51
|
Bellerba F, Chatziioannou AC, Jasbi P, Robinot N, Keski-Rahkonen P, Trolat A, Vozar B, Hartman SJ, Scalbert A, Bonanni B, Johansson H, Sears DD, Gandini S. Metabolomic profiles of metformin in breast cancer survivors: a pooled analysis of plasmas from two randomized placebo-controlled trials. J Transl Med 2022; 20:629. [PMID: 36581893 PMCID: PMC9798585 DOI: 10.1186/s12967-022-03809-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Obesity is a major health concern for breast cancer survivors, being associated with high recurrence and reduced efficacy during cancer treatment. Metformin treatment is associated with reduced breast cancer incidence, recurrence and mortality. To better understand the underlying mechanisms through which metformin may reduce recurrence, we aimed to conduct metabolic profiling of overweight/obese breast cancer survivors before and after metformin treatment. METHODS Fasting plasma samples from 373 overweight or obese breast cancer survivors randomly assigned to metformin (n = 194) or placebo (n = 179) administration were collected at baseline, after 6 months (Reach For Health trial), and after 12 months (MetBreCS trial). Archival samples were concurrently analyzed using three complementary methods: untargeted LC-QTOF-MS metabolomics, targeted LC-MS metabolomics (AbsoluteIDQ p180, Biocrates), and gas chromatography phospholipid fatty acid assay. Multivariable linear regression models and family-wise error correction were used to identify metabolites that significantly changed after metformin treatment. RESULTS Participants (n = 352) with both baseline and study end point samples available were included in the analysis. After adjusting for confounders such as study center, age, body mass index and false discovery rate, we found that metformin treatment was significantly associated with decreased levels of citrulline, arginine, tyrosine, caffeine, paraxanthine, and theophylline, and increased levels of leucine, isoleucine, proline, 3-methyl-2-oxovalerate, 4-methyl-2-oxovalerate, alanine and indoxyl-sulphate. Long-chain unsaturated phosphatidylcholines (PC ae C36:4, PC ae C38:5, PC ae C36:5 and PC ae C38:6) were significantly decreased with the metformin treatment, as were phospholipid-derived long-chain n-6 fatty acids. The metabolomic profiles of metformin treatment suggest change in specific biochemical pathways known to impair cancer cell growth including activation of CYP1A2, alterations in fatty acid desaturase activity, and altered metabolism of specific amino acids, including impaired branched chain amino acid catabolism. CONCLUSIONS Our results in overweight breast cancer survivors identify new metabolic effects of metformin treatment that may mechanistically contribute to reduced risk of recurrence in this population and reduced obesity-related cancer risk reported in observational studies. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01302379 and EudraCT Protocol #: 2015-001001-14.
Collapse
Affiliation(s)
- Federica Bellerba
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Nivonirina Robinot
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Amarine Trolat
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Béatrice Vozar
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Sheri J Hartman
- Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
- Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
52
|
Luti S, Militello R, Fiaschi T, Magherini F, Gamberi T, Parri M, Marzocchini R, Pratesi S, Soldaini R, Modesti A, Modesti PA. Preliminary results indicate that regular training induces high protection against oxidative stress in basketball players compared to soccer. Sci Rep 2022; 12:18526. [PMID: 36323868 PMCID: PMC9630319 DOI: 10.1038/s41598-022-23351-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
In elite athlete several metabolic changes occur during regular training. These modifications are associated with changes in blood metabolic profile and can lead to adaptive mechanisms aimed at establish a new dynamic equilibrium, which guarantees better performance. The goal of this study was to characterize the plasma metabolic profile and redox homeostasis, in athletes practicing two different team sports such as soccer and basketball in order to identify potential metabolic pathways underlying the differences in training programs. A cohort of 30 male, 20 professional players (10 soccer and 10 basketballs) and 10 sedentary males as control were enrolled in the study. Plasma redox balance, metabolites and adiponectin were determined. The results show low levels of oxidative species (25.5%), with both high antioxidant capacity (17.6%) and adiponectin level (64.4%) in plasma from basketball players, in comparison to soccer players. Metabolic analysis indicates in basketball players a significant high plasma level of amino acids Valine and Ornithine both involved in redox homeostasis and anti-inflammatory metabolism.
Collapse
Affiliation(s)
- Simone Luti
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Rosamaria Militello
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Tania Fiaschi
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Francesca Magherini
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Tania Gamberi
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Matteo Parri
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Riccardo Marzocchini
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Simone Pratesi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Riccardo Soldaini
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Alessandra Modesti
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Pietro A. Modesti
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
53
|
Oun A, Soliman A, Trombetta-Lima M, Tzepapadaki A, Tsagkari D, Kortholt A, Dolga AM. LRRK2 protects immune cells against erastin-induced Ferroptosis. Neurobiol Dis 2022; 175:105917. [DOI: 10.1016/j.nbd.2022.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
54
|
Identifying a metabolomics profile associated with masked hypertension in two independent cohorts: Data from the African-PREDICT and SABPA studies. Hypertens Res 2022; 45:1781-1793. [PMID: 36056205 DOI: 10.1038/s41440-022-01010-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Individuals with masked hypertension (MHT) have a greater risk of adverse cardiovascular outcomes than normotensive (NT) individuals. Exploring metabolomic differences between NT and MHT individuals may help provide a better understanding of the etiology of MHT. We analyzed data from 910 young participants (83% NT and 17% MHT) (mean age 24 ± 3 years) from the African-PREDICT and 210 older participants (63% NT and 37% MHT) from the SABPA (mean age 42 ± 9.6 years) studies. Clinic and ambulatory blood pressures (BPs) were used to define BP phenotypes. Urinary amino acids and acylcarnitines were measured using liquid chromatography time-of-flight mass spectrometry in SABPA and liquid chromatography tandem mass spectrometry in the African-PREDICT studies. In the SABPA study, amino acids (leucine/isoleucine, valine, methionine, phenylalanine), free carnitine (C0-carnitine), and acylcarnitines C3 (propionyl)-, C4 (butyryl)-carnitine and total acylcarnitine) were higher in MHT than NT adults. In the African-PREDICT study, C0- and C5-carnitines were higher in MHT individuals. With unadjusted analyses in NT adults from the SABPA study, ambulatory SBP correlated positively with only C3-carnitine. In MHT individuals, positive correlations of ambulatory SBP with leucine/isoleucine, valine, methionine, phenylalanine, C0-carnitine and C3-carnitine were evident (all p < 0.05). In the African-PREDICT study, ambulatory SBP correlated positively with C0-carnitine (r = 0.101; p = 0.006) and C5-carnitine (r = 0.195; p < 0.001) in NT adults and C5-carnitine in MHT individuals (r = 0.169; p = 0.034). We demonstrated differences between the metabolomic profiles of NT and MHT adults, which may reflect different stages in the alteration of branched-chain amino acid metabolism early on and later in life.
