51
|
Cekic M, Sayeed I, Stein DG. Combination treatment with progesterone and vitamin D hormone may be more effective than monotherapy for nervous system injury and disease. Front Neuroendocrinol 2009; 30:158-72. [PMID: 19394357 PMCID: PMC3025702 DOI: 10.1016/j.yfrne.2009.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/06/2009] [Accepted: 04/14/2009] [Indexed: 12/22/2022]
Abstract
More than two decades of pre-clinical research and two recent clinical trials have shown that progesterone (PROG) and its metabolites exert beneficial effects after traumatic brain injury (TBI) through a number of metabolic and physiological pathways that can reduce damage in many different tissues and organ systems. Emerging data on 1,25-dihydroxyvitamin D(3) (VDH), itself a steroid hormone, have begun to provide evidence that, like PROG, it too is neuroprotective, although some of its actions may involve different pathways. Both agents have high safety profiles, act on many different injury and pathological mechanisms, and are clinically relevant, easy to administer, and inexpensive. Furthermore, vitamin D deficiency is prevalent in a large segment of the population, especially the elderly and institutionalized, and can significantly affect recovery after CNS injury. The combination of PROG and VDH in pre-clinical and clinical studies is a novel and compelling approach to TBI treatment.
Collapse
Affiliation(s)
- Milos Cekic
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
52
|
Abstract
Biologic sex and sex steroids are important factors in clinical and experimental stroke and traumatic brain injury (TBI). Laboratory data strongly show that progesterone treatment after TBI reduces edema, improves outcomes, and restores blood-brain barrier function. Clinical studies to date agree with these data, and there are ongoing human trials for progesterone treatment after TBI. Estrogen has accumulated an impressive reputation as a neuroprotectant when evaluated at physiologically relevant doses in laboratory studies of stroke, but translation to patients remains to be shown. The role of androgens in male stroke or TBI is understudied and important to pursue given the epidemiology of stroke and trauma in men. To date, male sex steroids remain largely evaluated at the bench rather than the bedside. This review evaluates key evidence and highlights the importance of the platform on which brain injury occurs (i.e., genetic sex and hormonal modulators).
Collapse
Affiliation(s)
- Paco S Herson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
53
|
Gibson CL, Coomber B, Rathbone J. Is progesterone a candidate neuroprotective factor for treatment following ischemic stroke? Neuroscientist 2009; 15:324-32. [PMID: 19359672 DOI: 10.1177/1073858409333069] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gender differences in stroke outcome have implicated steroid hormones as potential neuroprotective candidates. However, no clinical trials examining hormone replacement therapy on outcome following ischemic stroke have investigated the effect of progesterone-only treatment. In this review the authors examine the experimental evidence for the neuroprotective potential of progesterone and give an insight into potential mechanisms of action following ischemic stroke. To date, 17 experimental studies have investigated the neuroprotective potential of progesterone for ischemic stroke in terms of ability to both reduce cell loss and increase functional outcome. Of these 17 published studies the majority reported a beneficial effect with three studies reporting a nil effect and only one study reporting a negative effect. However, there are important issues that the authors address in this review in terms of the methodological quality of studies in relation to the STAIR recommendations. In terms of the proposed mechanisms of progesterone neuroprotection we show that progesterone is versatile and acts at multiple targets to facilitate neuronal survival and minimize cell damage and loss. A large amount of experimental evidence indicates that progesterone is a neuroprotective candidate for ischemic stroke; however, to progress to clinical trial a number of key experimental studies remain outstanding.
Collapse
Affiliation(s)
- Claire L Gibson
- School of Psychology, University of Leicester, Leicester, United Kingdom.
| | | | | |
Collapse
|
54
|
Jiang C, Wang J, Li X, Liu C, Chen N, Hao Y. Progesterone exerts neuroprotective effects by inhibiting inflammatory response after stroke. Inflamm Res 2009; 58:619-24. [PMID: 19333725 DOI: 10.1007/s00011-009-0032-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/04/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE AND DESIGN We evaluated the inhibitory effects of progesterone (PROG) on inflammatory response and its influence on the structure of blood-brain barrier in a permanent model of stroke. MATERIAL One hundred and twenty adult male Sprague-Dawley rats were used in this study. TREATMENTS PROG was dissolved in 22.5% 2-hydroxypropyl-bcyclodextrin and given in a dose of 15 mg/kg by intraperitoneal injection 1 h after permanent occlusion of middle cerebral artery (pMCAO). Additional injections of 15 mg/kg were administered subcutaneously 6, 24, and 48 h after pMCAO. METHODS The expression of tumor necrosis factor-alpha (TNF-alpha) and claudin5 was measured by immunohistochemistry and western blot technique. Brain water content was determined by the dry-wet weight method. RESULTS TNF-alpha were increased, but claudin5 were reduced in vehicle-treated rats after pMCAO. PROG-treated rats showed a substantial reduction in the expression of TNF-alpha compared to vehicle controls. In addition, there was significant increase in the expression of claudin5 in the pMCAO rats treated with PROG compared to vehicle. Examination of the water content of the brain also revealed that administration of PROG significantly attenuated the amount of water compared to vehicle in the ipsilateral hemispheres. CONCLUSIONS These data indicate that PROG is beneficial in this animal model, and may warrant further test in future clinical trials for human stroke.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, 450014, Henan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
55
|
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of mortality and morbidity worldwide in individuals under the age of 45 years, and, despite extensive efforts to develop neuroprotective therapies, there has been no successful outcome in any trial of neuroprotection to date. In addition to recognizing that many TBI clinical trials have not been optimally designed to detect potential efficacy, the failures can be attributed largely to the fact that most of the therapies investigated have been targeted toward an individual injury factor. The contemporary view of TBI is that of a very heterogenous type of injury, one that varies widely in etiology, clinical presentation, severity, and pathophysiology. The mechanisms involved in neuronal cell death after TBI involve an interaction of acute and delayed anatomic, molecular, biochemical, and physiological events that are both complex and multifaceted. Accordingly, neuropharmacotherapies need to be targeted at the multiple injury factors that contribute to the secondary injury cascade, and, in so doing, maximize the likelihood of a successful outcome. This review focuses on a number of such multifunctional compounds that have shown considerable success in experimental studies and that show maximum promise for success in clinical trials.
Collapse
Affiliation(s)
- Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
56
|
Nicot A. Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci (Landmark Ed) 2009; 14:4477-515. [PMID: 19273365 DOI: 10.2741/3543] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several lines of evidence indicate that gender affects the susceptibility and course of multiple sclerosis (MS) with a higher disease prevalence and overall better prognosis in women than men. This sex dimorphism may be explained by sex chromosome effects and effects of sex steroid hormones on the immune system, blood brain barrier or parenchymal central nervous system (CNS) cells. The well known improvement in disease during late pregnancy has also been linked to hormonal changes and has stimulated recent clinical studies to determine the efficacy of and tolerance to sex steroid therapeutic approaches. Both clinical and experimental studies indicate that sex steroid supplementation may be beneficial for MS. This could be related to anti-inflammatory actions on the immune system or CNS and to direct neuroprotective properties. Here, clinical and experimental data are reviewed with respect to the effects of sex hormones or gender in the pathology or therapy of MS or its rodent disease models. The different cellular targets as well as some molecular mechanisms likely involved are discussed.
Collapse
|
57
|
Sayeed I, Stein DG. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. PROGRESS IN BRAIN RESEARCH 2009; 175:219-37. [DOI: 10.1016/s0079-6123(09)17515-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
58
|
Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats. Brain Res 2008; 1257:94-101. [PMID: 19135987 DOI: 10.1016/j.brainres.2008.12.048] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 11/21/2022]
Abstract
Recent experimental evidence indicates that progesterone (PROG) protects against various models of brain injury, including ischemic stroke. Most human studies of pharmacologic treatments for acute cerebral stroke have failed despite initial success in animal models. To simulate better the typical human stroke without reperfusion, the present study was conducted to examine the efficacy of PROG on infarct volume and functional outcome in a permanent model of stroke, using direct cauterization of the middle cerebral artery (MCA). Twenty-four male adult Sprague-Dawley rats underwent pMCAO by electro-coagulation and sham operation. After induction of permanent MCA occlusion (pMCAO), the rats received an initial intraperitoneal injection of PROG (8 mg/kg) or vehicle at 1 h post-occlusion followed by subcutaneous injections at 6, 24 and 48 h. Functional deficits were tested on the rotarod and grip-strength meter at 24, 48 and 72 h after pMCAO. The rats were killed 72 h after surgery and isolated brain was sectioned into coronal slices and stained with 2, 3, 5-triphenyltetrazolium chloride (TTC). PROG-treated rats showed a substantial reduction (54.05%) in the volume of the infarct (% contralateral hemisphere) compared to vehicle controls. In addition there was a significant improvement in ability to remain on an accelerating rotarod and increased grip strength observed in the pMCAO rats treated with PROG compared to vehicle. Taken together, these data indicate that PROG is beneficial in one of the best-characterized models of stroke, and may warrant further testing in future clinical trials for human stroke.
