51
|
Schneider T, Mittag A, Westermann M, Glei M. Impact of pH changes on metal oxide nanoparticle behaviour during artificial digestion. Food Funct 2021; 12:1452-1457. [PMID: 33522539 DOI: 10.1039/d0fo02842h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The physicochemical properties of orally ingested metal nanoparticles can be influenced by the conditions prevailing in the digestive tract. In our work, we demonstrate the strong influence of the pH value on particle fate using a simplified digestion approach to analyze magnesium oxide, copper oxide and zinc oxide nanoparticles and show why a separate consideration of the digestion parameters is necessary.
Collapse
Affiliation(s)
- Thomas Schneider
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 24, Jena, Germany.
| | - Anna Mittag
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 24, Jena, Germany.
| | - Martin Westermann
- Electron Microscopy Center, University Hospital Jena, Ziegelmühlenweg 1, Jena, Germany
| | - Michael Glei
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 24, Jena, Germany.
| |
Collapse
|
52
|
Li M, Zhang C. Are silver nanoparticles better than triclosan as a daily antimicrobial? Answers from the perspectives of gut microbiome disruption and pathogenicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143983. [PMID: 33302073 DOI: 10.1016/j.scitotenv.2020.143983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 05/23/2023]
Abstract
As an alternative to triclosan (TCS), the widespread use of silver nanoparticles (AgNPs) in daily products shows genuine potential. However, information regarding whether AgNPs are substantially better than TCS in their potential disruption of the gut microbiome and health effects is lacking. Using a simulator of the human intestinal microbial ecosystem (SHIME), we systemically compared the effects of TCS and AgNPs (at 1 μg/L and 30 μg/L) on the human gut microbiome in terms of changes in gut homeostasis, microbial community structure, antibiotic resistance profiles and abundances of opportunistic pathogens. Generally, TCS exerted more severe effects than AgNPs on gut disturbances (i.e., decreased production of short-chain fatty acids, increased contents of ammonium and total bile acids, and increased β-glucosidase activities) in a dose-dependent manner, whereas no clear dose effect was observed for the AgNP treatment because of potential nanoparticle transformation. The more serious effect of TCS than AgNPs on the microbiota composition was indicated by the dynamic increase in the Firmicutes/Bacteroidetes ratio determined using 16S rDNA sequencing. Metagenomic analyses revealed a more pronounced effect of TCS than AgNPs on the selection and dissemination of multiple resistance genes to antibiotics, TCS, and even Ag via the enrichment of genes encoding efflux pumps and mobile genetic elements. Consequently, the overgrowth of opportunistic pathogens was observed upon TCS exposure due to an imbalanced microbiome, in contrast to a slight increase in the abundance of some beneficial bacteria (i.e., Bifidobacterium) induced by the AgNP treatment. In conclusion, from the perspective of effects on gut health, AgNPs may prevail over TCS to some extent. However, the stress and potential selection of Ag resistance indicates the need for targeted surveillance of AgNP commercialization for daily use.
Collapse
Affiliation(s)
- Mingzhu Li
- School of Environment, Beijing Normal University, Beijing 100875, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
53
|
Katarzyńska-Banasik D, Grzesiak M, Kowalik K, Sechman A. Administration of silver nanoparticles affects ovarian steroidogenesis and may influence thyroid hormone metabolism in hens (Gallus domesticus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111427. [PMID: 33049449 DOI: 10.1016/j.ecoenv.2020.111427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 05/11/2023]
Abstract
This study aimed to determine the in vivo effect of silver nanoparticles (AgNPs) on the concentration of sex steroids (progesterone - P4, estradiol - E2, testosterone - T) and thyroid hormones (thyroxine - T4, triiodothyronine - T3) in the blood plasma as well as the messenger ribonucleic acid (mRNA) and protein expression of HSD3β, CYP17A1 and CYP19A1 enzymes and steroid hormone concentrations in chicken ovarian follicles. AgNPs did not affect serum steroid hormone levels, but increased T3 levels depending on the size and concentration of AgNPs. At the level of ovarian tissues, AgNPs: (i) affected the levels of E2 and T in prehierachical follicles; (ii) reduced the expression of CYP19A1 mRNA and protein and consequently diminished E2 concentration in small white follicles; and (iii) increased the expression of CYP17A1 mRNA in large white follicles, without changing its protein expression. The results indicate that AgNPs affect chicken ovarian steroidogenesis. The effects of AgNPs depend on exposure time, the type of follicle and the degree of its development and are associated with the modulation of steroidogenic gene expression and E2 and T synthesis. Prehierachical follicles seem to be more susceptible to AgNPs than preovulatory ones. In conclusion, AgNPs by targeting the chicken ovary may indirectly influence the selection processes of prehierarchical follicles to the pre-ovulatory hierarchy and disturb the ovarian steroidogenesis. Furthermore, AgNPs may affect thyroid hormone metabolism in different ways by size which in turn may influence energy homeostasis of the target cells.
Collapse
Affiliation(s)
- Dorota Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Kinga Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
54
|
Khan AU, Xu Z, Qian X, Hong A, Tang Q, Zeng T, Kah M, Li L. Transformations of Ag 2S nanoparticles in simulated human gastrointestinal tract: Impacts of the degree and origin of sulfidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123406. [PMID: 32653797 DOI: 10.1016/j.jhazmat.2020.123406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Engineered silver sulfide nanoparticles (e-Ag2S-NPs) are used in industry and can be released into the environment. Besides e-Ag2S-NPs, transformed silver sulfide nanoparticles (t-Ag2S-NPs) from silver nanoparticles are more likely to be the form that is widely distributed in the environment. Both e-Ag2S-NPs and t-Ag2S-NPs may be ingested and get into human gastrointestinal tract (GIT) through trophic transfer, posing a potential threat to human health. Nevertheless, knowledge of chemical stability of t-Ag2S-NPs and e-Ag2S-NPs in the human GIT is very limited. Herein e-Ag2S-NPs and a series of t-Ag2S-NPs with different degrees of sulfidation were selected as models for exposure to the simulated human GIT including mouth, stomach and small intestine phases under fed and fasted conditions. Silver ions were detected in the simulated saliva, gastric and small intestine fluids when t-Ag2S-NPs or e-Ag2S-NPs were incubated in the simulated GIT, but the amount (e.g., < 20 μg) of silver ion in each phase accounted for < 0.2‰ (w/w) of the silver added (i.e., 100 mg). Silver species of the residual particulate from each phase of the simulated GIT with t-Ag2S-NPs or e-Ag2S-NPs were thus analyzed through a developed analytical method that could selectively, successively and efficiently dissolve and quantify AgCl, Ag(0), and Ag2S in particulates. Both e-Ag2S-NPs and fully sulfidized t-Ag2S-NPs were shown to be highly stable in the simulated human GIT. Conversely, partially sulfidized t-Ag2S-NPs primarily underwent transformations in the mouth phase relative to stomach and small intestine phases regardless of fed or fasted status, wherein AgCl and Ag2S were observed besides Ag(0). The amount of Ag2S in the mouth phase negatively (r = -0.99, p < 0.001) correlated with the sulfidation degree of initial t-Ag2S-NPs. This work improved our understanding of potential transformations of t-Ag2S-NPs in the simulated human GIT, providing valuable information for future researches on evaluating health risks of ingested Ag2S-NPs.
Collapse
Affiliation(s)
- Ashfeen Ubaid Khan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenlan Xu
- Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoting Qian
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Aimei Hong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland 1142, New Zealand
| | - Lingxiangyu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
55
|
|
56
|
Becaro AA, de Oliveira LP, de Castro VLS, Siqueira MC, Brandão HM, Correa DS, Ferreira MD. Effects of silver nanoparticles prenatal exposure on rat offspring development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103546. [PMID: 33186674 DOI: 10.1016/j.etap.2020.103546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Many types of nanocomposites employed in food packaging are based on silver nanoparticles (AgNP) because of their antibacterial properties, which can increase food shelf-life. As the commercialization of AgNP products has been expanding, the released of such nanoparticles in the environment has caused enormous concern, once they can pose potential risks to the environment and human beings. For instance, exposure of the maternal environment to nanomaterials during pregnancy may impact the health of the dam, fetus and offspring. In this context, here we investigated the effects of prenatal exposure of AgNP on the pregnancy outcomes of dams and postnatal development of their offspring. Pregnant Wistar rats were exposed to distinct AgNP concentrations (0, 1, 3 and 5 μg/kg/day) from beginning to the end of pregnancy. At parturition, newborns were observed regarding clinical signs of toxicity and survival rate. The offspring was examined by evaluating developmental endpoints. A delay in time for vaginal opening and testes descent were detected in the offspring exposed to AgNP during embryonic development. Our results indicate that prenatal exposure to AgNP can compromise neonatal rats' postnatal development, especially the reproductive features.
