51
|
Kazmierski WM, Xia B, Miller J, De la Rosa M, Favre D, Dunham RM, Washio Y, Zhu Z, Wang F, Mebrahtu M, Deng H, Basilla J, Wang L, Evindar G, Fan L, Olszewski A, Prabhu N, Davie C, Messer JA, Samano V. DNA-Encoded Library Technology-Based Discovery, Lead Optimization, and Prodrug Strategy toward Structurally Unique Indoleamine 2,3-Dioxygenase-1 (IDO1) Inhibitors. J Med Chem 2020; 63:3552-3562. [PMID: 32073266 DOI: 10.1021/acs.jmedchem.9b01799] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the discovery of a novel indoleamine 2,3-dioxygenase-1 (IDO1) inhibitor class through the affinity selection of a previously unreported indole-based DNA-encoded library (DEL). The DEL exemplar, spiro-chromane 1, had moderate IDO1 potency but high in vivo clearance. Series optimization quickly afforded a potent, low in vivo clearance lead 11. Although amorphous 11 was highly bio-available, crystalline 11 was poorly soluble and suffered disappointingly low bio-availability because of solubility-limited absorption. A prodrug approach was deployed and proved effective in discovering the highly bio-available phosphonooxymethyl 31, which rapidly converted to 11 in vivo. Obtaining crystalline 31 proved problematic, however; thus salt screening was performed in an attempt to circumvent this obstacle and successfully delivered greatly soluble and bio-available crystalline tris-salt 32. IDO1 inhibitor 32 is characterized by a low calculated human dose, best-in-class potential, and an unusual inhibition mode by binding the IDO1 heme-free (apo) form.
Collapse
Affiliation(s)
- Wieslaw M Kazmierski
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Bing Xia
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - John Miller
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Martha De la Rosa
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - David Favre
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Richard M Dunham
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Yoshiaki Washio
- MST Medicine Design, Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Rd, Stevenage SG1 2NY, U.K
| | - Zhengrong Zhu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Feng Wang
- DMPK/IVIVT, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Makda Mebrahtu
- Screening, Profiling & Mechanistic Biology, RD Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Hongfeng Deng
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jonathan Basilla
- Screening, Profiling & Mechanistic Biology, RD Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Liping Wang
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426, United States
| | - Ghotas Evindar
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lijun Fan
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Alison Olszewski
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ninad Prabhu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher Davie
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jeffrey A Messer
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Vicente Samano
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| |
Collapse
|
52
|
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132:110841. [PMID: 31954874 DOI: 10.1016/j.exger.2020.110841] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that plays a critical role in mitochondrial energy production as well as many enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in several categories of age-associated disease, including metabolic and neurodegenerative disease, as well as deficiency in the mechanisms of cellular defense against oxidative stress. The kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and the intrinsic relationship to mitochondrial function have been widely studied in the context of aging. Mitochondrial function and dynamics have both been implicated in longevity determination in a range of organisms from yeast to humans, at least in part due to their intimate link to regulating an organism's cellular energy economy and capacity to resist oxidative stress. Recent findings support the idea that complex communication between the mitochondria and the nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion events. In this review, we discuss how mitochondrial morphological changes and dynamics operate during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway interacts with these processes.
Collapse
Affiliation(s)
- Raul Castro-Portuguez
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA
| | - George L Sutphin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
53
|
Cai S, Yang X, Chen P, Liu X, Zhou J, Zhang H. Design, synthesis and biological evaluation of bicyclic carboxylic acid derivatives as IDO1 inhibitors. Bioorg Chem 2020; 94:103356. [DOI: 10.1016/j.bioorg.2019.103356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/28/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
|
54
|
Opitz CA, Somarribas Patterson LF, Mohapatra SR, Dewi DL, Sadik A, Platten M, Trump S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer 2020; 122:30-44. [PMID: 31819194 PMCID: PMC6964670 DOI: 10.1038/s41416-019-0664-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Based on its effects on both tumour cell intrinsic malignant properties as well as anti-tumour immune responses, tryptophan catabolism has emerged as an important metabolic regulator of cancer progression. Three enzymes, indoleamine-2,3-dioxygenase 1 and 2 (IDO1/2) and tryptophan-2,3-dioxygenase (TDO2), catalyse the first step of the degradation of the essential amino acid tryptophan (Trp) to kynurenine (Kyn). The notion of inhibiting IDO1 using small-molecule inhibitors elicited high hopes of a positive impact in the field of immuno-oncology, by restoring anti-tumour immune responses and synergising with other immunotherapies such as immune checkpoint inhibition. However, clinical trials with IDO1 inhibitors have yielded disappointing results, hence raising many questions. This review will discuss strategies to target Trp-degrading enzymes and possible down-stream consequences of their inhibition. We aim to provide comprehensive background information on Trp catabolic enzymes as targets in immuno-oncology and their current state of development. Details of the clinical trials with IDO1 inhibitors, including patient stratification, possible effects of the inhibitors themselves, effects of pre-treatments and the therapies the inhibitors were combined with, are discussed and mechanisms proposed that might have compensated for IDO1 inhibition. Finally, alternative approaches are suggested to circumvent these problems.
