51
|
Effects of circulating extracellular microvesicles from spinal cord-injured adults on endothelial cell function. Clin Sci (Lond) 2020; 134:777-789. [PMID: 32219341 DOI: 10.1042/cs20200047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
People with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression. Eighteen young and middle-aged adults were studied: 10 uninjured (7M/3F; age: 39 ± 3 years) and 8 cervical level spinal cord injured (SCI; 7M/1F; 46 ± 4 years; cervical injury: C3: n=1; C5: n=4; C6: n=3). Circulating microvesicles were isolated, enumerated and collected from plasma by flow cytometry. Human umbilical vein endothelial cells (HUVECs) were cultured and treated with microvesicles from either the uninjured or SCI adults. Microvesicles from SCI adults did not affect cellular markers or mediators of inflammation and oxidative stress. However, microvesicles from the SCI adults significantly blunted eNOS activation, NO bioavailability and t-PA production. Intercellular expression of phosphorylated eNOS at Ser1177 and Thr495 sites, specifically, were ∼65% lower and ∼85% higher, respectively, in cells treated with microvesicles from SCI compared with uninjured adults. Decreased eNOS activity and NO production as well as impaired t-PA bioavailability renders the vascular endothelium highly susceptible to atherosclerosis and thrombosis. Thus, circulating microvesicles may contribute to the increased risk of vascular disease and thrombotic events associated with SCI.
Collapse
|
52
|
Perdomo L, Vidal-Gómez X, Soleti R, Vergori L, Duluc L, Chwastyniak M, Bisserier M, Le Lay S, Villard A, Simard G, Meilhac O, Lezoualc'h F, Khantalin I, Veerapen R, Dubois S, Boursier J, Henni S, Gagnadoux F, Pinet F, Andriantsitohaina R, Martínez MC. Large Extracellular Vesicle-Associated Rap1 Accumulates in Atherosclerotic Plaques, Correlates With Vascular Risks and Is Involved in Atherosclerosis. Circ Res 2020; 127:747-760. [PMID: 32539601 DOI: 10.1161/circresaha.120.317086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Metabolic syndrome (MetS) is a cluster of interrelated risk factors for cardiovascular diseases and atherosclerosis. Circulating levels of large extracellular vesicles (lEVs), submicrometer-sized vesicles released from plasma membrane, from MetS patients were shown to induce endothelial dysfunction, but their role in early stage of atherosclerosis and on vascular smooth muscle cells (SMC) remain to be fully elucidated. OBJECTIVE To determine the mechanisms by which lEVs lead to the progression of atherosclerosis in the setting of MetS. METHODS AND RESULTS Proteomic analysis revealed that the small GTPase, Rap1 was overexpressed in lEVs from MetS patients compared with those from non-MetS subjects. Rap1 was in GTP-associated active state in both types of lEVs, and Rap1-lEVs levels correlated with increased cardiovascular risks, including stenosis. MetS-lEVs, but not non-MetS-lEVs, increased Rap1-dependent endothelial cell permeability. MetS-lEVs significantly promoted migration and proliferation of human aortic SMC and increased expression of proinflammatory molecules and activation of ERK (extracellular signal-regulated kinase) 5/p38 pathways. Neutralization of Rap1 by specific antibody or pharmacological inhibition of Rap1 completely prevented the effects of lEVs from MetS patients. High-fat diet-fed ApoE-/- mice displayed an increased expression of Rap1 both in aortas and circulating lEVs. lEVs accumulated in plaque atherosclerotic lesions depending on the progression of atherosclerosis. lEVs from high-fat diet-fed ApoE-/- mice, but not those from mice fed with a standard diet, enhanced SMC proliferation. Human atherosclerotic lesions were enriched in lEVs expressing Rap1. CONCLUSIONS These data demonstrate that Rap1 carried by MetS-lEVs participates in the enhanced SMC proliferation, migration, proinflammatory profile, and activation of ERK5/p38 pathways leading to vascular inflammation and remodeling, and atherosclerosis. These results highlight that Rap1 carried by MetS-lEVs may be a novel determinant of diagnostic value for cardiometabolic risk factors and suggest Rap1 as a promising therapeutic target against the development of atherosclerosis. Graphical Abstract: A graphical abstract is available for this article.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Atherosclerosis/blood
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Extracellular Vesicles/metabolism
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Mitogen-Activated Protein Kinase 7/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Permeability
- Phosphorylation
- Plaque, Atherosclerotic
- Prognosis
- Proteomics
- Risk Assessment
- Risk Factors
- Signal Transduction
- p38 Mitogen-Activated Protein Kinases/metabolism
- rap GTP-Binding Proteins
- rap1 GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Liliana Perdomo
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Xavier Vidal-Gómez
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Raffaella Soleti
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Luisa Vergori
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Lucie Duluc
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Maggy Chwastyniak
- Université de Lille, Inserm, CHU Lille, Institute Pasteur De Lille, U1167 - RID-AGE, Lille, France (M.C., F.P.)
| | - Malik Bisserier
- Inserm, UMR-1048, Institut Des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (M.B., F.L.)
| | - Soazig Le Lay
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Alexandre Villard
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Gilles Simard
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Olivier Meilhac
- DéTROI, INSERM U1188, Université de La Réunion, France (O.M.)
| | - Frank Lezoualc'h
- Inserm, UMR-1048, Institut Des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (M.B., F.L.)
| | | | - Reuben Veerapen
- Clinique Sainte-Clotilde, Groupe Clinifutur, Sainte-Clotilde, France (R.V.)
| | - Séverine Dubois
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | | | - Samir Henni
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - Frédéric Gagnadoux
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - Florence Pinet
- Université de Lille, Inserm, CHU Lille, Institute Pasteur De Lille, U1167 - RID-AGE, Lille, France (M.C., F.P.)
| | - Ramaroson Andriantsitohaina
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - M Carmen Martínez
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| |
Collapse
|
53
|
Milasan A, Farhat M, Martel C. Extracellular Vesicles as Potential Prognostic Markers of Lymphatic Dysfunction. Front Physiol 2020; 11:476. [PMID: 32523544 PMCID: PMC7261898 DOI: 10.3389/fphys.2020.00476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Despite significant efforts made to treat cardiovascular disease (CVD), more than half of cardiovascular events still occur in asymptomatic subjects devoid of traditional risk factors. These observations underscore the need for the identification of new biomarkers for the prevention of atherosclerosis, the main underlying cause of CVD. Extracellular vesicles (EVs) and lymphatic vessel function are emerging targets in this context. EVs are small vesicles released by cells upon activation or death that are present in several biological tissues and fluids, including blood and lymph. They interact with surrounding cells to transfer their cargo, and the complexity of their biological content makes these EVs potential key players in several chronic inflammatory settings. Many studies focused on the interaction of EVs with the most well-known players of atherosclerosis such as the vascular endothelium, smooth muscle cells and monocytes. However, the fate of EVs within the lymphatic network, a crucial route in the mobilization of cholesterol out the artery wall, is not known. In this review, we aim to bring forward evidence that EVs could be at the interplay between lymphatic function and atherosclerosis by summarizing the recent findings on the characterization of EVs in this setting.
Collapse
Affiliation(s)
- Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Maya Farhat
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
54
|
Sáez T, Toledo F, Sobrevia L. Extracellular Vesicles and Insulin Resistance: A Potential Interaction in Vascular Dysfunction. Curr Vasc Pharmacol 2020; 17:491-497. [PMID: 30277159 DOI: 10.2174/1570161116666181002095745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Abstract
Insulin resistance plays a key role in cardiovascular complications associated with diabetes mellitus and hypertensive disorders. In states of insulin resistance several circulating factors may contribute to a defective insulin sensitivity in different tissues, including the vasculature. One of these factors influencing the vascular insulin resistance are the extracellular vesicles. The extracellular vesicles include exosomes, microvesicles, and apoptotic bodies which are released to the circulation by different vascular cells. Since the cargo of extracellular vesicles seems to be altered in metabolic complications associated with insulin resistance, these vesicles may be candidates contributing to vascular insulin resistance. Despite the studies linking insulin resistance signalling pathways with the vascular effect of extracellular vesicles, the involvement of these structures in vascular insulin resistance is a phenomenon that remains unclear.
Collapse
Affiliation(s)
- Tamara Sáez
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton T6G 2S2, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton T6G 2S2, AB, Canada
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Bio-Bio University, Chillan 3780000, Chile.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile.,Department of Physiology, Faculty of Pharmacy, University of Sevilla, Seville E-41012, Spain.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia
| |
Collapse
|
55
|
Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:676-686. [PMID: 33715815 PMCID: PMC7193959 DOI: 10.1194/jlr.tr119000383] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael J Thomas
- Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mary G Sorci-Thomas
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226. mailto:
| |
Collapse
|
56
|
Bhat OM, Yuan X, Camus S, Salloum FN, Li PL. Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. Int J Mol Sci 2020; 21:E1713. [PMID: 32138242 PMCID: PMC7084670 DOI: 10.3390/ijms21051713] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1-/- mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1-/- mice as compared to their wild-type littermates. Besides, Mcoln1-/- mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1-/- mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1-/- mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC.
Collapse
Affiliation(s)
- Owais M. Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Sarah Camus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Fadi N. Salloum
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA;
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| |
Collapse
|
57
|
Leite AR, Borges-Canha M, Cardoso R, Neves JS, Castro-Ferreira R, Leite-Moreira A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology 2020; 71:397-410. [PMID: 32077315 DOI: 10.1177/0003319720903586] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction is one of the earliest indicators of cardiovascular (CV) dysfunction, and its evaluation would be of considerable importance to stratify CV risk of many diseases and to assess the efficacy of atheroprotective treatments. Flow-mediated dilation is the most widely used method to study endothelial function. However, it is operator-dependent and can be influenced by physiological variations. Circulating biomarkers are a promising alternative. Due to the complexity of endothelial function, many of the biomarkers studied do not provide consistent information about the endothelium when measured alone. New circulating markers are being explored and some of them are thought to be suitable for the clinical setting. In this review, we focus on novel biomarkers of endothelial dysfunction, particularly endothelial microparticles, endocan, and endoglin, and discuss whether they fulfill the criteria to be applied in clinical practice.
