51
|
Panda S, Hajra S, Mistewicz K, Nowacki B, In-Na P, Krushynska A, Mishra YK, Kim HJ. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater Sci 2022; 10:5054-5080. [PMID: 35876134 DOI: 10.1039/d2bm00797e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Krystian Mistewicz
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Bartłomiej Nowacki
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Wangmai, Pathumwan, Bangkok-10330, Thailand
| | - Anastasiia Krushynska
- Engineering and Technology Institute Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea. .,Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea
| |
Collapse
|
52
|
Sembiring YE, Ledyastatin RA, Nurrahmah A, Sulistyaningsih NK, Sinatra JAR, Puruhito I, Suroto H. Comparative Assessment of Various Concentration and Exposure Time of Sodium Dodecyl Sulfate as Decellularization Agents for Small-Vessels Vascular Tissue Engineering. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Finding the optimum vascular grafts (VG) to replace damaged blood arteries in cardiac surgery is still a work in progress. To be employed, a tissue-engineered VG (TEVG) must have the appropriate biological and mechanical qualities. Decellularized arteries may be a better TEVG than synthetic grafts because of their natural three-dimensional architecture.
AIM: The goal of this study was to compare different concentrations and times of sodium dodecyl sulfate (SDS) to decellularize tissue to find the best decellularized VG.
METHODS: In all decellularized scaffolds, which are 1% SDS-2 weeks group, hematoxylin and eosin and Masson’s trichrome staining exhibited looser collagen networks and fewer nuclei.
RESULTS: The orientation of collagen fibers was identical to native vascular scaffolds. Collagen I deposition was seen in the immunohistochemistry assay. A tensile strength test revealed that the decellularized scaffold (0.5% SDS for 4 weeks and 0.5% SDS for 2 weeks) had exceeded the native arteries’ maximal strength. In comparison to 1% SDS in 4 weeks treated groups, scanning electron microscopy following decellularization revealed no endothelial cells on the inner side of 1% SDS in 2 weeks group with minimum extracellular matrix damage. The endothelial cells remained marginally visible on the inner side of all 0.5% SDS treated groups. The 3-(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium bromide test was used to determine the cytotoxicity of the decellularized scaffolds.
CONCLUSION: This study reveals that exposing a bovine mesenteric artery to 1% SDS for 2 weeks is an excellent procedure for extracting the most acellular VG, potentially serving as a biological scaffold for TEVGs.
Collapse
|
53
|
Fegan KL, Green NC, Britton MM, Iqbal AJ, Thomas-Seale LEJ. Design and Simulation of the Biomechanics of Multi-Layered Composite Poly(Vinyl Alcohol) Coronary Artery Grafts. Front Cardiovasc Med 2022; 9:883179. [PMID: 35833186 PMCID: PMC9272978 DOI: 10.3389/fcvm.2022.883179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Coronary artery disease is among the primary causes of death worldwide. While synthetic grafts allow replacement of diseased tissue, mismatched mechanical properties between graft and native tissue remains a major cause of graft failure. Multi-layered grafts could overcome these mechanical incompatibilities by mimicking the structural heterogeneity of the artery wall. However, the layer-specific biomechanics of synthetic grafts under physiological conditions and their impact on endothelial function is often overlooked and/or poorly understood. In this study, the transmural biomechanics of four synthetic graft designs were simulated under physiological pressure, relative to the coronary artery wall, using finite element analysis. Using poly(vinyl alcohol) (PVA)/gelatin cryogel as the representative biomaterial, the following conclusions are drawn: (I) the maximum circumferential stress occurs at the luminal surface of both the grafts and the artery; (II) circumferential stress varies discontinuously across the media and adventitia, and is influenced by the stiffness of the adventitia; (III) unlike native tissue, PVA/gelatin does not exhibit strain stiffening below diastolic pressure; and (IV) for both PVA/gelatin and native tissue, the magnitude of stress and strain distribution is heavily dependent on the constitutive models used to model material hyperelasticity. While these results build on the current literature surrounding PVA-based arterial grafts, the proposed method has exciting potential toward the wider design of multi-layer scaffolds. Such finite element analyses could help guide the future validation of multi-layered grafts for the treatment of coronary artery disease.
Collapse
Affiliation(s)
- Katie L. Fegan
- Physical Sciences for Health Centre for Doctoral Training, University of Birmingham, Birmingham, United Kingdom
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Naomi C. Green
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Melanie M. Britton
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asif J. Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
54
|
Potential of Biodegradable Synthetic Polymers for Use in Small-diameter Vascular Engineering. Macromol Res 2022. [DOI: 10.1007/s13233-022-0056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
55
|
Massaro MS, Kochová P, Pálek R, Rosendorf J, Červenková L, Dahmen U, Liška V, Moulisová V. Decellularization of Porcine Carotid Arteries: From the Vessel to the High-Quality Scaffold in Five Hours. Front Bioeng Biotechnol 2022; 10:833244. [PMID: 35651544 PMCID: PMC9150822 DOI: 10.3389/fbioe.2022.833244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The use of biologically derived vessels as small-diameter vascular grafts in vascular diseases is currently intensely studied. Vessel decellularization provides a biocompatible scaffold with very low immunogenicity that avoids immunosuppression after transplantation. Good scaffold preservation is important as it facilitates successful cell repopulation. In addition, mechanical characteristics have to be carefully evaluated when the graft is intended to be used as an artery due to the high pressures the vessel is subjected to. Here, we present a new and fast decellularization protocol for porcine carotid arteries, followed by investigation of the quality of obtained vessel scaffolds in terms of maintenance of important extracellular matrix components, mechanical resistance, and compatibility with human endothelial cells. Our results evidence that our decellularization protocol minimally alters both the presence of scaffold proteins and their mechanical behavior and human endothelial cells could adhere to the scaffold in vitro. We conclude that if a suitable protocol is used, a high-quality decellularized arterial scaffold of non-human origin can be promptly obtained, having a great potential to be recellularized and used as an arterial graft in transplantation medicine.
Collapse
Affiliation(s)
| | - Petra Kochová
- New Technologies for Information Society-NTIS, University of West Bohemia, Pilsen, Czechia
| | - Richard Pálek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jáchym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Lenka Červenková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Václav Liška
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Vladimíra Moulisová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
56
|
Illi J, Bernhard B, Nguyen C, Pilgrim T, Praz F, Gloeckler M, Windecker S, Haeberlin A, Gräni C. Translating Imaging Into 3D Printed Cardiovascular Phantoms. JACC Basic Transl Sci 2022; 7:1050-1062. [PMID: 36337920 PMCID: PMC9626905 DOI: 10.1016/j.jacbts.2022.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
3D printed patient specific phantoms can visualize complex cardiovascular anatomy Common imaging modalities for 3D printing are CCT and CMR Material jetting/PolyJet and stereolithography are widely used printing techniques Standardized validation is warranted to compare different 3D printing technologies
Translation of imaging into 3-dimensional (3D) printed patient-specific phantoms (3DPSPs) can help visualize complex cardiovascular anatomy and enable tailoring of therapy. The aim of this paper is to review the entire process of phantom production, including imaging, materials, 3D printing technologies, and the validation of 3DPSPs. A systematic review of published research was conducted using Embase and MEDLINE, including studies that investigated 3DPSPs in cardiovascular medicine. Among 2,534 screened papers, 212 fulfilled inclusion criteria and described 3DPSPs as a valuable adjunct for planning and guiding interventions (n = 108 [51%]), simulation of physiological or pathological conditions (n = 19 [9%]), teaching of health care professionals (n = 23 [11%]), patient education (n = 3 [1.4%]), outcome prediction (n = 6 [2.8%]), or other purposes (n = 53 [25%]). The most common imaging modalities to enable 3D printing were cardiac computed tomography (n = 131 [61.8%]) and cardiac magnetic resonance (n = 26 [12.3%]). The printing process was conducted mostly by material jetting (n = 54 [25.5%]) or stereolithography (n = 43 [20.3%]). The 10 largest studies that evaluated the geometric accuracy of 3DPSPs described a mean bias <±1 mm; however, the validation process was very heterogeneous among the studies. Three-dimensional printed patient-specific phantoms are highly accurate, used for teaching, and applied to guide cardiovascular therapy. Systematic comparison of imaging and printing modalities following a standardized validation process is warranted to allow conclusions on the optimal production process of 3DPSPs in the field of cardiovascular medicine.
Collapse
|
57
|
Mayoral I, Bevilacqua E, Gómez G, Hmadcha A, González-Loscertales I, Reina E, Sotelo J, Domínguez A, Pérez-Alcántara P, Smani Y, González-Puertas P, Mendez A, Uribe S, Smani T, Ordoñez A, Valverde I. Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning. Mater Today Bio 2022; 14:100252. [PMID: 35509864 PMCID: PMC9059085 DOI: 10.1016/j.mtbio.2022.100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/05/2022] Open
Abstract
Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ± 15 mmHg) and a porosity gradient ranging from 80 to 10 μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.