Collapse
Affiliation(s)
- Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Luis F Somarribas Patterson
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Soumya R Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dyah L Dewi
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Surgical Oncology, Department of Surgery - Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Saskia Trump
- Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Unit for Molecular Epidemiology, Berlin, Germany
| |
Collapse
|
55
|
Milette S, Hashimoto M, Perrino S, Qi S, Chen M, Ham B, Wang N, Istomine R, Lowy AM, Piccirillo CA, Brodt P. Sexual dimorphism and the role of estrogen in the immune microenvironment of liver metastases. Nat Commun 2019; 10:5745. [PMID: 31848339 PMCID: PMC6917725 DOI: 10.1038/s41467-019-13571-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Liver metastases (LM) remain a major cause of cancer-associated death and a clinical challenge. Here we explore a sexual dimorphism observed in the regulation of the tumor immune microenvironment (TIME) of LM, wherein the accumulation of myeloid-derived suppressor cells (MDSC) and regulatory T cells in colon and lung carcinoma LM is TNFR2-dependent in female, but not in male mice. In ovariectomized mice, a marked reduction is observed in colorectal, lung and pancreatic carcinoma LM that is reversible by estradiol reconstitution. This is associated with reduced liver MDSC accumulation, increased interferon-gamma (IFN-γ) and granzyme B production in CD8+ T cells and reduced TNFR2, IDO2, TDO and Serpin B9 expression levels. Treatment with tamoxifen increases liver cytotoxic T cell accumulation and reduces colon cancer LM. The results identify estrogen as a regulator of a pro-metastatic immune microenvironment in the liver and a potential target in the management of liver metastatic disease.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor/transplantation
- Colonic Neoplasms/pathology
- Disease Models, Animal
- Estradiol/administration & dosage
- Estrogen Antagonists/pharmacology
- Estrogen Antagonists/therapeutic use
- Estrogens/immunology
- Estrogens/metabolism
- Female
- Humans
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/prevention & control
- Liver Neoplasms/secondary
- Lung Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Ovariectomy
- Pancreatic Neoplasms/pathology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Sex Factors
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Simon Milette
- Department of Medicine, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Masakazu Hashimoto
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Stephanie Perrino
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Shu Qi
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Michely Chen
- Department of Medicine, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Boram Ham
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Ni Wang
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Montréal, Québec, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, Montréal, Québec, H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, H4A 3J1, Canada
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Centre at UC San Diego Health, 3855Health Sciences Dr., La Jolla, CA, 92037, USA
| | - Ciriaco A Piccirillo
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Montréal, Québec, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, Montréal, Québec, H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, H4A 3J1, Canada
- Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Pnina Brodt
- Department of Medicine, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada.
- Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, H4A 3J1, Canada.
- Department of Surgery, McGill University, Montreal, QC, Canada.
- Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
56
|
Woeller CF, Thatcher TH, Thakar J, Cornwell A, Smith MR, Jones DP, Hopke PK, Sime PJ, Krahl P, Mallon TM, Phipps RP, Utell MJ. Exposure to Heptachlorodibenzo-p-dioxin (HpCDD) Regulates microRNA Expression in Human Lung Fibroblasts. J Occup Environ Med 2019; 61 Suppl 12:S82-S89. [PMID: 31800454 PMCID: PMC8058852 DOI: 10.1097/jom.0000000000001691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) were elevated in serum from personnel deployed to sites with open burn pits. Here, we investigated the ability of BghiP and HpCDD to regulate microRNA (miRNA) expression through the aryl hydrocarbon receptor (AHR). METHODS Human lung fibroblasts (HLFs) were exposed to BghiP and HpCDD. AHR activity was measured by reporter assay and gene expression. Deployment related miRNA were measured by quantitative polymerase chain reaction. AHR expression was depleted using siRNA. RESULTS BghiP displayed weak AHR agonist activity. HpCDD induced AHR activity in a dose-dependent manner. Let-7d-5p, miR-103-3p, miR-107, and miR-144-3p levels were significantly altered by HpCDD. AHR knockdown attenuated these effects. CONCLUSIONS These studies reveal that miRNAs previously identified in sera from personnel deployed to sites with open burn pits are altered by HpCDD exposure in HLFs.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine (Dr Woeller, Dr Hopke, Dr Phipps, Dr Utell); Department of Medicine (Dr Thatcher, Dr Sime, Dr Utell); Microbiology and Immunology (Dr Thakar, Mr Cornwell, Dr Phipps), University of Rochester Medical Center, Rochester; Center for Air Resources Engineering and Science, Clarkson University, Potsdam (Dr Hopke), New York; Emory University, Atlanta, Georgia (Dr Smith, Dr Jones); Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland (Dr Krahl, Dr Mallon)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|
58
|