Collapse
|
59
|
Gilmer LK, Roberts KN, Scheff SW. Efficacy of progesterone following a moderate unilateral cortical contusion injury. J Neurotrauma 2008; 25:593-602. [PMID: 18476780 DOI: 10.1089/neu.2007.0477] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in an accumulation of edema and loss of brain tissue. Progesterone (PROG) has been reported to reduce edema and cortical tissue loss in a bilateral prefrontal cortex injury. This study tests the hypothesis that PROG is neuroprotective following a unilateral parietal cortical contusion injury (CCI). Adult male Sprague-Dawley rats were subjected to a moderate unilateral TBI using the CCI model. Rats were given 8 mg/kg PROG 15 min post-injury with four subsequent injections (6 h, and days 1, 2, and 3). Edema was determined 3 days post-injury, while cortical tissue sparing was also evaluated at 7 days post-injury. Animals were injured and given one of four treatments: (I) vehicle; (II) low dose: 8 mg/kg PROG; (III) high dose: 16 mg/kg PROG; (IV) tapered: 8 mg/kg PROG. Animals were given an initial injection within 15 min, followed by five injections (6 h, and days 1, 2, 3, and 4). Group IV received two additional injections (4 mg/kg on day 5; 2 mg/kg on day 6). PROG failed to alter both cortical edema and tissue sparing at any dose. Failure to modify two major sequelae associated with TBI brings into question the clinical usefulness of PROG as an effective treatment for all types of brain injury.
Collapse
Affiliation(s)
- Lesley K Gilmer
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
60
|
Abstract
Anesthesiologists are frequently confronted with patients who are at risk for neurological complications due to perioperative stroke or prior traumatic brain injury. In this review, we address the growing and fascinating body of data that suggests gender and sex steroids influence the pathophysiology of injury and outcome for these patients. Cerebral ischemia, traumatic brain injury, and epilepsy are reviewed in the context of potential sex differences in mechanisms and outcomes of brain injury and the role of estrogen, progesterone, and androgens in shaping these processes. Lastly, implications for current and future perioperative and intensive care are identified.
Collapse
Affiliation(s)
- Kamila Vagnerova
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
61
|
Cai W, Zhu Y, Furuya K, Li Z, Sokabe M, Chen L. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage. Neuropharmacology 2008; 55:127-38. [PMID: 18572204 DOI: 10.1016/j.neuropharm.2008.04.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 03/25/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
Abstract
Herein, we show that a single injection of P4 (4 mg/kg) at 1 h or 48 h, but not 96 h, before middle cerebral artery occlusion (MCAO) produces significant protective effects against the ischemia-induced neuronal death and the deficits in spatial cognition and LTP induction. The present study focused on the molecular mechanisms underlying the neuroprotection exerted by P4 administration at 1 h and 48 h pre-MCAO, termed acute and delayed P4-neuroprotection, respectively. Pharmacology suggested that P4-receptor (P4R) cascading to a Src-ERK1/2 signaling mediated the delayed P4-neuroprotection. To support this, it was observed by anti-phosph-ERK1/2 immunoblots that a single injection of P4 triggered a P4R-mediated persistent increase in ERK1/2 phosphorylation and their nuclear translocation for 48 h. In contrast, the acute P4-neuroprotection did not depend on the P4R-mediated Src-ERK1/2 signaling. Instead, the acute P4-administration attenuated the NMDA-induced rise in the intracellular calcium concentration ([Ca(2+)](i)) that may be a primary cause for MCAO-induced neuronal injury. This effect seemed to be exerted by an antagonism of sigma(1) receptor since the sigma(1) receptor antagonist NE100 perfectly mimicked the acute P4-neuroprotection and also attenuated the NMDA-induced [Ca(2+)](i) increase. These findings suggest that the P4 neuroprotection involves two independent processes depending on the timing of P4 administration before MCAO: an acute protection by antagonizing sigma(1) receptor to inhibit NMDAr-Ca(2+) influx and a delayed one by an activation of P4R-mediated Src-ERK signaling pathway.
Collapse
Affiliation(s)
- Weiyan Cai
- Laboratory of Reproductive Medicine, Nanjing Medical University, Hanzhong Road 140, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
62
|
Xiao G, Wei J, Yan W, Wang W, Lu Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R61. [PMID: 18447940 PMCID: PMC2447617 DOI: 10.1186/cc6887] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/16/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) has been increasing with greater incidence of injuries from traffic or sporting accidents. Although there are a number of animal models of TBI using progesterone for head injury, the effects of progesterone on neurologic outcome of acute TBI patients remain unclear. The aim of the present clinical study was to assess the longer-term efficacy of progesterone on the improvement in neurologic outcome of patients with acute severe TBI. METHODS A total of 159 patients who arrived within 8 hours of injury with a Glasgow Coma Score </= 8 were enrolled in the study. A prospective, randomized, placebo-controlled trial of progesterone was conducted in the Neurotrauma Center of our teaching hospital. The patients were randomized to receive either progesterone or placebo. The primary endpoint was the Glasgow Outcome Scale score 3 months after brain injury. Secondary efficacy endpoints included the modified Functional Independence Measure score and mortality. In a follow-up protocol at 6 months, the Glasgow Outcome Scale and the modified Functional Independence Measure scores were again determined. RESULTS Of the 159 patients randomized, 82 received progesterone and 77 received placebo. The demographic characteristics, the mechanism of injury, and the time of treatment were compared for the two groups. After 3 months and 6 months of treatment, the dichotomized Glasgow Outcome Scale score analysis exhibited more favorable outcomes among the patients who were given progesterone compared with the control individuals (P = 0.034 and P = 0.048, respectively). The modified Functional Independence Measure scores in the progesterone group were higher than those in the placebo group at both 3-month and 6-month follow-up (P < 0.05 and P < 0.01). The mortality rate of the progesterone group was significantly lower than that of the placebo group at 6-month follow-up (P < 0.05). The mean intracranial pressure values 72 hours and 7 days after injury were lower in the progesterone group than in the placebo group, but there was no statistical significance between the two groups (P > 0.05). Instances of complications and adverse events associated with the administration of progesterone were not found. CONCLUSION Our data suggest that acute severe TBI patients with administration of progesterone hold improved neurologic outcomes for up to 6 months. These results provide information important for further large and multicenter clinical trials on progesterone as a promising neuroprotective drug. TRIAL REGISTRATION ACTRN12607000545460.
Collapse
Affiliation(s)
- Guomin Xiao
- Department of Neurosurgery and Neurotrauma Center, Affiliated Hospital, College of Medicine, Hangzhou Normal University, Hangzhou 310015, China.
| | | | | | | | | |
Collapse
|
63
|
Stein DG. Progesterone exerts neuroprotective effects after brain injury. BRAIN RESEARCH REVIEWS 2008; 57:386-97. [PMID: 17826842 PMCID: PMC2699575 DOI: 10.1016/j.brainresrev.2007.06.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 01/06/2023]
Abstract
Progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. This review assesses recent, primarily in vivo, evidence that progesterone can play an important role in promoting and enhancing repair after traumatic brain injury and stroke. Although many of its specific actions on neuroplasticity remain to be discovered, there is growing evidence that this hormone may be a safe and effective treatment for traumatic brain injury and other neural disorders in humans.