Collapse
Key Words
- 3D printing
- Electrospinning
- Endothelin Receptor A, ETA
- Endothelin Receptor B, ETB
- Mesenchymal stem cells
- Reverse Transcription, Rt
- Three-dimensional, 3D
- Tissue engineering
- Vascular graft
- anti-alpha-smooth muscle actin, α-SMA
- anti-cluster of differentiation 31, CD31
- anti-fibroblast specific protein 1, FSP1
- anti-smooth muscle protein 22, SM-22
- bone morphogenetic protein, BMP4
- computation fluid dynamic, CFD
- computed tomography, CT
- derived VSMC, dVSMC
- endothelin-1, ET-1
- extracellular matrix, ECM
- fused deposition modelling, FDM
- mesenchymal stem cells, MSC
- platelet-derived growth factor composed by two beta chains, PDGF-BB
- room temperature, RT
- tissue engineering vascular grafts, TEVG
- transforming growth factor beta 1, TGFβ-1
- vascular smooth muscle cells, VSMC
- wall shear stress, WSS
- western blotting, WB
Collapse
Affiliation(s)
- Isabel Mayoral
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Elisa Bevilacqua
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Gorka Gómez
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Abdelkrim Hmadcha
- Advanced Therapies and Regenerative Medicine Research Group.General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Ignacio González-Loscertales
- Department Mechanical, Thermal and Fluids Engineering, School of Engineering, University of Málaga, Málaga, Spain
| | - Esther Reina
- Department of Mechanical and Manufacturing Engineering, University of Seville, Seville, Spain
| | - Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Pedro Pérez-Alcántara
- Department of Mechanical and Manufacturing Engineering, University of Seville, Seville, Spain
| | - Younes Smani
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| | | | - Ana Mendez
- Pediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain
| | - Sergio Uribe
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tarik Smani
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Ordoñez
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Israel Valverde
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
- Pediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Pharmacology, Pediatric and Radiology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
58
|
Current Progress in Vascular Engineering and Its Clinical Applications. Cells 2022; 11:cells11030493. [PMID: 35159302 PMCID: PMC8834640 DOI: 10.3390/cells11030493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary heart disease (CHD) is caused by narrowing or blockage of coronary arteries due to atherosclerosis. Coronary artery bypass grafting (CABG) is widely used for the treatment of severe CHD cases. Although autologous vessels are a preferred choice, healthy autologous vessels are not always available; hence there is a demand for tissue engineered vascular grafts (TEVGs) to be used as alternatives. However, producing clinical grade implantable TEVGs that could healthily survive in the host with long-term patency is still a great challenge. There are additional difficulties in producing small diameter (<6 mm) vascular conduits. As a result, there have not been TEVGs that are commercially available. Properties of vascular scaffolds such as tensile strength, thrombogenicity and immunogenicity are key factors that determine the biocompatibility of TEVGs. The source of vascular cells employed to produce TEVGs is a limiting factor for large-scale productions. Advanced technologies including the combined use of natural and biodegradable synthetic materials for scaffolds in conjunction with the use of mesenchyme stem cells or induced pluripotent stem cells (iPSCs) provide promising solutions for vascular tissue engineering. The aim of this review is to provide an update on various aspects in this field and the current status of TEVG clinical applications.
Collapse
|
59
|
Heparin Immobilization of Tissue Engineered Xenogeneic Small Diameter Arterial Scaffold Improve Endothelialization. Tissue Eng Regen Med 2022; 19:505-523. [PMID: 35092597 PMCID: PMC9130405 DOI: 10.1007/s13770-021-00411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Autologous vessels graft (Inner diameter < 6 mm) harvesting always challenged during bypass grafting surgery and its complication shows poor outcome. Tissue engineered vascular graft allow to generate biological graft without any immunogenic complication. The approach presented in this study is to induce graft remodeling through heparin coating in luminal surface of small diameter (Inner diameter < 1 mm) decellularized arterial graft. METHODS Decellularization of graft was done using SDS, combination of 0.5% sodium dodecyl sulfate and 0.5% sodium deoxycholate and only sodium deoxycholate. Decellularization was confirmed on basis of histology, and DAPI. Characterization of extracellular matrix was analyzed using histology and scanning electron microscopy. Surface modification of decellularized vascular graft was done with heparin coating. Heparin immobilization was evaluated by toluidine blue stain. Heparin-coated graft was transplanted end to end anastomosis in femoral artery in rat. RESULTS Combination of 0.5% sodium dodecyl sulfate and 0.5% Sodium deoxycholate showed complete removal of xenogeneic cells. The heparin coating on luminal surface showed anti-thrombogenicity and endothelialization. Mechanical testing revealed no significant differences in strain characteristics and modulus between native tissues, decellularized scaffolds and transplanted scaffold. Collectively, this study proposed a heparin-immobilized ECM coating to surface modification offering functionalize biomaterials for developing small-diameter vascular grafts. CONCLUSION We conclude that xenogeneic decellularized arterial scaffold with heparin surface modification can be fabricated and successfully transplanted small diameter (inner diameter < 1 mm) decellularized arterial graft.
Collapse
|
60
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
61
|
Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. MICROMACHINES 2021; 13:mi13010049. [PMID: 35056214 PMCID: PMC8778126 DOI: 10.3390/mi13010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 02/03/2023]
Abstract
Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.
Collapse
|
62
|
Lau S, Gossen M, Lendlein A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int J Mol Sci 2021; 22:ijms222313120. [PMID: 34884923 PMCID: PMC8658568 DOI: 10.3390/ijms222313120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure–function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.
Collapse
Affiliation(s)
- Skadi Lau
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Manfred Gossen
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 25, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
63
|
Stahl A, Yang YP. Regenerative Approaches for the Treatment of Large Bone Defects. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:539-547. [PMID: 33138705 PMCID: PMC8739850 DOI: 10.1089/ten.teb.2020.0281] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
A variety of engineered materials have gained acceptance in orthopedic practice as substitutes for autologous bone grafts, although the regenerative efficacy of these engineered grafts is still limited compared with that of transplanted native tissues. For bone defects greater than 4-5 cm, however, common bone grafting procedures are insufficient and more complicated surgical interventions are required to repair and regenerate the damaged or missing bone. In this review, we describe current grafting materials and surgical techniques for the reconstruction of large bone defects, followed by tissue engineering (TE) efforts to develop improved therapies. Particular emphasis is placed on graft vascularization, because for both autologous bone and engineered alternatives, achieving adequate vascular development within the regenerating bone tissues remains a significant challenge in the context of large bone defects. To this end, TE and surgical strategies to induce development of a vasculature within bone grafts are discussed. Impact statement This review aims to present an accessible and thorough overview of current orthopedic surgical techniques as well as bone tissue engineering and vascularization strategies that might one day offer improvements to clinical therapies for the repair of large bone defects. We consider the lessons that clinical orthopedic reconstructive practices can contribute to the push toward engineered bone.
Collapse
Affiliation(s)
- Alexander Stahl
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Materials Science and Engineering, and Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
64
|
Zhang Y, Jiao Y, Wang C, Zhang C, Wang H, Feng Z, Gu Y, Wang Z. Design and characterization of small-diameter tissue-engineered blood vessels constructed by electrospun polyurethane-core and gelatin-shell coaxial fiber. Bioengineered 2021; 12:5769-5788. [PMID: 34519254 PMCID: PMC8806492 DOI: 10.1080/21655979.2021.1969177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/12/2023] Open
Abstract
Substitution or bypass is the most effective treatment for vascular occlusive diseases.The demand for artificial blood vessels has seen an unprecedented rise due to the limited supply of autologous blood vessels. Tissue engineering is the best approach to provide artificial blood vessels. In this study, a new type of small-diameter artificial blood vessel with good mechanical and biological properties was designed by using electrospinning coaxial fibers. Four groups of coaxial fibers vascular membranes having polyurethane/gelatin core-shell structure were cross-linked by the EDC-NHS system and characterized. The core-shell structure of the coaxial vascular fibers was observed by transmission electron microscope. After the crosslinking, the stress and elastic modulus increased and the elongation decreased, burst pressure of 0.11 group reached the maximum (2844.55 ± 272.65 mmHg) after cross-linking, which acted as the experimental group. Masson staining identified blue-stained ring or elliptical gelatin ingredients in the vascular wall. The cell number in the vascular wall of the coaxial group was found in muscle embedding experiment significantly higher than that of the non-coaxial group at all time points(p < 0.001). Our results showed that the coaxial vascular graft with the ratio of 0.2:0.11 had better mechanical properties (burst pressure reached 2844.55 ± 272.65 mmHg); Meanwhile its biological properties were also outstanding, which was beneficial to cell entry and offered good vascular remodeling performance.Polyurethane (PU); Gelatin (Gel); Polycaprolactone (PCL); polylactic acid (PLA);1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC); N-Hydroxy succinimide (NHS); 4-Morpholine-ethane-sulfonic (MES); phosphate buffered saline (PBS); fetal calf serum (FCS); Minimum Essential Medium (MEM); Dimethyl sulfoxide (DMSO); hematoxylin-eosin (HE).