Collapse
Affiliation(s)
- Ana Rita Leite
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Marta Borges-Canha
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rita Cardoso
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João Sérgio Neves
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Ricardo Castro-Ferreira
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Serviço de Angiologia e Cirurgia Vascular, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
58
|
Microvesicles and exosomes in metabolic diseases and inflammation. Cytokine Growth Factor Rev 2020; 51:27-39. [PMID: 31917095 DOI: 10.1016/j.cytogfr.2019.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022]
Abstract
Metabolic diseases are based on a dysregulated crosstalk between various cells such as adipocytes, hepatocytes and immune cells. Generally, hormones and metabolites mediate this crosstalk that becomes alterated in metabolic syndrome including obesity and diabetes. Recently, Extracellular Vesicles (EVs) are emerging as a novel way of cell-to-cell communication and represent an attractive strategy to transfer fundamental informations between the cells through the transport of proteins and nucleic acids. EVs, released in the extracellular space, circulate via the various body fluids and modulate the cellular responses following their interaction with the near and far target cells. Clinical and experimental data support their role as biomarkers and bioeffectors in several diseases includimg also the metabolic syndrome. Despite numerous studies on the role of macrophages in the development of metabolic diseases, to date, there are little informations about the influence of metabolic stress on the EVs produced by macrophages and about the role of the released vesicles in the organism. Here, we review current understanding about the role of EVs in metabolic diseases, mainly in inflammation status burst. This knowledge may play a relevant role in health monitoring, medical diagnosis and personalized medicine.
Collapse
|
59
|
Northrop EF, Milbauer LC, Rudser KD, Fox CK, Solovey AN, Kaizer AM, Hebbel RP, Kelly AS, Ryder JR. Reproducibility of endothelial microparticles in children and adolescents. Biomark Med 2020; 14:43-51. [PMID: 31729246 PMCID: PMC7202266 DOI: 10.2217/bmm-2019-0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Aim: We assessed reproducibility of endothelial microparticles (EMPs) enumeration among youth. Methods & results: Four microparticle (MP) indices - total MP per microliter platelet free plasma (PFP), total EMPs per microliter PFP, percent activated EMPs and percent lactadherin positive (LACT[+]) of total EMPs - were measured at two visits (baseline and 7 ± 3 days follow-up) to determine reproducibility overall and by obesity status. We examined CD31+ or CD144+ with CD41-EMP events of size 0.3-1.0 μm. No statistically significant differences were observed between visits for any of the four MP indices. The within-participant and between-participant coefficient of variation was acceptable (range: 1.13-2.37) with good intraclass-correlation coefficient for all indices except total MP per microliter (range: 0.10-1.00). Conclusion: Total EMPs per microliter PFP, percent-activated EMPs and percent LACT(+) of total EMPs are reproducible among youth.
Collapse
Affiliation(s)
- Elise F Northrop
- Division of Biostatistics, School of Public Health, Minneapolis, MN 55455, USA
| | - Liming C Milbauer
- Department of Biochemistry, University of Minnesota, St Paul, MN 55418, USA
| | - Kyle D Rudser
- Division of Biostatistics, School of Public Health, Minneapolis, MN 55455, USA
- Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Claudia K Fox
- Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Anna N Solovey
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Alexander M Kaizer
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO 80045, USA
| | - Robert P Hebbel
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Aaron S Kelly
- Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Justin R Ryder
- Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
60
|
Zhang C, Ou Q, Gu Y, Cheng G, Du R, Yuan L, Cordiner RLM, Kang D, Zhang J, Huang Q, Yu C, Kang L, Wang X, Sun X, Mo X, Tian H, Pearson ER, Meng W, Li S. Circulating Tissue Factor-Positive Procoagulant Microparticles in Patients with Type 1 Diabetes. Diabetes Metab Syndr Obes 2019; 12:2819-2828. [PMID: 32021345 PMCID: PMC6978680 DOI: 10.2147/dmso.s225761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the count of circulating tissue factor-positive (TF+) procoagulant microparticles (MPs) in patients with type 1 diabetes mellitus (T1DM). METHODS This case-control study included patients with T1DM and age and sex-matched healthy volunteers. The counts of phosphatidylserine-positive (PS+) MPs and TF+PS+MPs and the subgroups derived from different cell types were measured in the peripheral blood sample of the two groups using multicolor flow cytometric assay. We compared the counts of each MP between groups as well as the ratio of the TF+PS+MPs and PS+MPs (TF+PS+MPs/PS+MPs). RESULTS We recruited 36 patients with T1DM and 36 matched healthy controls. Compared with healthy volunteers, PS+MPs, TF+PS+MPs and TF+PS+MPs/PS+MPs were elevated in patients with T1DM (PS+MPs: 1078.5 ± 158.08 vs 686.84 ± 122.04/μL, P <0.001; TF+PS+MPs: 202.10 ± 47.47 vs 108.33 ± 29.42/μL, P <0.001; and TF+PS+MPs/PS+MPs: 0.16 ± 0.04 vs 0.19 ± 0.05, P = 0.004), mostly derived from platelet, lymphocytes and endothelial cells. In the subgroup analysis, the counts of total and platelet TF+PS+MPs were increased in patients with diabetic retinopathy (DR) and with higher HbA1c, respectively. CONCLUSION Circulating TF+PS+MPs and those derived from platelet, lymphocytes and endothelial cells were elevated in patients with T1DM.
Collapse
Affiliation(s)
- Chenghui Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu610041, People’s Republic of China
| | - Qing Ou
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Yan Gu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Gaiping Cheng
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Rong Du
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu610041, People’s Republic of China
| | - Li Yuan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Ruth LM Cordiner
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
| | - Deying Kang
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jiaying Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Qiaorong Huang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Chuan Yu
- Department of Health-Related Social and Behavioral Science, West China School of Public Health, Sichuan University, Chengdu610041, People’s Republic of China
| | - Li Kang
- Division of Systems Medicine, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
| | - Xuan Wang
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala75123, Sweden
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
| |
Collapse
|
61
|
Abstract
Extracellular vesicles (EVs) are submicron-sized lipid envelopes that are produced and released from a parent cell and can be taken up by a recipient cell. EVs are capable of mediating cellular signalling by carrying nucleic acids, proteins, lipids and cellular metabolites between cells and organs. Metabolic dysfunction is associated with changes in plasma concentrations of EVs as well as alterations in their EV cargo. Since EVs can act as messengers between parent and recipient cells, they could be involved in cell-to-cell and organ-to-organ communication in metabolic diseases. Recent literature has shown that EVs are produced by cells within metabolic tissues, such as adipose tissue, pancreas, muscle and liver. These vesicles have therefore been proposed as a novel intercellular communication mode in systemic metabolic regulation. In this review, we will describe and discuss the current literature that investigates the role of adipose-derived EVs in the regulation of obesity-associated metabolic disease. We will particularly focus on the EV-dependent communication between adipocytes, the vasculature and immune cells in type 2 diabetes.
Collapse
Affiliation(s)
- Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Valerio Azzimato
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, NOVUM, Blickagången 6, 141 57, Huddinge, Sweden
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Myriam Aouadi
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, NOVUM, Blickagången 6, 141 57, Huddinge, Sweden.
| |
Collapse
|
62
|
Bagher P. Extracellular Vesicles: How a Circulating Biomarker Can Double As a Regulator of Blood Pressure. Hypertension 2019; 75:40-43. [PMID: 31760887 DOI: 10.1161/hypertensionaha.119.13549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pooneh Bagher
- From the Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
63
|
Haller PM, Stojkovic S, Piackova E, Andric T, Wisgrill L, Spittler A, Wojta J, Huber K, Jäger B. The association of P2Y 12 inhibitors with pro-coagulatory extracellular vesicles and microRNAs in stable coronary artery disease. Platelets 2019; 31:497-504. [PMID: 31389740 DOI: 10.1080/09537104.2019.1648780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EV) act as a cellular communication tool by carrying lipids, proteins and micro RNA (miR) between cells, thereby playing a pivotal role in thromboembolic processes. The effect of P2Y12 inhibitors on pro-coagulatory, phosphatidylserine (PS)-expressing EV has been investigated previously, but only in vitro or during confounding clinical conditions, such as acute coronary syndrome. Hence, we enrolled 62 consecutive patients 12 month after percutaneous coronary intervention and stent implantation and consequent treatment with dual-antiplatelet therapy consisting of low-dose aspirin and P2Y12 inhibitors. Blood for platelet function testing and EV and miR measurements was taken on the last day of P2Y12 inhibitor intake (baseline, on-treatment) and 10, 30 and 180 days thereafter (off-treatment). We did not observe any influence of P2Y12 inhibitors on the levels of PS-EV or EV sub-population from platelets, erythrocytes, monocytes or endothelial cells, respectively. There was no relationship between platelet function and EV levels in plasma. However, the association of miR-21 and miR-150 with platelet EVs was significantly different between on- and off-treatment measurements. Hence, our study suggests no influence of P2Y12 inhibition on the count of EVs in plasma, but on the potential cargo of platelet-derived EV.