Collapse
Affiliation(s)
- Aline A Becaro
- Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, SP, Brazil
| | - Luzia P de Oliveira
- Universidade Federal de São Paulo, Avenida Cesare Mansueto Giulio Lattes, 1201, 12247-014, São José dos Campos, SP, Brazil
| | - Vera L S de Castro
- EMBRAPA Meio Ambiente, Rodovia SP 340 Km 127.5, Postal Box 69, Jaguariúna, SP, 13918-110, Brazil
| | - Maria C Siqueira
- Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, SP, Brazil
| | - Humberto M Brandão
- EMBRAPA Gado de Leite, Avenida Rádio Maia, 830 - Zona Rural, 79106-550, Campo Grande, MS, Brazil
| | - Daniel S Correa
- Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, SP, Brazil
| | - Marcos David Ferreira
- Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
57
|
Comparative Evaluation of Intestinal Absorption and Functional Value of Iron Dietary Supplements and Drug with Different Delivery Systems. Molecules 2020; 25:molecules25245989. [PMID: 33348818 PMCID: PMC7766776 DOI: 10.3390/molecules25245989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
Iron is a fundament micronutrient, whose homeostasis is strictly regulated. Iron deficiency anemia is among the most widespread nutritional deficiencies and its therapy, based on dietary supplement and drugs, may lead to severe side effects. With the aim of improving iron bioavailability while reducing iron oral therapy side effects, novel dietary supplements based on innovative technologies-microencapsulation, liposomes, sucrosomes-have been produced and marketed. In the present work, six iron dietary supplements for different therapeutic targets were compared in terms of bioaccessibility, bioavailability, and safety by using an integrated in vitro approach. For general-purpose iron supplements, ME + VitC (microencapsulated) showed a fast, burst intestinal iron absorption kinetic, which maintained iron bioavailability and ferritin expression constant over time. SS + VitC (sucrosomes), on the other side, showed a slower, time-dependent iron absorption and ferritin expression trend. ME + Folate (microencapsulated) showed a behavior similar to that of ME + VitC, albeit with a lower bioavailability. Among pediatric iron supplements, a time-dependent bioavailability increase was observed for LS (liposome), while PIC (polydextrose-iron complex) bioavailability is severely limited by its poor bioaccessibility. Finally, except for SS + VitC, no adverse effects on intestinal mucosa vitality and barrier integrity were observed. Considering obtained results and the different therapeutic targets, microencapsulation-based formulations are endowed with better performance compared to the other formulations. Furthermore, performances of microencapsulated products were obtained with a lower iron daily dose, limiting the potential onset of side effects.
Collapse
|
58
|
Fabrication and characterization of an active bionanocomposite film based on basil seed mucilage and ZnO nanoparticles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00588-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
59
|
García-Rodríguez A, Moreno-Olivas F, Marcos R, Tako E, Marques CNH, Mahler GJ. The Role of Metal Oxide Nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on Small Intestinal Enzyme Activity. ENVIRONMENTAL SCIENCE. NANO 2020; 7:3940-3964. [PMID: 33815806 PMCID: PMC8011031 DOI: 10.1039/d0en01001d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered nanomaterials (ENMs) have become common in the food industry, which motivates the need to evaluate ENM effects on human health. Gastrointestinal (GI) in vitro models (e.g. Caco-2, Caco-2/HT29-MTX) have been used in nanotoxicology research. However, the human gut environment is composed of both human cells and the gut microbiota. The goal of this study is to increase the complexity of the Caco-2/HT29-MTX in vitro model by co-culturing human cells with the Gram-positive, commensal Lactobacillus rhamnosus or the Gram-negative, opportunistic Escherichia coli; with the hypothesis that the presence of bacteria would ameliorate the effects of exposure to metal oxide nanoparticles (NPs) such as iron oxide (Fe2O3), silicone dioxide (SiO2), titanium dioxide (TiO2), or zinc oxide (ZnO). To understand this relationship, Caco-2/HT29-MTX cell barriers were acutely co-exposed (4 hours) to bacteria and/or NPs (pristine or in vitro digested). The activity of the brush border membrane (BBM) enzymes intestinal alkaline phosphatase (IAP), aminopeptidase-N (APN), sucrase isomaltase (SI) and the basolateral membrane enzyme (BLM) Na+/K+ ATPase were assessed. Findings show that (i) the human digestion process alters the physicochemical properties of NPs, (ii) large agglomerates of NPs remain entrapped on the apical side of the intestinal barrier, which (iii) affects the activity of BBM enzymes. Interestingly, some NPs effects were attenuated in the presence of either bacterial strains. Confocal microscopy detected bacteria-NPs interactions, which may impede the NP-intestinal cell contact. These results highlight the importance of improving in vitro models to closely mimic the complexities of the human body.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Fabiola Moreno-Olivas
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Cláudia N. H. Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
60
|
Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis TP, Zhao Y, Ke PC, Chen C. Implications of the Human Gut-Brain and Gut-Cancer Axes for Future Nanomedicine. ACS NANO 2020; 14:14391-14416. [PMID: 33138351 DOI: 10.1021/acsnano.0c07258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent clinical and pathological evidence have implicated the gut microbiota as a nexus for modulating the homeostasis of the human body, impacting conditions from cancer and dementia to obesity and social behavior. The connections between microbiota and human diseases offer numerous opportunities in medicine, most of which have limited or no therapeutic solutions available. In light of this paradigm-setting trend in science, this review aims to provide a comprehensive and timely summary of the mechanistic pathways governing the gut microbiota and their implications for nanomedicines targeting cancer and neurodegenerative diseases. Specifically, we discuss in parallel the beneficial and pathogenic relationship of the gut microbiota along the gut-brain and gut-cancer axes, elaborate on the impact of dysbiosis and the gastrointestinal corona on the efficacy of nanomedicines, and highlight a molecular mimicry that manipulates the universal cross-β backbone of bacterial amyloid to accelerate neurological disorders. This review further offers a forward-looking section on the rational design of cancer and dementia nanomedicines exploiting the gut-brain and gut-cancer axes.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Nikolaos Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
61
|
He X, Zhang H, Shi H, Liu W, Sahle-Demessie E. Fates of Au, Ag, ZnO, and CeO 2 Nanoparticles in Simulated Gastric Fluid Studied using Single-Particle-Inductively Coupled Plasma-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2180-2190. [PMID: 32881526 PMCID: PMC7877237 DOI: 10.1021/jasms.0c00278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The increasing use of engineered nanoparticles (ENPs) in many industries has generated significant research interest regarding their impact on the environment and human health. The major routes of ENPs to enter the human body are inhalation, skin contact, and ingestion. Following ingestion, ENPs have a long contact time in the human stomach. Hence, it is essential to know the fate of the ENPs under gastric conditions. This study aims to investigate the fate of the widely used nanoparticles Ag-NP, Au-NP, CeO2-NP, and ZnO-NP in simulated gastric fluid (SGF) under different conditions through the application of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The resulting analytical methods have size detection limits for Ag-NP, Au-NP, ZnO-NP, and CeO2-NP from 15 to 35 nm, and the particle concentration detection limit is 135 particles/mL. Metal ions corresponding to the ENPs of interest were detected simultaneously with detection limits from 0.02 to 0.1 μg/L. The results showed that ZnO-NPs dissolved completely and rapidly in SGF, whereas Au-NPs and CeO2-NPs showed apparent aggregation and did not dissolve significantly. Both aggregation and dissolution were observed in Ag-NP samples following exposure to SGF. The size distributions and concentrations of ENPs were affected by the original ENP concentration, ENP size, the contact time in SGF, and temperature. This work represents a significant advancement in the understanding of ENP characteristics under gastric conditions.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Haiting Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Endalkachew Sahle-Demessie
- The U.S. Environmental Protection Agency, ORD, CESER, LRTD, 26 West Martin Luther King Jr. Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
62
|
Tao H, Nagano K, Tasaki I, Zhang TQ, Ishizaka T, Gao JQ, Harada K, Hirata K, Tsujino H, Higashisaka K, Tsutsumi Y. Development and Evaluation of a System for the Semi-Quantitative Determination of the Physical Properties of Skin After Exposure to Silver Nanoparticles. NANOSCALE RESEARCH LETTERS 2020; 15:187. [PMID: 32990829 PMCID: PMC7524913 DOI: 10.1186/s11671-020-03421-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 05/21/2023]
Abstract
In order to ensure the safe usage of silver nanoparticles (nAgs) in cosmetics, it is necessary to reveal the physical properties of nAgs inside the skin, as these properties may change during the process of percutaneous absorption. In this study, we aimed to establish an analytical system based on single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) to determine the physical properties of nAgs in the skin. First, we optimized a pretreatment method for solubilizing the skin samples and then showed that most of the nAgs were recovered by sodium hydroxide treatment while remaining in particle form. For separating the skin into the epidermis and dermis, we screened several conditions of microwave irradiation. The sp-ICP-MS analysis indicated that the application of 200 W for 30 s was optimal, as this condition ensured complete separation of skin layers without changing the physical properties of the majority of nAgs. Finally, we evaluated the in vivo application by analyzing the quantity as well as the physical properties of Ag in the epidermis, dermis, and peripheral blood of mice after exposing the skin to nAgs or Ag+. Subsequent sp-ICP-MS analysis indicated that nAgs could be absorbed and distributed into the deeper layers in the ionized form, whereas Ag+ was absorbed and distributed without a change in physical properties. This study indicates that in order to obtain a comprehensive understanding of the response of skin following exposure to nAgs, it is essential to consider the distribution and particle size of not only nAgs but also Ag+ released from nAgs into the skin.