Collapse
Affiliation(s)
- Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
64
|
Stein DG, Wright DW, Kellermann AL. Does Progesterone Have Neuroprotective Properties? Ann Emerg Med 2008; 51:164-72. [PMID: 17588708 DOI: 10.1016/j.annemergmed.2007.05.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 04/26/2007] [Accepted: 05/01/2007] [Indexed: 11/23/2022]
Abstract
In this article, we review published preclinical and epidemiologic studies that examine progesterone's role in the central nervous system. Its effects on the reproductive and endocrine systems are well known, but a large and growing body of evidence, including a recently published pilot clinical trial, indicates that the hormone also exerts neuroprotective effects on the central nervous system. We now know that it is produced in the brain, for the brain, by neurons and glial cells in the central and peripheral nervous system of both male and female individuals. Laboratories around the world have reported that administering relatively large doses of progesterone during the first few hours to days after injury significantly limits central nervous system damage, reduces loss of neural tissue, and improves functional recovery. Although the research published to date has focused primarily on progesterone's effects on blunt traumatic brain injury, there is evidence that the hormone affords protection from several forms of acute central nervous system injury, including penetrating brain trauma, stroke, anoxic brain injury, and spinal cord injury. Progesterone appears to exert its protective effects by protecting or rebuilding the blood-brain barrier, decreasing development of cerebral edema, down-regulating the inflammatory cascade, and limiting cellular necrosis and apoptosis. All are plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
65
|
Singh M, Sumien N, Kyser C, Simpkins JW. Estrogens and progesterone as neuroprotectants: what animal models teach us. FRONT BIOSCI-LANDMRK 2008; 13:1083-9. [PMID: 17981614 DOI: 10.2741/2746] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Estradiol and progesterone are two steroid hormones that target a variety of organ systems, including the heart, the bone and the brain. With respect to the latter, a large volume of basic science studies support the neuroprotective role of estradiol and/or progesterone. In fact, the results of such studies prompted the assessment of these hormones as protective agents against such disorders as Alzheimer's disease, stroke and traumatic brain injury. Interestingly, results from the Women's Health Initiative (WHI) yielded results that appeared to be inconsistent with the data derived from in vitro and in vivo models. However, we argue that the results from the basic science studies were not inconsistent with the clinical trials, but rather, are consistent with, and may even have predicted, the results from the WHI. To illustrate this point, we review here certain in vivo paradigms that have been used to assess the protective effects of estrogens and progesterone, and describe how the results from these animal models point to the importance of the type of hormone, the age of the subjects and the method of hormone administration, in determining whether or not hormones are neuroprotective.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
66
|
Cutler SM, Cekic M, Miller DM, Wali B, VanLandingham JW, Stein DG. Progesterone improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma 2007; 24:1475-86. [PMID: 17892409 DOI: 10.1089/neu.2007.0294] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent evidence has demonstrated that treatment with progesterone can attenuate many of the pathophysiological events following traumatic brain injury (TBI) in young adult rats, but this effect has not been investigated in aged animals. In this study, 20-month-old male Fischer 344 rats with bilateral contusions of the frontal cortex (n = 4 per group) or sham operations received 8, 16, or 32 mg/kg of progesterone or vehicle. Locomotor activity was measured at 72 h to assess behavioral recovery. Brain tissue was harvested at 24, 48, and 72 h, and Western blotting was performed for inflammatory and apoptotic factors. Edema was assessed at 48 h by measuring brain water content. Injured animals treated with 8 and 16 mg/kg progesterone showed decreased expression of COX-2, IL-6, and NFkappaB at all time points, indicating a reduction in the acute inflammatory process compared to vehicle. The 16 mg/kg group also showed reduced apoptosis at all time points as well as decreased edema and improved locomotor outcomes. Thus, in aged male rats, treatment with 16 mg/kg progesterone improves short-term motor recovery and attenuates edema, secondary inflammation, and cell death after TBI.
Collapse
Affiliation(s)
- Sarah M Cutler
- Department of Emergency Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
67
|
Schumacher M, Guennoun R, Stein DG, De Nicola AF. Progesterone: Therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007; 116:77-106. [PMID: 17659348 DOI: 10.1016/j.pharmthera.2007.06.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/01/2007] [Indexed: 11/24/2022]
Abstract
Progesterone and its metabolites promote the viability of neurons in the brain and spinal cord. Their neuroprotective effects have been documented in different lesion models, including traumatic brain injury (TBI), experimentally induced ischemia, spinal cord lesions and a genetic model of motoneuron disease. Progesterone plays an important role in developmental myelination and in myelin repair, and the aging nervous system appears to remain sensitive to some of progesterone's beneficial effects. Thus, the hormone may promote neuroregeneration by several different actions by reducing inflammation, swelling and apoptosis, thereby increasing the survival of neurons, and by promoting the formation of new myelin sheaths. Recognition of the important pleiotropic effects of progesterone opens novel perspectives for the treatment of brain lesions and diseases of the nervous system. Over the last decade, there have been a growing number of studies showing that exogenous administration of progesterone or some of its metabolites can be successfully used to treat traumatic brain and spinal cord injury, as well as ischemic stroke. Progesterone can also be synthesized by neurons and by glial cells within the nervous system. This finding opens the way for a promising therapeutic strategy, the use of pharmacological agents, such as ligands of the translocator protein (18 kDa) (TSPO; the former peripheral benzodiazepine receptor or PBR), to locally increase the synthesis of steroids with neuroprotective and neuroregenerative properties. A concept is emerging that progesterone may exert different actions and use different signaling mechanisms in normal and injured neural tissue.
Collapse
|
68
|
Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 2007; 28:387-439. [PMID: 17431228 DOI: 10.1210/er.2006-0050] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The utility and safety of postmenopausal hormone replacement therapy has recently been put into question by large clinical trials. Their outcome has been extensively commented upon, but discussions have mainly been limited to the effects of estrogens. In fact, progestagens are generally only considered with respect to their usefulness in preventing estrogen stimulation of uterine hyperplasia and malignancy. In addition, various risks have been attributed to progestagens and their omission from hormone replacement therapy has been considered, but this may underestimate their potential benefits and therapeutic promises. A major reason for the controversial reputation of progestagens is that they are generally considered as a single class. Moreover, the term progesterone is often used as a generic one for the different types of both natural and synthetic progestagens. This is not appropriate because natural progesterone has properties very distinct from the synthetic progestins. Within the nervous system, the neuroprotective and promyelinating effects of progesterone are promising, not only for preventing but also for reversing age-dependent changes and dysfunctions. There is indeed strong evidence that the aging nervous system remains at least to some extent sensitive to these beneficial effects of progesterone. The actions of progesterone in peripheral target tissues including breast, blood vessels, and bones are less well understood, but there is evidence for the beneficial effects of progesterone. The variety of signaling mechanisms of progesterone offers exciting possibilities for the development of more selective, efficient, and safe progestagens. The recognition that progesterone is synthesized by neurons and glial cells requires a reevaluation of hormonal aging.
Collapse
Affiliation(s)
- Michael Schumacher
- INSERM UMR 788, 80, rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Billiards SS, Nguyen PN, Scheerlinck JP, Phillips DJ, Canny BJ, Walker DW, Hirst JJ. Hypoxia Potentiates Endotoxin-Induced Allopregnanolone Concentrations in the Newborn Brain. Neonatology 2006; 90:258-67. [PMID: 16804294 DOI: 10.1159/000094146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 02/21/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Allopregnanolone is a neurosteroid produced in the brain that can alter the excitability of the CNS. Neurosteroids have neuroprotective properties, and their elevation in response to stress may protect the newborn brain following infection or hypoxia. Infection, particularly of the respiratory tract, may lead to episodes of hypoxia. Infection and hypoxia have been identified as factors contributing to neonatal morbidity and mortality. OBJECTIVES To determine the effect of acute episodes of hypoxia alone or in combination with lipopolysaccharide (LPS) exposure on plasma and brain allopregnanolone concentrations in lambs 10-21 days old. Also, to examine plasma levels of cortisol and the cytokines, tumour necrosis factor-alpha and interleutkin-6 after these challenges. RESULTS Allopregnanolone concentrations in the brain were markedly increased after hypoxia. Hypoxia following prior LPS treatment resulted in greater increases in brain allopregnanolone concentrations compared to either the LPS or hypoxia treatment alone. Importantly, brain regions unaffected by LPS or hypoxia alone (thalamus/hypothalamus, cerebellum) showed significant increases of allopregnanolone content following the combined LPS and hypoxia treatments. Plasma tumour necrosis factor-alpha and interleukin-6 concentrations were increased after LPS treatment with and without hypoxia, but not by hypoxia alone. In contrast, plasma cortisol concentrations were increased after both stressors. CONCLUSIONS These results show that the brain of young lambs readily responds to physiological stress by increased production of allopregnanolone. This response may protect the developing brain from the cytotoxicity following hypoxic and infectious episodes.
Collapse
|
70
|
Ciriza I, Carrero P, Frye CA, Garcia-Segura LM. Reduced metabolites mediate neuroprotective effects of progesterone in the adult rat hippocampus. The synthetic progestin medroxyprogesterone acetate (Provera) is not neuroprotective. ACTA ACUST UNITED AC 2006; 66:916-28. [PMID: 16758493 DOI: 10.1002/neu.20293] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ovarian hormone progesterone is neuroprotective in different experimental models of neurodegeneration. In the nervous system, progesterone is metabolized to 5alpha-dihydroprogesterone (DHP) by the enzyme 5alpha-reductase. DHP is subsequently reduced to 3alpha,5alpha-tetrahydroprogesterone (THP) by a reversible reaction catalyzed by the enzyme 3alpha-hydroxysteroid dehydrogenase. In this study we have analyzed whether progesterone metabolism is involved in the neuroprotective effect of the hormone in the hilus of the hippocampus of ovariectomized rats injected with kainic acid, an experimental model of excitotoxic cell death. Progesterone increased the levels of DHP and THP in plasma and hippocampus and prevented kainic-acid-induced neuronal loss. In contrast to progesterone, the synthetic progestin medroxyprogesterone acetate (MPA, Provera) did not increase DHP and THP levels and did not prevent kainic-acid-induced neuronal loss. The administration of the 5alpha-reductase inhibitor finasteride prevented the increase in the levels of DHP and THP in plasma and hippocampus as a result of progesterone administration and abolished the neuroprotective effect of progesterone. Both DHP and THP were neuroprotective against kainic acid. However, the administration of indomethacin, a 3alpha-hydroxysteroid dehydrogenase inhibitor, blocked the neuroprotective effect of both DHP and THP, suggesting that both metabolites are necessary for the neuroprotective effect of progesterone. In conclusion, our findings indicate that progesterone is neuroprotective against kainic acid excitotoxicity in vivo while the synthetic progestin MPA is not and suggest that progesterone metabolism to its reduced derivatives DHP and THP is necessary for the neuroprotective effect of the hormone.