Collapse
Affiliation(s)
- Paul M Haller
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna , Vienna, Austria
| | - Edita Piackova
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria
| | - Tijana Andric
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria
| | - Lukas Wisgrill
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna , Vienna, Austria
| | - Andreas Spittler
- Department of Surgery, Research Laboratories, Medical University of Vienna , Vienna, Austria.,Core Facility Flow Cytometry, Medical University of Vienna , Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria.,Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna , Vienna, Austria.,Core Facility Flow Cytometry, Medical University of Vienna , Vienna, Austria
| | - Kurt Huber
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria.,Faculty of Medicine, Sigmund Freud University , Vienna, Austria
| | - Bernhard Jäger
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria.,Faculty of Medicine, Sigmund Freud University , Vienna, Austria
| |
Collapse
|
64
|
Monteiro LJ, Varas-Godoy M, Monckeberg M, Realini O, Hernández M, Rice G, Romero R, Saavedra JF, Illanes SE, Chaparro A. Oral extracellular vesicles in early pregnancy can identify patients at risk of developing gestational diabetes mellitus. PLoS One 2019; 14:e0218616. [PMID: 31242249 PMCID: PMC6594608 DOI: 10.1371/journal.pone.0218616] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
Aim To isolate and characterize oral extracellular vesicles from gingival crevicular fluid at 11–14 weeks and evaluate their capacity to identify patients at risk of developing gestational diabetes mellitus. Methods A case-control study was conducted, including patients who developed gestational diabetes mellitus (n = 11) and healthy pregnant controls (n = 23). Obstetric and periodontal histories were recorded at 11–14 weeks of gestation, and samples of gingival crevicular fluid obtained. Extracellular vesicles were isolated from gingival crevicular fluid by ExoQuick. Nanoparticle tracking analysis, ELISA and transmission electron microscopy were used to characterize extracellular vesicles. Results Total extracellular vesicles isolated from gingival crevicular fluid were significantly higher in patients who developed gestational diabetes mellitus later in pregnancy compared to normoglycemic pregnant women (6.3x109 vs 1.7 x1010, p value = 0.0026), and the concentration of the extracellular vesicles delivered an area under the ROC curve of 0.81. The distribution size of extracellular vesicles obtained using ExoQuick was around 148 ± 57 nm. There were no significant differences in the periodontal status between cases and controls. The exosome transmembrane protein CD63 was also detected in the extracellular vesicles of gingival crevicular fluid. Conclusion We were able to isolate extracellular vesicles from gingival crevicular fluid using a method that is suitable to be applied in a clinical setting. Our results provide an insight into the potential capacity of first trimester oral extracellular vesicles as early biomarkers for the prediction of gestational diabetes mellitus in pre-symptomatic women.
Collapse
Affiliation(s)
- Lara J. Monteiro
- Department of Obstetrics and Gynecology, Centre for Biomedical Research, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Manuel Varas-Godoy
- Department of Obstetrics and Gynecology, Centre for Biomedical Research, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Max Monckeberg
- Department of Obstetrics and Gynecology, Centre for Biomedical Research, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Ornella Realini
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Gregory Rice
- Department of Obstetrics and Gynecology, Centre for Biomedical Research, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Centre for Clinical Research, University of Queensland, Herston, Qld, Australia
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland and Detroit, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI. Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | | | - Sebastián E. Illanes
- Department of Obstetrics and Gynecology, Centre for Biomedical Research, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- * E-mail: (AC); (SEI)
| | - Alejandra Chaparro
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
- * E-mail: (AC); (SEI)
| |
Collapse
|
65
|
Sluijter JPG, Davidson SM, Boulanger CM, Buzás EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2019; 114:19-34. [PMID: 29106545 PMCID: PMC5852624 DOI: 10.1093/cvr/cvx211] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs)—particularly exosomes and microvesicles (MVs)—are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized. These capabilities include transporting regulatory molecules including different RNA species, lipids, and proteins through the extracellular space including blood and delivering these cargos to recipient cells to modify cellular activity. EVs powerfully stimulate angiogenesis, and can protect the heart against myocardial infarction. They also appear to mediate some of the paracrine effects of cells, and have therefore been proposed as a potential alternative to cell-based regenerative therapies. Moreover, EVs of different sources may be useful biomarkers of cardiovascular disease identities. However, the methods used for the detection and isolation of EVs have several limitations and vary widely between studies, leading to uncertainties regarding the exact population of EVs studied and how to interpret the data. The number of publications in the exosome and MV field has been increasing exponentially in recent years and, therefore, in this ESC Working Group Position Paper, the overall objective is to provide a set of recommendations for the analysis and translational application of EVs focussing on the diagnosis and therapy of the ischaemic heart. This should help to ensure that the data from emerging studies are robust and repeatable, and optimize the pathway towards the diagnostic and therapeutic use of EVs in clinical studies for patient benefit.
Collapse
Affiliation(s)
- Joost Petrus Gerardus Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, 3508GA Utrecht, The Netherlands
| | | | | | - Edit Iren Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,MTA-SE Immunoproteogenomics Research Group, Budapest, Hungary
| | - Dominique Paschalis Victor de Kleijn
- Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| | - Felix Benedikt Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore 119228.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st floor, 149 Tottenham Court Road, London W1T 7DN, UK.,Department of Cardiology, Barts Heart Centre, St Bartholomew's Hospital, W Smithfield, London EC1A 7BE, UK
| | - Raj Kishore
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and Lionel Opie Preclinical Imaging Core Facility, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan Leor
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel Hashomer, Israel; Tamman Cardiovascular Research Institute, Heart Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Rosalinda Madonna
- Center of Aging Science and Regenerative Medicine, CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, TX, USA.,Texas Heart Institute, Houston, TX, USA
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, CHU d'Angers, Université d'Angers, Angers, France
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ray Michel Schiffelers
- Laboratory Clinical Chemistry and Hematology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Linda Wilhelmina Van Laake
- Division Heart and Lungs, and Hubrecht Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest 1089, Hungary and.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
66
|
Balaphas A, Meyer J, Sadoul K, Fontana P, Morel P, Gonelle-Gispert C, Bühler LH. Platelets and Platelet-Derived Extracellular Vesicles in Liver Physiology and Disease. Hepatol Commun 2019; 3:855-866. [PMID: 31304449 PMCID: PMC6601322 DOI: 10.1002/hep4.1358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
Beyond their role in hemostasis, platelets are proposed as key mediators of several physiological and pathophysiological processes of the liver, such as liver regeneration, toxic or viral acute liver injury, liver fibrosis, and carcinogenesis. The effects of platelets on the liver involve interactions with sinusoidal endothelial cells and the release of platelet‐contained molecules following platelet activation. Platelets are the major source of circulating extracellular vesicles, which are suggested to play key roles in platelet interactions with endothelial cells in several clinical disorders. In the present review, we discuss the implications of platelet‐derived extracellular vesicles in physiological and pathophysiological processes of the liver.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Karin Sadoul
- Regulation and Pharmacology of the Cytoskeleton, Institute for Advanced Biosciences Université Grenoble Alpes Grenoble France
| | - Pierre Fontana
- Division of Angiology and Hemostasis Geneva University Hospitals Geneva Switzerland.,Geneva Platelet Group University of Geneva Geneva Switzerland
| | - Philippe Morel
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Leo H Bühler
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| |
Collapse
|
67
|
Comparative and functional analysis of plasma membrane-derived extracellular vesicles from obese vs. nonobese women. Clin Nutr 2019; 39:1067-1076. [PMID: 31036413 DOI: 10.1016/j.clnu.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Membrane-derived extracellular vesicles (EVs) are released to the circulation by cells found in adipose tissue, transferring microRNAs (miRNAs) that may mediate the adaptive response of recipient cells. This study investigated plasma EVs from obese vs. nonobese women and their functional impact in adipocytes. METHODS Plasma EVs were isolated by differential centrifugation. Concentration and size were examined by nanoparticle tracking analysis (NanoSight). RNA was purified from plasma and plasma EVs of 45 women (47 ± 12 years, 58% of obesity) and profiles of mature miRNAs were assessed. Functional analyses were performed in human adipocytes. FINDINGS Smaller plasma EVs were found in obese when compared to nonobese women. Positive associations were identified between circulating EVs numbers and parameters of impaired glucose tolerance. Almost 40% of plasma cell-free miRNAs were also found in isolated plasma EVs, defined as Ct values < 37 in ≥75% of samples. BMI together with parameters of insulin resistance were major contributors to EVs-contained miRNA patterns. Treatments of cultured human adipocytes with EVs from obese women led to a significant reduction of genes involved in lipid biosynthesis, while increasing the expression of IRS1 (12.3%, p = 0.002). INTERPRETATION Size, concentration and the miRNA cargo of plasma EVs are associated with obesity and parameters of insulin resistance. Plasma EVs may mediate intercellular communication relevant to metabolism in adipocytes.
Collapse
|
68
|
Zahran AM, Sayed SK, Abd El Hafeez HA, Khalifa WA, Mohamed NA, Hetta HF. Circulating microparticle subpopulation in metabolic syndrome: relation to oxidative stress and coagulation markers. Diabetes Metab Syndr Obes 2019; 12:485-493. [PMID: 31043798 PMCID: PMC6469468 DOI: 10.2147/dmso.s191750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Circulating microparticles (MPs) contribute to the pathogenesis of atherothrombotic disorders and are raised in cardiovascular diseases. Herein, we aimed to investigate the effect of moderate metabolic abnormalities in an early stage of metabolic syndrome (MetS) on the level of MP subpopulations and to study relationships between MP subpopulations and both oxidative stress and coagulation markers. METHODS Flow cytometry used to evaluate circulating MPs subpopulations in 40 patients with an early stage MetS and 30 healthy controls. ELISA was used to quantify plasminogen activator inhibitor type 1/tissue plasminogen activator (PAI-1/TPA) while plasma glutathione peroxidase (GPx) activity was measured spectrophotometrically. RESULTS Total MPs were significantly elevated in MetS (P<0.001). Glutathione peroxidase and PAI1/TPA activity was significantly increased in subjects with MetS (P<0.001). Waist circumference, diastolic blood pressure, and total cholesterol positively influenced levels of total MPs, platelet-derived microparticles, and endothelium-derived microparticles. Fasting blood glucose, cholesterol, triglycerides, and low-density lipoprotein positively influenced the coagulation factors (TPA, PAI1). However, high-density lipoprotein negatively influenced platelet-derived MPs and factors associated with fibrinolysis (TPA, PAI1). CONCLUSION Elevated circulating MPs are associated with MetS abnormalities, oxidative stress and coagulation factors and may act as early predictor of metabolic syndrome with risk of cardiovascular disease.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Sohair K Sayed
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba A Abd El Hafeez
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Walaa A Khalifa
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nahed A Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt,
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA,
| |
Collapse
|
69
|
Platelet microparticles contribute to aortic vascular endothelial injury in diabetes via the mTORC1 pathway. Acta Pharmacol Sin 2019; 40:468-476. [PMID: 30446735 DOI: 10.1038/s41401-018-0186-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/10/2018] [Indexed: 11/08/2022] Open
Abstract
Platelet microparticles (PMPs) are closely associated with diabetic macrovascular complications. The present study aimed to investigate the effects of PMPs in diabetes on aortic vascular endothelial injury and to explore the underlying mechanisms. Peritoneal injection of streptozotocin was used to generate a diabetic rat model in vivo, and human umbilical vein endothelial cells (HUVECs) treated with PMPs were used in vitro. PMP levels in the circulation and aorta tissues were time-dependently increased in streptozotocin-induced diabetic rats at weeks 4, 8, and 12 (P < 0.05). Aspirin significantly inhibited the PMP levels at each time point (P < 0.05). In diabetic rats, the endothelial nitric oxide levels were decreased significantly combined with increased endothelial permeability. PMPs were internalized by HUVECs and primarily accumulated around the nuclei. PMPs inhibited endothelial nitric oxide levels to about 50% and caused approximately twofold increase in reactive oxygen species production. Furthermore, PMPs significantly decreased the endothelial glycocalyx area and expression levels of glypican-1 and occludin (P < 0.05). Interestingly, the PMP-induced endothelial injuries were prevented by raptor siRNA and rapamycin. In conclusion, increased PMPs levels contribute to aortic vascular endothelial injuries in diabetes through activating the mTORC1 pathway.