Collapse
Affiliation(s)
- Hong Tao
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazuya Nagano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Ikkei Tasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Tian-qi Zhang
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takuya Ishizaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 PR China
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazumasa Hirata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
63
|
De Vos S, Waegeneers N, Verleysen E, Smeets K, Mast J. Physico-chemical characterisation of the fraction of silver (nano)particles in pristine food additive E174 and in E174-containing confectionery. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1831-1846. [PMID: 32946346 DOI: 10.1080/19440049.2020.1809719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Silver (E174) is authorised as a food additive in the EU. The unknown particle size distribution of E174 is a specific concern for the E174 risk assessment. This study characterised the fraction of silver (nano)particles in 10 commercially available pristine E174 food additives and 10 E174-containing products by transmission electron microscopy (TEM) and single-particle inductively coupled plasma-mass spectrometry (spICP-MS). TEM analysis showed that all samples contained micrometre-sized flakes and also a fraction of (nano)particles. Energy-dispersive X-ray spectroscopy (EDX) and electron diffraction confirmed that the (nano)particles and micrometre-sized flakes consisted of silver. A higher amount of (nano)particles was observed in the products than in the food additives. In addition, the surface of the micrometre-sized flakes was rougher in products. The median of the minimum external dimension, assessed as minimal Feret diameter, of the fraction of (nano)particles determined by quantitative TEM analysis was 11 ± 4 nm and 18 ± 7 nm (overall mean ± standard deviation), for food additives and products, respectively. Similar size distributions were obtained by spICP-MS and TEM, considering the limit of detection of spICP-MS. The median of the equivalent spherical diameter of the fraction of (nano)particles determined by spICP-MS was 19 ± 4 nm and 21 ± 2 nm (overall mean ± standard deviation), for food additives and products, respectively. In all samples, independent of the choice of technique, the nano-sized particles represented more than 97% (by number) of the silver particles, even though the largest mass of silver was present as flakes.
Collapse
Affiliation(s)
- Sandra De Vos
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| | - Nadia Waegeneers
- Service Trace Elements and Nanomaterials, Sciensano , Tervuren, Belgium
| | - Eveline Verleysen
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Hasselt University , Hasselt, Belgium
| | - Jan Mast
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| |
Collapse
|
64
|
Klaessig FC. PBPK Modeling of Slightly Soluble Silver Nanomaterials and Regulatory Acceptance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907667. [PMID: 32449600 DOI: 10.1002/smll.201907667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
International efforts to promote predictive toxicology incorporate some form of modeling based on the regularities, insights, and hypotheses gained from analyzing laboratory studies compiled in databases. While there has been a broad commentary on definitions, metadata, and test methodologies, all necessary to establishing data repositories, there has been less on translating the resulting insights into computational models. The recent use of a computational model to support a recommended exposure limit for nanoparticulate silver is an opportunity to examine physiologically based toxicokinetics in terms of data availability, model verification and validation, and regulatory acceptance. The resulting suggestions align with findings from the EU-US Roadmap Nanoinformatics 2030 and the 2018 acceptance of a computational model by the European Food Safety Authority.
Collapse
Affiliation(s)
- Frederick C Klaessig
- Pennsylvania Bio Nano Systems, LLC, 69 Homestead Drive, Doylestown, PA, 18901, USA
| |
Collapse
|
65
|
Setyawati MI, Zhao Z, Ng KW. Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001246. [PMID: 32495486 DOI: 10.1002/smll.202001246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ingestion of engineered nanomaterials (ENMs) is inevitable due to their widespread utilization in the agrifood industry. Safety evaluation has become pivotal to identify the consequences on human health of exposure to these ingested ENMs. Much of the current understanding of nanotoxicology in the gastrointestinal tract (GIT) is derived from studies utilizing pristine ENMs. In reality, agrifood ENMs interact with their microenvironment, and undergo multiple physicochemical transformations, such as aggregation/agglomeration, dissolution, speciation change, and surface characteristics alteration, across their life cycle from synthesis to consumption. This work sieves out the implications of ENM transformations on their behavior, stability, and reactivity in food and product matrices and through the GIT, in relation to measured toxicological profiles. In particular, a strong emphasis is given to understand the mechanisms through which these transformations can affect ENM induced gut nanotoxicity.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
66
|
Shi JH, Axson JL, Bergin IL, Ault AP. Nanoparticle Digestion Simulator Reveals pH-Dependent Aggregation in the Gastrointestinal Tract. Anal Chem 2020; 92:12257-12264. [PMID: 32786449 DOI: 10.1021/acs.analchem.0c01844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Determining the physicochemical properties of ingested nanoparticles within the gastrointestinal tract (GIT) is critical for evaluating the impact of environmental exposure and potential for nanoparticle drug delivery. However, it is challenging to predict nanoparticle physicochemical properties at the point of intestinal absorption due to the changing chemical environments within the GIT. Herein, a dynamic nanoparticle digestion simulator (NDS) was constructed to examine nanoparticle evolution due to changing pH and salt concentrations in the stomach and upper intestine. This multicompartment, flow-through system simulates digestion by transferring gastrointestinal fluids and digestive secretions at physiologically relevant time scales and flow rates. Pronounced differences in aggregation and aggregate stability were observed with silver nanoparticles (citrate-coated) with an initial hydrodynamic diameter (Dh) of 24.6 ± 0.4 nm examined under fasted (pH 2) and fed (pH 5) gastric conditions using nanoparticle tracking analysis (NTA) for size distributions and transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX) for morphology and elemental composition. Under fasted stomach conditions, particles aggregated to Dh = 130 ± 10 nm and remained as large aggregates in the upper intestinal compartments (duodenum and jejunum) ending with Dh = 110 ± 20 nm and a smaller mode at 59 ± 8 nm. In contrast, under fed conditions, nanoparticles aggregated to 60 ± 10 nm in the stomach, then disaggregated to individual nanoparticles (26 ± 2 nm) in the intestinal compartments. The NDS provides an analytical approach for studying nanoparticle physicochemical modifications within the GIT and the impacts of intentionally and unintentionally ingested nanoparticles.
Collapse
Affiliation(s)
- Jia H Shi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L Axson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
67
|
Mosa IF, Abd HH, Abuzreda A, Assaf N, Yousif AB. Bio-evaluation of the role of chitosan and curcumin nanoparticles in ameliorating genotoxicity and inflammatory responses in rats' gastric tissue followed hydroxyapatite nanoparticles' oral uptake. Toxicol Res (Camb) 2020; 9:493-508. [PMID: 32905138 DOI: 10.1093/toxres/tfaa054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 11/14/2022] Open
Abstract
Hydroxyapatite has been extensively used in tissue engineering due to its osteogenic potency, but its present toxicological facts are relatively insufficient. Here, the possible gastric toxicity of hydroxyapatite nanoparticles was evaluated biochemically to determine oxidant and antioxidant parameters in rats' stomach tissues. At results, hydroxyapatite nanoparticles have declined stomach antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed. Furthermore, DNA oxidation was analyzed by the suppression of toll-like receptors 2, nuclear factor-kappa B and Forkhead box P3 gene expression and also 8-Oxo-2'-deoxyguanosine level as a genotoxicity indicator. Various pro-inflammatory gene products have been identified that intercede a vital role in proliferation and apoptosis suppression, among these products: tumor suppressor p53, tumor necrosis factor-α and interliukin-6. Moreover, the hydroxyapatite-treated group revealed wide histological alterations and significant elevation in the number of proliferating cell nuclear antigen-positive cells, which has been observed in the mucosal layer of the small intestine, and these alterations are an indication of small intestine injury, while the appearance of chitosan and curcumin nanoparticles in the combination group showed improvement in all the above parameters with inhibition of toxic-oxidant parameters and activation of antioxidant parameters.
Collapse
Affiliation(s)
- Israa F Mosa
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Haitham H Abd
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Abdelsalam Abuzreda
- Department of Health, Safety and Environment (HSE), Arabian Gulf Oil Company (AGOCO), Benghazi, Libya
| | - Nadhom Assaf
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amenh B Yousif
- Department of Family and Community Medicine, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| |
Collapse
|
68
|
Rogers KR, Henson TE, Navratilova J, Surette M, Hughes MF, Bradham KD, Stefaniak AB, Knepp AK, Bowers L. In vitro intestinal toxicity of commercially available spray disinfectant products advertised to contain colloidal silver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138611. [PMID: 32344222 PMCID: PMC7786200 DOI: 10.1016/j.scitotenv.2020.138611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 05/22/2023]
Abstract
The use of colloidal silver-containing products as dietary supplements, immune boosters and surface disinfectants has increased in recent years which has elevated the potential for human exposure to silver nanoparticles and ions. Product mislabeling and long-term use of these products may put consumers at risk for adverse health outcomes including argyria. This study assessed several physical and chemical characteristics of five commercial products as well as their cytotoxicity using a rat intestinal epithelial cell (IEC-6) model. Concentrations of silver were determined for both the soluble and particulate fractions of the products. Primary particle size distribution and elemental composition were determined by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. Hydrodynamic diameters were measured using nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). The effect of gastrointestinal (GI) simulation on the colloidal silver products was determined using two systems. First, physical and chemical changes of the silver nanoparticles in these products was assessed after exposure to Synthetic Stomach Fluid (SSF) resulting in particle agglomeration, and the appearance of AgCl on the surfaces and between particles. IEC-6 cells were exposed for 24 h to dilutions of the products and assessed for cell viability. The products were also treated with a three-stage simulated GI system (stomach and intestinal fluids) prior to exposure of the IEC-6 cells to the isolated silver nanoparticles. Cell viability was affected by each of the consumer products. Based on the silver nitrate and commercial silver nanoparticle dose response, the cytotoxicity for each of the colloidal silver products was attributed to the particulate silver, soluble silver or non‑silver matrix constituents.