Collapse
Affiliation(s)
- Yuanguo Zhang
- Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China
| | - Yuhao Jiao
- Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China
| | - Chengchao Zhang
- Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China
| | - Han Wang
- Division of Biomaterials, National Institiutes for Food and Drug Control, Beijing, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China
| | - Zhonggao Wang
- Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
65
|
Montoya Y, Cardenas J, Bustamante J, Valencia R. Effect of sequential electrospinning and co-electrospinning on morphological and fluid mechanical wall properties of polycaprolactone and bovine gelatin scaffolds, for potential use in small diameter vascular grafts. Biomater Res 2021; 25:38. [PMID: 34801087 PMCID: PMC8605505 DOI: 10.1186/s40824-021-00240-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Nowadays, the engineering vascular grafts with a diameter less than 6 mm by means of electrospinning, is an attracted alternative technique to create different three-dimensional microenvironments with appropriate physicochemical properties to promote the nutrient transport and to enable the bioactivity, dynamic growth and differentiation of cells. Although the performance of a well-designed porous wall is key for these functional requirements maintaining the mechanical function, yet predicting the flow rate and cellular transport are still not widely understood and many questions remain open about new configurations of wall can be used for modifying the conventional electrospun samples. The aim of the present study was to evaluate the effect of fabrication techniques on scaffolds composed of bovine gelatin and polycaprolactone (PCL) developed by sequential electrospinning and co-electrospinning, on the morphology and fluid-mechanical properties of the porous wall. METHODOLOGY For this purpose, small diameter tubular structures were manufactured and experimental tests were performed to characterize the crystallinity, morphology, wettability, permeability, degradability, and mechanical properties. Some samples were cross-linked with Glutaraldehyde (GA) to improve the stability of the gelatin fiber. In addition, it was analyzed how the characteristics of the scaffold favored the levels of cell adhesion and proliferation in an in vitro model of 3T3 fibroblasts in incubation periods of 24, 48 and 72 h. RESULTS It was found that in terms of the morphology of tubular scaffolds, the co-electrospun samples had a better alignment with higher values of fiber diameters and apparent pore area than the sequential samples. The static permeability was more significant in the sequential scaffolds and the hydrophilic was higher in the co-electrospun samples. Therefore, the gelatin mass losses were less in the co-electrospun samples, which promote cellular functions. In terms of mechanical properties, no significant differences were observed for different types of samples. CONCLUSION This research concluded that the tubular scaffolds generated by sequential and co-electrospinning with modification in the microarchitecture could be used as a vascular graft, as they have better permeability and wettability, interconnected pores, and a circumferential tensile strength similar to native vessel compared to the commercial graft analyzed.
Collapse
Affiliation(s)
- Yuliet Montoya
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
- Comité de Trabajo de Bioingeniería Cardiovascular, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, Bogotá, Colombia
| | - José Cardenas
- Grupo de Automática y Diseño A+D, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - John Bustamante
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
- Comité de Trabajo de Bioingeniería Cardiovascular, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, Bogotá, Colombia
| | - Raúl Valencia
- Grupo de Automática y Diseño A+D, Universidad Pontificia Bolivariana, Medellín, Colombia.
| |
Collapse
|
66
|
Krishnan AG, Joseph J, C. R. R, Nair SV, Nair M, Menon D. Silk-based bilayered small diameter woven vascular conduits for improved mechanical and cellular characteristics. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1999954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aarya G. Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - John Joseph
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Reshmi C. R.
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Manitha Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
67
|
Bonito V, Koch SE, Krebber MM, Carvajal‐Berrio DA, Marzi J, Duijvelshoff R, Lurier EB, Buscone S, Dekker S, de Jong SMJ, Mes T, Vaessen KRD, Brauchle EM, Bosman AW, Schenke‐Layland K, Verhaar MC, Dankers PYW, Smits AIPM, Bouten CVC. Distinct Effects of Heparin and Interleukin-4 Functionalization on Macrophage Polarization and In Situ Arterial Tissue Regeneration Using Resorbable Supramolecular Vascular Grafts in Rats. Adv Healthc Mater 2021; 10:e2101103. [PMID: 34523263 PMCID: PMC11469141 DOI: 10.1002/adhm.202101103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Two of the greatest challenges for successful application of small-diameter in situ tissue-engineered vascular grafts are 1) preventing thrombus formation and 2) harnessing the inflammatory response to the graft to guide functional tissue regeneration. This study evaluates the in vivo performance of electrospun resorbable elastomeric vascular grafts, dual-functionalized with anti-thrombogenic heparin (hep) and anti-inflammatory interleukin 4 (IL-4) using a supramolecular approach. The regenerative capacity of IL-4/hep, hep-only, and bare grafts is investigated as interposition graft in the rat abdominal aorta, with follow-up at key timepoints in the healing cascade (1, 3, 7 days, and 3 months). Routine analyses are augmented with Raman microspectroscopy, in order to acquire the local molecular fingerprints of the resorbing scaffold and developing tissue. Thrombosis is found not to be a confounding factor in any of the groups. Hep-only-functionalized grafts resulted in adverse tissue remodeling, with cases of local intimal hyperplasia. This is negated with the addition of IL-4, which promoted M2 macrophage polarization and more mature neotissue formation. This study shows that with bioactive functionalization, the early inflammatory response can be modulated and affect the composition of neotissue. Nevertheless, variability between graft outcomes is observed within each group, warranting further evaluation in light of clinical translation.
Collapse
Affiliation(s)
- Valentina Bonito
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Suzanne E. Koch
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Merle M. Krebber
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Daniel A. Carvajal‐Berrio
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Julia Marzi
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Renee Duijvelshoff
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Department of CardiologyIsala Hospitalvan Heesweg 2Zwolle8025 ABThe Netherlands
| | - Emily B. Lurier
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Serena Buscone
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Sylvia Dekker
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Simone M. J. de Jong
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Tristan Mes
- SupraPolix BVEindhoven5612 AXThe Netherlands
| | - Koen R. D. Vaessen
- Central Laboratory Animal Research Facility (CLARF)Utrecht UniversityUtrecht3584 CXThe Netherlands
| | - Eva M. Brauchle
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | | | - Katja Schenke‐Layland
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Marianne C. Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Anthal I. P. M. Smits
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
68
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
69
|
New Method for Preparing Small-Caliber Artificial Blood Vessel with Controllable Microstructure on the Inner Wall Based on Additive Material Composite Molding. MICROMACHINES 2021; 12:mi12111312. [PMID: 34832724 PMCID: PMC8622980 DOI: 10.3390/mi12111312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
The diameter of most blood vessels in cardiovascular and peripheral vascular system is less than 6 mm. Because the inner diameter of such vessels is small, a built-in stent often leads to thrombosis and other problems. It is an important goal to replace it directly with artificial vessels. This paper creatively proposed a preparation method of a small-diameter artificial vascular graft which can form a controllable microstructure on the inner wall and realize a multi-material composite. On the one hand, the inner wall of blood vessels containing direct writing structure is constructed by electrostatic direct writing and micro-imprinting technology to regulate cell behavior and promote endothelialization; on the other hand, the outer wall of blood vessels was prepared by electrospinning PCL to ensure the stability of mechanical properties of composite grafts. By optimizing the key parameters of the graft, a small-diameter artificial blood vessel with controllable microstructure on the inner wall is finally prepared. The corresponding performance characterization experimental results show that it has advantages in structure, mechanical properties, and promoting endothelialization.
Collapse
|
70
|
Gupta P, Mandal BB. Silk biomaterials for vascular tissue engineering applications. Acta Biomater 2021; 134:79-106. [PMID: 34384912 DOI: 10.1016/j.actbio.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Vascular tissue engineering is a rapidly growing field of regenerative medicine, which strives to find innovative solutions for vascular reconstruction. Considering the limited success of synthetic grafts, research impetus in the field is now shifted towards finding biologically active vascular substitutes bestowing in situ growth potential. In this regard, silk biomaterials have shown remarkable potential owing to their favorable inherent biological and mechanical properties. This review provides a comprehensive overview of the progressive development of silk-based small diameter (<6 mm) tissue-engineered vascular grafts (TEVGs), emphasizing their pre-clinical implications. Herein, we first discuss the molecular structure of various mulberry and non-mulberry silkworm silk and identify their favorable properties at the onset of vascular regeneration. The emergence of various state-of-the-art fabrication methodologies for the advancement of silk TEVGs is rationally appraised in terms of their in vivo performance considering the following parameters: ease of handling, long-term patency, resistance to acute thrombosis, stenosis and aneurysm formation, immune reaction, neo-tissue formation, and overall remodeling. Finally, we provide an update on the pre-clinical status of silk-based TEVGs, followed by current challenges and future prospects. STATEMENT OF SIGNIFICANCE: Limited availability of healthy autologous blood vessels to replace their diseased counterpart is concerning and demands other artificial substitutes. Currently available synthetic grafts are not suitable for small diameter blood vessels owing to frequent blockage. Tissue-engineered biological grafts tend to integrate well with the native tissue via remodeling and have lately witnessed remarkable success. Silk fibroin is a natural biomaterial, which has long been used as medical sutures. This review aims to identify several favorable properties of silk enabling vascular regeneration. Furthermore, various methodologies to fabricate tubular grafts are discussed and highlight their performance in animal models. An overview of our understanding to rationally improve the biological activity fostering the clinical success of silk-based grafts is finally discussed.