Collapse
|
70
|
Sáez T, Toledo F, Sobrevia L. Impaired signalling pathways mediated by extracellular vesicles in diabesity. Mol Aspects Med 2019; 66:13-20. [DOI: 10.1016/j.mam.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023]
|
71
|
Agouni A, Parray AS, Akhtar N, Mir FA, Bourke PJ, Joseph S, Morgan DM, Santos MD, Wadiwala MF, Kamran S, Sivaraman SK, Shuaib A. There Is Selective Increase in Pro-thrombotic Circulating Extracellular Vesicles in Acute Ischemic Stroke and Transient Ischemic Attack: A Study of Patients From the Middle East and Southeast Asia. Front Neurol 2019; 10:251. [PMID: 30941096 PMCID: PMC6434679 DOI: 10.3389/fneur.2019.00251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Stroke attacks were found to be present at a younger age in patients from Southeast Asia (SE) and the Middle East (ME) resident in the state of Qatar. Extracellular vesicles (EVs), which are small membrane vesicles with pro-thrombotic properties, may contribute to the high risk of stroke in this population. Thus, total and cell-specific medium size EVs were counted by flow cytometry in platelet-free plasma from healthy volunteers and patients with transient ischemic attacks (TIA) and acute ischemic stroke (AIS) from SE and ME. Acutely, within 48 h of attacks, there was an increase in total endothelial EVs in TIA (6.73 ± 1.77; P = 0.0156; n = 21) and AIS (11.23 ± 1.95; P = 0.0007; n = 66) patients compared to controls (2.04 ± 0.78; n = 24). Similar increases were also evident in EVs originating from platelets, erythrocytes, granulocytes, and leukocytes. Compared to controls, there was also an increase in EVs derived from activated endothelial cells, platelets, granulocytes, leukocytes, and pro-coagulant EVs (Annexin V+) at 5 and 30-days following the acute events, while a decrease was observed in erythrocyte-derived EVs. This is the first study characterizing EVs in TIA and AIS patients from ME and SE showing an increase in EVs associated with endothelial and platelet cell activation, which may contribute to the elevated risk of stroke at a younger age in this population.
Collapse
Affiliation(s)
- Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Aijaz S Parray
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Naveed Akhtar
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fayaz A Mir
- Interim Translational Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Paula J Bourke
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sujata Joseph
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Deborah M Morgan
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mark D Santos
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad F Wadiwala
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Saadat Kamran
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Siveen K Sivaraman
- Interim Translational Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
72
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
73
|
Molecular Mechanisms Underpinning Microparticle-Mediated Cellular Injury in Cardiovascular Complications Associated with Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6475187. [PMID: 30915196 PMCID: PMC6399542 DOI: 10.1155/2019/6475187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Microparticles (MPs) are small vesicles shed from the cytoplasmic membrane of healthy, activated, or apoptotic cells. MPs are very heterogeneous in size (100–1,000 nm), and they harbor proteins and surface antigens specific to cells they originate from. Virtually, all cells can shed MPs, and therefore, they can be found in all body fluids, but also entrapped in tissues. Of interest and because of their easy detection using a variety of techniques, circulating MPs were recognized as biomarkers for cell activation. MPs were also found to mediate critical actions in intercellular communication and transmitting biological messages by acting as paracrine vehicles. High plasma numbers of MPs were reported in many cardiovascular and metabolic disturbances that are closely associated with insulin resistance and low-grade inflammation and have been linked to adverse actions on cardiovascular function. This review highlights the involvement of MPs in cardiovascular complications associated with diabetes and discusses the molecular mechanisms that underpin the pathophysiological role of MPs in the onset and progression of cellular injury in diabetes.
Collapse
|
74
|
Feng Q, Stork CJ, Xu S, Yuan D, Xia X, LaPenna KB, Guo G, Sun H, Xu L, Siedlecki CA, Brundage KM, Sheaffer N, Schell TD, He P. Increased circulating microparticles in streptozotocin-induced diabetes propagate inflammation contributing to microvascular dysfunction. J Physiol 2019; 597:781-798. [PMID: 30548258 PMCID: PMC6355626 DOI: 10.1113/jp277312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Circulating microparticles (MPs) are elevated in many cardiovascular diseases and have been considered as biomarkers of disease prognosis; however, current knowledge of MP functions has been mainly derived from in vitro studies and their precise impact on vascular inflammation and disease progression remains obscure. Using a diabetic rat model, we identified a >130-fold increase in MPs in plasma of diabetic rats compared to normal rats, the majority of which circulated as aggregates, expressing multiple cell markers and largely externalized phosphatidylserine; vascular images illustrate MP biogenesis and their manifestations in microvessels of diabetic rats. Using combined single microvessel perfusion and systemic cross-transfusion approaches, we delineated how diabetic MPs propagate inflammation in the vasculature and transform normal microvessels into an inflammatory phenotype observed in the microvessels of diabetic rats. Our observations derived from animal studies resembling conditions in diabetic patients, providing a mechanistic insight into MP-mediated pathogenesis of diabetes-associated multi-organ microvascular dysfunction. ABSTRACT In various cardiovascular diseases, microparticles (MPs), the membrane-derived vesicles released during cell activation, are markedly increased in the circulation. These MPs have been recognized to play diverse roles in the regulation of cellular functions. However, current knowledge of MP function has been largely derived from in vitro studies. The precise impact of disease-induced MPs on vascular inflammation and disease progression remains obscure. In this study we investigated the biogenesis, profile and functional roles of circulating MPs using a streptozotocin-induced diabetic rat model with well-characterized microvascular functions. Our study revealed a >130-fold increase in MPs in the plasma of diabetic rats compared to normal rats. The majority of these MPs originate from platelets, leukocytes and endothelial cells (ECs), and circulate as aggregates. Diabetic MPs show greater externalized phosphatidylserine (PS) than normal MPs. When diabetic plasma or isolated diabetic MPs were perfused into normal microvessels or systemically transfused into normal rats, MPs immediately adhered to endothelium and subsequently mediated leukocyte adhesion. These microvessels then exhibited augmented permeability responses to inflammatory mediators, replicating the microvascular manifestations observed in diabetic rats. These effects were abrogated when MPs were removed from diabetic plasma or when diabetic MPs were pre-coated with a lipid-binding protein, annexin V, suggesting externalized PS to be key in mediating MP interactions with endothelium and leukocytes. Our study demonstrated that the elevated MPs in diabetic plasma are actively involved in the propagation of vascular inflammation through their adhesive surfaces, providing mechanistic insight into the pathogenesis of multi-organ vascular dysfunction that commonly occurs in diabetic patients.
Collapse
Affiliation(s)
- Qilong Feng
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
- Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina030001
| | - Christian J. Stork
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Sulei Xu
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Dong Yuan
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Xinghai Xia
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Kyle B. LaPenna
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Ge Guo
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Haoyu Sun
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Li‐Chong Xu
- Department of Surgery, College of MedicinePenn State UniversityHersheyPA17033USA
| | | | - Kathleen M. Brundage
- Department of Microbiology, Immunology and Cell Biology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Nate Sheaffer
- Flow Cytometry Core, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Todd D. Schell
- Flow Cytometry Core, College of MedicinePenn State UniversityHersheyPA17033USA
- Department of Microbiology and Immunology, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Pingnian He
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| |
Collapse
|
75
|
Higuchi MDL. Commentary: Comparison of the Protective Effects of Individual Components of Particulated trans-Sialidase (PTCTS), PTC and TS, against High Cholesterol Diet-Induced Atherosclerosis in Rabbits. Front Cardiovasc Med 2018; 5:171. [PMID: 30560137 PMCID: PMC6287106 DOI: 10.3389/fcvm.2018.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maria de Lourdes Higuchi
- Faculdade de Medicina, Hospital das Clínicas, Instituto do Coraçao, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
76
|
Le Lay S, Martinez MC, Andriantsitohaina R. Vésicules extracellulaires, biomarqueurs et bioeffecteurs du syndrome métabolique. Med Sci (Paris) 2018; 34:936-943. [DOI: 10.1051/medsci/2018239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Les vésicules extracellulaires (VE) suscitent un intérêt croissant lié à leur capacité à transférer du contenu biologique entre cellules. Les VE, émises dans l’espace extracellulaire, circulent via les différents fluides de l’organisme et modulent localement ou à distance les réponses des cellules avec lesquelles elles ont interagi. Des données cliniques et expérimentales étayent leur rôle dans les maladies liées au syndrome métabolique. Les VE bousculent la vision traditionnelle de la communication intercellulaire et représentent ainsi un mode de communication alternatif et versatile, qui ouvre la porte à de nouveaux concepts et opportunités tant biologiques que thérapeutiques.