Collapse
|
55
|
Kang J, Kim JY, Jung Y, Kim SU, Lee EY, Cho JY. Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue. Metabolites 2022; 12:1004. [PMID: 36295908 PMCID: PMC9611268 DOI: 10.3390/metabo12101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic inflammatory myopathy (IIM) is hard to diagnose without a muscle biopsy. We aimed to identify a metabolite panel for IIM detection by metabolomics approach in serum samples and to explore the metabolomic signature in tissue samples from a mouse model. We obtained serum samples from IIM patients, ankylosing spondylitis (AS) patients, healthy volunteers and muscle tissue samples from IIM murine model. All samples were subjected to a targeted metabolomic approach with various statistical analyses on serum and tissue samples to identify metabolic alterations. Three machine learning methods, such as logistic regression (LR), support vector machine (SVM), and random forest (RF), were applied to build prediction models. A set of 7 predictive metabolites was calculated using backward stepwise selection, and the model was evaluated within 5-fold cross-validation by using three machine algorithms. The model produced an area under the receiver operating characteristic curve values of 0.955 (LR), 0.908 (RF) and 0.918 (SVM). A total of 68 metabolites were significantly changed in mouse tissue. Notably, the most influential pathways contributing to the inflammation of muscle were the polyamine pathway and the beta-alanine pathway. Our metabolomic approach offers the potential biomarkers of IIM and reveals pathologically relevant metabolic pathways that are associated with IIM.
Collapse
Affiliation(s)
- Jihyun Kang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jeong Yeon Kim
- Division of Cellular Genomics, GENOME INSIGHT Technologies, Seoul 06735, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youjin Jung
- Division of Rheumatology, Department of Internal Medicine, Seoul Metropolitan Seoul Medical Center, Seoul 02053, Korea
| | - Seon Uk Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
56
|
Sun M, Zhao H, Liu Y, Ma Y, Tian Z, Wang H, Wei S, Guo Q, Gu Z, Jiang H. Deciphering the pharmacological mechanisms of Chaenomeles Fructus against rheumatoid arthritis by integrating network pharmacology and experimental validation. Food Sci Nutr 2022; 10:3380-3394. [PMID: 36249962 PMCID: PMC9548373 DOI: 10.1002/fsn3.2938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022] Open
Abstract
Chaenomeles Fructus is a plant that can be used for both food and medicine. Modern studies have shown that Chaenomeles Fructus has anti-inflammatory and immunosuppressive effects on arthritis. However, the mechanism of action of Chaenomeles Fructus on rheumatoid arthritis (RA) and its main active ingredients are still unclear. This study was aimed at devising an integrated strategy for investigating the bioactivity constituents and possible pharmacological mechanisms of Chaenomeles Fructus against RA. The components of Chaenomeles Fructus were analyzed using UPLC-Q-Exactive orbitrap MS techniques and applied to screen the active components of Chaenomeles Fructus according to their oral bioavailability and drug-likeness index. Then, we speculated on the potential molecular mechanisms of Chaenomeles Fructus against RA through a network pharmacology analysis. Finally, the potential molecular mechanisms of Chaenomeles Fructus against RA were validated in a complete Freund's adjuvant (CFA)-induced RA rat model. We identified 48 components in Chaenomeles Fructus and screened seven bioactive ingredients. The results of the network pharmacology prediction and the experimental verification results were analyzed by Venn analysis, and the experimental results concluded that Chaenomeles Fructus mainly interferes with the inflammation of RA by inhibiting arachidonic acid metabolism and the MAPK signaling pathway. This study identified the ingredients of Chaenomeles Fructus by UPLC-Q-Exactive orbitrap MS and explained the possible mechanisms of Chaenomeles Fructus against RA by integrating network pharmacology and experimental validation.
Collapse
Affiliation(s)
- Mengjia Sun
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Haijun Zhao
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yuecheng Liu
- Shandong Academy of Traditional Chinese MedicineJinanChina
| | - Yanni Ma
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Zhenhua Tian
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| | - Huanjun Wang
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Sheng Wei
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| | - Qingmei Guo
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Zhengwei Gu
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Haiqiang Jiang
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
57
|
Uzunlulu G, Uzunlulu M, Gencer A, Özdoğru F, Seven S. Knowledge on Medical Waste Management Among Health Care Personnel: A Report from Turkey. CYPRUS JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4274/cjms.2020.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
58
|
The amino acid profile of Camelina sativa seeds correlates with the strongest immune response in dairy ewes. Animal 2022; 16:100621. [DOI: 10.1016/j.animal.2022.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
|
59
|
Julaton T, Taclendo A, Oyong G, Rempillo O, Galvez MC, Vallar E. In Silico Insights on the Pro-Inflammatory Potential of Polycyclic Aromatic Hydrocarbons and the Prospective Anti-Inflammatory Capacity of Andrographis paniculata Phytocompounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148588. [PMID: 35886440 PMCID: PMC9317509 DOI: 10.3390/ijerph19148588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
Inflammation linked to various diseases is the biological response to certain stimuli. The pro-inflammatory potential of Polycyclic Aromatic Hydrocarbons (PAHs) as potential inducers of inflammation bound to the Toll-like Receptor 4 (TLR4) and the anti-inflammatory capacity of A. paniculata (AP) phytocompounds as prospective inhibitors of the Nuclear Factor Kappa B (NF-κB) p50 transcription factor are investigated via in silico techniques. The molecular docking of the PAHs and AP phytocompounds is performed in AutoDock Vina by calculating their binding energies. The molecular dynamics simulations (MDS) of the apo and ligand-bound complex of the top binding ligands were performed in CABS-flex. The agonists, which included the PAHs indeno(1,2,3-cd)pyrene (IP), and dibenz(a,h)anthracene (DahA), had the highest binding energies of −10 kcal/mol and −9.2 kcal/mol, respectively. The most stable antagonists in the binding site with binding energies to the NF-κB p50 were the AP phytocompounds with −5.6 kcal/mol for ergosterol peroxide and −5.3 kcal/mol for 14-deoxy-14,15-dehydroandrographolide. The MDS of the apo human TLR4 and PAH-bound TLR4, and the apo p50 and the AP phytocompound-bound NF-κB p50 showed minimal fluctuations. These results reveal that IP and DahA are significant inducers of inflammation, whereas ergosterol peroxide and 14-deoxy-14,15-dehydroandrographolide are inhibitors of the NF-κB pathway. Furthermore, the study theorizes that any inflammatory activity induced by PAH can be potentially inhibited by A. paniculata phytocompounds.