Collapse
|
71
|
Domínguez-Robles J, Shen T, Cornelius VA, Corduas F, Mancuso E, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112375. [PMID: 34579894 PMCID: PMC8505756 DOI: 10.1016/j.msec.2021.112375] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a general term for conditions which are the leading cause of death in the world. Quick restoration of tissue perfusion is a key factor to combat these diseases and improve the quality and duration of patients' life. Revascularization techniques include angioplasty, placement of a stent, or surgical bypass grafting. For the latter technique, autologous vessels remain the best clinical option; however, many patients lack suitable autogenous due to previous operations and they are often unsuitable. Therefore, synthetic vascular grafts providing antithrombosis, neointimal hyperplasia inhibition and fast endothelialization are still needed. To address these limitations, 3D printed dipyridamole (DIP) loaded biodegradable vascular grafts were developed. Polycaprolactone (PCL) and DIP were successfully mixed without solvents and then vascular grafts were 3D printed. A mixture of high and low molecular weight PCL was used to better ensure the integration of DIP, which would offer the biological functions required above. Moreover, 3D printing technology provides the ability to fabricate structures of precise geometries from a 3D model, enabling to customize the vascular grafts' shape or size. The produced vascular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet effect and cytocompatibility. The results suggested that DIP was properly mixed and integrated within the PCL matrix. Moreover, these materials can provide a sustained and linear drug release without any obvious burst release, or any faster initial release rates for 30 days. Compared to PCL alone, a clear reduced platelet deposition in all the DIP-loaded vascular grafts was evidenced. The hemolysis percentage of both materials PCL alone and PCL containing 20% DIP were lower than 4%. Moreover, PCL and 20% DIP loaded grafts were able to provide a supportive environment for cellular attachment, viability, and growth.
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Tingjun Shen
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| |
Collapse
|
72
|
Alvino VV, Thomas AC, Ghorbel MT, Rapetto F, Narayan SA, Kilcooley M, Iacobazzi D, Carrabba M, Fagnano M, Cathery W, Avolio E, Caputo M, Madeddu P. Reconstruction of the Swine Pulmonary Artery Using a Graft Engineered With Syngeneic Cardiac Pericytes. Front Bioeng Biotechnol 2021; 9:715717. [PMID: 34568300 PMCID: PMC8459923 DOI: 10.3389/fbioe.2021.715717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
The neonatal heart represents an attractive source of regenerative cells. Here, we report the results of a randomized, controlled, investigator-blinded preclinical study, which assessed the safety and effectiveness of a matrix graft cellularized with cardiac pericytes (CPs) in a piglet model of pulmonary artery (PA) reconstruction. Within each of five trios formed by 4-week-old female littermate piglets, one element (the donor) was sacrificed to provide a source of CPs, while the other two elements (the graft recipients) were allowed to reach the age of 10 weeks. During this time interval, culture-expanded donor CPs were seeded onto swine small intestinal submucosa (SIS) grafts, which were then shaped into conduits and conditioned in a flow bioreactor. Control unseeded SIS conduits were subjected to the same procedure. Then, recipient piglets were randomized to surgical reconstruction of the left PA (LPA) with unseeded or CP-seeded SIS conduits. Doppler echocardiography and cardiac magnetic resonance imaging (CMRI) were performed at baseline and 4-months post-implantation. Vascular explants were examined using histology and immunohistochemistry. All animals completed the scheduled follow-up. No group difference was observed in baseline imaging data. The final Doppler assessment showed that the LPA’s blood flow velocity was similar in the treatment groups. CMRI revealed a mismatch in the average growth of the grafted LPA and contralateral branch in both treatment groups. Histology of explanted arteries demonstrated that the CP-seeded grafts had a thicker luminal cell layer, more intraparietal arterioles, and a higher expression of endothelial nitric oxide synthase (eNOS) compared with unseeded grafts. Moreover, the LPA stump adjacent to the seeded graft contained more elastin and less collagen than the unseeded control. Syngeneic CP engineering did not accomplish the primary goal of supporting the graft’s growth but was able to improve secondary outcomes, such as the luminal cellularization and intraparietal vascularization of the graft, and elastic remodeling of the recipient artery. The beneficial properties of neonatal CPs may be considered in future bioengineering applications aiming to reproduce the cellular composition of native arteries.
Collapse
Affiliation(s)
- Valeria Vincenza Alvino
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Anita C Thomas
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Mohamed T Ghorbel
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Filippo Rapetto
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Srinivas A Narayan
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Michael Kilcooley
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Dominga Iacobazzi
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Michele Carrabba
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Marco Fagnano
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - William Cathery
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
73
|
Sanaei K, Plotner S, Oommen Jacob A, Ramirez-Vick J, Vyavahare N, Nosoudi N. Effect of all-trans retinoic acid and pentagalloyl glucose on smooth muscle cell elastogenesis. Biomed Mater Eng 2021; 32:145-157. [PMID: 33682692 DOI: 10.3233/bme-201152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The main objective of tissue engineering is to fabricate a tissue construct that mimics native tissue both biologically and mechanically. A recurring problem for tissue-engineered blood vessels (TEBV) is deficient elastogenesis from seeded smooth muscle cells. Elastin is an integral mechanical component in blood vessels, allowing elastic deformation and retraction in response to the shear and pulsatile forces of the cardiac system. OBJECTIVE The goal of this research is to assess the effect of the vitamin A derivative all-trans retinoic acid (RA) and polyphenol pentagalloyl glucose (PGG) on the expression of elastin in human aortic smooth muscle cells (hASMC). METHODS A polycaprolactone (PCL) and the gelatin polymer composite was electrospun and doped with RA and PGG. The scaffolds were subsequently seeded with hASMCs and incubated for five weeks. The resulting tissue-engineered constructs were evaluated using qPCR and Fastin assay for their elastin expression and deposition. RESULTS All treatments showed an increased elastin expression compared to the control, with PGG treatments showing a significant increase in gene expression and elastin deposition.
Collapse
Affiliation(s)
- Kaveh Sanaei
- Biomedical, Industrial and Human Factors Engineering, 228 Russ Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, USA
| | - Sydney Plotner
- Biomedical, Industrial and Human Factors Engineering, 228 Russ Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, USA
| | - Anson Oommen Jacob
- Biomedical, Industrial and Human Factors Engineering, 228 Russ Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, USA
| | - Jaime Ramirez-Vick
- Biomedical, Industrial and Human Factors Engineering, 228 Russ Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, USA
| | | | - Nasim Nosoudi
- Biomedical, Industrial and Human Factors Engineering, 228 Russ Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, USA.,Biomedical Engineering Department, College of Engineering and Computer Sciences, Marshall University, Huntington, WV, USA
| |
Collapse
|
74
|
Antonova LV, Krivkina EO, Sevostianova VV, Mironov AV, Rezvova MA, Shabaev AR, Tkachenko VO, Krutitskiy SS, Khanova MY, Sergeeva TY, Matveeva VG, Glushkova TV, Kutikhin AG, Mukhamadiyarov RA, Deeva NS, Akentieva TN, Sinitsky MY, Velikanova EA, Barbarash LS. Tissue-Engineered Carotid Artery Interposition Grafts Demonstrate High Primary Patency and Promote Vascular Tissue Regeneration in the Ovine Model. Polymers (Basel) 2021; 13:polym13162637. [PMID: 34451177 PMCID: PMC8400235 DOI: 10.3390/polym13162637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Tissue-engineered vascular graft for the reconstruction of small arteries is still an unmet clinical need, despite the fact that a number of promising prototypes have entered preclinical development. Here we test Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Poly(ε-caprolactone) 4-mm-diameter vascular grafts equipped with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and stromal cell-derived factor 1α (SDF-1α) and surface coated with heparin and iloprost (PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo, n = 8) in a sheep carotid artery interposition model, using biostable vascular prostheses of expanded poly(tetrafluoroethylene) (ePTFE, n = 5) as a control. Primary patency of PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts was 62.5% (5/8) at 24 h postimplantation and 50% (4/8) at 18 months postimplantation, while all (5/5) ePTFE conduits were occluded within the 24 h after the surgery. At 18 months postimplantation, PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts were completely resorbed and replaced by the vascular tissue. Regenerated arteries displayed a hierarchical three-layer structure similar to the native blood vessels, being fully endothelialised, highly vascularised and populated by vascular smooth muscle cells and macrophages. The most (4/5, 80%) of the regenerated arteries were free of calcifications but suffered from the aneurysmatic dilation. Therefore, biodegradable PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts showed better short- and long-term results than bio-stable ePTFE analogues, although these scaffolds must be reinforced for the efficient prevention of aneurysms.