Collapse
|
77
|
Freeman DW, Noren Hooten N, Eitan E, Green J, Mode NA, Bodogai M, Zhang Y, Lehrmann E, Zonderman AB, Biragyn A, Egan J, Becker KG, Mattson MP, Ejiogu N, Evans MK. Altered Extracellular Vesicle Concentration, Cargo, and Function in Diabetes. Diabetes 2018; 67:2377-2388. [PMID: 29720498 PMCID: PMC6198336 DOI: 10.2337/db17-1308] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes is a chronic age-associated degenerative metabolic disease that reflects relative insulin deficiency and resistance. Extracellular vesicles (EVs) (exosomes, microvesicles, and apoptotic bodies) are small (30-400 nm) lipid-bound vesicles capable of shuttling functional proteins, nucleic acids, and lipids as part of intercellular communication systems. Recent studies in mouse models and in cell culture suggest that EVs may modulate insulin signaling. Here, we designed cross-sectional and longitudinal cohorts of euglycemic participants and participants with prediabetes or diabetes. Individuals with diabetes had significantly higher levels of EVs in their circulation than euglycemic control participants. Using a cell-specific EV assay, we identified that levels of erythrocyte-derived EVs are higher with diabetes. We found that insulin resistance increases EV secretion. Furthermore, the levels of insulin signaling proteins were altered in EVs from individuals with high levels of insulin resistance and β-cell dysfunction. Moreover, EVs from individuals with diabetes were preferentially internalized by circulating leukocytes. Cytokine levels in the media and in EVs were higher from monocytes incubated with diabetic EVs. Microarray of these leukocytes revealed altered gene expression pathways related to cell survival, oxidative stress, and immune function. Collectively, these results suggest that insulin resistance increases the secretion of EVs, which are preferentially internalized by leukocytes, and alters leukocyte function.
Collapse
Affiliation(s)
- David W Freeman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Erez Eitan
- Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Jamal Green
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Nicolle A Mode
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Monica Bodogai
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mark P Mattson
- Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ngozi Ejiogu
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
78
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Exosome and Macrophage Crosstalk in Sleep-Disordered Breathing-Induced Metabolic Dysfunction. Int J Mol Sci 2018; 19:ijms19113383. [PMID: 30380647 PMCID: PMC6274857 DOI: 10.3390/ijms19113383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent worldwide public health problem that is characterized by repetitive upper airway collapse leading to intermittent hypoxia, pronounced negative intrathoracic pressures, and recurrent arousals resulting in sleep fragmentation. Obesity is a major risk factor of OSA and both of these two closely intertwined conditions result in increased sympathetic activity, oxidative stress, and chronic low-grade inflammation, which ultimately contribute, among other morbidities, to metabolic dysfunction, as reflected by visceral white adipose tissue (VWAT) insulin resistance (IR). Circulating extracellular vesicles (EVs), including exosomes, are released by most cell types and their cargos vary greatly and reflect underlying changes in cellular homeostasis. Thus, exosomes can provide insights into how cells and systems cope with physiological perturbations by virtue of the identity and abundance of miRNAs, mRNAs, proteins, and lipids that are packaged in the EVs cargo, and are secreted from the cells into bodily fluids under normal as well as diseased states. Accordingly, exosomes represent a novel pathway via which a cohort of biomolecules can travel long distances and result in the modulation of gene expression in selected and targeted recipient cells. For example, exosomes secreted from macrophages play a critical role in innate immunity and also initiate the adaptive immune response within specific metabolic tissues such as VWAT. Under normal conditions, phagocyte-derived exosomes represent a large portion of circulating EVs in blood, and carry a protective signature against IR that is altered when secreting cells are exposed to altered physiological conditions such as those elicited by OSA, leading to emergence of IR within VWAT compartment. Consequently, increased understanding of exosome biogenesis and biology should lead to development of new diagnostic biomarker assays and personalized therapeutic approaches. Here, the evidence on the major biological functions of macrophages and exosomes as pathophysiological effectors of OSA-induced metabolic dysfunction is discussed.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Sections of Pediatric Sleep Medicine and Pediatric Pulmonology, Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA.
| | - Leila Kheirandish-Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| |
Collapse
|
79
|
Botha J, Nielsen MH, Christensen MH, Vestergaard H, Handberg A. Bariatric surgery reduces CD36-bearing microvesicles of endothelial and monocyte origin. Nutr Metab (Lond) 2018; 15:76. [PMID: 30386406 PMCID: PMC6199798 DOI: 10.1186/s12986-018-0309-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/27/2018] [Indexed: 11/20/2022] Open
Abstract
Background Bariatric surgery is a widely adopted treatment for obesity and its secondary complications. In the past decade, microvesicles (MVs) and CD36 have increasingly been considered as possible biomarkers for obesity, the metabolic syndrome (MetSy), type 2 diabetes mellitus (T2DM). Thus, the purpose of this study was to investigate how weight loss resulting from bariatric surgery affects levels of specific MV phenotypes and their expression of CD36 scavenger receptor. Additionally, we hypothesised that subjects with MetSy had higher baseline concentrations of investigated MV phenotypes. Methods Twenty individuals undergoing Roux-en-Y gastric bypass surgery were evaluated before and 3 months after surgery. MVs were characterised by flow cytometry at both time points and defined as lactadherin-binding particles within a 100-1000 nm size gate. MVs of monocyte (CD14) and endothelial (CD62E) origin were defined by cell-specific markers, and their expression of CD36 was investigated. Results Following bariatric surgery, subjects incurred an average BMI reduction (delta) of − 8.4 ± 1.4 (p < 0.0001). Significant reductions were observed for the total MVs (− 66.55%, p = 0.0017) and MVs of monocyte (− 36.11%, p = 0.0056) and endothelial (− 40.10%, p = 0.0007) origins. Although the bulk of CD36-bearing MVs were unaltered, significant reductions were observed for CD36-bearing MVs of monocyte (− 60.04%, p = 0.0192) and endothelial (− 54.93%, p = 0.04) origin. No differences in levels of MVs were identified between subjects who presented with MetSy at baseline (n = 13) and those that did not (n = 7). Conclusion Bariatric surgery resulted in significantly altered levels of CD36-bearing MVs of monocyte and endothelial origin. This likely reflects improvements in ectopic fat distribution, plasma lipid profile, low-grade inflammation, and oxidative stress following weight loss. Conversely, however, the presence of MetSy at baseline had no impact on MV phenotypes. Electronic supplementary material The online version of this article (10.1186/s12986-018-0309-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaco Botha
- 1Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark.,2Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Sdr. Skovvej 15, DK-9000 Aalborg, Denmark
| | - Morten Hjuler Nielsen
- 1Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| | - Maja Høegh Christensen
- 1Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| | - Henrik Vestergaard
- 3Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, SUND, University of Copenhagen, Panum, Mærsk tårnet, Bygning 7, 8. Etage, DK-2200 Copenhagen N, Denmark
| | - Aase Handberg
- 1Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark.,2Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Sdr. Skovvej 15, DK-9000 Aalborg, Denmark
| |
Collapse
|
80
|
Amosse J, Durcin M, Malloci M, Vergori L, Fleury A, Gagnadoux F, Dubois S, Simard G, Boursier J, Hue O, Martinez MC, Andriantsitohaina R, Le Lay S. Phenotyping of circulating extracellular vesicles (EVs) in obesity identifies large EVs as functional conveyors of Macrophage Migration Inhibitory Factor. Mol Metab 2018; 18:134-142. [PMID: 30473096 PMCID: PMC6309717 DOI: 10.1016/j.molmet.2018.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Obesity-associated metabolic dysfunctions are linked to dysregulated production of adipokines. Accumulating evidence suggests a role for fat-derived extracellular vesicles (EVs) in obesity-metabolic disturbances. Since EVs convey numerous proteins we aimed to evaluate their contribution in adipokine secretion. Methods Plasma collected from metabolic syndrome patients were used to isolate EV subtypes, namely microvesicles (MVs) and exosomes (EXOs). Numerous soluble factor concentrations were measured successively on total, MV- and EXO-depleted plasma by multiplexed immunoassays. Results Circulating MVs and EXOs were significantly increased with BMI, supporting a role of EVs as metabolic relays in obesity. Obesity was associated with dysregulated soluble factor production. Sequential depletion of plasma MVs and EXOs did not modify plasma levels of these molecules, with the exception of Macrophage Migration Inhibitory Factor (MIF). Half of plasma MIF circulated within MVs, and this MV secretory pathway was conserved over different MIF-producing cells. Although MV-associated MIF triggered rapid ERK1/2 activation in macrophages, these functional MV-MIF effects specifically relied on MIF tautomerase activity. Conclusion Our results emphasize the importance of reconsidering MIF-metabolic actions with regard to its MV-associated form and opening new EV-based strategies for therapeutic MIF approaches. Plasma EV subtypes are significantly increased with obesity. Plasma EV subtypes carry adipokines. MV (large EV subtype) constitute a major secretory pathway for MIF. MV-associated MIF transduces metabolic responses through its tautomerase activity.
Collapse
Affiliation(s)
- Jérémy Amosse
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | - Maëva Durcin
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France; Adaptation to Tropical Climate and Exercise Laboratory, EA3596, University of the French West Indies, Pointe-à-Pitre, Guadeloupe, France
| | - Marine Malloci
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | - Luisa Vergori
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | - Audrey Fleury
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | - Frédéric Gagnadoux
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France; Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Séverine Dubois
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France; Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France; Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Jérôme Boursier
- Centre Hospitalo-Universitaire d'Angers, Angers, France; HIFIH, EA3859, Université d'Angers, Angers, France
| | - Olivier Hue
- Adaptation to Tropical Climate and Exercise Laboratory, EA3596, University of the French West Indies, Pointe-à-Pitre, Guadeloupe, France
| | - M Carmen Martinez
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | | | - Soazig Le Lay
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France.
| |
Collapse
|
81
|
Raghu D, Christodoulides JA, Christophersen M, Liu JL, Anderson GP, Robitaille M, Byers JM, Raphael MP. Nanoplasmonic pillars engineered for single exosome detection. PLoS One 2018; 13:e0202773. [PMID: 30142169 PMCID: PMC6108516 DOI: 10.1371/journal.pone.0202773] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/08/2018] [Indexed: 11/18/2022] Open
Abstract
Exosomes are secreted nanovesicles which incorporate proteins and nucleic acids, thereby enabling multifunctional pathways for intercellular communication. There is an increasing appreciation of the critical role they play in fundamental processes such as development, wound healing and disease progression, yet because of their heterogeneous molecular content and low concentrations in vivo, their detection and characterization remains a challenge. In this work we combine nano- and microfabrication techniques for the creation of nanosensing arrays tailored toward single exosome detection. Elliptically–shaped nanoplasmonic sensors are fabricated to accommodate at most one exosome and individually imaged in real time, enabling the label-free recording of digital responses in a highly multiplexed geometry. This approach results in a three orders of magnitude sensitivity improvement over previously reported real-time, multiplexed platforms. Each nanosensor is elevated atop a quartz nanopillar, minimizing unwanted nonspecific substrate binding contributions. The approach is validated with the detection of exosomes secreted by MCF7 breast adenocarcinoma cells. We demonstrate the increasingly digital and stochastic nature of the response as the number of subsampled nanosensors is reduced from four hundred to one.