Collapse
Affiliation(s)
- Kim R Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, USEPA, RTP, NC 27711, United States.
| | - Taylor E Henson
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711, United States; Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Jana Navratilova
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Mark Surette
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Michael F Hughes
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Karen D Bradham
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, WV 26506, United States
| | - Alycia K Knepp
- National Institute for Occupational Safety and Health, Morgantown, WV 26506, United States
| | - Lauren Bowers
- National Institute for Occupational Safety and Health, Morgantown, WV 26506, United States
| |
Collapse
|
69
|
Tedesco E, Benetti F, Pezzani R. In vitro evaluation of different organic matrices used to modulate silicon bioavailability. FASEB J 2020; 34:12229-12238. [PMID: 32681588 DOI: 10.1096/fj.202000060rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/10/2020] [Accepted: 06/30/2020] [Indexed: 01/19/2023]
Abstract
Silicon (Si) has numerous health properties. It is an element of the extracellular matrix; it is involved in collagen synthesis, bone mineralization, and immune system modulation; and it reduces metal accumulation in Alzheimer's disease and the risk of atherosclerosis. Given its poor intestinal absorption, Si is ingested in the form of orthosilicic acid (OSA) to promote its bioavailability. The aim of this work was to compare different commercial dietary supplements containing stabilized OSA to ascertain their bioaccessibility, bioavailability, and safety in a model of human intestinal epithelium. Biocompatibility with the glycocalyx was also investigated. Supplements containing collagen, maltodextrins, and choline as OSA stabilizers were analyzed. Bioaccessibility was explored by means of an in vitro digestive process. Bioavailability was investigated using a Caco2 cell line alone, or co-culturing with a HT29-MTX cell line. The safety of the compounds tested (in terms of intestinal epithelium integrity) was judged on the grounds of MTS assay, transepithelial electrical resistance, and apparent permeability. The three formulations were also tested in a Caco2 cell model of intestinal glycocalyx Si retention. The choline-formulated OSA formulation outperformed the maltodextrin-stabilized supplement, with a Si bioavailability about 14 times higher (P < .05). The choline-formulated OSA formulation increased cell permeability, with consequent intestinal epithelium disruption. The supplements' absorption and bioavailability (and harmfulness) differed considerably, depending on the OSA stabilizer involved. Of the three formulations tested, the collagen-formulated OSA represents the best Si dietary supplement.
Collapse
Affiliation(s)
- Erik Tedesco
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Federico Benetti
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy.,AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| |
Collapse
|
70
|
Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020; 33:1163-1178. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing concern about the potential adverse effects of oral exposure to engineered nanomaterials (ENM). Recent years have witnessed major developments in and advancement of intestinal in vitro models for nanosafety evaluation. The present paper reviews the key factors that should be considered for inclusion in nonanimal alternative testing approaches to reliably reflect the in vivo dynamics of the physicochemical properties of ENM as well the intestinal physiology and morphology. Currently available models range from simple cell line-based monocultures to advanced 3D systems and organoids. In addition, in vitro approaches exist to replicate the mucous barrier, digestive processes, luminal flow, peristalsis, and interactions of ENM with the intestinal microbiota. However, while the inclusion of a multitude of individual factors/components of particle (pre)treatment, exposure approach, and cell model approximates in vivo-like conditions, such increasing complexity inevitably affects the system's robustness and reproducibility. The selection of the individual modules to build the in vitro testing strategy should be driven and justified by the specific purpose of the study and, not least, the intended or actual application of the investigated ENM. Studies that address health hazards of ingested ENM likely require different approaches than research efforts to unravel the fundamental interactions or toxicity mechanisms of ENM in the intestine. Advanced reliable and robust in vitro models of the intestine, especially when combined in an integrated testing approach, offer great potential to further improve the field of nanosafety research.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Mathias Busch
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| |
Collapse
|
71
|
Laloux L, Kastrati D, Cambier S, Gutleb AC, Schneider YJ. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907687. [PMID: 32187880 DOI: 10.1002/smll.201907687] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are used in the agri-food sector, which can lead to their ingestion. Their interaction with food and their passage through the gastrointestinal tract can alter their properties and influence their fate upon ingestion. Therefore, this study aims at developing an in vitro method to follow the fate of AgNPs in the gastrointestinal tract. After incorporation of AgNPs into a standardized food matrix, a precolonic digestion is simulated and AgNPs are characterized by different techniques. The presence of food influences the AgNPs properties by forming a corona around nanoparticles. Even if the salivary step does not impact significantly the AgNPs, the pH decrease and the digestive enzymes induce the agglomeration of AgNPs during the gastric phase, while the addition of intestinal fluids disintegrates these clusters. AgNPs can thus reach the intestinal cells under nanometric form, although the presence of food and gastrointestinal fluids modifies their properties compared to pristine AgNPs. They can form a corona around the nanoparticles and act as colloidal stabilizer, which can impact the interaction of AgNPs with intestinal epithelium. This study demonstrates the importance of taking the fate of AgNPs in the gastrointestinal tract into account to perform an accurate risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Laurie Laloux
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Donika Kastrati
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Yves-Jacques Schneider
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| |
Collapse
|
72
|
Gallocchio F, Biancotto G, Moressa A, Pascoli F, Pretto T, Toffan A, Arcangeli G, Montesi F, Peters R, Ricci A. Bioaccumulation and in vivo formation of titanium dioxide nanoparticles in edible mussels. Food Chem 2020; 323:126841. [PMID: 32334315 DOI: 10.1016/j.foodchem.2020.126841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/02/2023]
Abstract
The aim of this study was to evaluate the bioaccumulation of titanium dioxide nanoparticles (TiO2NPs) in edible mussels bred in polluted artificial seawater. An in vivo study was conducted by exposing mussels to different concentrations of TiO2NPs (0.25 mg/L and 2.5 mg/L) or ionic titanium (1.6 mg/L) for 4 days. Inductively coupled plasma mass spectrometry (ICP-MS) showed titanium presence in all groups proportional to exposure levels (concentration range: 209-1119 µg/kg). Single particle ICP-MS revealed NPs in both TiO2NP treated mussels (concentration range: 231-1778 µg/kg) and in ionic titanium treated mussels (concentration 1574 µg/kg), suggesting potential nanoparticle formation in vivo. These results were confirmed by transmission electron microscopy with energy dispersive X-ray detection. Nonetheless, mussels eliminated more than 70% of the TiO2NPs after 3 days' depuration. These results show the potential for consumer exposure to TiO2NPs when contaminated mussels are consumed without a proper depuration process.
Collapse
Affiliation(s)
- Federica Gallocchio
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy.
| | | | - Alessandra Moressa
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Giuseppe Arcangeli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Francesco Montesi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Ruud Peters
- RIKILT-Wageningen UR, Wageningen, The Netherlands
| | - Antonia Ricci
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| |
Collapse
|
73
|
Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E292. [PMID: 32050443 PMCID: PMC7075170 DOI: 10.3390/nano10020292] [Citation(s) in RCA: 509] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Daniela Gomes
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Ana Laura Lopez-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Maria L. Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Eliana B. Souto
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
74
|
Zorraquín-Peña I, Cueva C, Bartolomé B, Moreno-Arribas MV. Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms 2020; 8:E132. [PMID: 31963508 PMCID: PMC7022296 DOI: 10.3390/microorganisms8010132] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Foodborne diseases are one of the factors that endanger the health of consumers, especially in people at risk of exclusion and in developing countries. The continuing search for effective antimicrobials to be used in the food industry has resulted in the emergence of nanotechnology in this area. Silver nanoparticles (Ag-NPs) are the nanomaterial with the best antimicrobial activity and therefore, with great potential of application in food processing and packing. However, possible health effects must be properly addressed to ensure food safety. This review presents a detailed description on the main applications of Ag-NPs as antimicrobial agents for food control, as well as the current legislation concerning these materials. Current knowledge about the impact of the dietary exposure to Ag-NPs in human health with special emphasis on the changes that nanoparticles undergo after passing through the gastrointestinal tract and how they alter the oral and gut microbiota, is also summarized. It is concluded that given their potential and wide properties against foodborne pathogens, research in Ag-NPs is of great interest but is not exempt from difficulties that must be resolved in order to certify the safety of their use.
Collapse
Affiliation(s)
| | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (I.Z.-P.); (C.C.); (B.B.)
| |
Collapse
|
75
|
Bi Y, Marcus AK, Robert H, Krajmalnik-Brown R, Rittmann BE, Westerhoff P, Ropers MH, Mercier-Bonin M. The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:69-89. [PMID: 31920169 DOI: 10.1080/10937404.2019.1710914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from "real" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on in vitro and in vivo rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.
Collapse
Affiliation(s)
- Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Hervé Robert
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | | | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
76
|
Pokrowiecki R, Wojnarowicz J, Zareba T, Koltsov I, Lojkowski W, Tyski S, Mielczarek A, Zawadzki P. Nanoparticles And Human Saliva: A Step Towards Drug Delivery Systems For Dental And Craniofacial Biomaterials. Int J Nanomedicine 2019; 14:9235-9257. [PMID: 31819427 PMCID: PMC6886554 DOI: 10.2147/ijn.s221608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/27/2019] [Indexed: 12/02/2022] Open
Abstract
Aim The aims of this study were to investigate new nano-formulations based on ZnO and Ag nanoparticle (NP) compounds when used against clinical strains of oral gram-positive and gram-negative bacteria, and to examine the stability and behaviour of nano-formulation mixtures in saliva based on different compositions of Ag NPs, ZnO NPs and ZnO+x·Ag NPs. Methods: ZnO NPs with and without nanosilver were obtained by microwave solvothermal synthesis. Then, antibacterial activity was evaluated against bacteria isolated from human saliva. Behavior and nanoparticle solutions were evaluated in human saliva and control (artificial saliva and deionized water). Results were statistically compared. Results The NP mixtures had an average size of 30±3 nm, while the commercial Ag NPs had an average size of 55±5 nm. The suspensions displayed differing antibacterial activities and kinetics of destabilisation processes, depending on NPs composition and fluid types. Conclusion The present study showed that all NPs suspensions displayed significant destabilisation and high destabilisation over the 24 h of the analyses. The agglomeration processes of NPs in human saliva can be reversible.