Collapse
Affiliation(s)
- Iratxe Ciriza
- Instituto Cajal, C.S.I.C., Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | | | | | | |
Collapse
|
71
|
Cutler SM, VanLandingham JW, Murphy AZ, Stein DG. Slow-release and injected progesterone treatments enhance acute recovery after traumatic brain injury. Pharmacol Biochem Behav 2006; 84:420-8. [PMID: 16870241 DOI: 10.1016/j.pbb.2006.05.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 05/09/2006] [Accepted: 05/31/2006] [Indexed: 11/19/2022]
Abstract
The benefits of continuous progesterone release via subcutaneous silastic capsule implants were compared to daily subcutaneous injections in a rat model of traumatic brain injury (TBI). Adult male Sprague-Dawley rats received either bilateral frontal cortex contusions or sham surgery. Rats were injected with progesterone or vehicle at 1 and 6 h post-injury, then once every 24 h for six days with tapering of the dose over the final two treatments. Progesterone-packed silastic capsules were implanted post-injury while the animals were anesthetized. Behavioral assays for anxiety and locomotor activity were evaluated pre- and post-TBI. Brains were extracted eight days post-TBI and prepared for molecular assays. Decreased GABAA-4 levels complemented a decrease in anxiety behaviors on the Elevated Plus Maze for capsule compared to progesterone-injected animals prior to daily injections. All groups with implanted capsules increased locomotor activity compared to those given progesterone injections. In conclusion, steady-state progesterone treatment after TBI decreases edema and anxiety and increases activity, thus enhancing behavioral recovery. A continuous mode of pharmacological administration may prove to be more beneficial in translational and clinical testing than bolus injections over the same period of time.
Collapse
Affiliation(s)
- Sarah M Cutler
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
72
|
Stein DG. Progesterone in the experimental treatment of central and peripheral nervous system injuries. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.4.429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although traumatic brain injury (TBI) is a serious medical problem, no clinically effective acute-stage treatments exist. Over the last few decades, dozens of pharmacological agents have been tested and many appeared to work well in animal models of TBI, but then failed in clinical trials. These agents were often designed to work on a specific molecular target – a receptor mechanism or an excitatory or inhibitory neurotransmitter – but when administered to patients with brain trauma, they performed no better than placebos or had substantially negative side effects. Recently, laboratory and clinical investigators have been examining the role of neurosteroids in the treatment of TBI, ischemic stroke and certain peripheral nervous system disorders. Progesterone and its metabolite allopregnanolone act on a number of molecular and physiological processes in the cascade of cellular damage that follows a TBI, ischemic attack or peripheral nerve crush injury. This paper reviews the literature showing that progesterone and allopregnanolone may hold considerable promise for the safe and effective treatment of TBI and stroke patients.
Collapse
Affiliation(s)
- Donald G Stein
- Emory University, Department of Emergency Medicine, 1365 B Clifton Road, Suite 5100, Atlanta, GA 30322, USA
| |
Collapse
|
73
|
Cutler SM, Vanlandingham JW, Stein DG. Tapered progesterone withdrawal promotes long-term recovery following brain trauma. Exp Neurol 2006; 200:378-85. [PMID: 16797538 DOI: 10.1016/j.expneurol.2006.02.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/13/2006] [Accepted: 02/22/2006] [Indexed: 11/18/2022]
Abstract
We previously demonstrated that after traumatic brain injury (TBI), acute progesterone withdrawal (AW) causes an increase in anxiety behaviors and cerebro-cellular inflammation compared to tapered progesterone withdrawal (TW). Our current study investigates the behavioral and cellular effects of AW two weeks after termination of treatments to determine the longer-term influence of withdrawal after injury. Adult, male Sprague-Dawley rats received either bilateral frontal cortex contusion (L) or sham (S) surgery. Rats were injected at 1 and 6 h post-injury, then every 24 h for six days. Vehicle (V)-treated rats were given 9 injections of 22.5% cyclodextrin, whereas AW rats received 9 injections of 16 mg/kg progesterone and TW rats received 7 injections of P at 16 mg/kg, followed by one at 8 mg/kg and one at 4 mg/kg. On day 8, sensory neglect and locomotor activity tests were initiated. Animals were killed 22 days post-TBI and the brains prepared for either molecular or histological analysis. Western blotting revealed increased brain-derived neurotrophic factor (BDNF) and heat shock protein 70 (HSP70) in TW vs. AW animals. P53 was increased in VL animals, whereas all progesterone-treated groups were equivalent to shams. TW animals had markedly decreased sensory neglect compared to AW animals and increased center time in locomotor activity assays. In addition, lesion reconstruction revealed a decreased lesion size for TWL over AWL over VL animals. Glial fibrillary acidic protein (GFAP) immunofluorescent staining followed this pattern as well. In conclusion, after TBI, AW affects select behaviors and molecular markers in the chronic recovery period.
Collapse
Affiliation(s)
- Sarah M Cutler
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA.
| | | | | |
Collapse
|
74
|
Guo Q, Sayeed I, Baronne LM, Hoffman SW, Guennoun R, Stein DG. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Exp Neurol 2006; 198:469-78. [PMID: 16445913 DOI: 10.1016/j.expneurol.2005.12.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/28/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
This study investigates whether progesterone administration regulates AQP4 and GFAP expression in rats with bilateral contusion injuries of the medial frontal cortex. Male rats were given 0 or 16 mg/kg injections of progesterone at 1, 6, 24, and 48 h post-injury. Brains were extracted at 24 h or 72 h post-injury and assayed for cerebral edema and AQP4 and GFAP expression using Western blot analysis. Progesterone treatments reduced brain water content significantly in the brain-injured groups. There was no significant change in AQP4 expression 24 h after progesterone treatment compared to lesion + vehicle animals. However, progesterone significantly reduced AQP4 expression at 72 h post-injury in the tissue bounded by the lateral ventricles and the peri-contusion areas compared to lesion+ vehicle rats, but increased AQP4 expression in the tissue surrounding the third ventricle. Also progesterone effects on GFAP expression varied according to brain region. Our results can be taken to show that the expression of AQP4 protein after TBI is time-dependent, region-specific, and possibly implicated in the formation and resolution of TBI-induced cerebral edema.
Collapse
Affiliation(s)
- Qingmin Guo
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
75
|
Sayeed I, Guo Q, Hoffman SW, Stein DG. Allopregnanolone, a Progesterone Metabolite, Is More Effective Than Progesterone in Reducing Cortical Infarct Volume After Transient Middle Cerebral Artery Occlusion. Ann Emerg Med 2006; 47:381-9. [PMID: 16546625 DOI: 10.1016/j.annemergmed.2005.12.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/17/2005] [Accepted: 12/01/2005] [Indexed: 01/03/2023]
Abstract
STUDY OBJECTIVE We compare the effects of postinjury administration of allopregnanolone, a metabolite of progesterone, to progesterone in an animal model of transient middle cerebral artery occlusion. METHODS Focal cerebral ischemia was induced in age-matched, adult, male, Sprague-Dawley rats by using an intraluminal filament and suture method to occlude the right middle cerebral artery. After 120 minutes of middle cerebral artery occlusion, the occluding filament was withdrawn to allow reperfusion. Laser-Doppler flowmetry was used to monitor cerebral blood flow for the entire 2-hour period of occlusion and for 5 minutes after reperfusion. Animals subjected to middle cerebral artery occlusion received injections of allopregnanolone (8 mg/kg, n=6), progesterone (8 mg/kg, n=6) and vehicle (2-hydroxypropyl-beta-cyclodextrin, n=7) at 2 hours (intraperitoneally 5 minutes before reperfusion) and 6 hours (subcutaneously) postocclusion. Brains were removed at 72 hours post-middle cerebral artery occlusion, sectioned into coronal slices, and stained with 2,3,5-triphenyltetrazolium chloride (TTC). In a blinded analysis, infarct volume was calculated by using computer-aided morphometry to measure brain areas not stained with TTC. RESULTS After progesterone or allopregnanolone treatment, stained sections revealed a significant reduction in cortical, caudate-putamen, and hemispheric infarct volumes (percentage of contralateral structure) compared with vehicle-injected controls. Cortical infarction (percentage of contralateral cortex) was 37.47%+/-10.57% (vehicle), 25.49%+/-7.38% (progesterone; P<.05 from vehicle), and 11.40%+/-7.09% (allopregnanolone; P<.05 from vehicle; P<.05 from progesterone). Caudate-putamen infarction (percentage of contralateral caudate-putamen) was 78.02%+/-22.81% (vehicle), 48.41%+/-22.44% (progesterone; P<.05 from vehicle), and 50.44%+/-10.90% (allopregnanolone; P<.05 from vehicle). Total hemispheric infarction (percentage of contralateral hemisphere) was 24.37%+/-6.69% (vehicle), 15.95%+/-3.59% (progesterone; P<.05 from vehicle), and 11.54%+/-3.71% (allopregnanolone; P<.05 from vehicle). No significant differences in cerebral blood flow between groups and time points during ischemia and early reperfusion were observed, suggesting that the relative ischemic insult was equivalent among all groups. CONCLUSION Although progesterone and allopregnanolone are effective in reducing infarct pathology, allopregnanolone is more potent than progesterone in attenuating cortical damage. Our results suggest that both neurosteroids should be examined for safety and efficacy in a clinical trial for ischemic stroke.