Collapse
Affiliation(s)
- Deepa Raghu
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Joseph A. Christodoulides
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Marc Christophersen
- Space Sciences Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Jinny L. Liu
- Center for Biomolecular Science & Engineering, Naval Research Laboratory, Washington, D.C., United States of America
| | - George P. Anderson
- Center for Biomolecular Science & Engineering, Naval Research Laboratory, Washington, D.C., United States of America
| | - Michael Robitaille
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Jeff M. Byers
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Marc P. Raphael
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
82
|
Abbasian N, Herbert KE, Pawluczyk I, Burton JO, Bevington A. Vesicles bearing gifts: the functional importance of micro-RNA transfer in extracellular vesicles in chronic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1430-F1443. [PMID: 30110570 DOI: 10.1152/ajprenal.00318.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including microparticles (MPs) and exosomes (EXOs), are derived from a wide range of mammalian cells including blood platelets, endothelial cells, and kidney cells and can be detected in body fluids including blood and urine. While EVs are well established as diagnostic markers under pathophysiological and stress conditions, there is also mounting evidence of their functional significance as vehicles for communication between cells mediated by the presence of nucleic acids, especially microRNAs (miRs), encapsulated in the EVs. miRs regulate gene expression, are transported both in MPs and EXOs, and exert profound effects in the kidney. Here we review current understanding of the links between EVs and miRs, discuss the importance of miRs in kidney disease, and shed light on the role of EVs in transferring miRs through the circulation among the renal, vascular, and inflammatory cell populations that are functionally important in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Nima Abbasian
- Department of Infection, Immunity, and Inflammation, University of Leicester , Leicester , United Kingdom
| | - Karl E Herbert
- Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute of Health Research Cardiovascular Biomedical Research Unit , Leicester , United Kingdom
| | - Izabella Pawluczyk
- Department of Infection, Immunity, and Inflammation, University of Leicester , Leicester , United Kingdom
| | - James O Burton
- Department of Infection, Immunity, and Inflammation, University of Leicester , Leicester , United Kingdom.,John Walls Renal Unit, University Hospitals of Leicester , Leicester , United Kingdom
| | - Alan Bevington
- Department of Infection, Immunity, and Inflammation, University of Leicester , Leicester , United Kingdom
| |
Collapse
|
83
|
Schurgers LJ, Akbulut AC, Kaczor DM, Halder M, Koenen RR, Kramann R. Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Front Cardiovasc Med 2018; 5:36. [PMID: 29682509 PMCID: PMC5897433 DOI: 10.3389/fcvm.2018.00036] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The ageing population continues to suffer from its primary killer, cardiovascular disease (CVD). Despite recent advances in interventional medicinal and surgical therapies towards the end of the 20th century, the epidemic of cardiovascular disease has not been halted. Yet, rather than receding globally, the burden of CVD has risen to become a top cause of morbidity and mortality worldwide. Most CVD arises from thrombotic rupture of an atherosclerotic plaque, the pathologic thickening of coronary and carotid artery segments and subsequent distal ischemia in heart or brain. In fact, one-fifth of deaths are directly attributable to thrombotic rupture of a vulnerable plaque. Atherosclerotic lesion formation is caused by a concert of interactions between circulating leukocytes and platelets, interacting with the endothelial barrier, signalling into the arterial wall by the release of cytokines and extracellular vesicles (EVs). Both platelet- and cell-derived EVs represent a novel mechanism of cellular communication, particularly by the transport and transfer of cargo and by reprogramming of the recipient cell. These interactions result in phenotypic switching of vascular smooth muscle cells (VSMCs) causing migration and proliferation, and subsequent secretion of EVs. Loss of VSMCs attracts perivascular Mesenchymal Stem Cells (MSCs) from the adventitia, which are a source of VSMCs and contribute to repair after vascular injury. However, continuous stress stimuli eventually switch phenotype of cells into osteochondrogenic VSMCs facilitating vascular calcification. Although Virchow’s triad is over 100 years old, it is a reality that is accurate today. It can be briefly summarised as changes in the composition of blood (platelet EVs), alterations in the vessel wall (VSMC phenotypic switching, MSC infiltration and EV release) and disruption of blood flow (atherothrombosis). In this paper, we review the latest relevant advances in the identification of extracellular vesicle pathways as well as VSMCs and pericyte/MSC phenotypic switching, underlying vascular calcification.
Collapse
Affiliation(s)
- Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Dawid M Kaczor
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Maurice Halder
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
84
|
Wider J, Undyala VVR, Whittaker P, Woods J, Chen X, Przyklenk K. Remote ischemic preconditioning fails to reduce infarct size in the Zucker fatty rat model of type-2 diabetes: role of defective humoral communication. Basic Res Cardiol 2018. [PMID: 29524006 DOI: 10.1007/s00395-018-0674-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Remote ischemic preconditioning (RIPC), the phenomenon whereby brief ischemic episodes in distant tissues or organs render the heart resistant to infarction, has been exhaustively demonstrated in preclinical models. Moreover, emerging evidence suggests that exosomes play a requisite role in conveying the cardioprotective signal from remote tissue to the myocardium. However, in cohorts displaying clinically common comorbidities-in particular, type-2 diabetes-the infarct-sparing effect of RIPC may be confounded for as-yet unknown reasons. To investigate this issue, we used an integrated in vivo and in vitro approach to establish whether: (1) the efficacy of RIPC is maintained in the Zucker fatty rat model of type-2 diabetes, (2) the humoral transfer of cardioprotective triggers initiated by RIPC are transported via exosomes, and (3) diabetes is associated with alterations in exosome-mediated communication. We report that a standard RIPC stimulus (four 5-min episodes of hindlimb ischemia) reduced infarct size in normoglycemic Zucker lean rats, but failed to confer protection in diabetic Zucker fatty animals. Moreover, we provide novel evidence, via transfer of serum and serum fractions obtained following RIPC and applied to HL-1 cardiomyocytes subjected to hypoxia-reoxygenation, that diabetes was accompanied by impaired humoral communication of cardioprotective signals. Specifically, our data revealed that serum and exosome-rich serum fractions collected from normoglycemic rats attenuated hypoxia-reoxygenation-induced HL-1 cell death, while, in contrast, exosome-rich samples from Zucker fatty rats did not evoke protection in the HL-1 cell model. Finally, and unexpectedly, we found that exosome-depleted serum from Zucker fatty rats was cytotoxic and exacerbated hypoxia-reoxygenation-induced cardiomyocyte death.
Collapse
Affiliation(s)
- Joseph Wider
- Cardiovascular Research Institute, Wayne State University School of Medicine, Scott Hall, Room 4356, 540 E Canfield, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vishnu V R Undyala
- Cardiovascular Research Institute, Wayne State University School of Medicine, Scott Hall, Room 4356, 540 E Canfield, Detroit, MI, 48201, USA
| | - Peter Whittaker
- Cardiovascular Research Institute, Wayne State University School of Medicine, Scott Hall, Room 4356, 540 E Canfield, Detroit, MI, 48201, USA.,Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - James Woods
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Scott Hall, Room 4356, 540 E Canfield, Detroit, MI, 48201, USA. .,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
85
|
Recabarren-Leiva D, Alarcón M. Standardization of a fast and effective method for the generation and detection of platelet-derived microparticles by a flow cytometer. Immunol Lett 2018; 194:79-84. [PMID: 29329679 DOI: 10.1016/j.imlet.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
The Flow Cytometry is the principal method used to measure platelet-derived microparticles (PDMPs), by fluorescent properties analysis. PDMPs (0.1-1.0 μm) are abundant in circulation, accounting for approximately 90% of the microparticles and are associated with Cardiovascular Disease, the leading cause of death in the world.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
86
|
Jansen F, Li Q, Pfeifer A, Werner N. Endothelial- and Immune Cell-Derived Extracellular Vesicles in the Regulation of Cardiovascular Health and Disease. JACC Basic Transl Sci 2017; 2:790-807. [PMID: 30062186 PMCID: PMC6059011 DOI: 10.1016/j.jacbts.2017.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 02/08/2023]
Abstract
Intercellular signaling by extracellular vesicles (EVs) is a route of cell-cell crosstalk that allows cells to deliver biological messages to specific recipient cells. EVs convey these messages through their distinct cargoes consisting of cytokines, proteins, nucleic acids, and lipids, which they transport from the donor cell to the recipient cell. In cardiovascular disease (CVD), endothelial- and immune cell-derived EVs are emerging as key players in different stages of disease development. EVs can contribute to atherosclerosis development and progression by promoting endothelial dysfunction, intravascular calcification, unstable plaque progression, and thrombus formation after rupture. In contrast, an increasing body of evidence highlights the beneficial effects of certain EVs on vascular function and endothelial regeneration. However, the effects of EVs in CVD are extremely complex and depend on the cellular origin, the functional state of the releasing cells, the biological content, and the diverse recipient cells. This paper summarizes recent progress in our understanding of EV signaling in cardiovascular health and disease and its emerging potential as a therapeutic agent.