Collapse
Affiliation(s)
- Larisa V. Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Evgenia O. Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Viktoriia V. Sevostianova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
- Correspondence: ; Tel.: +7-9069356076
| | - Andrey V. Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Amin R. Shabaev
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Vadim O. Tkachenko
- Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Sergey S. Krutitskiy
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Mariam Yu. Khanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana Yu. Sergeeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Rinat A. Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Nadezhda S. Deeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana N. Akentieva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Maxim Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Leonid S. Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| |
Collapse
|
75
|
Feng Y, Wang X, Zhao Y, Li L, Niu P, Huang Y, Han Y, Tan W, Huo Y. A comparison of passive and active wall mechanics between elastic and muscular arteries of juvenile and adult rats. J Biomech 2021; 126:110642. [PMID: 34325121 DOI: 10.1016/j.jbiomech.2021.110642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
The elastic abdominal aorta and muscular femoral artery are susceptible to aneurysm and atherosclerosis, respectively. The vessel wall mechanics should be an important element for the difference. The objective of the study is to demonstrate a comparison of vessel wall mechanics between elastic and muscular arteries of juvenile and adult rats to show the changes of mechanical properties relevant to aging. The passive and active mechanical tests, theoretical analysis, and histological evaluation were carried out to investigate mechanical properties of vessel walls in the abdominal aorta and carotid and femoral arteries of young and adult rats. There are stiffening femoral artery, unchanged carotid artery, and distensible abdominal aorta in adult rats as compared with the young. The opening angle has values of 54 ± 13°, 82 ± 13°, and 94 ± 13° in the abdominal aorta and carotid and femoral arteries of adult rats, respectively, as well as 80 ± 22°, 93 ± 19°, and 100 ± 23° in the young. The findings are explained by the significantly reduced width of collagen fibers in the abdominal aorta, relatively unchanged width in the carotid artery, and significantly increased width in the femoral artery of adult rats as compared with the young. In conjunction with available literatures, we concluded that inconsistency for nonlinear age-related changes of artery wall mechanics occurs between arteries of different types, which may be a risk factor for the occurrence of abdominal aorta aneurysm and femoral artery atherosclerosis.
Collapse
Affiliation(s)
- Yundi Feng
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| | - Xuan Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yiyang Zhao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Pei Niu
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| | - Yufan Huang
- College of Medicine, Hebei University, Baoding, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenchang Tan
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China; Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yunlong Huo
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
76
|
Dynamic flow priming programs allow tuning up the cell layers properties for engineered vascular graft. Sci Rep 2021; 11:14666. [PMID: 34282200 PMCID: PMC8290030 DOI: 10.1038/s41598-021-94023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue engineered vascular grafts (TEVG) are potentially clear from ethical and epidemiological concerns sources for reconstructive surgery for small diameter blood vessels replacement. Here, we proposed a novel method to create three-layered TEVG on biocompatible glass fiber scaffolds starting from flat sheet state into tubular shape and to train the resulting tissue by our developed bioreactor system. Constructed tubular tissues were matured and trained under 3 types of individual flow programs, and their mechanical and biological properties were analyzed. Training in the bioreactor significantly increased the tissue burst pressure resistance (up to 18 kPa) comparing to untrained tissue. Fluorescent imaging and histological examination of trained vascular tissue revealed that each cell layer has its own individual response to training flow rates. Histological analysis suggested reverse relationship between tissue thickness and shear stress, and the thickness variation profiles were individual between all three types of cell layers. Concluding: a three-layered tissue structure similar to physiological can be assembled by seeding different cell types in succession; the following training of the formed tissue with increasing flow in a bioreactor is effective for promoting cell survival, improving pressure resistance, and cell layer formation of desired properties.
Collapse
|
77
|
Assessment of Electrospun Pellethane-Based Scaffolds for Vascular Tissue Engineering. MATERIALS 2021; 14:ma14133678. [PMID: 34279249 PMCID: PMC8269885 DOI: 10.3390/ma14133678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
We examined the physicochemical properties and the biocompatibility and hemocompatibility of electrospun 3D matrices produced using polyurethane Pellethane 2363-80A (Pel-80A) blends Pel-80A with gelatin or/and bivalirudin. Two layers of vascular grafts of 1.8 mm in diameter were manufactured and studied for hemocompatibility ex vivo and functioning in the infrarenal position of Wistar rat abdominal aorta in vivo (n = 18). Expanded polytetrafluoroethylene (ePTFE) vascular grafts of similar diameter were implanted as a control (n = 18). Scaffolds produced from Pel-80A with Gel showed high stiffness with a long proportional limit and limited influence of wetting on mechanical characteristics. The electrospun matrices with gelatin have moderate capacity to support cell adhesion and proliferation (~30–47%), whereas vascular grafts with bivalirudin in the inner layer have good hemocompatibility ex vivo. The introduction of bivalirudin into grafts inhibited platelet adhesion and does not lead to a change hemolysis and D-dimers concentration. Study in vivo indicates the advantages of Pel-80A grafts over ePTFE in terms of graft occlusion, calcification level, and blood velocity after 6 months of implantation. The thickness of neointima in Pel-80A–based grafts stabilizes after three months (41.84 ± 20.21 µm) and does not increase until six months, demonstrating potential for long-term functioning without stenosis and as a suitable candidate for subsequent preclinical studies in large animals.
Collapse
|
78
|
Fazal F, Raghav S, Callanan A, Koutsos V, Radacsi N. Recent advancements in the bioprinting of vascular grafts. Biofabrication 2021; 13. [PMID: 34102613 DOI: 10.1088/1758-5090/ac0963] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Recent advancements in the bioinks and three-dimensional (3D) bioprinting methods used to fabricate vascular constructs are summarized herein. Critical biomechanical properties required to fabricate an ideal vascular graft are highlighted, as well as various testing methods have been outlined to evaluate the bio-fabricated grafts as per the Food and Drug Administration (FDA) and International Organization for Standardization (ISO) guidelines. Occlusive artery disease and cardiovascular disease are the major causes of death globally. These diseases are caused by the blockage in the arteries, which results in a decreased blood flow to the tissues of major organs in the body, such as the heart. Bypass surgery is often performed using a vascular graft to re-route the blood flow. Autologous grafts represent a gold standard for such bypass surgeries; however, these grafts may be unavailable due to the previous harvesting or possess a poor quality. Synthetic grafts serve well for medium to large-sized vessels, but they fail when used to replace small-diameter vessels, generally smaller than 6 mm. Various tissue engineering approaches have been used to address the urgent need for vascular graft that can withstand hemodynamic blood pressure and has the ability to grow and remodel. Among these approaches, 3D bioprinting offers an attractive solution to construct patient-specific vessel grafts with layered biomimetic structures.
Collapse
Affiliation(s)
- Faraz Fazal
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom.,Department of Mechanical Engineering, University of Engineering and Technology, Lahore, (New Campus) Pakistan
| | - Sakshika Raghav
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, United Kingdom
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| |
Collapse
|
79
|
Fazal F, Diaz Sanchez FJ, Waqas M, Koutsos V, Callanan A, Radacsi N. A modified 3D printer as a hybrid bioprinting-electrospinning system for use in vascular tissue engineering applications. Med Eng Phys 2021; 94:52-60. [PMID: 34303502 DOI: 10.1016/j.medengphy.2021.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
There is a high demand for small diameter vascular grafts having mechanical and biological properties similar to that of living tissues. Tissue-engineered vascular grafts using current methods have often failed due to the mismatch of mechanical properties between the implanted graft and living tissues. To address this limitation, a hybrid bioprinting-electrospinning system is developed for vascular tissue engineering applications. The setup is capable of producing layered structure from electrospun fibres and cell-laden hydrogel. A Creality3D Ender 3D printer has been modified into a hybrid setup having one bioprinting head and two electrospinning heads. Fortus 250mc and Flashforge Creator Pro 3D printers were used to print parts using acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) polymers. An Arduino mega 2560 and a Ramps 1.4 controller board were selected to control the functions of the hybrid bioprinting setup. The setup was tested successfully to print a tubular construct around a rotating needle.
Collapse
Affiliation(s)
- Faraz Fazal
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom; Department of Mechanical Engineering, University of Engineering and Technology, Lahore, (new campus) Pakistan.
| | - Francisco Javier Diaz Sanchez
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom.
| | - Muhammad Waqas
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom.
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom.