Collapse
Affiliation(s)
- Trixia Julaton
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Aibelou Taclendo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Glenn Oyong
- Molecular Science Unit Laboratory, Center for Natural Sciences and Ecological Research, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| | - Ofelia Rempillo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Maria Cecilia Galvez
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Edgar Vallar
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
- Correspondence:
| |
Collapse
|
60
|
Weber-Stiehl S, Järke L, Castrillón-Betancur JC, Gilbert F, Sommer F. Mitochondrial Function and Microbial Metabolites as Central Regulators of Intestinal Immune Responses and Cancer. Front Microbiol 2022; 13:919424. [PMID: 35847099 PMCID: PMC9277123 DOI: 10.3389/fmicb.2022.919424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Energy and anabolic metabolism are essential for normal cellular homeostasis but also play an important role in regulating immune responses and cancer development as active immune and cancer cells show an altered metabolic profile. Mitochondria take a prominent position in these metabolic reactions. First, most key energetic reactions take place within or in conjunction with mitochondria. Second, mitochondria react to internal cues from within the cell but also to external cues originating from the microbiota, a vast diversity of associated microorganisms. The impact of the microbiota on host physiology has been largely investigated in the last decade revealing that the microbiota contributes to the extraction of calories from the diet, energy metabolism, maturation of the immune system and cellular differentiation. Thus, changes in the microbiota termed dysbiosis have been associated with disease development including metabolic diseases, inflammation and cancer. Targeting the microbiota to modulate interactions with the mitochondria and cellular metabolism to delay or inhibit disease development and pathogenesis appears an attractive therapeutic approach. Here, we summarize recent advances in developing the therapeutic potential of microbiota-mitochondria interactions for inflammation and cancer.
Collapse
|
61
|
Yoo HS, Shanmugalingam U, Smith PD. Potential roles of branched-chain amino acids in neurodegeneration. Nutrition 2022; 103-104:111762. [DOI: 10.1016/j.nut.2022.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
|
62
|
He W, Dam TV, Thøgersen R, Hansen M, Bertram HC. Fluctuations in Metabolites and Bone Markers Across the Menstrual Cycle in Eumenorrheic Women and Oral Contraceptive Users. J Clin Endocrinol Metab 2022; 107:1577-1588. [PMID: 35213728 DOI: 10.1210/clinem/dgac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Little is known about changes in circulating metabolites during the menstrual cycle and how use of oral contraceptives (OCs) affects these changes. OBJECTIVES To study fluctuations in circulating metabolite and bone marker levels during the menstrual/pill cycle in eumenorrheic women and OC users. METHODS Plasma samples were collected from 28 eumenorrheic women and 10 OC users at 7 to 9 time points across a menstrual/pill cycle. Longitudinal and cross-sectional analyses were performed to examine the cycle- and OC-induced variations in the plasma metabolite and bone turnover marker levels. RESULTS In eumenorrheic women, plasma levels of alanine, glutamine, threonine, and tyrosine varied significantly across the menstrual cycle, and all dropped to the lowest level around day 21 of the menstrual cycle. These amino acid concentrations were negatively correlated with fluctuations in progesterone and/or estrogen levels. A between-group analysis showed that plasma levels of alanine, glutamine, glycine, proline, and tyrosine were lower in OC users than in nonusers. Concomitantly, plasma C-terminal telopeptide of type I collagen (CTX) and N-terminal propeptide of type I procollagen (PINP) levels were lower in OC users. Intriguingly, when all data were pooled, variations in CTX and PINP levels were positively correlated with fluctuations in proline and glycine concentrations (r > 0.5 or 0.3 < r < 0.5, P < 0.05). CONCLUSIONS The menstrual cycle and the use of OCs alter plasma levels of metabolites and bone turnover markers in young women. While the impact of these findings remains to be established, the lower glycine level among OC users and the accompanying lower CTX level supports that the use of OCs lowers collagen turnover in young women and may thereby have long-term implications for bone health among OC users.
Collapse
Affiliation(s)
- Weiwei He
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Tine Vrist Dam
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | | | - Mette Hansen
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
63
|
Lian N, Luo K, Xie H, Kang Y, Tang K, Lu P, Li T. Obesity by High-Fat Diet Increases Pain Sensitivity by Reprogramming Branched-Chain Amino Acid Catabolism in Dorsal Root Ganglia. Front Nutr 2022; 9:902635. [PMID: 35634382 PMCID: PMC9133809 DOI: 10.3389/fnut.2022.902635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a significant health concern as a result of poor-quality diet, for example, high-fat diet (HFD). Although multiple biological and molecular changes have been identified to contribute to HFD-induced pain susceptibility, the mechanisms are not fully understood. Here, we show that mice under 8 weeks of HFD were sensitive to mechanical and thermal stimuli, which was coupled with an accumulation of branched-chain amino acids (BCAAs) in lumbar dorsal root ganglia (DRG) due to local BCAA catabolism deficiency. This HFD-induced hyperalgesic phenotype could be exacerbated by supply of excessive BCAAs or mitigated by promotion of BCAA catabolism via BT2 treatment. In addition, our results suggested that HFD-related pain hypersensitivity was associated with a pro-inflammatory status in DRG, which could be regulated by BCAA abundance. Therefore, our study demonstrates that defective BCAA catabolism in DRG facilitates HFD-induced pain hypersensitivity by triggering inflammation. These findings not only reveal metabolic underpinnings for the pathogenesis of HFD-related hyperalgesia but also offer potential targets for developing diet-based therapy of chronic pain.