Collapse
Key Words
- CVD, cardiovascular disease
- EC, endothelial cell
- EMV, endothelial cell-derived microvesicles
- ESCRT, endosomal sorting complex required for transport
- IL, interleukin
- MV, microvesicles
- NO, nitric oxide
- PEG, polyethylene glycol
- TGF, transforming growth factor
- cardiovascular disease
- extracellular vesicles
- miRNA, microRNA
- microvesicles
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Qian Li
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany.,Department of Cardiology, Second Hospital of Jilin University, Nanguan District, Changchun, China
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| |
Collapse
|
87
|
Badimon L, Suades R, Arderiu G, Peña E, Chiva-Blanch G, Padró T. Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Front Cardiovasc Med 2017; 4:77. [PMID: 29326946 PMCID: PMC5741657 DOI: 10.3389/fcvm.2017.00077] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis (AT) is a progressive chronic disease involving lipid accumulation, fibrosis, and inflammation in medium and large-sized arteries, and it is the main cause of cardiovascular disease (CVD). AT is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Despite lipid-lowering drugs have shown to decrease the risk of cardiovascular events (CVEs), there is a significant burden of AT-related morbidity and mortality. Identification of subjects at increased risk for CVE as well as discovery of novel therapeutic targets for improved treatment strategies are still unmet clinical needs in CVD. Microvesicles (MVs), small extracellular plasma membrane particles shed by activated and apoptotic cells have been widely linked to the development of CVD. MVs from vascular and resident cells by facilitating exchange of biological information between neighboring cells serve as cellular effectors in the bloodstream and play a key role in all stages of disease progression. This article reviews the current knowledge on the role of MVs in AT and CVD. Attention is focused on novel aspects of MV-mediated regulatory mechanisms from endothelial dysfunction, vascular wall inflammation, oxidative stress, and apoptosis to coagulation and thrombosis in the progression and development of atherothrombosis. MV contribution to vascular remodeling is also discussed, with a particular emphasis on the effect of MVs on the crosstalk between endothelial cells and smooth muscle cells, and their role regulating the active process of AT-driven angiogenesis and neovascularization. This review also highlights the latest findings and main challenges on the potential prognostic, diagnostic, and therapeutic value of cell-derived MVs in CVD. In summary, MVs have emerged as new regulators of biological functions in atherothrombosis and might be instrumental in cardiovascular precision medicine; however, significant efforts are still needed to translate into clinics the latest findings on MV regulation and function.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| |
Collapse
|
88
|
Schwarz V, Düsing P, Liman T, Werner C, Herm J, Bachelier K, Krüll M, Brechtel L, Jungehulsing GJ, Haverkamp W, Böhm M, Endres M, Haeusler KG, Laufs U. Marathon running increases circulating endothelial- and thrombocyte-derived microparticles. Eur J Prev Cardiol 2017; 25:317-324. [PMID: 29183152 DOI: 10.1177/2047487317744364] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Acute vascular effects of high intensity physical activity are incompletely characterized. Circulating microparticles are cellular markers for vascular activation and damage. Methods Microparticles were analysed in 99 marathon runners (49 ± 6 years, 22% female) of the prospective Berlin Beat of Running study. Blood samples were taken within three days before, immediately after and within two days after the marathon run. Endothelial-derived microparticles were labelled with CD144, CD31 and CD62E, platelet-derived microparticles with CD62P and CD42b, leukocyte-derived microparticles with CD45 and monocyte-derived microparticles with CD14. Results Marathon running induced leukocytosis (5.9 ± 0.1 to 14.8 ± 0.3 109/l, p < 0.0001) and increased platelet counts (239 ± 4.6 to 281 ± 5.9 109/l, p < 0.0001) immediately after the marathon. Blood monocytes increased and lymphocytes decreased after the run ( p < 0.0001). Endothelial-derived microparticles were acutely increased ( p = 0.008) due to a 23% increase of apoptotic endothelial-derived microparticles ( p = 0.007) and returned to baseline within two days after the marathon. Thrombocyte-derived microparticles acutely increased by 38% accompanied by an increase in activated and apoptotic thrombocyte-derived microparticles ( p ≤ 0.0001) each. Both monocyte- and leukocyte-derived microparticles were decreased immediately after marathon run ( p < 0.0001) and remained below baseline until day 2. Troponin T increased from 12 to 32 ng/l ( p < 0.0001) immediately after the run and returned to baseline after two days. Conclusion Circulating apoptotic endothelial- and thrombocyte-derived microparticles increased after marathon running consistent with an acute pro-thrombotic and pro-inflammatory state. Exercise-induced vascular damage reflected by microparticles could indicate potential mechanisms of post-exertional cardiovascular complications. Further studies are warranted to investigate microparticles as markers to identify individuals prone to such complications.
Collapse
Affiliation(s)
- Viktoria Schwarz
- 1 Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Philip Düsing
- 1 Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Thomas Liman
- 2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Christian Werner
- 1 Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Juliane Herm
- 2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Germany
| | - Katrin Bachelier
- 1 Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Matthias Krüll
- 4 SMS Sports Medicine Berlin, Medical Institute of the BMW BERLIN-MARATHON, Germany
| | | | | | - Wilhelm Haverkamp
- 7 Department of Cardiology, Charité - Universitätsmedizin Berlin Campus Virchow-Klinikum, Germany
| | - Michael Böhm
- 1 Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Matthias Endres
- 2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Germany.,8 German Center for Neurodegenerative Diseases (DZNE) & German Center for Cardiovascular Diseases (DZHK), Partner Site, Berlin, Germany
| | - Karl Georg Haeusler
- 2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrich Laufs
- 9 Department of Cardiology, Universitätsklinikum Leipzig, Germany
| |
Collapse
|
89
|
Abstract
Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed.
Collapse
Affiliation(s)
- Zhili Chen
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Poornima Venkat
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Don Seyfried
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Michael Chopp
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Tao Yan
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Jieli Chen
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.).
| |
Collapse
|
90
|
Witczak JK, Min T, Prior SL, Stephens JW, James PE, Rees A. Bariatric Surgery Is Accompanied by Changes in Extracellular Vesicle-Associated and Plasma Fatty Acid Binding Protein 4. Obes Surg 2017; 28:767-774. [DOI: 10.1007/s11695-017-2879-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
91
|
Abstract
Metabolic syndrome defines a cluster of interrelated risk factors for cardiovascular disease and diabetes mellitus. These factors include metabolic abnormalities, such as hyperglycemia, elevated triglyceride levels, low high-density lipoprotein cholesterol levels, high blood pressure, and obesity, mainly central adiposity. In this context, extracellular vesicles (EVs) may represent novel effectors that might help to elucidate disease-specific pathways in metabolic disease. Indeed, EVs (a terminology that encompasses microparticles, exosomes, and apoptotic bodies) are emerging as a novel mean of cell-to-cell communication in physiology and pathology because they represent a new way to convey fundamental information between cells. These microstructures contain proteins, lipids, and genetic information able to modify the phenotype and function of the target cells. EVs carry specific markers of the cell of origin that make possible monitoring their fluctuations in the circulation as potential biomarkers inasmuch their circulating levels are increased in metabolic syndrome patients. Because of the mixed components of EVs, the content or the number of EVs derived from distinct cells of origin, the mode of cell stimulation, and the ensuing mechanisms for their production, it is difficult to attribute specific functions as drivers or biomarkers of diseases. This review reports recent data of EVs from different origins, including endothelial, smooth muscle cells, macrophages, hepatocytes, adipocytes, skeletal muscle, and finally, those from microbiota as bioeffectors of message, leading to metabolic syndrome. Depicting the complexity of the mechanisms involved in their functions reinforce the hypothesis that EVs are valid biomarkers, and they represent targets that can be harnessed for innovative therapeutic approaches.
Collapse
Affiliation(s)
- M Carmen Martínez
- From the INSERM UMR 1063 Stress oxydant et pathologies métaboliques, UNIV Angers, Université Bretagne Loire, France
| | - Ramaroson Andriantsitohaina
- From the INSERM UMR 1063 Stress oxydant et pathologies métaboliques, UNIV Angers, Université Bretagne Loire, France.
| |
Collapse
|
92
|
Abstract
Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| |
Collapse
|
93
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol 2017; 256:143-156. [PMID: 28676332 DOI: 10.1016/j.resp.2017.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA), the most severe form of sleep disordered breathing, is characterized by intermittent hypoxia during sleep (IH), sleep fragmentation, and episodic hypercapnia. OSA is associated with increased risk for morbidity and mortality affecting cardiovascular, metabolic, and neurocognitive systems, and more recently with non-alcoholic fatty liver disease (NAFLD) and cancer-related deaths. Substantial variability in OSA outcomes suggests that genetically-determined and environmental and lifestyle factors affect the phenotypic susceptibility to OSA. Furthermore, OSA and obesity often co-exist and manifest activation of shared molecular end-organ injury mechanisms that if properly identified may represent potential therapeutic targets. A challenge in the development of non-invasive diagnostic assays in body fluids is the ability to identify clinically relevant biomarkers. Circulating extracellular vesicles (EVs) include a heterogeneous population of vesicular structures including exosomes, prostasomes, microvesicles (MVs), ectosomes and oncosomes, and are classified based on their size, shape and membrane surface composition. Of these, exosomes (30-100nm) are very small membrane vesicles derived from multi-vesicular bodies or from the plasma membrane and play important roles in mediating cell-cell communication via cargo that includes lipids, proteins, mRNAs, miRNAs and DNA. We have recently identified a unique cluster of exosomal miRNAs in both humans and rodents exposed to intermittent hypoxia as well as in patients with OSA with divergent morbid phenotypes. Here we summarize such recent findings, and will focus on exosomal miRNAs in both adult and children which mediate intercellular communication relevant to OSA and endothelial dysfunction, and their potential value as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
94
|
Paradoxical Effect of Nonalcoholic Red Wine Polyphenol Extract, Provinols™, in the Regulation of Cyclooxygenases in Vessels from Zucker Fatty Rats ( fa/ fa). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8536910. [PMID: 28660008 PMCID: PMC5474272 DOI: 10.1155/2017/8536910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023]
Abstract
The aim of this work was to study the vascular effects of dietary supplementation of a nonalcoholic red wine polyphenol extract, Provinols, in Zucker fatty (ZF) obese rats. ZF or lean rats received diet supplemented or not with Provinols for 8 weeks. Vasoconstriction in response to phenylephrine (Phe) was then assessed in small mesenteric arteries (SMA) and the aorta with emphasis on the contribution of cyclooxygenases (COX). Although no difference in vasoconstriction was observed between ZF and lean rats both in SMA and the aorta, Provinols affected the contribution of COX-derived vasoconstrictor agents. The nonselective COX inhibitor, indomethacin, reduced vasoconstriction in vessels from both groups; however, lower efficacy was observed in Provinols-treated rats. This was associated with a reduction in thromboxane-A2 and 8-isoprostane release. The selective COX-2 inhibitor, NS398, reduced to the same extent vasoconstriction in aortas from ZF and Provinols-treated ZF rats. However, NS398 reduced response to Phe only in SMA from ZF rats. This was associated with a reduction in 8-isoprostane and prostaglandin-E release. Paradoxically, Provinols decreased COX-2 expression in the aorta, while it increased its expression in SMA. We provide here evidence of a subtle and paradoxical regulation of COX pathway by Provinols vessels from obese rats to maintain vascular tone within a physiological range.
