials can serve to mimic natural processes that work toward improving engraftment, minimizing inflammation, and directing immunological responses. Biomimetic materials can serve to house cells, recapitulate native microenvironments, release therapeutic agents in a physiological manner, and/or present agents to direct cells towards desired responses. By integrating these approaches, superior platforms capable of improving long-term engraftment and acceptance of transplanted islets are on the horizon.
Collapse
Affiliation(s)
| | | | - Cherie L Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
100
|
Morgan NG, Leete P, Foulis AK, Richardson SJ. Islet inflammation in human type 1 diabetes mellitus. IUBMB Life 2014; 66:723-34. [PMID: 25504835 DOI: 10.1002/iub.1330] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 01/12/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the selective deletion of pancreatic β-cells in response to an assault mounted within the pancreas by infiltrating immune cells. However, this apparently clear and focussed annunciation conceals a stark reality in which the cellular and molecular events leading to β-cell loss remain poorly understood in humans. This reflects the difficulty of studying these processes in living individuals and the fact that, using pathological specimens, islet inflammation has been analysed in fewer than 200 recent-onset cases of T1DM worldwide, over the past century. Nevertheless, insights have been gained and the composition of the islet infiltrate is being disclosed. This is shown to be primarily lymphocytic in nature, with populations of both CD8+ and CD4+ T cells displaying an autoreactivity against specific islet antigenic peptides. The T cells are often accompanied by influent CD20+ B cells, although new data imply that the proportions of these individual cell types vary and that patients fall into at least two distinct categories having either a hyper-immune (CD20Hi) or a pauci-immune (CD20Lo) phenotype. The overall rate of β-cell decline appears to correlate with these two phenotypes such that hyper-immune patients lose β-cells more quickly and tend to develop disease at an earlier age than those with the pauci-immune profile. In this article, we review the evidence which underpins our current understanding of the aetiology of T1DM and highlight both the established features as well as areas of on-going ambiguity and debate.
Collapse
Affiliation(s)
- Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | | | | | | |
Collapse
|