Collapse
Affiliation(s)
- Nan Lian
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Kaiteng Luo
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Huijing Xie
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Kang
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Kuo Tang
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Peilin Lu
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- Peilin Lu,
| | - Tao Li
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Li,
| |
Collapse
|
64
|
Cuomo P, Capparelli R, Iannelli A, Iannelli D. Role of Branched-Chain Amino Acid Metabolism in Type 2 Diabetes, Obesity, Cardiovascular Disease and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23084325. [PMID: 35457142 PMCID: PMC9030262 DOI: 10.3390/ijms23084325] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Branched-chain amino acids (BCAAs) include leucine, isoleucine, and valine. Mammalians cannot synthesize these amino acids de novo and must acquire them through their diet. High levels of BCAAs are associated with insulin resistance; type 2 diabetes; obesity; and non-metabolic diseases, including several forms of cancer. BCAAs—in particular leucine—activate the rapamycin complex1 mTORC1, which regulates cell growth and metabolism, glucose metabolism and several more essential physiological processes. Diets rich in BCAAs are associated with metabolic diseases (listed above), while diets low in BCAAs are generally reported to promote metabolic health. As for the dysregulation of the metabolism caused by high levels of BCAAs, recent studies propose that the accumulation of acyl-carnitine and diacyl-CoA in muscles alters lipid metabolism. However, this suggestion is not broadly accepted. On clinical grounds, pre- and post-operative metabolic profiles of candidate patients for bariatric surgery are being used to select the optimal procedure for each individual patient.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy;
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy;
- Correspondence: (R.C.); (D.I.)
| | - Antonio Iannelli
- Department of Digestive Surgery, Université Côte d’ Azur, F-06108 Nice, France;
- Centre Hospitalier Universitaire de Nice-Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, 151 Route de Saint Antoine de Ginestiere, F-062024 Nice, France
- Inserm, U1065, Team 8 “Hepatic Complications of Obesity and Alcohol”, F-062024 Nice, France
| | - Domenico Iannelli
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy;
- Correspondence: (R.C.); (D.I.)
| |
Collapse
|
65
|
Hu MM, Chen JH, Zhang QQ, Song ZY, Shaukat H, Qin H. Sesamol counteracts on metabolic disorders of middle-aged alimentary obese mice through regulating skeletal muscle glucose and lipid metabolism. Food Nutr Res 2022; 66:8231. [PMID: 35382382 PMCID: PMC8941404 DOI: 10.29219/fnr.v66.8231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022] Open
Abstract
Background Globally, obesity is a significant public problem, especially when aging. Sesamol, a phenolic lignan present in sesame seeds, might have a positive effect on high-fat diet (HFD)-induced obesity associated with aging. Objective The purpose of current research study was to explore salutary effects and mechanisms of sesamol in treating alimentary obesity and associated metabolic syndrome in middle-aged mice. Methods C57BL/6J mice aged 4–6 weeks and 6–8 months were assigned to the young normal diet group, middle-aged normal diet group, middle-aged HFD group, and middle-aged HFD + sesamol group. At the end of experiment, glucose tolerance test and insulin tolerance test were performed; the levels of lipids and oxidative stress-related factors in the serum and skeletal muscle were detected using chemistry reagent kits; lipid accumulation in skeletal muscle was observed by oil red O staining; the expressions of muscular glucose and lipid metabolism associated proteins were measured by Western blotting. Results Sesamol decreased the body weight and alleviated obesity-associated metabolism syndrome in middle-aged mice, such as glucose intolerance, insulin resistance, dyslipidemia, and oxidative stress. Moreover, muscular metabolic disorders were attenuated after treatment with sesamol. It increased the expression of glucose transporter type-4 and down-regulated the protein levels of pyruvate dehydrogenase kinase isozyme 4, implying the increase of glucose uptake and oxidation. Meanwhile, sesamol decreased the expression of sterol regulatory element binding protein 1c and up-regulated the phosphorylation of hormone-sensitive lipase and the level of carnitine palmityl transferase 1α, which led to the declined lipogenesis and the increased lipolysis and lipid oxidation. In addition, the SIRT1/AMPK signaling pathway was triggered by sesamol, from which it is understood how sesamol enhances glucose and lipid metabolism. Conclusions Sesamol counteracts on metabolic disorders of middle-aged alimentary obese mice through regulating skeletal muscle glucose and lipid metabolism, which might be associated with the stimulation of the SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Min-Min Hu
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ji-Hua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Quan-Quan Zhang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zi-Yu Song
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Horia Shaukat
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
66
|
Preventing White Adipocyte Browning during Differentiation In Vitro: The Effect of Differentiation Protocols on Metabolic and Mitochondrial Phenotypes. Stem Cells Int 2022; 2022:3308194. [PMID: 35422865 PMCID: PMC9005291 DOI: 10.1155/2022/3308194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial dysfunction in white adipose tissue is strongly associated with obesity and its metabolic complications, which are important health challenges worldwide. Human adipose-derived stromal/stem cells (hASCs) are a promising tool to investigate the underlying mechanisms of such mitochondrial dysfunction and to subsequently provide knowledge for the development of treatments for obesity-related pathologies. A substantial obstacle in using hASCs is that the key compounds for adipogenic differentiation in vitro increase mitochondrial uncoupling, biogenesis, and activity, which are the signature features of brown adipocytes, thus altering the white adipocyte phenotype towards brown-like cells. Additionally, commonly used protocols for hASC adipogenic differentiation exhibit high variation in their composition of media, and a systematic comparison of their effect on mitochondria is missing. Here, we compared the five widely used adipogenic differentiation protocols for their effect on metabolic and mitochondrial phenotypes to identify a protocol that enables in vitro differentiation of white adipocytes and can more faithfully recapitulate the white adipocyte phenotype observed in human adipose tissue. We developed a workflow that included functional assays and morphological analysis of mitochondria and lipid droplets. We observed that triiodothyronine- or indomethacin-containing media and commercially available adipogenic media induced browning during in vitro differentiation of white adipocytes. However, the differentiation protocol containing 1 μM of the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone prevented the browning effect and would be proposed for adipogenic differentiation protocol for hASCs to induce a white adipocyte phenotype. Preserving the white adipocyte phenotype in vitro is a crucial step for the study of obesity and associated metabolic diseases, adipose tissue pathologies, such as lipodystrophies, possible therapeutic compounds, and basic adipose tissue physiology.