Collapse
Affiliation(s)
- Rafal Pokrowiecki
- Department of Cranio-Maxillofacial Surgery, Oral Surgery and Implantology, Medical University of Warsaw, Warsaw, Poland.,Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Private Practice, Warsaw, Poland
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Zareba
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| | - Iwona Koltsov
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Lojkowski
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Mielczarek
- Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Pawel Zawadzki
- Department of Cranio-Maxillofacial Surgery, Oral Surgery and Implantology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
77
|
Abdelkhaliq A, van der Zande M, Undas AK, Peters RJB, Bouwmeester H. Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology 2019; 14:111-126. [PMID: 31648587 DOI: 10.1080/17435390.2019.1675794] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanomaterials, especially silver nanoparticles (AgNPs), are used in a broad range of products owing to their antimicrobial potential. Oral ingestion is considered as a main exposure route to AgNPs. This study aimed to investigate the impact of the biochemical conditions within the human digestive tract on the intestinal fate of AgNPs across an intestinal in vitro model of differentiated Caco-2/HT29-MTX cells. The co-culture model was exposed to different concentrations (250-2500 µg/L) of pristine and in vitro digested (IVD) AgNPs and silver nitrate for 24 h. ICP-MS and spICP-MS measurements were performed for quantification of total Ag and AgNPs. The AgNPs size distribution, dissolution, and particle concentration (mass- and number-based) were characterized in the cell fraction and in the apical and basolateral compartments of the monolayer cultures. A significant fraction of the AgNPs dissolved (86-92% and 48-70%) during the digestion. Cellular exposure to increasing concentrations of pristine or IVD AgNPs resulted in a concentration dependent increase of total Ag and AgNPs content in the cellular fractions. The cellular concentrations were significantly lower following exposure to IVD AgNPs compared to the pristine AgNPs. Transport of silver as either total Ag or AgNPs was limited (<0.1%) following exposure to pristine and IVD AgNPs. We conclude that the surface chemistry of AgNPs and their digestion influence their dissolution properties, uptake/association with the Caco-2/HT29-MTX monolayer. This highlights the need to take in vitro digestion into account when studying nanoparticle toxicokinetics and toxicodynamics in cellular in vitro model systems.
Collapse
Affiliation(s)
- Ashraf Abdelkhaliq
- Wageningen Food Safety Research, Wageningen, The Netherlands.,Division of Toxicology, Wageningen University, Wageningen, The Netherlands.,Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | | | - Anna K Undas
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Ruud J B Peters
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
78
|
Yokel RA, Hancock ML, Cherian B, Brooks AJ, Ensor ML, Vekaria HJ, Sullivan PG, Grulke EA. Simulated biological fluid exposure changes nanoceria's surface properties but not its biological response. Eur J Pharm Biopharm 2019; 144:252-265. [PMID: 31563633 DOI: 10.1016/j.ejpb.2019.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023]
Abstract
Nanoscale cerium dioxide (nanoceria) has industrial applications, capitalizing on its catalytic, abrasive, and energy storage properties. It auto-catalytically cycles between Ce3+ and Ce4+, giving it pro-and anti-oxidative properties. The latter mediates beneficial effects in models of diseases that have oxidative stress/inflammation components. Engineered nanoparticles become coated after body fluid exposure, creating a corona, which can greatly influence their fate and effects. Very little has been reported about nanoceria surface changes and biological effects after pulmonary or gastrointestinal fluid exposure. The study objective was to address the hypothesis that simulated biological fluid (SBF) exposure changes nanoceria's surface properties and biological activity. This was investigated by measuring the physicochemical properties of nanoceria with a citric acid coating (size; morphology; crystal structure; surface elemental composition, charge, and functional groups; and weight) before and after exposure to simulated lung, gastric, and intestinal fluids. SBF-exposed nanoceria biological effect was assessed as A549 or Caco-2 cell resazurin metabolism and mitochondrial oxygen consumption rate. SBF exposure resulted in loss or overcoating of nanoceria's surface citrate, greater nanoceria agglomeration, deposition of some SBF components on nanoceria's surface, and small changes in its zeta potential. The engineered nanoceria and SBF-exposed nanoceria produced no statistically significant changes in cell viability or cellular oxygen consumption rates.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| | - Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Benjamin Cherian
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Alexandra J Brooks
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Marsha L Ensor
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| | - Hemendra J Vekaria
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0509, United States.
| | - Patrick G Sullivan
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0509, United States.
| | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| |
Collapse
|
79
|
Cueva C, Gil-Sánchez I, Tamargo A, Miralles B, Crespo J, Bartolomé B, Moreno-Arribas MV. Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi ®). Impact on human gut microbiota. Food Chem Toxicol 2019; 132:110657. [PMID: 31276746 DOI: 10.1016/j.fct.2019.110657] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022]
Abstract
The increasing use of silver nanoparticles (AgNPs) in consumer products has led to concern about their impact on human health. This paper aims to provide new scientific evidence about the modifications and potential effects of AgNPs with food applications during their passage through the digestive tract. For that, two types of AgNPs [solid polyethylene glycol-stabilised silver nanoparticles (PEG-AgNPs 20) and liquid glutathione-stabilised silver nanoparticles (GSH-AgNPs)] were initially subjected to gut-microbial digestion simulation in an in vitro static model. Based on these experiments, digestion of GSH-AgNPs was carried out in a dynamic model (simgi®) that simulated the different regions of the digestive tract (stomach, small intestine and the ascending, transverse and descending colon) in physiological conditions. Dynamic transport of GSH-AgNPs in the simgi® was similar to that observed for the inert compound Cr-EDTA, which discarded any alterations in the intestinal fluid delivery due to the AgNPs. Also, feeding the simgi® with GSH-AgNPs seemed not to induce significant changes in the composition and metabolic activity (i.e., proteolytic activity) of the gut microbiota. Concerning monitoring of AgNps, it was observed that the GSH-AgNPs underwent several transformations in the gastrointestinal fluids and appeared to expose the intestine in ways that were structurally different from the original forms. In compliance with European guidelines, the simgi® model can be considered a useful in vitro tool to evaluate the effects of nanoparticles at the digestive level, prior to human studies, and, therefore, minimising animal testing.
Collapse
Affiliation(s)
- Carolina Cueva
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Irene Gil-Sánchez
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Beatriz Miralles
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Julian Crespo
- Departamento de Química. Complejo Científico-Técnico Universidad de La Rioja, C/ Madre de Dios, 51, 26004, Logroño (La Rioja), Spain
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - M Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
80
|
Tsiaoussis J, Antoniou MN, Koliarakis I, Mesnage R, Vardavas CI, Izotov BN, Psaroulaki A, Tsatsakis A. Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicol Lett 2019; 312:72-97. [PMID: 31034867 DOI: 10.1016/j.toxlet.2019.04.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Human populations are chronically exposed to mixtures of toxic chemicals. Predicting the health effects of these mixtures require a large amount of information on the mode of action of their components. Xenobiotic metabolism by bacteria inhabiting the gastrointestinal tract has a major influence on human health. Our review aims to explore the literature for studies looking to characterize the different modes of action and outcomes of major chemical pollutants, and some components of cosmetics and food additives, on gut microbial communities in order to facilitate an estimation of their potential mixture effects. We identified good evidence that exposure to heavy metals, pesticides, nanoparticles, polycyclic aromatic hydrocarbons, dioxins, furans, polychlorinated biphenyls, and non-caloric artificial sweeteners affect the gut microbiome and which is associated with the development of metabolic, malignant, inflammatory, or immune diseases. Answering the question 'Who is there?' is not sufficient to define the mode of action of a toxicant in predictive modeling of mixture effects. Therefore, we recommend that new studies focus to simulate real-life exposure to diverse chemicals (toxicants, cosmetic/food additives), including as mixtures, and which combine metagenomics, metatranscriptomics and metabolomic analytical methods achieving in that way a comprehensive evaluation of effects on human health.
Collapse
Affiliation(s)
- John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Constantine I Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Boris N Izotov
- Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia
| | - Anna Psaroulaki
- Department of Clinical Microbiology and Microbial Pathogenesis, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
81
|
Mancuso C, Barisani D. Food additives can act as triggering factors in celiac disease: Current knowledge based on a critical review of the literature. World J Clin Cases 2019; 7:917-927. [PMID: 31119137 PMCID: PMC6509268 DOI: 10.12998/wjcc.v7.i8.917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 02/05/2023] Open
Abstract
Celiac disease (CeD) is an autoimmune disorder, mainly affecting the small intestine, triggered by the ingestion of gluten with the diet in subjects with a specific genetic status. The passage of gluten peptides through the intestinal barrier, the uptake by antigen presenting cells and their presentation to T cells represent essential steps in the pathogenesis of the disease. CeD prevalence varies in different populations, but a tendency to increase has been observed in various studies in recent years. A higher amount of gluten in modern grains could explain this increased frequency, but also food processing could play a role in this phenomenon. In particular, the common use of preservatives such as nanoparticles could intervene in the pathogenesis of CeD, due to their possible effect on the integrity of the intestinal barrier, immune response or microbiota. In fact, these alterations have been reported after exposure to metal nanoparticles, which are commonly used as preservatives or to improve food texture, consistency and color. This review will focus on the interactions between several food additives and the intestine, taking into account data obtained in vitro and in vivo, and analyzing their effect in respect to the development of CeD in genetically predisposed individuals.