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom.
| |
Collapse
|
80
|
Zeng Z, Hu C, Liang Q, Tang L, Cheng D, Ruan C. Coaxial-printed small-diameter polyelectrolyte-based tubes with an electrostatic self-assembly of heparin and YIGSR peptide for antithrombogenicity and endothelialization. Bioact Mater 2021; 6:1628-1638. [PMID: 33313443 PMCID: PMC7701915 DOI: 10.1016/j.bioactmat.2020.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/27/2022] Open
Abstract
Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation. Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios, it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization. Herein, on basis of 3D-printed polyelectrolyte-based vascular grafts, a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described. A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles, in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used. Further, dual bioactive molecules, heparin with negative charges and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes. Due to the electrostatic interaction, the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization. This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction, revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.
Collapse
Affiliation(s)
- Zhiwen Zeng
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Chengshen Hu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qingfei Liang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lan Tang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Delin Cheng
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
81
|
Zhang Q, Bosch-Rué È, Pérez RA, Truskey GA. Biofabrication of tissue engineering vascular systems. APL Bioeng 2021; 5:021507. [PMID: 33981941 PMCID: PMC8106537 DOI: 10.1063/5.0039628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death among persons aged 65 and older in the United States and many other developed countries. Tissue engineered vascular systems (TEVS) can serve as grafts for CVD treatment and be used as in vitro model systems to examine the role of various genetic factors during the CVD progressions. Current focus in the field is to fabricate TEVS that more closely resembles the mechanical properties and extracellular matrix environment of native vessels, which depends heavily on the advance in biofabrication techniques and discovery of novel biomaterials. In this review, we outline the mechanical and biological design requirements of TEVS and explore the history and recent advances in biofabrication methods and biomaterials for tissue engineered blood vessels and microvascular systems with special focus on in vitro applications. In vitro applications of TEVS for disease modeling are discussed.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Èlia Bosch-Rué
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Román A. Pérez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
82
|
Bai S, Zhang X, Zang L, Yang S, Chen X, Yuan X. Electrospinning of Biomaterials for Vascular Regeneration. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
83
|
Inoue T, Kanda K, Yamanami M, Kami D, Gojo S, Yaku H. Modifications of the mechanical properties of in vivo tissue-engineered vascular grafts by chemical treatments for a short duration. PLoS One 2021; 16:e0248346. [PMID: 33711057 PMCID: PMC7954299 DOI: 10.1371/journal.pone.0248346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
In vivo tissue-engineered vascular grafts constructed in the subcutaneous spaces of graft recipients have functioned well clinically. Because the formation of vascular graft tissues depends on several recipient conditions, chemical pretreatments, such as dehydration by ethanol (ET) or crosslinking by glutaraldehyde (GA), have been attempted to improve the initial mechanical durability of the tissues. Here, we compared the effects of short-duration (10 min) chemical treatments on the mechanical properties of tissues. Tubular tissues (internal diameter, 5 mm) constructed in the subcutaneous tissues of beagle dogs (4 weeks, n = 3), were classified into three groups: raw tissue without any treatment (RAW), tissue dehydrated with 70% ET (ET), and tissue crosslinked with 0.6% GA (GA). Five mechanical parameters were measured: burst pressure, suture retention strength, ultimate tensile strength (UTS), ultimate strain (%), and Young’s modulus. The tissues were also autologously re-embedded into the subcutaneous spaces of the same dogs for 4 weeks (n = 2) for the evaluation of histological responses. The burst pressure of the RAW group (1275.9 ± 254.0 mm Hg) was significantly lower than those of ET (2115.1 ± 262.2 mm Hg, p = 0.0298) and GA (2570.5 ± 282.6 mm Hg, p = 0.0017) groups. Suture retention strength, UTS or the ultimate strain did not differ significantly among the groups. Young’s modulus of the ET group was the highest (RAW: 5.41 ± 1.16 MPa, ET: 12.28 ± 2.55 MPa, GA: 7.65 ± 1.18 MPa, p = 0.0185). No significant inflammatory tissue response or evidence of residual chemical toxicity was observed in samples implanted subcutaneously for four weeks. Therefore, short-duration ET and GA treatment might improve surgical handling and the mechanical properties of in vivo tissue-engineered vascular tissues to produce ideal grafts in terms of mechanical properties without interfering with histological responses.
Collapse
Affiliation(s)
- Tomoya Inoue
- Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Kanda
- Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| | - Masashi Yamanami
- Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Yaku
- Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
84
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
85
|
Travnickova M, Kasalkova NS, Sedlar A, Molitor M, Musilkova J, Slepicka P, Svorcik V, Bacakova L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed Mater 2021; 16:025016. [PMID: 33599213 DOI: 10.1088/1748-605x/abaf97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of our research was to study the behaviour of adipose tissue-derived stem cells (ADSCs) and vascular smooth muscle cells (VSMCs) on variously modified poly(L-lactide) (PLLA) foils, namely on pristine PLLA, plasma-treated PLLA, PLLA grafted with polyethylene glycol (PEG), PLLA grafted with dextran (Dex), and the tissue culture polystyrene (PS) control. On these materials, the ADSCs were biochemically differentiated towards VSMCs by a medium supplemented with TGFβ1, BMP4 and ascorbic acid (i.e. differentiation medium). ADSCs cultured in a non-differentiation medium were used as a negative control. Mature VSMCs cultured in both types of medium were used as a positive control. The impact of the variously modified PLLA foils and/or differences in the composition of the medium were studied with reference to cell adhesion, growth and differentiation. We observed similar adhesion and growth of ADSCs on all PLLA samples when they were cultured in the non-differentiation medium. The differentiation medium supported the expression of specific early, mid-term and/or late markers of differentiation (i.e. type I collagen, αSMA, calponin, smoothelin, and smooth muscle myosin heavy chain) in ADSCs on all tested samples. Moreover, ADSCs cultured in the differentiation medium revealed significant differences in cell growth among the samples that were similar to the differences observed in the cultures of VSMCs. The round morphology of the VSMCs indicated worse adhesion to pristine PLLA, and this sample was also characterized by the lowest cell proliferation. Culturing VSMCs in the differentiation medium inhibited their metabolic activity and reduced the cell numbers. Both cell types formed the most stable monolayer on plasma-treated PLLA and on the PS control. The behaviour of ADSCs and VSMCs on the tested PLLA foils differed according to the specific cell type and culture conditions. The suitable biocompatibility of both cell types on the tested PLLA foils seems to be favourable for vascular tissue engineering purposes.
Collapse
Affiliation(s)
- Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Antonin Sedlar
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martin Molitor
- Department of Plastic Surgery, Na Bulovce Hospital and First Faculty of Medicine, Charles University, Budinova 67/2, 180 81, Prague 8, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
86
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
87
|
Chen SG, Ugwu F, Li WC, Caplice NM, Petcu E, Yip SP, Huang CL. Vascular Tissue Engineering: Advanced Techniques and Gene Editing in Stem Cells for Graft Generation. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:14-28. [DOI: 10.1089/ten.teb.2019.0264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sin-Guang Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Felix Ugwu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, China
| | - Noel M. Caplice
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Eugen Petcu
- Griffith University School of Medicine, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
88
|
Martin NK, Domínguez-Robles J, Stewart SA, Cornelius VA, Anjani QK, Utomo E, García-Romero I, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Fused deposition modelling for the development of drug loaded cardiovascular prosthesis. Int J Pharm 2021; 595:120243. [PMID: 33484923 DOI: 10.1016/j.ijpharm.2021.120243] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases constitute a number of conditions which are the leading cause of death globally. To combat these diseases and improve the quality and duration of life, several cardiac implants have been developed, including stents, vascular grafts and valvular prostheses. The implantation of these vascular prosthesis has associated risks such as infection or blood clot formation. In order to overcome these limitations medicated vascular prosthesis have been previously used. The present paper describes a 3D printing method to develop medicated vascular prosthesis using fused deposition modelling (FDM) technology. For this purpose, rifampicin (RIF) was selected as a model molecule as it can be used to prevent vascular graft prosthesis infection. Thermoplastic polyurethane (TPU) and RIF were combined using hot melt extrusion (HME) to obtain filaments containing RIF concentrations ranging between 0 and 1% (w/w). These materials are capable of providing RIF release for periods ranging between 30 and 80 days. Moreover, TPU-based materials containing RIF were capable of inhibiting the growth of Staphylococcus aureus. This behaviour was observed even for TPU-based materials containing RIF concentrations of 0.1% (w/w). TPU containing 1% (w/w) of RIF showed antimicrobial properties even after 30 days of RIF release. Alternatively, these methods were used to prepare dipyridamole containing TPU filaments. Finally, using a dual extrusion 3D printer vascular grafts containing both drugs were prepared.