Collapse
Affiliation(s)
- Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
76
|
O'Connor CA, Cernak I, Vink R. The temporal profile of edema formation differs between male and female rats following diffuse traumatic brain injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:121-4. [PMID: 16671438 DOI: 10.1007/3-211-30714-1_27] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although female hormones are known to influence edema formation following traumatic brain injury (TBI), no studies have actually compared the temporal profile of edema formation in both male and female rats following diffuse TBI. In this study, male, female, and female ovariectomized rats were injured using the 2 m impact acceleration model of diffuse TBI. The temporal profile of brain water content was assessed over 1 week post-trauma. Male animals demonstrated increased (p < 0.05) edema at 5 hours, 24 hours, 3 days, 4 days, and 5 days after TBI with a peak at 5 hours post-injury. This time point was associated with increased blood-brain barrier (BBB) permeability. In contrast, intact females showed increased levels of edema (p < 0.05) at 5 hours, 24 hours, 3 days, and 4 days post-TBI, with a peak at 24 hours. No BBB opening was present in intact females at 5 hours. Female animals demonstrated more edema than male animals at 24 hours, but less at 5 hours, 3 days, and 5 days. Ovariectomy produced an edema profile that was similar to that observed in males. The temporal profile of edema formation after TBI seems to depend on endogenous hormone levels, a difference which may have an influence on clinical management.
Collapse
Affiliation(s)
- C A O'Connor
- Department of Pathology, University of Adelaide, Adelaide SA, Australia
| | | | | |
Collapse
|
77
|
Robertson CL, Puskar A, Hoffman GE, Murphy AZ, Saraswati M, Fiskum G. Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats. Exp Neurol 2005; 197:235-43. [PMID: 16259981 DOI: 10.1016/j.expneurol.2005.09.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/09/2005] [Accepted: 09/24/2005] [Indexed: 10/25/2022]
Abstract
Growing literature suggests important sex-based differences in outcome following traumatic brain injury (TBI) in animals and humans. Progesterone has emerged as a key hormone involved in many potential neuroprotective pathways after acute brain injury and may be responsible for some of these differences. Many studies have utilized supraphysiologic levels of post-traumatic progesterone to reverse pathologic processes after TBI, but few studies have focused on the role of endogenous physiologic levels of progesterone in neuroprotection. We hypothesized that progesterone at physiologic serum levels would be neuroprotective in female rats after TBI and that progesterone would reverse early mitochondrial dysfunction seen in this model. Female, Sprague-Dawley rats were ovariectomized and implanted with silastic capsules containing either low or high physiologic range progesterone at 7 days prior to TBI. Control rats received ovariectomy with implants containing no hormone. Rats underwent controlled cortical impact to the left parietotemporal cortex and were evaluated for evidence of early mitochondrial dysfunction (1 h) and delayed hippocampal neuronal injury and cortical tissue loss (7 days) after injury. Progesterone in the low physiologic range reversed the early postinjury alterations seen in mitochondrial respiration and reduced hippocampal neuronal loss in both the CA1 and CA3 subfields. Progesterone in the high physiologic range had a more limited pattern of hippocampal neuronal preservation in the CA3 region only. Neither progesterone dose significantly reduced cortical tissue loss. These findings have implications in understanding the sex-based differences in outcome following acute brain injury.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Cutler SM, Pettus EH, Hoffman SW, Stein DG. Tapered progesterone withdrawal enhances behavioral and molecular recovery after traumatic brain injury. Exp Neurol 2005; 195:423-9. [PMID: 16039652 DOI: 10.1016/j.expneurol.2005.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/18/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Systemic injections of the neurosteroid progesterone improve cognitive recovery after traumatic brain injury (TBI) and stroke, and decrease molecular indicators of neuronal damage. Suddenly withdrawing progesterone after repeated dosing (PW) exacerbates ischemia and causes increased anxiety, seizure susceptibility, and excitotoxicity. Adult male Sprague-Dawley rats received either bilateral medial frontal cortex contusions or sham surgery. Injections were administered at 1 and 6 h post-injury, then every 24 h for 7 days. Vehicle-treated rats received 2-hydroxypropyl-beta-cyclodextrin (HBC). Acute PW (AW) rats received a full 16 mg/ml of progesterone for 7 days, and tapered PW (TW) rats received 5 days at full dosage, then 2 days with progressively halved dosages. Anxiety behaviors were observed pre- and post-surgery, and compared to levels at the peak of withdrawal. AW rats with lesions exhibited significantly more anxiety than any other treatment group, while both lesion- and sham-operated TW rats were indistinguishable from vehicle-treated intact animals. After behavioral tests were complete, the brains were extracted and prepared for Western blotting. TNFalpha, cFos, Caspase-3, and NFkappaB, among others, were investigated. While all progesterone treatments resulted in improved molecular recovery, TW animals had significantly fewer active markers for apoptosis and inflammation than AW animals. In conclusion, although progesterone treatment decreases inflammation and apoptosis, acute withdrawal increases activity in some apoptotic and inflammatory pathways and increases anxiety behavior during the acute healing phase. A tapered withdrawal of the hormone further enhances short-term recovery after TBI.
Collapse
Affiliation(s)
- Sarah M Cutler
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
79
|
Moralí G, Letechipía-Vallejo G, López-Loeza E, Montes P, Hernández-Morales L, Cervantes M. Post-ischemic administration of progesterone in rats exerts neuroprotective effects on the hippocampus. Neurosci Lett 2005; 382:286-90. [PMID: 15885907 DOI: 10.1016/j.neulet.2005.03.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 03/15/2005] [Accepted: 03/17/2005] [Indexed: 11/23/2022]
Abstract
Progesterone is neuroprotective in models of focal or global ischemia when treatment starts either before the insult or at the onset of reperfusion. In these cases the steroid may act during the occurrence of the early pathophysiological events triggered by ischemia or reperfusion. As opposed to this condition, the aim of the present study was to assess the effect of delayed, post-injury administration of progesterone on the preservation of pyramidal neurons of the hippocampus of rats 21 days after been exposed to global ischemia by the four vessel occlusion model. Progesterone (8 mg/kg, i.v.) or its vehicle, were administered at 20 min, 2, 6, and 24h after the end of ischemia. At histological examination, brains of the ischemic vehicle-treated rats showed a severe reduction of the population of pyramidal neurons in the CA1 and CA2 subfields (12% and 29% remaining neurons, respectively), and a less severe neuronal loss in the CA3 and CA4 subfields of the hippocampus (68% and 63% remaining neurons, respectively), as compared to rats exposed to sham procedures. They also showed a two-fold enlargement of the lateral ventricles and 33% shrinkage of the cerebral cortex as compared to the sham group. Progesterone treatment resulted in a significant preservation of pyramidal neurons in CA1 and CA2 (40% and 62% remaining neurons), with no ventricular dilation and only a mild (12%) cortical shrinkage. Results suggest that progesterone is able to interfere with some late pathophysiological mechanisms leading both to selective neuronal damage in the hippocampal CA1 and CA2 subfields, and to shrinkage of the cerebral cortex.