Collapse
|
67
|
Triozzi PL, Stirling ER, Song Q, Westwood B, Kooshki M, Forbes ME, Holbrook BC, Cook KL, Alexander-Miller MA, Miller LD, Zhang W, Soto-Pantoja DR. Circulating Immune Bioenergetic, Metabolic, and Genetic Signatures Predict Melanoma Patients' Response to Anti-PD-1 Immune Checkpoint Blockade. Clin Cancer Res 2022; 28:1192-1202. [PMID: 35284940 DOI: 10.1158/1078-0432.ccr-21-3114] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/13/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy with checkpoint inhibitors is improving the outcomes of several cancers. However, only a subset of patients respond. Therefore, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance. EXPERIMENTAL DESIGN We compared bioenergetics of circulating immune cells and metabolomic profiles of plasma obtained at baseline from patients with melanoma treated with anti-PD-1 therapy. We also performed single-cell RNA sequencing (scRNAseq) to correlate transcriptional changes associated with metabolic changes observed in peripheral blood mononuclear cells (PBMC) and patient plasma. RESULTS Pretreatment PBMC from responders had a higher reserve respiratory capacity and higher basal glycolytic activity compared with nonresponders. Metabolomic analysis revealed that responder and nonresponder patient samples cluster differently, suggesting differences in metabolic signatures at baseline. Differential levels of specific lipid, amino acid, and glycolytic pathway metabolites were observed by response. Further, scRNAseq analysis revealed upregulation of T-cell genes regulating glycolysis. Our analysis showed that SLC2A14 (Glut-14; a glucose transporter) was the most significant gene upregulated in responder patients' T-cell population. Flow cytometry analysis confirmed significantly elevated cell surface expression of the Glut-14 in CD3+, CD8+, and CD4+ circulating populations in responder patients. Moreover, LDHC was also upregulated in the responder population. CONCLUSIONS Our results suggest a glycolytic signature characterizes checkpoint inhibitor responders; consistently, both ECAR and lactate-to-pyruvate ratio were significantly associated with overall survival. Together, these findings support the use of blood bioenergetics and metabolomics as predictive biomarkers of patient response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Pierre L Triozzi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elizabeth R Stirling
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brian Westwood
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mitra Kooshki
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - M Elizabeth Forbes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Beth C Holbrook
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Martha A Alexander-Miller
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David R Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
68
|
Nguyen T, Gronauer TF, Nast‐Kolb T, Sieber SA, Lang K. Substrate Profiling of Mitochondrial Caseinolytic Protease P via a Site-Specific Photocrosslinking Approach. Angew Chem Int Ed Engl 2022; 61:e202111085. [PMID: 34847623 PMCID: PMC9306725 DOI: 10.1002/anie.202111085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Approaches for profiling protease substrates are critical for defining protease functions, but remain challenging tasks. We combine genetic code expansion, photocrosslinking and proteomics to identify substrates of the mitochondrial (mt) human caseinolytic protease P (hClpP). Site-specific incorporation of the diazirine-bearing amino acid DiazK into the inner proteolytic chamber of hClpP, followed by UV-irradiation of cells, allows to covalently trap substrate proteins of hClpP and to substantiate hClpP's major involvement in maintaining overall mt homeostasis. In addition to confirming many of the previously annotated hClpP substrates, our approach adds a diverse set of new proteins to the hClpP interactome. Importantly, our workflow allows identifying substrate dynamics upon application of external cues in an unbiased manner. Identification of unique hClpP-substrate proteins upon induction of mt oxidative stress, suggests that hClpP counteracts oxidative stress by processing of proteins that are involved in respiratory chain complex synthesis and maturation as well as in catabolic pathways.
Collapse
Affiliation(s)
- Tuan‐Anh Nguyen
- Department of ChemistryGroup of Synthetic BiochemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Thomas F. Gronauer
- Center for Protein Assemblies (CPA)Department of ChemistryChair of Organic Chemistry IITechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Timon Nast‐Kolb
- Center for Protein Assemblies (CPA) and Lehrstuhl für Biophysik (E27)Physics DepartmentTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Stephan A. Sieber
- Center for Protein Assemblies (CPA)Department of ChemistryChair of Organic Chemistry IITechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Kathrin Lang
- Department of ChemistryGroup of Synthetic BiochemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
- Laboratory of Organic ChemistryDepartment of Chemistry and Applied BiosciencesChair of Chemical BiologyETH ZürichVladimir-Prelog-Weg 38093ZurichSwitzerland
| |
Collapse
|
69
|
Nguyen T, Gronauer TF, Nast‐Kolb T, Sieber SA, Lang K. Substrate Profiling of Mitochondrial Caseinolytic Protease P via a Site‐Specific Photocrosslinking Approach. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tuan‐Anh Nguyen
- Department of Chemistry Group of Synthetic Biochemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Thomas F. Gronauer
- Center for Protein Assemblies (CPA) Department of Chemistry Chair of Organic Chemistry II Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Timon Nast‐Kolb
- Center for Protein Assemblies (CPA) and Lehrstuhl für Biophysik (E27) Physics Department Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Stephan A. Sieber
- Center for Protein Assemblies (CPA) Department of Chemistry Chair of Organic Chemistry II Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Kathrin Lang
- Department of Chemistry Group of Synthetic Biochemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
- Laboratory of Organic Chemistry Department of Chemistry and Applied Biosciences Chair of Chemical Biology ETH Zürich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
70
|
Untargeted Metabolomics Analysis of the Serum Metabolic Signature of Childhood Obesity. Nutrients 2022; 14:nu14010214. [PMID: 35011090 PMCID: PMC8747180 DOI: 10.3390/nu14010214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Obesity rates among children are growing rapidly worldwide, placing massive pressure on healthcare systems. Untargeted metabolomics can expand our understanding of the pathogenesis of obesity and elucidate mechanisms related to its symptoms. However, the metabolic signatures of obesity in children have not been thoroughly investigated. Herein, we explored metabolites associated with obesity development in childhood. Untargeted metabolomic profiling was performed on fasting serum samples from 27 obese Caucasian children and adolescents and 15 sex- and age-matched normal-weight children. Three metabolomic assays were combined and yielded 726 unique identified metabolites: gas chromatography–mass spectrometry (GC–MS), hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC LC–MS/MS), and lipidomics. Univariate and multivariate analyses showed clear discrimination between the untargeted metabolomes of obese and normal-weight children, with 162 significantly differentially expressed metabolites between groups. Children with obesity had higher concentrations of branch-chained amino acids and various lipid metabolites, including phosphatidylcholines, cholesteryl esters, triglycerides. Thus, an early manifestation of obesity pathogenesis and its metabolic consequences in the serum metabolome are correlated with altered lipid metabolism. Obesity metabolite patterns in the adult population were very similar to the metabolic signature of childhood obesity. Identified metabolites could be potential biomarkers and used to study obesity pathomechanisms.