Yang D, Zhang S, Fang X, Guo L, Hu N, Guo Z, Li X, Yang S, He JC, Kuang C, Yang Q. N-Benzyl/Aryl Substituted Tryptanthrin as Dual Inhibitors of Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase. J Med Chem 2019; 62:9161-9174. [PMID: 31580660 DOI: 10.1021/acs.jmedchem.9b01079] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the initial and rate-limiting step of the kynurenine pathway of tryptophan catabolism, has emerged as a key target in cancer immunotherapy because of its role in enabling cancers to evade the immune system. Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the same reaction and play a potential role in cancer immunotherapy. Starting from our previously discovered tryptanthrin IDO1 inhibitor scaffold, we synthesized novel N-benzyl/aryl substituted tryptanthrin derivatives and evaluated their inhibitory efficacy on IDO1, TDO, and IDO2. Most compounds showed similar high inhibitory activities on both IDO1 and TDO, which were significantly superior over that of IDO2 with magnitude difference. We showed that N-benzyl/aryl substituted tryptanthrin directly interacted with IDO1, TDO, and IDO2, significantly augmented the proliferation of T cells in vitro, blocked the kynurenine pathway, and suppressed tumor growth when administered to LLC and H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Leilei Guo
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Nan Hu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Zhanling Guo
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Xishuai Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Shuangshuang Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Jin Chao He
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| | - Chunxiang Kuang
- Department of Chemistry , Tongji University , Siping Road 1239 , Shanghai 200092 , China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences , Fudan University , Songhu Road 2005 , Shanghai 200438 , China
| |
Collapse
|
59
|
Davison LM, Liu JC, Huang L, Carroll TM, Mellor AL, Jørgensen TN. Limited Effect of Indolamine 2,3-Dioxygenase Expression and Enzymatic Activity on Lupus-Like Disease in B6.Nba2 Mice. Front Immunol 2019; 10:2017. [PMID: 31555267 PMCID: PMC6727869 DOI: 10.3389/fimmu.2019.02017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
B6.Nba2 mice spontaneously develop a lupus-like disease characterized by elevated levels of serum anti-nuclear autoantibody (ANA) immune complexes and constitutive type I interferon (IFNα) production. During disease progression, both plasmacytoid dendritic cells (pDCs) and antibody secreting plasma cells accumulate in spleens of B6.Nba2 mice. Indoleamine 2,3-dioxygenase (IDO) has been suggested to play a role in several autoimmune diseases including in the MRL/lpr model of mouse lupus-like disease; however, it remains unknown if IDO is involved in disease development and/or progression in other spontaneous models. We show here that IDO1 protein and total IDO enzymatic activity are significantly elevated in lupus-prone B6.Nba2 mice relative to B6 controls. IDO1 expression was restricted to PCs and SignR1+ macrophages in both strains, while significantly increased in B6.Nba2-derived SiglecH+ (SigH+) pDCs. Despite this unique expression pattern, neither pharmacologic inhibition of total IDO nor IDO1 gene ablation altered serum autoantibody levels, splenic immune cell activation pattern, or renal inflammation in B6.Nba2 mice. Interestingly, IDO pharmacologic inhibition, but not IDO1 deficiency, resulted in diminished complement factor C'3 fixation to kidney glomeruli, suggesting a possible therapeutic benefit of IDO inhibition in SLE patients with renal involvement.
Collapse
Affiliation(s)
- Laura M Davison
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Jessica C Liu
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| | - Lei Huang
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Thomas M Carroll
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| | - Andrew L Mellor
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Trine N Jørgensen
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
60
|
Yuasa HJ. A comprehensive comparison of the metazoan tryptophan degrading enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140247. [PMID: 31276825 DOI: 10.1016/j.bbapap.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/15/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) have an independent origin; however, they have distinctly evolved to catalyze the same reaction. In general, TDO is a single-copy gene in each metazoan species, and TDO enzymes demonstrate similar enzyme activity regardless of their biological origin. In contrast, multiple IDO paralogues are observed in many species, and they display various enzymatic properties. Similar to vertebrate IDO2, invertebrate IDOs generally show low affinity/catalytic efficiency for L-Trp. Meanwhile, two IDO isoforms from scallop (IDO-I and -III) and sponge IDOs show high L-Trp catalytic activity, which is comparable to vertebrate IDO1. Site-directed mutagenesis experiments have revealed that primarily two residues, Tyr located at the 2nd residue on the F-helix (F2nd) and His located at the 9th residue on the G-helix (G9th), are crucial for the high affinity/catalytic efficiency of these 'high performance' invertebrate IDOs. Conversely, those two amino acid substitutions (F2nd/Tyr and G9th/His) resulted in high affinity and catalytic activity in other molluscan 'low performance' IDOs. In human IDO1, G9th is Ser167, whereas the counterpart residue of G9th in human TDO is His76. Previous studies have shown that Ser167 could not be substituted by His because the human IDO1 Ser167His variant showed significantly low catalytic activity. However, this may be specific for human IDO1 because G9th/His was demonstrated to be very effective in increasing the L-Trp affinity even in vertebrate IDOs. Therefore, these findings indicate that the active sites of TDO and IDO are more similar to each other than previously expected.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Applied Science, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan.