Collapse
|
95
|
Durcin M, Fleury A, Taillebois E, Hilairet G, Krupova Z, Henry C, Truchet S, Trötzmüller M, Köfeler H, Mabilleau G, Hue O, Andriantsitohaina R, Martin P, Le Lay S. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles 2017; 6:1305677. [PMID: 28473884 PMCID: PMC5405565 DOI: 10.1080/20013078.2017.1305677] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) are biological vectors that can modulate the metabolism of target cells by conveying signalling proteins and genomic material. The level of EVs in plasma is significantly increased in cardiometabolic diseases associated with obesity, suggesting their possible participation in the development of metabolic dysfunction. With regard to the poor definition of adipocyte-derived EVs, the purpose of this study was to characterise both qualitatively and quantitatively EVs subpopulations secreted by fat cells. Adipocyte-derived EVs were isolated by differential centrifugation of conditioned media collected from 3T3-L1 adipocytes cultured for 24 h in serum-free conditions. Based on morphological and biochemical properties, as well as quantification of secreted EVs, we distinguished two subpopulations of adipocyte-derived EVs, namely small extracellular vesicles (sEVs) and large extracellular vesicles (lEVs). Proteomic analyses revealed that lEVs and sEVs exhibit specific protein signatures, allowing us not only to define novel markers of each population, but also to predict their biological functions. Despite similar phospholipid patterns, the comparative lipidomic analysis performed on these EV subclasses revealed a specific cholesterol enrichment of the sEV population, whereas lEVs were characterised by high amounts of externalised phosphatidylserine. Enhanced secretion of lEVs and sEVs is achievable following exposure to different biological stimuli related to the chronic low-grade inflammation state associated with obesity. Finally, we demonstrate the ability of primary murine adipocytes to secrete sEVs and lEVs, which display physical and biological characteristics similar to those described for 3T3-L1. Our study provides additional information and elements to define EV subtypes based on the characterisation of adipocyte-derived EV populations. It also underscores the need to distinguish EV subpopulations, through a combination of multiple approaches and markers, since their specific composition may cause distinct metabolic responses in recipient cells and tissues.
Collapse
Affiliation(s)
- Maëva Durcin
- INSERM U1063, Oxidative stress and metabolic pathologies, Angers University, Pointe à Pitre, France.,Adaptation to Tropical Climate and Exercise Laboratory, EA3596, University of the French West Indies, Pointe-à-Pitre, Guadeloupe, France
| | - Audrey Fleury
- INSERM U1063, Oxidative stress and metabolic pathologies, Angers University, Pointe à Pitre, France
| | - Emiliane Taillebois
- INSERM U1063, Oxidative stress and metabolic pathologies, Angers University, Pointe à Pitre, France
| | - Grégory Hilairet
- INSERM U1063, Oxidative stress and metabolic pathologies, Angers University, Pointe à Pitre, France
| | - Zuzana Krupova
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,EXCILONE, Elancourt, France
| | - Céline Henry
- MICALIS Institute, INRA, AgroParisTech, PAPPSO, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Truchet
- Adaptation to Tropical Climate and Exercise Laboratory, EA3596, University of the French West Indies, Pointe-à-Pitre, Guadeloupe, France
| | - Martin Trötzmüller
- Center for Medical Research, Medical University of Graz, Graz, Austria.,Omics Center Graz, Graz, Austria
| | - Harald Köfeler
- Center for Medical Research, Medical University of Graz, Graz, Austria.,Omics Center Graz, Graz, Austria
| | | | - Olivier Hue
- Adaptation to Tropical Climate and Exercise Laboratory, EA3596, University of the French West Indies, Pointe-à-Pitre, Guadeloupe, France
| | | | - Patrice Martin
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Soazig Le Lay
- INSERM U1063, Oxidative stress and metabolic pathologies, Angers University, Pointe à Pitre, France
| |
Collapse
|
96
|
Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts. Angiogenesis 2017; 20:385-398. [DOI: 10.1007/s10456-017-9554-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/01/2017] [Indexed: 01/10/2023]
|
97
|
Abstract
Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.
Collapse
|
98
|
Safiedeen Z, Rodríguez-Gómez I, Vergori L, Soleti R, Vaithilingam D, Douma I, Agouni A, Leiber D, Dubois S, Simard G, Zibara K, Andriantsitohaina R, Martínez MC. Temporal Cross Talk Between Endoplasmic Reticulum and Mitochondria Regulates Oxidative Stress and Mediates Microparticle-Induced Endothelial Dysfunction. Antioxid Redox Signal 2017; 26:15-27. [PMID: 27392575 DOI: 10.1089/ars.2016.6771] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Circulating microparticles (MPs) from metabolic syndrome patients and those generated from apoptotic T cells induce endothelial dysfunction; however, the molecular and cellular mechanism(s) underlying in the effects of MPs remain to be elucidated. RESULTS Here, we show that both types of MPs increased expression of endoplasmic reticulum (ER) stress markers, X-box binding protein 1, p-eukaryotic translation initiation factor 2 α, and CHOP, and nuclear translocation of activating transcription factor 6 on human aortic endothelial cells (HAoECs). MPs decreased in vitro nitric oxide release by HAoECs, whereas in vivo MP injection into mice impaired the endothelium-dependent relaxation induced by acetylcholine. These effects were prevented when ER stress was inhibited, suggesting that ER stress is implicated in the endothelial effects induced by MPs. MPs affected mitochondrial function and evoked sequential increase of cytosolic and mitochondrial reactive oxygen species (ROS). Pharmacological inhibition of ER stress and silencing of neutral sphingomyelinase (SMase) with siRNA abrogated all MP-mediated effects. Neutralization of Fas ligand carried by MPs abolished effects induced by both MP types, whereas neutralization of low-density lipoprotein receptor on endothelial cells prevented T-lymphocyte MP-mediated effects. Innovation and Conclusion: Collectively, endothelial dysfunction triggered by MPs involves temporal cross talk between ER and mitochondria with respect to spatial regulation of ROS via the neutral SMase and interaction of MPs with Fas and/or low-density lipoprotein receptor. These results provide a novel molecular insight into the manner MPs mediate vascular dysfunction and allow identification of potential therapeutic targets to treat vascular complications associated with metabolic syndrome. Antioxid. Redox Signal. 26, 15-27.
Collapse
Affiliation(s)
- Zainab Safiedeen
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,2 ER045, Laboratory of Stem Cells, PRASE, DSST, Lebanese University , Beirut, Lebanon
| | - Isabel Rodríguez-Gómez
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Luisa Vergori
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Raffaella Soleti
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Dayannath Vaithilingam
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Imene Douma
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Abdelali Agouni
- 3 Faculty of Health and Medical Sciences, University of Surrey , Guildford, United Kingdom
| | - Denis Leiber
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Séverine Dubois
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,4 Centre Hospitalo-Universitaire d'Angers , Angers, France
| | - Gilles Simard
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,4 Centre Hospitalo-Universitaire d'Angers , Angers, France
| | - Kazem Zibara
- 2 ER045, Laboratory of Stem Cells, PRASE, DSST, Lebanese University , Beirut, Lebanon .,5 Faculty of Sciences-I, Biology Department, Lebanese University , Beirut, Lebanon
| | - Ramaroson Andriantsitohaina
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,4 Centre Hospitalo-Universitaire d'Angers , Angers, France
| | - M Carmen Martínez
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,4 Centre Hospitalo-Universitaire d'Angers , Angers, France
| |
Collapse
|
99
|
Botha J, Velling Magnussen L, Nielsen MH, Nielsen TB, Højlund K, Andersen MS, Handberg A. Microvesicles Correlated with Components of Metabolic Syndrome in Men with Type 2 Diabetes Mellitus and Lowered Testosterone Levels But Were Unaltered by Testosterone Therapy. J Diabetes Res 2017; 2017:4257875. [PMID: 28168203 PMCID: PMC5266820 DOI: 10.1155/2017/4257875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 01/15/2023] Open
Abstract
Aims. To investigate how circulating microvesicle phenotypes correlate with insulin sensitivity, body composition, plasma lipids, and hepatic fat accumulation. We hypothesized that changes elicited by testosterone replacement therapy are reflected in levels of microvesicles. Methods. Thirty-nine type 2 diabetic males with lowered testosterone levels were assigned to either testosterone replacement therapy or placebo and evaluated at baseline and after 24 weeks. Microvesicles were analysed by flow cytometry and defined as lactadherin-binding particles within the 0.1-1.0 μm gate. Microvesicles of platelet, monocyte, and endothelial cell origin were identified by cell-specific markers and their expression of CD36 was investigated. Results. Triglycerides correlated positively with all investigated microvesicle phenotypes in this study (p < 0.05), and indicators of hepatic fat accumulation, alanine aminotransferase, and gamma glutamyltransferase correlated with platelet and endothelial microvesicles and CD36-expressing microvesicles from platelets and monocytes (p < 0.05). BMI, waist circumference, and fat percentage correlated with CD36-expressing monocyte microvesicles (p < 0.05), while insulin sensitivity did not correlate with any microvesicle phenotypes. Microvesicle levels were unaffected by testosterone therapy. Conclusions. Metabolic syndrome components and hepatic fat accumulation correlated with microvesicle phenotypes, supporting the involvement of especially CD36 on monocytes in metabolic syndrome pathogenesis. Although testosterone therapy improved body composition measures, microvesicle phenotype levels were unaffected. This trial was registered at ClinicalTrials.gov (NCT01560546).
Collapse
Affiliation(s)
- Jaco Botha
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- *Jaco Botha:
| | | | | | - Tine Bo Nielsen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Section of Molecular Diabetes & Metabolism, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
100
|
Affiliation(s)
- Leonard C. Edelstein
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|