Collapse
|
71
|
Wang T, Li P, Meng X, Zhang J, Liu Q, Jia C, Meng N, Zhu K, Lv D, Sun L, Shang T, Lin Y, Niu W, Lin S. An integrated pathological research for precise diagnosis of schizophrenia combining LC-MS/ 1H NMR metabolomics and transcriptomics. Clin Chim Acta 2022; 524:84-95. [PMID: 34863699 DOI: 10.1016/j.cca.2021.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Lack of clinically specific biomarkers has impeded the precise diagnosis of schizophrenia, meanwhile, limited comprehending of pathogenesis for schizophrenia has restricted the effective treatment. METHOD An integrated multi-omic approach, combining metabolomic platform (LC-MS and 1H NMR) and transcriptomic platform, was established to differentiate healthy subjects from schizophrenia patients. Based on filtered metabolites and genes, characteristic spectrums were further built. Then, representative metabolites and genes were screened out through Boruta algorithm. Moreover, characteristic diagnostic formulas were established via LASSO regression analysis. RESULT As a result, 86 differential metabolites (in line with amino acid metabolism, etc.) and 189 differential expression genes (involving in amino acid metabolic process, etc.) were obtained as potential biomarkers for schizophrenia. The latent interaction between metabolites with genes, such as HMGCLL1 with energy metabolism, etc., was further studied through the analysis of pathway-based integration. Moreover, fine predictive ability was attributed to characteristic metabolomic/transcriptomic diagnostic spectrums/formulas. CONCLUSION The functional relationships of filtered metabolites and genes were studied, which could elaborate the pathological process of schizophrenia more systemically, supplying more precise information on mechanism description and diagnostic evidence of schizophrenia.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Ping Li
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Xiangyu Meng
- Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province 150000, China
| | - Jinling Zhang
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Qi Liu
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Cuicui Jia
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Nana Meng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Kunjie Zhu
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Dan Lv
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Lei Sun
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Tinghuizi Shang
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Yan Lin
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Weipan Niu
- Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province 150000, China
| | - Song Lin
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China.
| |
Collapse
|
72
|
Li L, Deng J, Lin LM, Li YM, Lin Y, Xia BH, Liao DF. Metabolomics and pharmacodynamic analysis reveal the therapeutic role of Prunella vulgaris oil on intrauterine adhesion rats. J Pharm Biomed Anal 2021; 209:114532. [PMID: 34953415 DOI: 10.1016/j.jpba.2021.114532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
Metabolomics is applied to explore the curative effect of complex systems, such as Chinese medicine. Intrauterine adhesion (IUA) harms the reproductive system and affects fertility, and hence is a significant public health concern. Prunella vulgaris oil (PVO) protects the reproductive system and exerts anti-inflammatory effects, but its effect on IUA and the underlying mechanism is unclear. In this study, we established a serum metabolomics method based on GC-TOF-MS to evaluate the mechanism of PVO in the IUA rat model established by mechanical injury and infection. Animal experiments showed that PVO improves the inflammatory response in the uterus of IUA model rats and reduces the content of inflammatory factors to improve the microenvironment of the reproductive system. It also regulates the expression of TGF-β1 and Smad-related mRNA and protein to inhibit fibrosis. Metabolomics indicated a significant abnormality in serum metabolism in IUA rats, and a total of 51 differential markers were screened and identified. After PVO treatment, these metabolic abnormalities improved significantly. The metabolic pathway analysis revealed that PVO affects glyoxylate and dicarboxylate metabolism, and β-alanine metabolism pathways. This study showed that PVO significantly improves inflammation and fibrosis in IUA rats combined with the pharmacological results. The primary mechanism is related to regulating the metabolism of amino acids and their derivatives to balance the associated disorders and control energy metabolism.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jing Deng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li-Mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ya-Mei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bo-Hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
73
|
Maslov DL, Zemskaya NV, Trifonova OP, Lichtenberg S, Balashova EE, Lisitsa AV, Moskalev AA, Lokhov PG. Comparative Metabolomic Study of Drosophila Species with Different Lifespans. Int J Mol Sci 2021; 22:ijms222312873. [PMID: 34884677 PMCID: PMC8657752 DOI: 10.3390/ijms222312873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
The increase in life expectancy, leading to a rise in the proportion of older people, is accompanied by a prevalence of age-related disorders among the world population, the fight against which today is one of the leading biomedical challenges. Exploring the biological insights concerning the lifespan is one of the ways to provide a background for designing an effective treatment for the increase in healthy years of life. Untargeted direct injection mass spectrometry-based metabolite profiling of 12 species of Drosophila with significant variations in natural lifespans was conducted in this research. A cross-comparison study of metabolomic profiles revealed lifespan signatures of flies. These signatures indicate that lifespan extension is associated with the upregulation of amino acids, phospholipids, and carbohydrate metabolism. Such information provides a metabolome-level view on longevity and may provide a molecular measure of organism age in age-related studies.