| |
Collapse
|
61
|
Cui ZW, Zhang XY, Zhang XJ, Wu N, Lu LF, Li S, Chen DD, Zhang YA. Molecular and functional characterization of the indoleamine 2,3-dioxygenase in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 89:301-308. [PMID: 30965085 DOI: 10.1016/j.fsi.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a kind of dioxygenase that can catalyze the degradation of levo-tryptophan (L-Trp) and plays key roles in immune tolerance. In this study, the IDO gene was cloned and functionally characterized from grass carp (gcIDO). The results showed that gcIDO overexpressed in GCO cells could catalyze the degradation of L-Trp through the L-Trp - kynurenine pathway, and this activity could be promoted by δ-aminolevulinic acid (ALA) while inhibited by levo-1-methyl tryptophan (L-1MT). Moreover, gcIDO was constitutively expressed in various tissues, and its expression could be significantly up-regulated by LPS and Poly (I:C) in peripheral blood leukocytes (PBLs). Furthermore, recombinant TGF-β1 of grass carp could up-regulate the expression of IDO, TGF-β1, CD25, and Foxp3 in PBLs, indicating that the TGF-β1/IDO pathway is present in fish. In the soybean meal induced enteritis (SBMIE) model, the expression of gcIDO in the intestine was up-regulated significantly, demonstrating that gcIDO may play an immunoregulatory role in SBMIE. Taken together, these data suggest that the IDO plays multiple roles in the immunity of fish.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
62
|
Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis. Mol Cell Biochem 2019; 458:197-205. [PMID: 31006829 PMCID: PMC6616223 DOI: 10.1007/s11010-019-03542-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/23/2019] [Indexed: 01/07/2023]
Abstract
Cardiac remodeling characterized by cardiac fibrosis is a pathologic process occurring after acute myocardial infarction. Fibrosis can be ameliorated by interferon-gamma (IFN-γ), which is a soluble cytokine showing various effects such as anti-fibrosis, apoptosis, anti-proliferation, immunomodulation, and anti-viral activities. However, the role of IFN-γ in cardiac myofibroblasts is not well established. Therefore, we investigated the anti-fibrotic effects of IFN-γ in human cardiac myofibroblasts (hCMs) in vitro and whether indoleamine 2,3-dioxygenase (IDO), induced by IFN-γ and resulting in cell cycle arrest, plays an important role in regulating the biological activity of hCMs. After IFN-γ treatment, cell signaling pathways and DNA contents were analyzed to assess the biological activity of IFN-γ in hCMs. In addition, an IDO inhibitor (1-methyl tryptophan; 1-MT) was used to assess whether IDO plays a key role in regulating hCMs. IFN-γ significantly inhibited hCM proliferation, and IFN-γ-induced IDO expression caused cell cycle arrest in G0/G1 through tryptophan depletion. Moreover, IFN-γ treatment gradually suppressed the expression of α-smooth muscle actin. When IDO activity was inhibited by 1-MT, marked apoptosis was observed in hCMs through the induction of interferon regulatory factor, Fas, and Fas ligand. Our results suggest that IFN-γ plays key roles in anti-proliferative and anti-fibrotic activities in hCMs and further induces apoptosis via IDO inhibition. In conclusion, co-treatment with IFN-γ and 1-MT can ameliorate fibrosis in cardiac myofibroblasts through apoptosis.
Collapse
|
63
|
Lemos H, Huang L, Prendergast GC, Mellor AL. Immune control by amino acid catabolism during tumorigenesis and therapy. Nat Rev Cancer 2019; 19:162-175. [PMID: 30696923 DOI: 10.1038/s41568-019-0106-z] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immune checkpoints arise from physiological changes during tumorigenesis that reprogramme inflammatory, immunological and metabolic processes in malignant lesions and local lymphoid tissues, which constitute the immunological tumour microenvironment (TME). Improving clinical responses to immune checkpoint blockade will require deeper understanding of factors that impact local immune balance in the TME. Elevated catabolism of the amino acids tryptophan (Trp) and arginine (Arg) is a common TME hallmark at clinical presentation of cancer. Cells catabolizing Trp and Arg suppress effector T cells and stabilize regulatory T cells to suppress immunity in chronic inflammatory diseases of clinical importance, including cancers. Processes that induce Trp and Arg catabolism in the TME remain incompletely defined. Indoleamine 2,3 dioxygenase (IDO) and arginase 1 (ARG1), which catabolize Trp and Arg, respectively, respond to inflammatory cues including interferons and transforming growth factor-β (TGFβ) cytokines. Dying cells generate inflammatory signals including DNA, which is sensed to stimulate the production of type I interferons via the stimulator of interferon genes (STING) adaptor. Thus, dying cells help establish local conditions that suppress antitumour immunity to promote tumorigenesis. Here, we review evidence that Trp and Arg catabolism contributes to inflammatory processes that promote tumorigenesis, impede immune responses to therapy and might promote neurological comorbidities associated with cancer.