Collapse
Affiliation(s)
- Gabriela Moralí
- Unidad de Investigación Médica en Farmacología, CMN Siglo XXI, IMSS, Eugenia 626-Girasol-302, Col. Del Valle, México 03100, DF, Mexico.
| | | | | | | | | | | |
Collapse
|
80
|
Bramlett HM. Sex differences and the effect of hormonal therapy on ischemic brain injury. ACTA ACUST UNITED AC 2005; 12:17-27. [PMID: 15927821 DOI: 10.1016/j.pathophys.2005.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/01/2005] [Accepted: 02/01/2005] [Indexed: 11/24/2022]
Abstract
Epidemiological data emphasize the importance of sex differences in the mortality and morbidity of stroke and cardiovascular disease. The importance of hormonal influences on stroke outcome has pointed out the importance of gender, age, and presence of neural hormones. This clinical data has been substantiated by various experimental studies using clinically relevant models of cerebral ischemia and stroke. Published findings emphasize that male and female animals respond differently to periods of cerebral ischemia and that various combinations of hormonal treatments can provide protection, both histopathological and behavioral. Mechanisms underlying the hormonal effects on ischemic outcome are multifactorial. These include effects on vascular integrity and cerebral blood flow, excitotoxicity, oxidation pathways, inflammation, and apoptosis. Although many studies have shown positive results with hormonal treatments, negative findings have also been presented. Explanations for the limitations of hormonal treatment include uncertainties regarding therapeutic window, specific therapeutic dose range, as well as the specific pathophysiological processes being targeted. Additional studies are therefore required to clarify under what conditions hormonal therapy is most protective or not warranted. Experimental studies utilizing a variety of cerebral ischemia and stroke models are reviewed to indicate under what conditions sex differences and hormonal therapy are most important in terms of functional outcome.
Collapse
Affiliation(s)
- Helen M Bramlett
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
81
|
Gibson CL, Constantin D, Prior MJW, Bath PMW, Murphy SP. Progesterone suppresses the inflammatory response and nitric oxide synthase-2 expression following cerebral ischemia. Exp Neurol 2005; 193:522-30. [PMID: 15869954 DOI: 10.1016/j.expneurol.2005.01.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 11/20/2022]
Abstract
Gender differences in outcome following cerebral ischemia have frequently been observed and attributed to the actions of steroid hormones. Progesterone has been shown to possess neuroprotective properties following transient ischemia, with respect to decreasing lesion volume and improving functional recovery. The present study was designed to determine the mechanisms of progesterone neuroprotection, and whether these relate to the inflammatory response. Male mice underwent either 60 min or permanent middle cerebral artery occlusion (MCAO) and received progesterone (8 mg/kg ip) or vehicle 1 h, 6 h and 24 h post-MCAO. Forty-eight hours following transient MCAO, structural magnetic resonance imaging revealed a significant decrease in the amount of edematous tissue present in progesterone-treated mice as compared with vehicle. Using real-time PCR we found that progesterone treatment significantly suppressed the injury-induced upregulation of interleukin (IL)-1beta, transforming growth factor (TGF)beta2, and nitric oxide synthase (NOS)-2 mRNAs in the ipsilateral hemisphere while having no effect on tumor necrosis factor (TNF)-alpha mRNA expression. Progesterone treatment following permanent MCAO also resulted in a significant decrease in lesion volume. This was not apparent in mice lacking a functional NOS-2 gene. Thus, progesterone is neuroprotective in both permanent and transient ischemia, and this effect is related to the suppression of specific aspects of the inflammatory response.
Collapse
Affiliation(s)
- Claire L Gibson
- Institute of Cell Signalling, Queen's Medical Centre, Clifton Boulevard, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
82
|
Vink R, Van Den Heuvel C. Recent advances in the development of multifactorial therapies for the treatment of traumatic brain injury. Expert Opin Investig Drugs 2005; 13:1263-74. [PMID: 15461556 DOI: 10.1517/13543784.13.10.1263] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability in the industrialised world and remains a major health problem with serious socioeconomic consequences. So far, despite encouraging preclinical results, almost all neuroprotection trials have failed to show any significant efficacy in the treatment of clinical TBI. This may be due, in part, to the fact that most of the therapies investigated have targeted an individual injury factor. It is now recognised that TBI is a very heterogeneous type of injury that varies widely in its aetiology, clinical presentation, severity and pathophysiology. The pathophysiological sequelae of TBI are mediated by an interaction of acute and delayed molecular, biochemical and physiological events that are both complex and multifaceted. Accordingly, a successful TBI treatment may have to simultaneously attenuate many injury factors. Recent efforts in experimental TBI have, therefore, focused on the development of neuropharmacotherapies that target multiple injury factors and thus improve the likelihood of a successful outcome. This review will focus on three such novel compounds that are currently being assessed in clinical trials; progesterone, dexanabinol and dexamethasone, and provide an update on the progress of both magnesium and cyclosporin A.
Collapse
Affiliation(s)
- Robert Vink
- The University of Adelaide, Department of Pathology, Level 3, Medical School North, Adelaide, SA 5005, Australia.
| | | |
Collapse
|
83
|
Gibson CL, Murphy SP. Progesterone enhances functional recovery after middle cerebral artery occlusion in male mice. J Cereb Blood Flow Metab 2004; 24:805-13. [PMID: 15241189 DOI: 10.1097/01.wcb.0000125365.83980.00] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sex differences have been observed in the outcome after ischemia that are believed to be attributable to sex steroid hormones. The present study investigated the possible benefits of progesterone administration after focal cerebral ischemia. Male mice underwent 60-minute middle cerebral artery occlusion (MCAO) and received progesterone (8 mg/kg, intraperitoneally) or vehicle (dimethyl sulfoxide) 1, 6, and 24 hours after MCAO. The lesion volume at 48 hours after MCAO was significantly reduced (P < 0.05) in progesterone-treated mice compared with vehicle-treated mice. All other mice underwent tests of well being (survival rate and body weight recovery), motor ability (grid test and rotarod), and cognitive ability (water maze) for up to 21 days. MCAO significantly worsened outcome in all of these tests compared with shams. Progesterone treatment was beneficial in that compared with vehicle, it significantly improved survival rate, weight recovery, and motor ability. This improvement was most apparent during water maze testing, where progesterone-treated mice were indistinguishable from shams in terms of acquiring the task. These results indicate beneficial effects of progesterone administration after cerebral ischemia and illustrate the need to further investigate the mechanisms of progesterone action.
Collapse
Affiliation(s)
- Claire L Gibson
- Institute of Cell Signalling, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
84
|
Grossman KJ, Goss CW, Stein DG. Effects of progesterone on the inflammatory response to brain injury in the rat. Brain Res 2004; 1008:29-39. [PMID: 15081379 DOI: 10.1016/j.brainres.2004.02.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/23/2022]
Abstract
The effects of progesterone on the cellular inflammatory response to frontal cortex injury were examined on postsurgical days 1, 3, 5, 7 and 9 in male rats treated with progesterone (4 mg/kg) and/or vehicle. Rats with bilateral contusions showed increased levels of edema on days 1, 3 and 5, more reactive astrocytes on days 3, 5, 7 and 9, and more macrophages/activated microglia on days 1, 3, 5 and 9 compared to shams. The number of neurons in the medial dorsal nucleus (MDN) of the thalamus reduced on days 5 and 9 after injury compared to shams. Progesterone reduced edema levels and increased the accumulation of macrophages/activated microglia compared to vehicle controls (p<0.025); however, these changes in the inflammatory response were not related to MDN neuronal survival. Our results confirm the possibility that one way progesterone mediates its neuroprotective effects following injury is through its actions on the inflammatory response.
Collapse
|
85
|
Goss CW, Hoffman SW, Stein DG. Behavioral effects and anatomic correlates after brain injury: a progesterone dose-response study. Pharmacol Biochem Behav 2004; 76:231-42. [PMID: 14592674 DOI: 10.1016/j.pbb.2003.07.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence suggests that progesterone enhances functional recovery in rats after medial frontal cortical contusions; however, a high dose of progesterone exacerbates tissue loss in a stroke model when administered chronically (7-10 days) prior to injury [Stroke 31 (2000) 1173)]. This study attempts to determine progesterone's dose-response effects on behavioral performance and GABA-A receptor expression following a cortical contusion. Male rats received injections of 0, 8, 16, or 32 mg/kg progesterone in 22.5% 2-hydroxypropyl-beta-cyclodextrin following cortical impact. Lesion 8 mg/kg and lesion 16 mg/kg groups displayed less thigmotaxis in the Morris water maze (MWM) than 0 and 32 mg/kg groups and were not significantly impaired relative to shams on other water maze measures. Increased variability in the 32 mg/kg group during somatosensory neglect testing was the only evidence indicating that a high dose of progesterone was disruptive to a few animals. These results suggest that low and moderate doses of progesterone are optimal for facilitating recovery of select behaviors and that postinjury progesterone treatment permits a wider dose range than preinjury treatment. Progesterone did not affect lesion size, but a strong negative correlation was observed between thalamic GABA-A receptor density and water maze performance. Future studies could explore causes for this relationship.