Collapse
Affiliation(s)
- Clara Mancuso
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Donatella Barisani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
82
|
de Haan P, Ianovska MA, Mathwig K, van Lieshout GAA, Triantis V, Bouwmeester H, Verpoorte E. Digestion-on-a-chip: a continuous-flow modular microsystem recreating enzymatic digestion in the gastrointestinal tract. LAB ON A CHIP 2019; 19:1599-1609. [PMID: 30950460 DOI: 10.1039/c8lc01080c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In vitro digestions are essential for determining the bioavailability of compounds, such as nutrients. We have developed a cell-free, miniaturized enzymatic digestive system, employing three micromixers connected in series to mimic the digestive functions of the mouth, stomach and small intestine. This system continuously processes samples, e.g. containing nutrients, to provide a constant flow of digested materials which may be presented to a subsequent gut-on-a-chip absorption module, containing living human intestinal cells. Our system incorporates three-compartment enzymatic digestion, one of the key functions of the gastrointestinal tract. In each of these compartments, we modify the chemical environment, including pH, buffer, and mineral composition, to closely mimic the local physiological environment and create optimal conditions for digestive processes to take place. It will therefore provide an excellent addition to existing gut-on-a-chip systems, providing the next step in determining the bio-availability of orally administered compounds in a fast and continuous-flow ex vivo system. In this paper, we demonstrate enzymatic digestion in each separate compartment using compounds, starch and casein, as model nutrients. The use of transparent, microfluidic micromixers based on chaotic advection, which can be probed directly with a microscope, enabled enzyme kinetics to be monitored from the very start of a reaction. Furthermore, we have digested lactoferrin in our system, demonstrating complete digestion of this milk protein in much shorter times than achievable with standard in vitro digestions using batch reactors.
Collapse
Affiliation(s)
- Pim de Haan
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, P.O. Box 196, XB20, 9700 AD Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
83
|
Abdolahpur Monikh F, Chupani L, Vijver MG, Vancová M, Peijnenburg WJGM. Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1283-1293. [PMID: 30743923 DOI: 10.1016/j.scitotenv.2019.01.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
To promote the safer by design strategy and assess environmental risks of engineered nanoparticles (ENPs), it is essential to understand the fate of ENPs within organisms. This understanding in living organisms is limited by challenges in characterizing and quantifying ENPs in biological media. Relevant literature in this area is scattered across research from the past decade or so, and it consists mostly of medically oriented studies. This review first introduces those modern techniques and methods that can be used to extract, characterize, and quantify ENPs in biological matrices for (eco)toxicological purposes. It then summarizes recent research developments within those areas most relevant to the context and field that are the subject of this review paper. These comprise numerous in-situ techniques and some ex-situ techniques. The former group includes techniques allowing to observe specimens in their natural hydrated state (e.g., scanning electron microscopy working in cryo mode and high-pressure freezing) and microscopy equipped with elemental microanalysis (e.g., energy-dispersive X-ray spectroscopy); two-photon laser and coherent anti-Stokes Raman scattering microscopy; absorption-edge synchrotron X-ray computed microtomography; and laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). The latter group includes asymmetric flow field flow fractionation coupled with ICP-MS and single particle-ICP-MS. Our review found that most of the evidence gathered for ENPs actually focused on a few metal-based ENPs and carbon nanotube and points to total mass concentration but no other particles properties, such as size and number. Based on the obtained knowledge, we developed and presented a decision scheme and analytical toolbox to help orient scientists toward selecting appropriate ways for investigating the (eco)toxicity of ENPs that are consistent with their properties.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands.
| | - Latifeh Chupani
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands
| | - Marie Vancová
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, Netherlands
| |
Collapse
|
84
|
David CA, Galceran J, Quattrini F, Puy J, Rey-Castro C. Dissolution and Phosphate-Induced Transformation of ZnO Nanoparticles in Synthetic Saliva Probed by AGNES without Previous Solid-Liquid Separation. Comparison with UF-ICP-MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3823-3831. [PMID: 30807690 DOI: 10.1021/acs.est.8b06531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The variation over time of free Zn2+ ion concentration in stirred dispersions of ZnO nanoparticles (ZnO NPs) prepared in synthetic saliva at pH 6.80 and 37 °C was followed in situ (without solid-liquid separation step) with the electroanalytical technique AGNES (Absence of Gradients and Nernstian Equilibrium Stripping). Under these conditions, ZnO NPs are chemically unstable due to their reaction with phosphates. The initial stage of transformation (around 5-10 h) involves the formation of a metastable solid (presumably ZnHPO4), which later evolves into the more stable hopeite phase. The overall decay rate of ZnO NPs is significantly reduced in comparison with phosphate-free background solutions of the same ionic strength and pH. The effective equilibrium solubilities of ZnO (0.29-0.47 mg·L-1), as well as conditional excess-ligand stability constants and fractional distributions of soluble Zn species, were determined in the absence and presence of organic components. The results were compared with the conventional ultrafiltration and inductively coupled plasma-mass spectrometry (UF-ICP-MS) methodology. AGNES proves to be advantageous in terms of speed, reproducibility, and access to speciation information.
Collapse
Affiliation(s)
- Calin A David
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| | - Josep Galceran
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| | - Federico Quattrini
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| | - Jaume Puy
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| | - Carlos Rey-Castro
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| |
Collapse
|
85
|
Carlander U, Midander K, Hedberg YS, Johanson G, Bottai M, Karlsson HL. Macrophage-Assisted Dissolution of Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:1006-1016. [DOI: 10.1021/acsabm.8b00537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Yolanda S. Hedberg
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden
| | | | | | | |
Collapse
|
86
|
Dang F, Jiang Y, Li M, Zhong H, Peijnenburg WGM, Shi W, Zhou D. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:364-373. [PMID: 30199811 DOI: 10.1016/j.envpol.2018.08.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
The abundance of silver nanoparticles (AgNPs) in consumer products has led to their environmental release and therefore to concern about their impact on human health. The ingestion of AgNP-contaminated soil from urban sites is an important exposure pathway, especially for children. Given the limited information on oral bioaccessibility of soil Ag, we used a physiologically based extraction test (PBET) to evaluate the bioaccessibility of AgNPs and AgNO3 from soil digestion. The AgNPs underwent several biochemical transformations, including their simultaneous dissolution and agglomeration in gastric fluid followed by the disintegration in the intestinal fluid of the agglomerates into NPs containing silver and chlorine. Therefore, Ag-containing soil exposed the intestine to nanoparticulate Ag in forms that were structurally different from the original forms. The bioaccessibility of AgNPs (0.5 ± 0.05%-10.9 ± 0.7%) was significantly lower than that of AgNO3 (4.7 ± 0.6%-14.4 ± 0.1%), as a result of the lower adsorption of nanoparticles to soil residues during the digestive process. For the soils tested, the bioaccessibility of AgNPs increased with decreasing clay contents and lower pH. By identifying the soil properties that control AgNP bioaccessibility, a more efficient and accurate screening can be performed of soil types that pose the greatest health risk associated with AgNP exposure.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuanyuan Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China; Suzhou University of Science and Technology, Kerui Road 1 in Gaoxin Section, Suzhou, 215011, Jiangsu, China
| | - Min Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, China
| | - WillieJ G M Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3720, BA, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands
| | - Weilin Shi
- Suzhou University of Science and Technology, Kerui Road 1 in Gaoxin Section, Suzhou, 215011, Jiangsu, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
87
|
Gray EP, Browning CL, Wang M, Gion KD, Chao EY, Koski KJ, Kane AB, Hurt RH. Biodissolution and Cellular Response to MoO3 Nanoribbons and a New Framework for Early Hazard Screening for 2D Materials. ENVIRONMENTAL SCIENCE. NANO 2018; 5:2545-2559. [PMID: 31548890 PMCID: PMC6756761 DOI: 10.1039/c8en00362a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) materials are a broad class of synthetic ultra-thin sheet-like solids whose rapid pace of development motivates systematic study of their biological effects and safe design. A challenge for this effort is the large number of new materials and their chemical diversity. Recent work suggests that many 2D materials will be thermodynamically unstable and thus non-persistent in biological environments. Such information could inform and accelerate safety assessment, but experimental data to confirm the thermodynamic predictions is lacking. Here we propose a framework for early hazard screening of nanosheet materials based on biodissolution studies in reactive media, specially chosen for each material to match chemically feasible degradation pathways. Simple dissolution and in vitro tests allow grouping of nanosheet materials into four classes: A, potentially biopersistent; B: slowly degradable (>24-48 hours); C, biosoluble with potentially hazardous degradation products; and D, biosoluble with low-hazard degradation products. The proposed framework is demonstrated through an experimental case study on MoO3 nanoribbons, which have a dual 2D / 1D morphology and have been reported to be stable in aqueous stock solutions. The nanoribbons are shown to undergo rapid dissolution in biological simulant fluids and in cell culture, where they elicit no adverse responses up to 100μg ml-1 dose. These results place MoO3 nanoribbons in Class D, and assigns them a low priority for further nanotoxicology testing. We anticipate use of this framework could accelerate the risk assessment for the large set of new powdered 2D nanosheet materials, and promote their safe design and commercialization.