Collapse
Affiliation(s)
- Henrique Lemos
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Andrew L Mellor
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
64
|
Massalska M, Kuca-Warnawin E, Janicka I, Plebanczyk M, Pawlak D, Dallos T, Olwert A, Radzikowska A, Maldyk P, Kontny E, Maslinski W. Survival of lymphocytes is not restricted by IDO-expressing fibroblast from rheumatoid arthritis patients. Immunopharmacol Immunotoxicol 2019; 41:214-223. [PMID: 30714436 DOI: 10.1080/08923973.2019.1569048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: Rheumatoid arthritis (RA) is characterized by expansion of fibroblast-like synoviocytes (FLS) in inflamed joints and activation of lymphocytes. Tryptophan (trp) is an essential amino acid indispensable for the biosynthesis of proteins and critical for survival of lymphocytes. Indoleamine 2,3-dioxygenase (IDO) that initiates the degradation of trp and tryptophanyl-tRNA synthetase (TTS) essential for tryptophan synthesis, regulate trp bioavailability. Here, we tested the hypothesis that triggered by cytokines, enhanced IDO activity modulate regulatory function of otherwise non-tolerogenic FLS isolated from RA patients. Materials and methods: IDO and TTS mRNA expression were evaluated by RT-PCR. IDO enzymatic activity was confirmed using HPLC. Resting or PHA-activated PBMC from healthy volunteers and RA patients were co-cultured with IDO expressing untreated (FLSC) or IFNγ-treated (FLSIFNγ) RA FLS. Lymphocyte survival and proliferation were evaluated by flow cytometry analysis and tritiated thymidine incorporation, respectively. Results: RA FLSIFNγ produce functionally active IDO and constitutively express TTS. RA FLSC and FLSIFNγ increased survival of resting lymphocytes in both studied groups, and decreased proliferation of healthy, but not RA, PBMC. Only FLSIFNγ diminished survival of activated CD3+CD4-, but not CD3+CD4+, healthy T cells and similar tendency was observed in rheumatoid cells. Importantly, IDO inhibitor, 1-methyl-DL-tryptophan (1-MT), failed to reverse this effect. PBMC, irrespective of their state (resting versus activated) or origin (healthy or RA), expressed high level of TTS mRNA. Conclusions: We suggest that RA FLS express functionally active IDO but control survival and expansion of healthy cells in IDO-independent mechanism and exert weaker, if any, suppressive effect on rheumatoid cells.
Collapse
Affiliation(s)
- Magdalena Massalska
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Ewa Kuca-Warnawin
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Iwona Janicka
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Magdalena Plebanczyk
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Dariusz Pawlak
- b Department of Pharmacodynamics, The Faculty of Pharmacy with the Division of Laboratory Medicine , Medical University , Białystok , Poland
| | - Tomas Dallos
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Anna Olwert
- c Systems Research InstitutePolish Academy of Sciences , Warsaw , Poland
| | - Anna Radzikowska
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Pawel Maldyk
- d Department of Rheumoorthopaedic Surgery , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Ewa Kontny
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Wlodzimierz Maslinski
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| |
Collapse
|
65
|
Winters M, DuHadaway JB, Pham KN, Lewis-Ballester A, Badir S, Wai J, Sheikh E, Yeh SR, Prendergast GC, Muller AJ, Malachowski WP. Diaryl hydroxylamines as pan or dual inhibitors of indoleamine 2,3-dioxygenase-1, indoleamine 2,3-dioxygenase-2 and tryptophan dioxygenase. Eur J Med Chem 2019; 162:455-464. [PMID: 30469041 PMCID: PMC6318801 DOI: 10.1016/j.ejmech.2018.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/06/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
Tryptophan (Trp) catabolizing enzymes play an important and complex role in the development of cancer. Significant evidence implicates them in a range of inflammatory and immunosuppressive activities. Whereas inhibitors of indoleamine 2,3-dioxygenase-1 (IDO1) have been reported and analyzed in the clinic, fewer inhibitors have been described for tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase-2 (IDO2) which also have been implicated more recently in cancer, inflammation and immune control. Consequently the development of dual or pan inhibitors of these Trp catabolizing enzymes may represent a therapeutically important area of research. This is the first report to describe the development of dual and pan inhibitors of IDO1, TDO and IDO2.
Collapse
Affiliation(s)
- Maria Winters
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, 19010, USA
| | - James B DuHadaway
- Lankenau Institute for Medical Research, 100 Lancaster Ave, Wynnewood, PA 19096, USA
| | - Khoa N Pham
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Ariel Lewis-Ballester
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Shorouk Badir
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, 19010, USA
| | - Jenny Wai
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, 19010, USA
| | - Eesha Sheikh
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, 19010, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - George C Prendergast
- Lankenau Institute for Medical Research, 100 Lancaster Ave, Wynnewood, PA 19096, USA; Department of Pathology, Anatomy & Cell Biology and, Philadelphia, PA 19104, USA; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19104, USA.
| | - Alexander J Muller
- Lankenau Institute for Medical Research, 100 Lancaster Ave, Wynnewood, PA 19096, USA; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
66
|
de Oliveira FR, Fantucci MZ, Adriano L, Valim V, Cunha TM, Louzada-Junior P, Rocha EM. Neurological and Inflammatory Manifestations in Sjögren's Syndrome: The Role of the Kynurenine Metabolic Pathway. Int J Mol Sci 2018; 19:ijms19123953. [PMID: 30544839 PMCID: PMC6321004 DOI: 10.3390/ijms19123953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
For decades, neurological, psychological, and cognitive alterations, as well as other glandular manifestations (EGM), have been described and are being considered to be part of Sjögren's syndrome (SS). Dry eye and dry mouth are major findings in SS. The lacrimal glands (LG), ocular surface (OS), and salivary glands (SG) are linked to the central nervous system (CNS) at the brainstem and hippocampus. Once compromised, these CNS sites may be responsible for autonomic and functional disturbances that are related to major and EGM in SS. Recent studies have confirmed that the kynurenine metabolic pathway (KP) can be stimulated by interferon-γ (IFN-γ) and other cytokines, activating indoleamine 2,3-dioxygenase (IDO) in SS. This pathway interferes with serotonergic and glutamatergic neurotransmission, mostly in the hippocampus and other structures of the CNS. Therefore, it is plausible that KP induces neurological manifestations and contributes to the discrepancy between symptoms and signs, including manifestations of hyperalgesia and depression in SS patients with weaker signs of sicca, for example. Observations from clinical studies in acquired immune deficiency syndrome (AIDS), graft-versus-host disease, and lupus, as well as from experimental studies, support this hypothesis. However, the obtained results for SS are controversial, as discussed in this study. Therapeutic strategies have been reexamined and new options designed and tested to regulate the KP. In the future, the confirmation and application of this concept may help to elucidate the mosaic of SS manifestations.