Collapse
Affiliation(s)
- Cynthia W Goss
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
86
|
Abstract
Current knowledge regarding the pathophysiology of cerebral ischemia and brain trauma indicates that similar mechanisms contribute to loss of cellular integrity and tissue destruction. Mechanisms of cell damage include excitotoxicity, oxidative stress, free radical production, apoptosis and inflammation. Genetic and gender factors have also been shown to be important mediators of pathomechanisms present in both injury settings. However, the fact that these injuries arise from different types of primary insults leads to diverse cellular vulnerability patterns as well as a spectrum of injury processes. Blunt head trauma produces shear forces that result in primary membrane damage to neuronal cell bodies, white matter structures and vascular beds as well as secondary injury mechanisms. Severe cerebral ischemic insults lead to metabolic stress, ionic perturbations, and a complex cascade of biochemical and molecular events ultimately causing neuronal death. Similarities in the pathogenesis of these cerebral injuries may indicate that therapeutic strategies protective following ischemia may also be beneficial after trauma. This review summarizes and contrasts injury mechanisms after ischemia and trauma and discusses neuroprotective strategies that target both types of injuries.
Collapse
Affiliation(s)
- Helen M Bramlett
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Medical School, FL 33101, USA
| | | |
Collapse
|
87
|
Ciriza I, Azcoitia I, Garcia-Segura LM. Reduced progesterone metabolites protect rat hippocampal neurones from kainic acid excitotoxicity in vivo. J Neuroendocrinol 2004; 16:58-63. [PMID: 14962077 DOI: 10.1111/j.1365-2826.2004.01121.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The ovarian hormone progesterone is neuroprotective in some animal models of neurodegeneration. Progesterone actions in the brain may partly be mediated by the locally produced metabolites 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone. The neuroprotective effects of these two metabolites of progesterone were assessed in this study. Ovariectomized Wistar rats were injected with kainic acid, to induce excitotoxic neuronal death in the hippocampus, and with different doses of 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone. The number of surviving neurones in the hilus of the dentate gyrus of the hippocampus was assessed with the optical disector method. The administration of kainic acid resulted in a significant decrease in the number of hilar neurones and in the induction of vimentin expression in reactive astrocytes, a sign of neural damage. Low doses of 5alpha-dihydroprogesterone (0.25 and 0.5 mg/kg body weight, b.w.) prevented the loss of hilar neurones and the appearance of vimentin immunoreactivity in astrocytes. Higher doses (1-2 mg/kg b.w.) were not neuroprotective. By contrast, low doses of 3alpha,5alpha-tetrahydroprogesterone (0.25-1 mg/kg b.w.) were unable to protect the hilus from kainic acid while higher doses (2-4 mg/kg b.w.) were protective. The different optimal neuroprotective doses of 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone suggest that these two steroids may protect neurones using different mechanisms. The neuroprotective effects of 3alpha,5alpha-tetrahydroprogesterone may be exerted by the inhibition of neuronal activity via the GABAA receptor. This latter possibility is supported by the observation that 3beta,5alpha-tetrahydroprogesterone, an isomer of 3alpha,5alpha-tetrahydroprogesterone that does not bind to GABAA receptor, was not neuroprotective. In summary, our findings suggest that progesterone neuroprotective effects may be, at least in part, mediated by its reduced metabolites 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone.
Collapse
Affiliation(s)
- I Ciriza
- Instituto Cajal, CSIC, Madrid, Spain
| | | | | |
Collapse
|
88
|
Zhang Z, Chen TY, Kirsch JR, Toung TJK, Traystman RJ, Koehler RC, Hurn PD, Bhardwaj A. Kappa-Opioid Receptor Selectivity for Ischemic Neuroprotection with BRL 52537 in Rats. Anesth Analg 2003; 97:1776-1783. [PMID: 14633559 DOI: 10.1213/01.ane.0000087800.56290.2e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Kappa-opioid receptors (KOR) have been implicated in neuroprotection from ischemic neuronal injury, but less work has been performed with transient focal cerebral ischemia to determine the role of KOR during reperfusion. We tested the effects of a selective and specific KOR agonist, BRL 52537 hydrochloride [(+/-)-1-(3,4-dichlorophenyl)acetyl-2-(1-pyrrolidinyl)methylpiperidine], and the standard KOR antagonist, nor-binaltorphimine dihydrochloride [nor-BNI; 17,17'-(dicyclopropylmethyl)-6,6',7,7'-6,6'-imino-7,7'-binorphinan-3,4',14,14'-tetrol], on functional and histological outcome after transient focal ischemia in the rat. By use of the intraluminal filament technique, halothane-anesthetized adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion confirmed by laser Doppler flowmetry. In a blinded, randomized fashion, rats were treated with 1). saline (vehicle) 15 min before reperfusion followed by saline at reperfusion for 22 h, 2). saline 15 min before reperfusion followed by BRL 52537 (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h, 3). saline 15 min before reperfusion followed by nor-BNI (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h, or 4) nor-BNI (1 mg/kg) 15 min before reperfusion followed by BRL 52537 (1 mgx kg(-1)x h(-1)) and nor-BNI (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h. Infarct volume (percentage of ipsilateral structure) analyzed at 4 days of reperfusion was significantly attenuated in saline/BRL 52537 rats (n = 8; cortex, 10.2% +/- 4.3%; caudoputamen [CP], 23.8% +/- 6.7%) (mean +/- SEM) compared with saline/saline treatment (n = 8; cortex, 28.6% +/- 4.9%; CP, 53.3% +/- 5.8%). Addition of the specific KOR antagonist nor-BNI to BRL 52537 completely prevented the neuroprotection (n = 7; cortex, 28.6% +/- 5.3%; CP, 40.9% +/- 6.2%) conferred by BRL 52537. BRL 52537 did not produce postischemic hypothermia. These data demonstrate that KORs may provide a therapeutic target during early reperfusion after ischemic stroke. IMPLICATIONS The neuroprotective effect of selective kappa-opioid agonists in transient focal ischemia is via a selective action at the kappa-opioid receptors.
Collapse
Affiliation(s)
- Zhizheng Zhang
- *Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon; and Departments of †Anesthesiology/Critical Care Medicine and ‡Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
89
|
DeWitt DS, Prough DS. Traumatic Cerebral Vascular Injury: The Effects of Concussive Brain Injury on the Cerebral Vasculature. J Neurotrauma 2003; 20:795-825. [PMID: 14577860 DOI: 10.1089/089771503322385755] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In terms of human suffering, medical expenses, and lost productivity, head injury is one of the major health care problems in the United States, and inadequate cerebral blood flow is an important contributor to mortality and morbidity after traumatic brain injury. Despite the importance of cerebral vascular dysfunction in the pathophysiology of traumatic brain injury, the effects of trauma on the cerebral circulation have been less well studied than the effects of trauma on the brain. Recent research has led to a better understanding of the physiologic, cellular, and molecular components and causes of traumatic cerebral vascular injury. A more thorough understanding of the direct and indirect effects of trauma on the cerebral vasculature will lead to improvements in current treatments of brain trauma as well as to the development of novel and, hopefully, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Douglas S DeWitt
- Charles R. Allen Research Laboratories, Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, USA.
| | | |
Collapse
|
90
|
Santizo RA, Xu HL, Ye S, Baughman VL, Pelligrino DA. Loss of benefit from estrogen replacement therapy in diabetic ovariectomized female rats subjected to transient forebrain ischemia. Brain Res 2002; 956:86-95. [PMID: 12426050 DOI: 10.1016/s0006-8993(02)03484-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In nondiabetic animals, estrogen has been shown to provide significant neuroprotection in focal and transient forebrain ischemia models. However, that neuroprotection may be diminished or lost in the diabetic. In this study, we compared the level of brain damage in intact, ovariectomized (OVX) and 17beta-estradiol (E(2))-treated OVX female rats rendered diabetic and chronically ( approximately 4 weeks) hyperglycemic via streptozotocin (STZ). Rats were subjected to 20 min of unilateral transient forebrain ischemia (reduction in cortical CBF to 20% of baseline). Neurologic function was analyzed daily and brain histopathology (in H&E-stained sections) was evaluated at 72 h of reperfusion. Supplemental histopathologic information was obtained from additional TUNEL-stained sections. When comparing neurologic outcome scores in the three groups, E(2)-treated OVX females displayed the highest degree of dysfunction and intact females the least (OVX rats not treated with E(2) were intermediate), with the difference between the intact and E(2)-treated groups being statistically significant. That same order was often observed with the regional histopathologic analyses of H&E-stained tissue. A significantly higher magnitude of neuronal loss in both OVX groups, when compared to intact females, was observed in the CA4 sector of the hippocampus and in the cortex. In addition, cell loss in the dorsal thalamus of the E(2)-treated group was significantly greater than in the intact females. Those results were generally corroborated by TUNEL-analysis, with 67% of the E(2)-treated, 33% of the control OVX, and only 17% of the intact females displaying TUNEL-positive cells in multiple regions. In conclusion, the present findings strongly suggest that the neuroprotective benefits of estrogen replacement therapy may be lost in the diabetic female rat.