Collapse
Affiliation(s)
- Evan P Gray
- The School of Engineering, Brown University, Providence RI, 02912, United States.
| | - Cynthia L Browning
- The Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence RI, 02912, United States.
| | - Mengjing Wang
- The Department of Chemistry, Brown University, 156 George Street, Providence RI, 02912, United States
| | - Kyle D Gion
- The School of Engineering, Brown University, Providence RI, 02912, United States.
| | - Eric Y Chao
- The School of Engineering, Brown University, Providence RI, 02912, United States.
| | - Kristie J Koski
- Department of Chemistry, University of California Davis, 1 Shields Ave. Davis CA 95616.
| | - Agnes B Kane
- The Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence RI, 02912, United States.
| | - Robert H Hurt
- The School of Engineering, Brown University, Providence RI, 02912, United States.
| |
Collapse
|
88
|
Li J, Tang M, Xue Y. Review of the effects of silver nanoparticle exposure on gut bacteria. J Appl Toxicol 2018; 39:27-37. [PMID: 30247756 DOI: 10.1002/jat.3729] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
Abstract
Gut bacteria are involved in regulating several important physiological functions in the host, and intestinal dysbacteriosis plays an important role in several human diseases, including intestinal, metabolic and autoimmune disorders. Although silver nanoparticles (AgNPs) are increasingly being incorporated into medical and consumer products due to their unique physicochemical properties, studies have indicated their potential to affect adversely the gut bacteria. In this review, we focus on the biotoxicological effects of AgNPs entering the gastrointestinal tract and the relationship of these effects with important nanoscale properties. We discuss in detail the mechanisms underlying the bactericidal toxicity effects of AgNPs and explore the relationships between AgNPs, gut bacteria and disease. Finally, we highlight the need to focus on the negative effects of AgNPs usage to facilitate appropriate development of these particles.
Collapse
Affiliation(s)
- Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| |
Collapse
|
89
|
Sohal IS, Cho YK, O'Fallon KS, Gaines P, Demokritou P, Bello D. Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS NANO 2018; 12:8115-8128. [PMID: 30021067 DOI: 10.1021/acsnano.8b02978] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineered nanomaterials (ENM) are extensively used as food additives in numerous food products, and at present, little is known about the fate of ingested ENM (iENM) in the gastrointestinal (GI) environment. Here, we investigated the dissolution behavior, biodurability, and persistence of four major iENM (TiO2, SiO2, ZnO, and two Fe2O3) in individual simulated GI fluids (saliva, gastric, and intestinal) and a physiologically relevant digestion cascade (saliva → gastric → intestinal) in the fasted state over physiologically relevant time frames. TiO2 was found to be the most biodurable and persistent iENM in simulated GI fluids with a maximum of only 0.42% (4 μM Ti4+ ion release) dissolution in cascade digestion, followed by iron oxides, of which the rod-like morphology was more biodurable and persistent (0.7% maximum dissolution, 8.7 μM Fe3+) than the acicular one (2.27% maximum dissolution, 16.7 μM Fe3+) in the cascade digestion, respectively. SiO2 and ZnO were less biodurable than Fe2O3, with 65.5% (416 μM Si4+) and 100% (1718.1 μM Zn2+) dissolution in the gastric phase, respectively. In the intestinal phase, however, Si4+ ions reprecipitated, possibly due to sudden pH changes, while ZnO remained completely dissolved. These observations were also confirmed using high-resolution particle size and concentration, and electron microscopy, time-dependent analysis. In terms of decreasing biodurability and persistence in the simulated GI environment, the tested nanomaterials can be ranked as follows: TiO2 ≫ rod-like Fe2O3 > acicular Fe2O3 ≫ SiO2 > ZnO, which is in agreement with limited animal biokinetics data. Chronic uptake of these iENM as particles or ions by the GI tract, especially in the presence of a food matrix and authentic digestive media, and associated implications for human health warrants further investigation.
Collapse
Affiliation(s)
| | | | - Kevin S O'Fallon
- Development and Engineering Center , Natick Soldier Research , Natick , Massachusetts 01760 , United States
| | | | - Philip Demokritou
- Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| | - Dhimiter Bello
- Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
90
|
Wu W, Zhang R, McClements DJ, Chefetz B, Polubesova T, Xing B. Transformation and Speciation Analysis of Silver Nanoparticles of Dietary Supplement in Simulated Human Gastrointestinal Tract. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8792-8800. [PMID: 29969018 DOI: 10.1021/acs.est.8b01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Knowledge of the physicochemical properties of ingestible silver nanoparticles (AgNPs) in the human gastrointestinal tract (GIT) is essential for assessing their bioavailability, bioactivity, and potential health risks. The gastrointestinal fate of AgNPs and silver ions from a commercial dietary supplement was therefore investigated using a simulated human GIT. In the mouth, no dissolution or aggregation of AgNPs occurred, which was attributed to the neutral pH and the formation of biomolecular corona, while the silver ions formed complexes with biomolecules (Ag-biomolecule). In the stomach, aggregation of AgNPs did not occur, but extensive dissolution was observed due to the low pH and the presence of Cl-. In the fed state (after meal), 72% AgNPs (by mass) dissolved, with 74% silver ions forming Ag-biomolecule and 26% forming AgCl. In the fasted state (before meal), 76% AgNPs dissolved, with 82% silver ions forming Ag-biomolecule and 18% forming AgCl. A biomolecular corona around AgNPs, comprised of mucin with multiple sulfhydryl groups, inhibited aggregation and dissolution of AgNPs. In the small intestine, no further dissolution or aggregation of AgNPs occurred, while the silver ions existed only as Ag-biomolecule. These results provide useful information for assessing the bioavailability of ingestible AgNPs and their subsequently potential health risks, and for the safe design and utilization of AgNPs in biomedical applications.
Collapse
Affiliation(s)
- Wenhao Wu
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Ruojie Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Benny Chefetz
- Department of Soil and Water Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Tamara Polubesova
- Department of Soil and Water Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
91
|
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Chaudhry Q, Cubadda F, Gott D, Oomen A, Weigel S, Karamitrou M, Schoonjans R, Mortensen A. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J 2018; 16:e05327. [PMID: 32625968 PMCID: PMC7009542 DOI: 10.2903/j.efsa.2018.5327] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The European Food Safety Authority has produced this Guidance on human and animal health aspects (Part 1) of the risk assessment of nanoscience and nanotechnology applications in the food and feed chain. It covers the application areas within EFSA's remit, e.g. novel foods, food contact materials, food/feed additives and pesticides. The Guidance takes account of the new developments that have taken place since publication of the previous Guidance in 2011. Potential future developments are suggested in the scientific literature for nanoencapsulated delivery systems and nanocomposites in applications such as novel foods, food/feed additives, biocides, pesticides and food contact materials. Therefore, the Guidance has taken account of relevant new scientific studies that provide more insights to physicochemical properties, exposure assessment and hazard characterisation of nanomaterials. It specifically elaborates on physicochemical characterisation of nanomaterials in terms of how to establish whether a material is a nanomaterial, the key parameters that should be measured, the methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. It also details the aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vivo/in vitro toxicological studies are discussed and a tiered framework for toxicological testing is outlined. It describes in vitro degradation, toxicokinetics, genotoxicity as well as general issues relating to testing of nanomaterials. Depending on the initial tier results, studies may be needed to investigate reproductive and developmental toxicity, immunotoxicity, allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read‐across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes/mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis, and provides recommendations for further research in this area. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2018.EN-1430/full
Collapse
|
92
|
Sohal IS, O'Fallon KS, Gaines P, Demokritou P, Bello D. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part Fibre Toxicol 2018; 15:29. [PMID: 29970114 PMCID: PMC6029122 DOI: 10.1186/s12989-018-0265-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Engineered nanomaterials (ENM) are used extensively in food products to fulfill a number of roles, including enhancement of color and texture, for nutritional fortification, enhanced bioavailability, improved barrier properties of packaging, and enhanced food preservation. Safety assessment of ingested engineered nanomaterials (iENM) has gained interest in the nanotoxicology community in recent years. A variety of test systems and approaches have been used for such evaluations, with in vitro monoculture cell models being the most common test systems, owing to their low cost and ease-of-use. The goal of this review is to systematically assess the current state of science in toxicological testing of iENM, with particular emphasis on model test systems, their physiological relevance, methodological strengths and challenges, realistic doses (ranges and rates), and then to identify future research needs and priorities based on these assessments. METHODS Extensive searches were conducted in Google Scholar, PubMed and Web of Science to identify peer-reviewed literature on safety assessment of iENM over the last decade, using keywords such as "nanoparticle", "food", "toxicity", and combinations thereof. Relevant literature was assessed based on a set of criteria that included the relevance of nanomaterials tested; ENM physicochemical and morphological characterization; dispersion and dosimetry in an in vitro system; dose ranges employed, the rationale and dose realism; dissolution behavior of iENM; endpoints tested, and the main findings of each study. Observations were entered into an excel spreadsheet, transferred to Origin, from where summary statistics were calculated to assess patterns, trends, and research gaps. RESULTS A total of 650 peer-reviewed publications were identified from 2007 to 2017, of which 39 were deemed relevant. Only 21% of the studies used food grade nanomaterials for testing; adequate physicochemical and morphological characterization was performed in 53% of the studies. All in vitro studies lacked dosimetry and 60% of them did not provide a rationale for the doses tested and their relevance. Only 12% of the studies attempted to consider the dissolution kinetics of nanomaterials. Moreover, only 1 study attempted to prepare and characterize standardized nanoparticle dispersions. CONCLUSION We identified 5 clusters of factors deemed relevant to nanotoxicology of food-grade iENM: (i) using food-grade nanomaterials for toxicity testing; (ii) performing comprehensive physicochemical and morphological characterization of iENM in the dry state, (iii) establishing standard NP dispersions and their characterization in cell culture medium, (iv) employing realistic dose ranges and standardized in vitro dosimetry models, and (v) investigating dissolution kinetics and biotransformation behavior of iENM in synthetic media representative of the gastrointestinal (GI) tract fluids, including analyses in a fasted state and in the presence of a food matrix. We discussed how these factors, when not considered thoughtfully, could influence the results and generalizability of in vitro and in vivo testing. We conclude with a set of recommendations to guide future iENM toxicity studies and to develop/adopt more relevant in vitro model systems representative of in vivo animal and human iENM exposure scenarios.