Collapse
Affiliation(s)
- Fabíola Reis de Oliveira
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Marina Zilio Fantucci
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Leidiane Adriano
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Valéria Valim
- Espírito Santo Federal University, Vitoria, ES 29075-910, Brazil.
| | - Thiago Mattar Cunha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Paulo Louzada-Junior
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Eduardo Melani Rocha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| |
Collapse
|
67
|
Abstract
Immunotherapy through immune checkpoint blockers (ICBs) is quickly transforming cancer treatment by improving patients' outcomes. However, innate and acquired resistance to ICBs remain a major challenge in clinical settings. Indoleamine 2,3-dioxygenases (IDOs) are enzymes involved in tryptophan catabolism with a central immunosuppressive function within the tumor microenvironment. IDOs are over-expressed in cancer patients and have increasingly been associated with worse outcomes and a poor prognosis. Preclinical data have shown that combining IDO and checkpoint inhibition might be a valuable strategy to improve the efficacy of immunotherapy. Currently, several IDO inhibitors have been evaluated in clinical trials, showing favorable pharmacokinetic profiles and promising efficacy. This review describes the mechanisms involved in IDO-mediated immune suppression and its role in cancer immune escape, focusing on the potential clinical application of IDO inhibitors as an immunotherapy strategy for cancer treatment.
Collapse
|
68
|
Fox E, Oliver T, Rowe M, Thomas S, Zakharia Y, Gilman PB, Muller AJ, Prendergast GC. Indoximod: An Immunometabolic Adjuvant That Empowers T Cell Activity in Cancer. Front Oncol 2018; 8:370. [PMID: 30254983 PMCID: PMC6141803 DOI: 10.3389/fonc.2018.00370] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022] Open
Abstract
Exploding interest in immunometabolism as a source of new cancer therapeutics has been driven in large part by studies of tryptophan catabolism mediated by IDO/TDO enzymes. A chief focus in the field is IDO1, a pro-inflammatory modifier that is widely overexpressed in cancers where it blunts immunosurveillance and enables neovascularization and metastasis. The simple racemic compound 1-methyl-D,L-tryptophan (1MT) is an extensively used probe of IDO/TDO pathways that exerts a variety of complex inhibitory effects. The L isomer of 1MT is a weak substrate for IDO1 and is ascribed the weak inhibitory activity of the racemate on the enzyme. In contrast, the D isomer neither binds nor inhibits the purified IDO1 enzyme. However, clinical development focused on D-1MT (now termed indoximod) due to preclinical cues of its greater anticancer activity and its distinct mechanisms of action. In contrast to direct enzymatic inhibitors of IDO1, indoximod acts downstream of IDO1 to stimulate mTORC1, a convergent effector signaling molecule for all IDO/TDO enzymes, thus possibly lowering risks of drug resistance by IDO1 bypass. In this review, we survey the unique biological and mechanistic features of indoximod as an IDO/TDO pathway inhibitor, including recent clinical findings of its ability to safely enhance various types of cancer therapy, including chemotherapy, chemo-radiotherapy, vaccines, and immune checkpoint therapy. We also review the potential advantages indoximod offers compared to selective IDO1-specific blockade, which preclinical studies and the clinical study ECHO-301 suggest may be bypassed readily by tumors. Indoximod lies at a leading edge of broad-spectrum immunometabolic agents that may act to improve responses to many anticancer modalities, in a manner analogous to vaccine adjuvants that act to boost immunity in settings of infectious disease.