Collapse
Affiliation(s)
- Niamh K Martin
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| |
Collapse
|
89
|
Iglesias-Echevarria M, Johnson R, Rafuse M, Ding Y, Tan W. Vascular Grafts with Tailored Stiffness and a Ligand Environment via Multiarmed Polymer Sheath for Expeditious Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:545-558. [PMID: 34458689 DOI: 10.1021/acsabm.0c01114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bypass graft is the mainstream of surgical intervention to treat vascular diseases. Ideal bypass materials, yet to be developed, require mechanical properties, availability, clinically feasible manufacturing logistics, and bioactivities with precise physicochemical cues defined to guide cell activities for arterial regeneration. Such needs instigated our fabrication of vascular grafts, which consist of coaxial, nanostructured fibers exhibiting a polycaprolactone (PCL) core and a photoclickable, 4-arm thiolated polyethylene glycol-norbornene (PEG-NB) sheath. The graft strength and bioactivity were modulated by the PCL concentration and the peptides (RGD, transforming growth factor β-1 or TGF-β1) conjugated to thiol-ene of PEG-NB, respectively. Structural, physical, and mechanical characterizations demonstrated that the fibrous grafts mimicked the key features of the native extracellular matrix, including a crosslinked fiber network for structural stability, viscoelasticity emulating arteries, hydration property, and high porosity for cell infiltration. Meanwhile, these grafts displayed strength and toughness exceeding or meeting surgical criteria. Furthermore, the grafts with higher PCL concentration (3 vs 1.8%) showed thicker fibers, lower porosity and pore size, and increased elastic and storage moduli. Graft bioactivity was determined by the mesenchymal stem cell (MSC) behaviors on the grafts and arterial regeneration in vivo using interposition grafting. Results showed that the cell adhesion and proliferation increased with the RGD density (25 vs 5 mM). After 1 week implantation, all peptide-functionalized PCL/PEG-NB grafts with or without MSC preseeding, as opposed to PCL grafts, showed expeditious endothelial lining, abundant vascular cell infiltration, and matrix production. Compared to RGD grafts, RGD/TGF-β1 grafts enhanced MSC differentiation into smooth muscle cells in vitro and developed thicker smooth muscle cell layers in vivo. Overall, the versatile porous vascular grafts offer superior properties and tunability for future translation.
Collapse
Affiliation(s)
- Monica Iglesias-Echevarria
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Richard Johnson
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Michael Rafuse
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Yonghui Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
90
|
Leal BBJ, Wakabayashi N, Oyama K, Kamiya H, Braghirolli DI, Pranke P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front Cardiovasc Med 2021; 7:592361. [PMID: 33585576 PMCID: PMC7873993 DOI: 10.3389/fcvm.2020.592361] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the most common cause of death in the world. In severe cases, replacement or revascularization using vascular grafts are the treatment options. While several synthetic vascular grafts are clinically used with common approval for medium to large-caliber vessels, autologous vascular grafts are the only options clinically approved for small-caliber revascularizations. Autologous grafts have, however, some limitations in quantity and quality, and cause an invasiveness to patients when harvested. Therefore, the development of small-caliber synthetic vascular grafts (<5 mm) has been urged. Since small-caliber synthetic grafts made from the same materials as middle and large-caliber grafts have poor patency rates due to thrombus formation and intimal hyperplasia within the graft, newly innovative methodologies with vascular tissue engineering such as electrospinning, decellularization, lyophilization, and 3D printing, and novel polymers have been developed. This review article represents topics on the methodologies used in the development of scaffold-based vascular grafts and the polymers used in vitro and in vivo.
Collapse
Affiliation(s)
- Bruna B J Leal
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Naohiro Wakabayashi
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kyohei Oyama
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Kamiya
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Daikelly I Braghirolli
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Stem Cell Research Institute, Porto Alegre, Brazil
| |
Collapse
|
91
|
3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 2021; 4:344-378. [PMID: 33425460 PMCID: PMC7779248 DOI: 10.1007/s42242-020-00109-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/24/2020] [Indexed: 01/31/2023]
Abstract
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.
Collapse
|
92
|
Sulaiman NS, Bond AR, Bruno VD, Joseph J, Johnson JL, Suleiman MS, George SJ, Ascione R. Effective decellularisation of human saphenous veins for biocompatible arterial tissue engineering applications: Bench optimisation and feasibility in vivo testing. J Tissue Eng 2021; 12:2041731420987529. [PMID: 33854749 PMCID: PMC8010838 DOI: 10.1177/2041731420987529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.
Collapse
Affiliation(s)
- Nadiah S Sulaiman
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Andrew R Bond
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Vito D Bruno
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - John Joseph
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Jason L Johnson
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - M-Saadeh Suleiman
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Sarah J George
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Raimondo Ascione
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
- Raimondo Ascione, Bristol Heart Institute, Department of Translational Science, Bristol Royal Infirmary, level 7, University of Bristol, Marlborough Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
93
|
Rodrigues ICP, Pereira KD, Woigt LF, Jardini AL, Luchessi AD, Lopes ÉSN, Webster TJ, Gabriel LP. A novel technique to produce tubular scaffolds based on collagen and elastin. Artif Organs 2020; 45:E113-E122. [PMID: 33169400 DOI: 10.1111/aor.13857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/27/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Tubular polymer scaffolds based on tissue engineering techniques have been studied as potential alternatives for vascular regeneration implants. The blood vessels of the cardiovascular system are mainly fibrous, composed of collagen (Col) and elastin (El), and its inner layer consists of endothelial cells. In this work, Col and El were combined with polyurethane (PU), a biocompatible synthetic polymer, and rotary jet spinning, a new and highly productive technique, to produce fibrous scaffolds. The scaffolds produced at 18 000 rpm presented homogeneous, bead-free, and solvent-free fibers. The blend formation between PU-Col-El was identified by chemical composition analysis and enhanced the thermal stability up to 324°C. The hydrophilic nature of the scaffold was revealed by its low contact angle. Cell viability of human umbilical vein endothelial cells with the scaffold was proven for 72 hours. The combined strategy of rotary jet spinning with a polymer blend containing Col and El was verified as an effective and promising alternative to obtain tubular scaffolds for tissue engineering on a large-scale production.
Collapse
Affiliation(s)
- Isabella C P Rodrigues
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,School of Mechanical Engineering, University of Campinas, Campinas, Brazil
| | - Karina D Pereira
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Luiza F Woigt
- School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Augusto D Luchessi
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Éder S N Lopes
- School of Mechanical Engineering, University of Campinas, Campinas, Brazil
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Laís P Gabriel
- School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
94
|
Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering (Basel) 2020; 7:E160. [PMID: 33321830 PMCID: PMC7763104 DOI: 10.3390/bioengineering7040160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The increased demands of small-diameter vascular grafts (SDVGs) globally has forced the scientific society to explore alternative strategies utilizing the tissue engineering approaches. Cardiovascular disease (CVD) comprises one of the most lethal groups of non-communicable disorders worldwide. It has been estimated that in Europe, the healthcare cost for the administration of CVD is more than 169 billion €. Common manifestations involve the narrowing or occlusion of blood vessels. The replacement of damaged vessels with autologous grafts represents one of the applied therapeutic approaches in CVD. However, significant drawbacks are accompanying the above procedure; therefore, the exploration of alternative vessel sources must be performed. Engineered SDVGs can be produced through the utilization of non-degradable/degradable and naturally derived materials. Decellularized vessels represent also an alternative valuable source for the development of SDVGs. In this review, a great number of SDVG engineering approaches will be highlighted. Importantly, the state-of-the-art methodologies, which are currently employed, will be comprehensively presented. A discussion summarizing the key marks and the future perspectives of SDVG engineering will be included in this review. Taking into consideration the increased number of patients with CVD, SDVG engineering may assist significantly in cardiovascular reconstructive surgery and, therefore, the overall improvement of patients' life.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Alkiviadis Kostakis
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| |
Collapse
|
95
|
Zbinden JC, Blum KM, Berman AG, Ramachandra AB, Szafron JM, Kerr KE, Anderson JL, Sangha GS, Earl CC, Nigh NR, Mirhaidari GJM, Reinhardt JW, Chang Y, Yi T, Smalley R, Gabriele PD, Harris JJ, Humphrey JD, Goergen CJ, Breuer CK. Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development. Adv Healthc Mater 2020; 9:e2001093. [PMID: 33063452 DOI: 10.1002/adhm.202001093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/17/2020] [Indexed: 01/06/2023]
Abstract
Tissue engineered vascular grafts (TEVGs) using scaffolds fabricated from braided poly(glycolic acid) (PGA) fibers coated with poly(glycerol sebacate) (PGS) are developed. The approach relies on in vivo tissue engineering by which neotissue forms solely within the body after a scaffold has been implanted. Herein, the impact of altering scaffold braid design and scaffold coating on neotissue formation is investigated. Several combinations of braiding parameters are manufactured and evaluated in a Beige mouse model in the infrarenal abdominal aorta. Animals are followed with 4D ultrasound analysis, and 12 week explanted vessels are evaluated for biaxial mechanical properties as well as histological composition. Results show that scaffold parameters (i.e., braiding angle, braiding density, and presence of a PGS coating) have interdependent effects on the resulting graft performance, namely, alteration of these parameters influences levels of inflammation, extracellular matrix production, graft dilation, neovessel distensibility, and overall survival. Coupling carefully designed in vivo experimentation with regression analysis, critical relationships between the scaffold design and the resulting neotissue that enable induction of favorable cellular and extracellular composition in a controlled manner are uncovered. Such an approach provides a potential for fabricating scaffolds with a broad range of features and the potential to manufacture optimized TEVGs.