Collapse
Affiliation(s)
- Roberto A Santizo
- Department of Anesthesiology, University of Illinois at Chicago, MBRB (M/C 513) 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
91
|
Shear DA, Galani R, Hoffman SW, Stein DG. Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury. Exp Neurol 2002; 178:59-67. [PMID: 12460608 DOI: 10.1006/exnr.2002.8020] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single injection of progesterone can attenuate cerebral edema when administered during the first 24 h after traumatic brain injury (TBI) in rats but this regimen may not always produce functional benefits. In this experiment, we sought to find the duration of progesterone administration needed to facilitate both behavioral and morphological recovery. Male rats received bilateral contusions of the medial prefrontal cortex and were given progesterone (4 mg/kg) or vehicle for 3 or 5 days postoperatively. Both the 3- and the 5-day progesterone regimens reduced the size of injury- induced necrosis and cell loss, with the 5-day schedule being most effective. With regard to behavioral outcome, only 5 days of progesterone injections resulted in improved spatial learning performance and reduced sensory neglect. These results show that 5 days of postinjury progesterone treatment are needed to reduce significantly the neuropathological and behavioral abnormalities found in a rodent model of TBI. These benefits of progesterone, in the absence of any known side effects, provide further support for clinical testing of this neurosteroid.
Collapse
Affiliation(s)
- Deborah A Shear
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
92
|
Murphy SJ, Littleton-Kearney MT, Hurn PD. Progesterone administration during reperfusion, but not preischemia alone, reduces injury in ovariectomized rats. J Cereb Blood Flow Metab 2002; 22:1181-8. [PMID: 12368656 DOI: 10.1097/01.wcb.0000037990.07114.07] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although progesterone is neuroprotective in traumatic brain injury, its efficacy in stroke is unclear. The authors determined whether there are infarction differences after middle cerebral artery occlusion (MCAO) in ovariectomized rats treated acutely with progesterone before MCAO or both pre- and postischemia. Rats received vehicle, 5 (P5), 10 (P10), or 20 (P20) mg/kg progesterone intraperitoneally 30 minutes before MCAO. In another cohort, animals received vehicle or 5 (P5R) mg/kg progesterone intraperitoneally 30 minutes before MCAO, at reperfusion initiation, and at 6-hour reperfusion. Animals underwent 2-hour MCAO by the intraluminal filament technique, followed by 22-hour reperfusion. Cortical (CTX) and caudate-putamen (CP) infarctions were determined by 2,3,5-triphenyltetrazolium chloride staining and digital image analysis. End-ischemic and early reperfusion regional cerebral blood flow (CBF) was measured by [ C]-iodoantipyrine quantitative autoradiography in vehicle- or progesterone (5 mg/kg)-treated rats. Cortical infarction (% contralateral CTX) was 31 +/- 30% (vehicle), 39 +/- 23% (P5), 41 +/- 14% (P10), and 28 +/- 20% (P20). Caudate-putamen infarction (% contralateral CP) was 45 +/- 37% (vehicle), 62 +/- 34% (P5), 75 +/- 17% (P10), and 52 +/- 30% (P20). In vehicle and P5R groups, CTX infarction was 37 +/- 20% and *20 +/- 17%, respectively (* < 0.05 from vehicle). In vehicle and P5R groups, CP infarction was 63 +/- 26% and 43 +/- 29%, respectively. End-ischemic regional CBF and CBF recovery during initial reperfusion was unaffected by progesterone treatment. These data suggest that progesterone administration both before MCAO and during reperfusion decreases ischemic brain injury.
Collapse
Affiliation(s)
- Stephanie J Murphy
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
93
|
Sakakibara Y, Mitha AP, Ayoub IA, Ogilvy CS, Maynard KI. Delayed treatment with nicotinamide (vitamin B3) reduces the infarct volume following focal cerebral ischemia in spontaneously hypertensive rats, diabetic and non-diabetic Fischer 344 rats. Brain Res 2002; 931:68-73. [PMID: 11897090 DOI: 10.1016/s0006-8993(02)02263-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Since hypertension and/or hyperglycemia are risk factors for stroke, we examined whether the putative neuroprotectant, nicotinamide (NAm), could protect spontaneously hypertensive rats (SHR) or diabetic Fischer 344 rats against focal cerebral ischemia using a model of permanent middle cerebral artery occlusion (MCAo). Intravenous NAm given 2 h after MCAo significantly reduced the infarct volume of SHR (750 mg/kg, 31%, P<0.01) and diabetic (500 mg/kg, 56%, P<0.01) as well as non-diabetic (500 mg/kg, 73%, P<0.01) Fischer 344 rats when compared with saline-injected controls. Thus delayed treatment with NAm protected hypertensive and hyperglycemic rats against a robust model of stroke.
Collapse
Affiliation(s)
- Yohtaro Sakakibara
- Neurophysiology Laboratory, Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
94
|
He Z, He YJ, Day AL, Simpkins JW. Proestrus levels of estradiol during transient global cerebral ischemia improves the histological outcome of the hippocampal CA1 region: perfusion-dependent and-independent mechanisms. J Neurol Sci 2002; 193:79-87. [PMID: 11790387 DOI: 10.1016/s0022-510x(01)00648-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We conducted this study to determine whether high physiological levels of estradiol (proestrus) could protect the hippocampal CA1 neurons following transient global ischemia. Ovariectomized or ovary-intact female rats were subjected to 20 min of ischemia and allowed to survive for 96 h. Estradiol was administered subcutaneously in a group of ovariectomized rats 24 h before ischemia induction. Ending serum estrogen levels were correlated to cerebral blood flow (CBF), histologic assessment and immunofluorescent caspase-3 active peptide (C-3AP) positive cell count. Estradiol administration significantly improved CBF in the hippocampus (compared with intact or ovariectomized rats) but not in the parietal cortex. No significant differences in CBF between intact or ovariectomized rats were noted. Estradiol administration maintained serum levels of the steroid in estradiol-treated rats-about 10 times that of intact animals and more than 20 times that of ovariectomized animals. Morphologically, live cell counts in estradiol-treated rats were significantly higher than in intact or ovariectomized rats. Live cell counts were also significantly higher in intact than ovariectomized rats. C-3AP positive cell counts were much higher in ovariectomized rats than in intact and estradiol-treated rats. In conclusion, proestrus levels of 17beta-estradiol protect hippocampal CA1 neurons against transient global ischemia, through mechanisms that appear to involve improvement of perfusion and inhibition of caspase-3 activity.
Collapse
Affiliation(s)
- Zhen He
- Department of Neurosurgery, College of Medicine, University of Florida, USA
| | | | | | | |
Collapse
|
95
|
Abstract
The brain, like the adrenals, gonads and the placenta, is a steroidogenic tissue. However, unlike classic steroidogenic tissues, the synthesis of steroids in the nervous system requires coordinated expression and regulation of genes encoding the steroidogenic enzymes in several different cell types (neurons and glia) at different locations in the nervous system, often at some distance from the cell bodies. Furthermore, the synthesis of these steroids might be developmentally regulated and related to their functions in the developing brain. The steroids synthesized by the brain and nervous system, given the name 'neurosteroids', have a wide variety of diverse functions. In general, they mediate their actions not through classic steroid hormone nuclear receptors, but through other mechanisms, such as ion-gated neurotransmitter receptors or direct/indirect modulation of other neurotransmitter receptors. We summarize the biochemistry of the enzymes involved in the biosynthesis of neurosteroids, their pharmacological properties and modes of action. The physiological relevance and potential uses of neurosteroids in certain human diseases are discussed.
Collapse
Affiliation(s)
- Synthia H Mellon
- Dept of Obstetrics, Gynecology and Reproductive Sciences, 513 Parnassus Ave, Box 0556, San Francisco, CA 94143-0556, USA.
| | | |
Collapse
|
96
|
Abstract
Estrogen and progesterone, long considered for their roles as primary hormones in reproductive and maternal behavior, are now being studied as neuroprotective and neuroregenerative agents in stroke and traumatic brain injuries. Collectively, the hormones reduce the consequences of the injury cascade by enhancing anti-oxidant mechanisms, reducing excitotoxicity (altering glutamate receptor activity, reducing immune inflammation, providing neurotrophic support, stimulating axonal remyelinization), and enhancing synaptogenesis and dendritic arborization. Estrogen seems more effective as a prophylactic treatment in females at risk for cardiac and ischemic brain injury, whereas progesterone appears to be more helpful in the post-injury treatment of both male and female subjects with acute traumatic brain damage. However, a recent clinical trial with estradiol replacement therapy in elderly women that have a history of cerebrovascular disease, showed that this hormone was unable to protect against reoccurrence of ischemia or to reduce the incidence of mortality compared to a placebo.
Collapse
Affiliation(s)
- D G Stein
- Emory University, Depts of Psychology, Emergency Medicine and Neurology, 30322, Atlanta, GA, USA
| |
Collapse
|