Collapse
Affiliation(s)
- Dmitry L. Maslov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Correspondence: ; Tel.: +7-499-246-6980
| | - Nadezhda V. Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Oxana P. Trifonova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Steven Lichtenberg
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Metabometrics Inc., 651 N Broad Street, Suite 205 #1370, Middletown, DE 19709, USA
| | - Elena E. Balashova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Andrey V. Lisitsa
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Petr G. Lokhov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| |
Collapse
|
74
|
Ren W, Wang T, Hu X, Li Y, Ji Z, Guo H, Cao H, Huang J. Development and application of sequential window acquisition of all theoretical mass spectra data acquisition modes on ultra-high-performance liquid chromatography triple-quadrupole/time-of-flight mass spectrometry for metabolic profiling of amino acids in human plasma. J Sep Sci 2021; 44:4209-4221. [PMID: 34592055 DOI: 10.1002/jssc.202100573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/06/2022]
Abstract
Accumulating evidence suggests that amino acids are important indicators of nutritional and metabolic status. A high-resolution mass spectrometry method based on sequential window acquisition of all theoretical mass spectra acquisition was developed for the simultaneous determination of 16 amino acids in human plasma. Sample preparation by protein precipitation using a mixture of acetonitrile and formic acid was followed by a BEH Amide column. The superiority of this method was investigated by comparing it to time-of-flight scan and multiple reaction monitoring modes. The limit of detection in sequential window acquisition of all theoretical mass spectra mode for threonine, methionine, histidine, citrulline, and tryptophan is 0.1 ng on the column; for lysine and asparagine is 0.2 ng; for alanine, pyroglutamic acid, leucine, ornithine, and aspartate is 0.5 ng, for arginine is 1.0 ng; for glutamate and serine is 2.0 ng; for glutamine is 10.0 ng. This method was linear in the range 0.8-40 μg/mL for arginine, citrulline, glutamate, histidine, leucine, methionine, pyroglutamic acid, threonine, tryptophan; 2-100 μg/mL for asparagine, aspartate, lysine, ornithine, serine; and 4-200 μg/mL for alanine, glutamine with good accuracy and precision. Significantly different levels in 11 amino acids were observed between childhood and adulthood, representing the growth and development of individuals relating to the level of amino acids.
Collapse
Affiliation(s)
- Wenbo Ren
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Tingting Wang
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Xiuhong Hu
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Yanyan Li
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Zhengchao Ji
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Haiyang Guo
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Haiwei Cao
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Jing Huang
- Department of Laboratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| |
Collapse
|
75
|
Choudhury P, Bhattacharya A, Dasgupta S, Ghosh N, Senpupta S, Joshi M, Bhattacharyya P, Chaudhury K. Identification of novel metabolic signatures potentially involved in the pathogenesis of COPD associated pulmonary hypertension. Metabolomics 2021; 17:94. [PMID: 34599402 DOI: 10.1007/s11306-021-01845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) associated pulmonary hypertension (COPD-PH), one of the most prevalent forms of PH, is a major burden on the healthcare system. Although PH in COPD is usually of mild-to-moderate severity, its presence is associated with shorter survival, more frequent exacerbations and worse clinical outcomes. The pathophysiologic mechanisms responsible for PH development in COPD patients remain unclear. It is envisioned that a better understanding of the underlying mechanism will help in diagnosis and future treatment strategies. OBJECTIVES The present study aims to determine metabolomic alterations in COPD-PH patients as compared to healthy controls. Additionally, to ensure that the dysregulated metabolites arise due to the presence of PH per se, an independent COPD cohort is included for comparison purposes. METHODS Paired serum and exhaled breath condensate (EBC) samples were collected from male patients with COPD-PH (n = 60) in accordance with the 2015 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines. Age, sex and BMI matched healthy controls (n = 57) and COPD patients (n = 59) were recruited for comparison purposes. All samples were characterized using 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS Fifteen serum and 9 EBC metabolites were found to be significantly altered in COPD-PH patients as compared to healthy controls. Lactate and pyruvate were dysregulated in both the biofluids and were further correlated with echocardiographic systolic pulmonary artery pressure (sPAP). Multivariate analysis showed distinct class separation between COPD-PH and COPD. CONCLUSIONS The findings of this study indicate an increased energy demand in patients with COPD-PH. Furthermore, both lactate and pyruvate correlate with sPAP, indicating their importance in the clinical course of the disease.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Anindita Bhattacharya
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sanjukta Dasgupta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | - Mamata Joshi
- National Facility for High-Field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
76
|
Xia F, Wen LP, Ge BC, Li YX, Li FP, Zhou BJ. Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World J Diabetes 2021; 12:1146-1163. [PMID: 34512884 PMCID: PMC8394227 DOI: 10.4239/wjd.v12.i8.1146] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is among the most remarkable public health concerns globally. Accumulating research evidence documents that alteration of gut microbiota has an indispensable role in the onset and progression of obesity and T2DM. A reduced microbial diversity is linked to insulin resistance and energy metabolism, especially for the rise of the Firmicutes/Bacteroidetes ratio. Changes in metabolites followed by the gut dysbacteriosis are linked to the presence of T2DM. Moreover, endotoxin leakage and gut permeability caused by gut dysbacteriosis is more of a trigger for the onset and progression of T2DM. Research documents that natural products are remarkable arsenals of bioactive agents for the discovery of anti-T2DM drugs. Many studies have elucidated that the possible mechanisms of the anti-T2DM effects of natural products are remarkably linked to its regulation on the composition of gut microflora and the successive changes in metabolites directly or indirectly. This review presents a brief overview of the gut microbiota in T2DM and several relevant mechanisms, including short-chain fatty acids, biosynthesis and metabolism of branched-chain fatty acids, trimethylamine N-oxide, bile acid signaling, endotoxin leakage, and gut permeability, and describes how dietary natural products can improve T2DM via the gut microbiota.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Lu-Ping Wen
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Bing-Chen Ge