Collapse
Affiliation(s)
- Eric Fox
- Department of Hematology-Oncology, Lankenau Medical Center, Wynnewood, PA, United States
| | - Thomas Oliver
- Department of Hematology-Oncology, Lankenau Medical Center, Wynnewood, PA, United States
| | - Melissa Rowe
- Department of Hematology-Oncology, Lankenau Medical Center, Wynnewood, PA, United States
| | - Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Yousef Zakharia
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Paul B. Gilman
- Department of Hematology-Oncology, Lankenau Medical Center, Wynnewood, PA, United States
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Alexander J. Muller
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
69
|
Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond. Semin Immunopathol 2018; 41:41-48. [DOI: 10.1007/s00281-018-0702-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/15/2023]
|
70
|
Zhai L, Ladomersky E, Lenzen A, Nguyen B, Patel R, Lauing KL, Wu M, Wainwright DA. IDO1 in cancer: a Gemini of immune checkpoints. Cell Mol Immunol 2018; 15:447-457. [PMID: 29375124 PMCID: PMC6068130 DOI: 10.1038/cmi.2017.143] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 12/18/2022] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting metabolic enzyme that converts the essential amino acid tryptophan (Trp) into downstream catabolites known as kynurenines. Coincidently, numerous studies have demonstrated that IDO1 is highly expressed in multiple types of human cancer. Preclinical studies have further introduced an interesting paradox: while single-agent treatment with IDO1 enzyme inhibitor has a negligible effect on decreasing the established cancer burden, approaches combining select therapies with IDO1 blockade tend to yield a synergistic benefit against tumor growth and/or animal subject survival. Given the high expression of IDO1 among multiple cancer types along with the lack of monotherapeutic efficacy, these data suggest that there is a more complex mechanism of action than previously appreciated. Similar to the dual faces of the astrological Gemini, we highlight the multiple roles of IDO1 and review its canonical association with IDO1-dependent tryptophan metabolism, as well as documented evidence confirming the dispensability of enzyme activity for its immunosuppressive effects. The gene transcript levels for IDO1 highlight its strong association with T-cell infiltration, but the lack of a universal prognostic significance among all cancer subtypes. Finally, ongoing clinical trials are discussed with consideration of IDO1-targeting strategies that enhance the efficacy of immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Lijie Zhai
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| | - Erik Ladomersky
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| | - Alicia Lenzen
- Department of Pediatrics, Northwestern University, Chicago, USA
- Division of Hematology, Oncology and Stem Cell Transplantation, Northwestern University, Chicago, USA
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, USA
| | - Brenda Nguyen
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| | - Ricky Patel
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| | - Kristen L Lauing
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| | - Meijing Wu
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University, Chicago, USA.
- Department of Medicine-Hematology/Oncology, Northwestern University, Chicago, USA.
- Department of Microbiology-Immunology, Northwestern University, Chicago, USA.
- Department of Medicine-Division of Hematology and Oncology, Northwestern University; Brain Tumor Institute, Northwestern University, Chicago, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, 60611, Chicago, IL, USA.
| |
Collapse
|
71
|
Calender A, Rollat Farnier PA, Buisson A, Pinson S, Bentaher A, Lebecque S, Corvol H, Abou Taam R, Houdouin V, Bardel C, Roy P, Devouassoux G, Cottin V, Seve P, Bernaudin JF, Lim CX, Weichhart T, Valeyre D, Pacheco Y, Clement A, Nathan N, in the frame of GSF (Groupe Sarcoïdose France). Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med Genomics 2018; 11:23. [PMID: 29510755 PMCID: PMC5839022 DOI: 10.1186/s12920-018-0338-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. Despite multiple genome-wide association (GWAS) studies, no major pathogenic pathways have been identified to date. To find out relevant sarcoidosis predisposing genes, we searched for de novo and recessive mutations in 3 young probands with sarcoidosis and their healthy parents using a whole-exome sequencing (WES) methodology. METHODS From the SARCFAM project based on a national network collecting familial cases of sarcoidosis, we selected three families (trios) in which a child, despite healthy parents, develop the disease before age 15 yr. Each trio was genotyped by WES (Illumina HiSEQ 2500) and we selected the gene variants segregating as 1) new mutations only occurring in affected children and 2) as recessive traits transmitted from each parents. The identified coding variants were compared between the three families. Allelic frequencies and in silico functional results were analyzed using ExAC, SIFT and Polyphenv2 databases. The clinical and genetic studies were registered by the ClinicalTrials.gov - Protocol Registration and Results System (PRS) ( https://clinicaltrials.gov ) receipt under the reference NCT02829853 and has been approved by the ethical committee (CPP LYON SUD EST - 2 - REF IRB 00009118 - September 21, 2016). RESULTS We identified 37 genes sharing coding variants occurring either as recessive mutations in at least 2 trios or de novo mutations in one of the three affected children. The genes were classified according to their potential roles in immunity related pathways: 9 to autophagy and intracellular trafficking, 6 to G-proteins regulation, 4 to T-cell activation, 4 to cell cycle and immune synapse, 2 to innate immunity. Ten of the 37 genes were studied in a bibliographic way to evaluate the functional link with sarcoidosis. CONCLUSIONS Whole exome analysis of case-parent trios is useful for the identification of genes predisposing to complex genetic diseases as sarcoidosis. Our data identified 37 genes that could be putatively linked to a pediatric form of sarcoidosis in three trios. Our in-depth focus on 10 of these 37 genes may suggest that the formation of the characteristic lesion in sarcoidosis, granuloma, results from combined deficits in autophagy and intracellular trafficking (ex: Sec16A, AP5B1 and RREB1), G-proteins regulation (ex: OBSCN, CTTND2 and DNAH11), T-cell activation (ex: IDO2, IGSF3), mitosis and/or immune synapse (ex: SPICE1 and KNL1). The significance of these findings needs to be confirmed by functional tests on selected gene variants.