Collapse
Affiliation(s)
- Ikjot Singh Sohal
- Biomedical Engineering & Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Kevin S O'Fallon
- Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760, USA
| | - Peter Gaines
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Philip Demokritou
- Harvard T.H. Chan School of Public Health, Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Boston, MA, 02115, USA
| | - Dhimiter Bello
- Biomedical Engineering & Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
- Harvard T.H. Chan School of Public Health, Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Boston, MA, 02115, USA.
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dugan 110-S, Lowell, MA, 01854, USA.
| |
Collapse
|
93
|
Marchioni M, Jouneau PH, Chevallet M, Michaud-Soret I, Deniaud A. Silver nanoparticle fate in mammals: Bridging in vitro and in vivo studies. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
94
|
Carlander U, Moto TP, Desalegn AA, Yokel RA, Johanson G. Physiologically based pharmacokinetic modeling of nanoceria systemic distribution in rats suggests dose- and route-dependent biokinetics. Int J Nanomedicine 2018; 13:2631-2646. [PMID: 29750034 PMCID: PMC5936012 DOI: 10.2147/ijn.s157210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cerium dioxide nanoparticles (nanoceria) are increasingly being used in a variety of products as catalysts, coatings, and polishing agents. Furthermore, their antioxidant properties make nanoceria potential candidates for biomedical applications. To predict and avoid toxicity, information about their biokinetics is essential. A useful tool to explore such associations between exposure and internal target dose is physiologically based pharmacokinetic (PBPK) modeling. The aim of this study was to test the appropriateness of our previously published PBPK model developed for intravenous (IV) administration when applied to various sizes of nanoceria and to exposure routes relevant for humans. METHODS Experimental biokinetic data on nanoceria (obtained from various exposure routes, sizes, coatings, doses, and tissues sampled) in rats were collected from the literature and also obtained from the researchers. The PBPK model was first calibrated and validated against IV data for 30 nm citrate coated ceria and then recalibrated for 5 nm ceria. Finally, the model was modified and tested against inhalation, intratracheal (IT) instillation, and oral nanoceria data. RESULTS The PBPK model adequately described nanoceria time courses in various tissues for 5 nm ceria given IV. The time courses of 30 nm ceria were reasonably well predicted for liver and spleen, whereas the biokinetics in other tissues were not well captured. For the inhalation, IT instillation, and oral exposure routes, re-optimization was difficult due to low absorption and, hence, low and variable nanoceria tissue levels. Moreover, the nanoceria properties and exposure conditions varied widely among the inhalation, IT instillation, and oral studies, making it difficult to assess the importance of different factors. CONCLUSION Overall, our modeling efforts suggest that nanoceria biokinetics depend largely on the exposure route and dose.
Collapse
Affiliation(s)
- Ulrika Carlander
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Tshepo Paulsen Moto
- Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Anteneh Assefa Desalegn
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Gunnar Johanson
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
95
|
Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem 2018; 62:2841. [PMID: 29569878 PMCID: PMC5907194 DOI: 10.4081/ejh.2018.2841] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample.
Collapse
Affiliation(s)
- Manuel Scimeca
- University of Rome "Tor Vergata", Department of Biomedicine and Prevention.
| | | | | | | | | |
Collapse
|
96
|
Pokrowiecki R, Pałka K, Mielczarek A. Nanomaterials in dentistry: a cornerstone or a black box? Nanomedicine (Lond) 2018; 13:639-667. [DOI: 10.2217/nnm-2017-0329] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: The studies on tooth structure provided basis for nanotechnology-based dental treatment approaches known as nanodentistry which aims at detection and treatment of oral pathologies, such as dental caries and periodontal diseases, insufficiently being treated by conventional materials or drugs. This review aims at defining the role of nanodentistry in the medical area, its potential and hazards. Materials & methods: To validate these issues, current literature on nanomaterials for dental applications was critically reviewed. Results: Nanomaterials for teeth restoration, bone regeneration and oral implantology exhibit better mechanical properties and provide more efficient esthetic outcome. However, still little is known about influence of long-term function of such biomaterials in the living organism. Conclusion: As application of nanomaterials in industry and medical-related sciences is still expanding, more information is needed on how such nano-dental materials may interfere with oral cavity, GI tract and general health.
Collapse
Affiliation(s)
- Rafał Pokrowiecki
- Department of Head & Neck Surgery – Maxillofacial Surgery, Otolaryngology & Ophthalmology, Prof Stanislaw Popowski Voivoid Children Hospital, Żołnierska 18 A10-561 Olsztyn, Poland
| | - Krzysztof Pałka
- Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Agnieszka Mielczarek
- Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
97
|
Kästner C, Lampen A, Thünemann AF. What happens to the silver ions? - Silver thiocyanate nanoparticle formation in an artificial digestion. NANOSCALE 2018; 10:3650-3653. [PMID: 29431819 DOI: 10.1039/c7nr08851e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An artificial digestion of silver nitrate is reported. It is shown that AgSCN nanoparticles emerge from ionic silver in saliva and remain present during the entire digestion process. The particles were characterized by infrared spectroscopy and small- and wide-angle X-ray scattering (SAXS/WAXS) regarding their composition and size distribution.
Collapse
Affiliation(s)
- Claudia Kästner
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Alfonso Lampen
- Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
98
|
Ngamchuea K, Batchelor-McAuley C, Compton RG. The fate of silver nanoparticles in authentic human saliva. Nanotoxicology 2018; 12:305-311. [PMID: 29451053 DOI: 10.1080/17435390.2018.1438680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The physicochemical properties of silver nanoparticles (AgNPs) in human whole saliva are investigated herein. In authentic saliva samples, AgNPs exhibit a great stability with over 70% of the nanomaterial remaining intact after a 24-h incubation in the presence of ∼0.3 mM dissolved oxygen. The small loss of AgNPs from the saliva sample has been demonstrated to be a result of two processes: agglomeration/aggregation (not involving oxygen) and oxidative dissolution of AgNPs (assisted by oxygen). In authentic saliva, AgNPs are also shown to be more inert both chemically (silver oxidative dissolution) and electrochemically (electron transfer at an electrode) than in synthetic saliva or aqueous electrolytes. The results thus predict based on the chemical persistence (over a 24-h study) of AgNPs in saliva and hence the minimal release of hazardous Ag+ and reactive oxygen species that the AgNPs are less likely to cause serious harm to the oral cavity but this persistence may enable their transport to other environments.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- a Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , Oxford , UK
| | | | - Richard G Compton
- a Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , Oxford , UK
| |
Collapse
|
99
|
Bouwmeester H, van der Zande M, Jepson MA. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1481. [PMID: 28548289 PMCID: PMC5810149 DOI: 10.1002/wnan.1481] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/26/2022]
Abstract
Ingestion of engineered nanomaterials is inevitable due to their addition to food and prevalence in food packaging and domestic products such as toothpaste and sun cream. In the absence of robust dosimetry and particokinetic data, it is currently challenging to accurately assess the potential toxicity of food-borne nanomaterials. Herein, we review current understanding of gastrointestinal uptake mechanisms, consider some data on the potential for toxicity of the most commonly encountered classes of food-borne nanomaterials (including TiO2 , SiO2, ZnO, and Ag nanoparticles), and discuss the potential impact of the luminal environment on nanoparticle properties and toxicity. Much of our current understanding of gastrointestinal nanotoxicology is derived from increasingly sophisticated epithelial models that augment in vivo studies. In addition to considering the direct effects of food-borne nanomaterials on gastrointestinal tissues, including the potential role of chronic nanoparticle exposure in development of inflammatory diseases, we also discuss the potential for food-borne nanomaterials to disturb the normal balance of microbiota within the gastrointestinal tract. The latter possibility warrants close attention given the increasing awareness of the critical role of microbiota in human health and the known impact of some food-borne nanomaterials on bacterial viability. WIREs Nanomed Nanobiotechnol 2018, 10:e1481. doi: 10.1002/wnan.1481 This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Hans Bouwmeester
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
- RIKILT ‐ Wageningen University and ResearchWageningenThe Netherlands
| | | | | |
Collapse
|
100
|
Braeuning A, Oberemm A, Görte J, Böhmert L, Juling S, Lampen A. Comparative proteomic analysis of silver nanoparticle effects in human liver and intestinal cells. J Appl Toxicol 2017; 38:638-648. [PMID: 29218775 DOI: 10.1002/jat.3568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/25/2022]
Abstract
Consumers are orally exposed to nanoparticulate or soluble species of the non-essential element silver due to its use in food contact materials or as a food additive. Potential toxicity of silver nanoparticles has gained special scientific attention. A fraction of ingested ionic or particulate silver is taken up in the intestine and transported to the liver, where it may induce oxidative stress and elicit subsequent adverse responses. Here, we present a comprehensive analysis of global proteomic changes induced in human Hep G2 hepatocarcinoma cells by different concentrations of AgPURE silver nanoparticles or by corresponding concentrations of ionic silver. Bioinformatic analysis of proteomic data confirms and substantiates previous findings on silver-induced alterations related to redox stress, mitochondrial dysfunction, intermediary metabolism, inflammatory responses, posttranslational protein modification and other cellular parameters. Similarities between the effects exerted by the two silver species are in line with the assumption that silver ions released from nanoparticles substantially contribute to their toxicity. Moreover, a comparative bioinformatic evaluation of proteomic effects in hepatic and intestinal cells exerted either by silver nanoparticles or bionic silver is presented. Our results show that, despite remarkable differences at the level of affected proteins in the different cell lines, highly similar biological consequences, corresponding to previous in vivo findings, can be deduced by applying appropriate bioinformatic data mining.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Axel Oberemm
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Josephine Görte
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sabine Juling
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|