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Yu-Xin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Fang-Ping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Ben-Jie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| |
Collapse
|
77
|
Yang Y, Zhao M, He X, Wu Q, Li DL, Zang WJ. Pyridostigmine Protects Against Diabetic Cardiomyopathy by Regulating Vagal Activity, Gut Microbiota, and Branched-Chain Amino Acid Catabolism in Diabetic Mice. Front Pharmacol 2021; 12:647481. [PMID: 34084135 PMCID: PMC8167056 DOI: 10.3389/fphar.2021.647481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The disruption of gut microbes is associated with diabetic cardiomyopathy, but the mechanism by which gut microbes affect cardiac damage remains unclear. We explored gut microbes and branched-chain amino acid (BCAA) metabolite catabolism in diabetic cardiomyopathy mice and investigated the cardioprotective effect of pyridostigmine. The experiments were conducted using a model of diabetic cardiomyopathy induced by a high-fat diet + streptozotocin in C57BL/6 mice. The results of high-throughput sequencing showed that diabetic cardiomyopathy mice exhibited decreased gut microbial diversity, altered abundance of the diabetes-related microbes, and increased abundance of the BCAA-producing microbes Clostridiales and Lachnospiraceae. In addition, diabetes downregulated tight junction proteins (ZO-1, occludin, and claudin-1) and increased intestinal permeability to impair the intestinal barrier. These impairments were accompanied by reduction in vagal activity that manifested as increased acetylcholinesterase levels, decreased acetylcholine levels, and heart rate variability, which eventually led to cardiac damage. Pyridostigmine enhanced vagal activity, restored gut microbiota homeostasis, decreased BCAA-producing microbe abundance, and improved the intestinal barrier to reduce circulating BCAA levels. Pyridostigmine also upregulated BCAT2 and PP2Cm and downregulated p-BCKDHA/BCKDHA and BCKDK to improve cardiac BCAA catabolism. Moreover, pyridostigmine alleviated abnormal mitochondrial structure; increased ATP production; decreased reactive oxygen species and mitochondria-related apoptosis; and attenuated cardiac dysfunction, hypertrophy, and fibrosis in diabetic cardiomyopathy mice. In conclusion, the gut microbiota, BCAA catabolism, and vagal activity were impaired in diabetic cardiomyopathy mice but were improved by pyridostigmine. These results provide novel insights for the development of a therapeutic strategy for diabetes-induced cardiac damage that targets gut microbes and BCAA catabolism.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
78
|
Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. Int J Mol Sci 2021; 22:ijms22094459. [PMID: 33923295 PMCID: PMC8123173 DOI: 10.3390/ijms22094459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.
Collapse
|
79
|
Bjune MS, Lindquist C, Hallvardsdotter Stafsnes M, Bjørndal B, Bruheim P, Aloysius TA, Nygård O, Skorve J, Madsen L, Dankel SN, Berge RK. Plasma 3-hydroxyisobutyrate (3-HIB) and methylmalonic acid (MMA) are markers of hepatic mitochondrial fatty acid oxidation in male Wistar rats. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158887. [PMID: 33454435 DOI: 10.1016/j.bbalip.2021.158887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Discovery of specific markers that reflect altered hepatic fatty acid oxidation could help to detect an individual's risk of fatty liver, type 2 diabetes and cardiovascular disease at an early stage. Lipid and protein metabolism are intimately linked, but our understanding of this crosstalk remains limited. METHODS In male Wistar rats, we used synthetic fatty acid analogues (3-thia fatty acids) as a tool to induce hepatic fatty acid oxidation and mitochondrial biogenesis, to gain new insight into the link between fatty acid oxidation, amino acid metabolism and TCA cycle-related intermediate metabolites in liver and plasma. RESULTS Rats treated with 3-thia fatty acids had 3-fold higher hepatic, but not adipose and skeletal muscle, expression of the thioesterase 3-hydroxyisobutyryl-CoA hydrolase (Hibch), which controls the formation of 3-hydroxyisobutyrate (3-HIB) in the valine degradation pathway. Consequently, 3-thia fatty acid-stimulated hepatic fatty acid oxidation and ketogenesis was accompanied by decreased plasma 3-HIB and increased methylmalonic acid (MMA) concentrations further downstream in BCAA catabolism. The higher plasma MMA corresponded to higher MMA-CoA hydrolase activity and hepatic expression of GTP-specific succinyl-CoA synthase (Suclg2) and succinate dehydrogenase (Sdhb), and lower MMA-CoA mutase activity. Plasma 3-HIB correlated positively to plasma and hepatic concentrations of TAG, plasma total fatty acids, plasma NEFA and insulin/glucose ratio, while the reverse correlations were seen for MMA. CONCLUSION Our study provides new insight into TCA cycle-related metabolic changes associated with altered hepatic fatty acid flux, and identifies 3-HIB and MMA as novel circulating markers reflective of mitochondrial β-oxidation in male Wistar rats.
Collapse
Affiliation(s)
| | - Carine Lindquist
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marit Hallvardsdotter Stafsnes
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Thomas A Aloysius
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lise Madsen
- Institute of Marine Research, NO-5817 Bergen, Norway
| | - Simon N Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
80
|
Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther 2021; 12:177. [PMID: 33712058 PMCID: PMC7953594 DOI: 10.1186/s13287-021-02252-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Current methods to differentiate cardiomyocytes from human pluripotent stem cells (PSCs) inadequately recapitulate complete development and result in PSC-derived cardiomyocytes (PSC-CMs) with an immature or fetal-like phenotype. Embryonic and fetal development are highly dynamic periods during which the developing embryo or fetus is exposed to changing nutrient, oxygen, and hormone levels until birth. It is becoming increasingly apparent that these metabolic changes initiate developmental processes to mature cardiomyocytes. Mitochondria are central to these changes, responding to these metabolic changes and transitioning from small, fragmented mitochondria to large organelles capable of producing enough ATP to support the contractile function of the heart. These changes in mitochondria may not simply be a response to cardiomyocyte maturation; the metabolic signals that occur throughout development may actually be central to the maturation process in cardiomyocytes. Here, we review methods to enhance maturation of PSC-CMs and highlight evidence from development indicating the key roles that mitochondria play during cardiomyocyte maturation. We evaluate metabolic transitions that occur during development and how these affect molecular nutrient sensors, discuss how regulation of nutrient sensing pathways affect mitochondrial dynamics and function, and explore how changes in mitochondrial function can affect metabolite production, the cell cycle, and epigenetics to influence maturation of cardiomyocytes.
Collapse
Affiliation(s)
- Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|