Collapse
Affiliation(s)
- Jacob C. Zbinden
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Kevin M. Blum
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Abhay B. Ramachandra
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Jason M. Szafron
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Katherine E. Kerr
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Jennifer L. Anderson
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Gurneet S. Sangha
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Noah R. Nigh
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Gabriel J. M. Mirhaidari
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - James W. Reinhardt
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Yu‐Chun Chang
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Tai Yi
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Ryan Smalley
- Secant Group, LLC 551 East Church Ave Telford PA 18969 USA
| | | | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Christopher K. Breuer
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| |
Collapse
|
96
|
Zhang L, Wei F, Bai Q, Song D, Zheng Z, Wang Y, Liu X, Abdulrahman AA, Bian Y, Xu X, Chen C, Zhang H, Sun D. Oscillating Magnetic Field Regulates Cell Adherence and Endothelialization Based on Magnetic Nanoparticle-Modified Bacterial Cellulose. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52467-52478. [PMID: 33170636 DOI: 10.1021/acsami.0c17213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the widely explored biomaterial scaffolds in vascular tissue engineering applications lately, no ideal platform has been provided for small diameter synthetic vascular grafts mainly due to the thrombosis issue. Endothelium is the only known completely non-thrombogenic material; so, functional endothelialization onto vascular biomaterials is critical in maintaining the patency of vascular networks. Bacterial cellulose (BC) is a natural biomaterial with superior biocompatibility and appropriate hydrophilicity as potential vascular grafts. In previous studies, surface modification of active peptides such as Arg-Gly-Asp (RGD) sequences onto biomaterials has been proven to achieve accelerated and selective endothelial cell (EC) adhesion. In our study, we demonstrated a new strategy to remotely regulate the adhesion of endothelial cells based on an oscillating magnetic field and achieve successful endothelialization on the modified BC membranes. In details, we synthesized bacterial cellulose (BC), magnetic BC (MBC), and RGD peptide-grafted magnetic BC (RMBC), modified with the HOOC-PEG-COOH-coated iron oxide nanoparticles (PEG-IONs). The endothelial cells were cultured on the three materials under different frequencies of an oscillating magnetic field, including "stationary" (0 Hz), "slow" (0.1 Hz), and "fast" (2 Hz) groups. Compared to BC and MBC membranes, the cells on RMBC membranes generally show better adhesion and proliferation. Meanwhile, the "slow" frequency of a magnetic field promotes this phenomenon on RMBC and achieves endothelialization after culture for 4 days, whereas "fast" inhibits the cellular attachment. Overall, we demonstrate a non-invasive and convenient method to regulate the endothelialization process, with promising applications in vascular tissue engineering.
Collapse
Affiliation(s)
- Lei Zhang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Feng Wei
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qianqian Bai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong SAR, P.R. China
| | - Danhong Song
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Zhuofan Zheng
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yafei Wang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xin Liu
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Al-Ammari Abdulrahman
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yingxin Bian
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xuran Xu
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Chuntao Chen
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
97
|
Eyre K, Samper E, Haverich A, Hilfiker A, Andrée B. Re-endothelialization of non-detergent decellularized porcine vessels. Artif Organs 2020; 45:E53-E64. [PMID: 33001470 DOI: 10.1111/aor.13836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering utilizes an interdisciplinary approach to generate constructs for the treatment and repair of diseased organs. Generation of small vessels as vascular grafts or as envisioned central vessel for vascularized constructs is still a challenge. Here, the decellularization of porcine vessels by a non-detergent based protocol was developed and investigated. Perfusion-decellularization with sodium hydroxide solution resulted in removal of cellular material throughout the whole length of the vessel while preserving structural and mechanical integrity. A re-endothelialization of the retrieved matrix with human umbilical vein endothelial cells and cardiac endothelial cells was achieved through rotation-based seeding employing a custom-made bioreactor. A confluent monolayer was detected on the entire luminal surface. Thus, a non-detergent-based decellularization method allowing the re-endothelialization of the luminal surface was developed in this study, thereby paving the way for future implementation of the resulting construct as vascular graft or as central vessel for tissue engineered constructs in need of a perfusion system with readily available anastomosis sites.
Collapse
Affiliation(s)
- Katerina Eyre
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Esther Samper
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Birgit Andrée
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
98
|
Cai Z, Gu Y, Xiao Y, Wang C, Wang Z. Porcine carotid arteries decellularized with a suitable concentration combination of Triton X-100 and sodium dodecyl sulfate for tissue engineering vascular grafts. Cell Tissue Bank 2020; 22:277-286. [PMID: 33123849 DOI: 10.1007/s10561-020-09876-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Tissue engineering vascular grafts (TEVGs) constructed by decellularized arteries have the potential to replace autologous blood vessels in bypass surgery for patients with cardiovascular disease. There are various methods of decellularization without a standard protocol. Detergents approaches are simple, and easy control of experimental conditions. Non-ionic detergent Triton X-100 and ionic detergent sodium dodecyl sulfate (SDS) are the most commonly used detergents. In this study, we used Triton X-100 and SDS with different concentrations to decellularize porcine carotid arteries. After that, we investigated the acellular effect and mechanical properties of decellularized arteries to find a promising concentration combination for decellularization. Results showed that any detergents' combination would damage the inherent structure of extracellular matrix, and the destruction increased with the increase of detergents' concentration. We concluded that the decellularization approach of 0.5% Triton X-100 for 24 h combined with 0.25% SDS for 72 h could help to obtain decellularized arteries with minimum destruction. This protocol may be able to prepare a clinically suitable vascular scaffold for TEVGs.
Collapse
Affiliation(s)
- Zhiwen Cai
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Zhonggao Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
99
|
Davaapil H, Shetty DK, Sinha S. Aortic "Disease-in-a-Dish": Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Front Cell Dev Biol 2020; 8:550504. [PMID: 33195187 PMCID: PMC7655792 DOI: 10.3389/fcell.2020.550504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage. In particular, we discuss the practical aspects of vascular smooth muscle cell derivation and characterization, and provide our personal insights into the challenges and limitations of this approach. Future applications, such as genotype-phenotype association, drug screening, and precision medicine are discussed. We propose that iPSC-derived aortic disease models could guide future clinical trials via “clinical-trials-in-a-dish”, thus paving the way for new and improved therapies for patients.
Collapse
Affiliation(s)
- Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Deeti K Shetty
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
100
|
Zhou X, Nowicki M, Sun H, Hann SY, Cui H, Esworthy T, Lee JD, Plesniak M, Zhang LG. 3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell Layers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45904-45915. [PMID: 33006880 DOI: 10.1021/acsami.0c14871] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blood vessel damage resulting from trauma or diseases presents a serious risk of morbidity and mortality. Although synthetic vascular grafts have been successfully commercialized for clinical use, they are currently only readily available for large-diameter vessels (>6 mm). Small-diameter vessel (<6 mm) replacements, however, still present significant clinical challenges worldwide. The primary objective of this study is to create novel, tunable, small-diameter blood vessels with biomimetic two distinct cell layers [vascular endothelial cell (VEC) and vascular smooth muscle cell (VSMC)] using an advanced coaxial 3D-bioplotter platform. Specifically, the VSMCs were laden in the vessel wall and VECs grew in the lumen to mimic the natural composition of the blood vessel. First, a novel bioink consisting of VSMCs laden in gelatin methacryloyl (GelMA)/polyethylene(glycol)diacrylate/alginate and lyase was designed. This specific design is favorable for nutrient exchange in an ambient environment and simultaneously improves laden cell proliferation in the matrix pore without the space restriction inherent with substance encapsulation. In the vessel wall, the laden VSMCs steadily grew as the alginate was gradually degraded by lyase leaving more space for cell proliferation in matrices. Through computational fluid dynamics simulation, the vessel demonstrated significantly perfusable and mechanical properties under various flow velocities, flow viscosities, and temperature conditions. Moreover, both VSMCs in the scaffold matrix and VECs in the lumen steadily proliferated over time creating a significant two-cell-layered structure. Cell proliferation was confirmed visually through staining the markers of alpha-smooth muscle actin and cluster of differentiation 31, commonly tied to angiogenesis phenomena, in the vessel matrices and lumen, respectively. Furthermore, the results were confirmed quantitatively through gene analysis which suggested good angiogenesis expression in the blood vessels. This study demonstrated that the printed blood vessels with two distinct cell layers of VECs and VSMCs could be potential candidates for clinical small-diameter blood vessel replacement applications.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Margaret Nowicki
- Department of Civil and Mechanical Engineering, The United States Military Academy, West Point, New York 10996, United States
| | - Hao Sun
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - James D Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Michael Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Biomedical Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Electrical and Computer Engineering, The George Washington University, Washington District of Columbia 20052, United States
- Department of Medicine, The George Washington University, Washington District of Columbia 20052, United States
| |
Collapse
|