Collapse
Affiliation(s)
- Alain Calender
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | | | - Adrien Buisson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Stéphane Pinson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Abderrazzaq Bentaher
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Serge Lebecque
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
| | - Harriet Corvol
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
| | - Rola Abou Taam
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
| | - Véronique Houdouin
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
| | - Claire Bardel
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Pascal Roy
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Gilles Devouassoux
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
| | - Vincent Cottin
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
| | - Pascal Seve
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
| | | | - Clarice X. Lim
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Dominique Valeyre
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
| | - Yves Pacheco
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Annick Clement
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - Nadia Nathan
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - in the frame of GSF (Groupe Sarcoïdose France)
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
- Histology and Tumor Biology, ER2 UPMC, Hôpital Tenon, Paris, France
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| |
Collapse
|
72
|
Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Res 2018; 77:6795-6811. [PMID: 29247038 DOI: 10.1158/0008-5472.can-17-2285] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/23/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Small-molecule inhibitors of indoleamine 2,3-dioxygenase-1 (IDO1) are emerging at the vanguard of experimental agents in oncology. Here, pioneers of this new drug class provide a bench-to-bedside review on preclinical validation of IDO1 as a cancer therapeutic target and on the discovery and development of a set of mechanistically distinct compounds, indoximod, epacadostat, and navoximod, that were first to be evaluated as IDO inhibitors in clinical trials. As immunometabolic adjuvants to widen therapeutic windows, IDO inhibitors may leverage not only immuno-oncology modalities but also chemotherapy and radiotherapy as standards of care in the oncology clinic. Cancer Res; 77(24); 6795-811. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - James B DuHadaway
- Lankenau Institute for Medical Research (LIMR), Wynnewood, Pennsylvania
| | | |
Collapse
|
73
|
|
74
|
A single amino acid residue regulates the substrate affinity and specificity of indoleamine 2,3-dioxygenase. Arch Biochem Biophys 2017; 640:1-9. [PMID: 29288638 DOI: 10.1016/j.abb.2017.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/20/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a heme-containing enzyme that catalyses the oxidative cleavage of L-Trp. The ciliate Blepharisma stoltei has four IDO genes (IDO-I, -II, -III and -IV), which seem to have evolved via two sequential gene duplication events. Each IDO enzyme has a distinct enzymatic property, where IDO-III has a high affinity for L-Trp, whereas the affinity of the other three isoforms for L-Trp is low. IDO-I also exhibits a significant catalytic activity with another indole compound: 5-hydroxy-l-tryptophan (5-HTP). IDO-I is considered to be an enzyme that is involved in the biosynthesis of the 5-HTP-derived mating pheromone, gamone 2. By analysing a series of chimeric enzymes based on extant and predicted ancestral enzymes, we identified Asn131 in IDO-I and Glu132 in IDO-III as the key residues responsible for their high affinity for each specific substrate. These two residues were aligned in an identical position as the substrate-determining residue (SDR). Thus, the substrate affinity and specificity are regulated mostly by a single amino acid residue in the Blepharisma IDO-I and IDO-III enzymes.
Collapse
|
75
|
Inflammatory Reprogramming with IDO1 Inhibitors: Turning Immunologically Unresponsive 'Cold' Tumors 'Hot'. Trends Cancer 2017; 4:38-58. [PMID: 29413421 DOI: 10.1016/j.trecan.2017.11.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023]
Abstract
We discuss how small-molecule inhibitors of the tryptophan (Trp) catabolic enzyme indoleamine 2,3-dioxygenase (IDO) represent a vanguard of new immunometabolic adjuvants to safely enhance the efficacy of cancer immunotherapy, radiotherapy, or 'immunogenic' chemotherapy by leveraging responses to tumor neoantigens. IDO inhibitors re-program inflammatory processes to help clear tumors by blunting tumor neovascularization and restoring immunosurveillance. Studies of regulatory and effector pathways illuminate IDO as an inflammatory modifier. Recent work suggests that coordinate targeting of the Trp catabolic enzymes tryptophan 2,3-dioxygenase (TDO) and IDO2 may also safely broaden efficacy. Understanding IDO inhibitors as adjuvants to turn immunologically 'cold' tumors 'hot' can seed new concepts in how to improve the efficacy of cancer therapy while limiting collateral damage.
Collapse
|
76
|
Prendergast GC, Malachowski WJ, Mondal A, Scherle P, Muller AJ. Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 336:175-203. [PMID: 29413890 PMCID: PMC6054468 DOI: 10.1016/bs.ircmb.2017.07.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tryptophan catabolic enzyme indoleamine 2,3-dioxygenase-1 (IDO1) has attracted enormous attention in driving cancer immunosuppression, neovascularization, and metastasis. IDO1 suppresses local CD8+ T effector cells and natural killer cells and induces CD4+ T regulatory cells (iTreg) and myeloid-derived suppressor cells (MDSC). The structurally distinct enzyme tryptophan dioxygenase (TDO) also has been implicated recently in immune escape and metastatic progression. Lastly, emerging evidence suggests that the IDO1-related enzyme IDO2 may support IDO1-mediated iTreg and contribute to B-cell inflammed states in certain cancers. IDO1 and TDO are upregulated widely in neoplastic cells but also variably in stromal, endothelial, and innate immune cells of the tumor microenviroment and in tumor-draining lymph nodes. Pharmacological and genetic proofs in preclinical models of cancer have validated IDO1 as a cancer therapeutic target. IDO1 inhibitors have limited activity on their own but greatly enhance "immunogenic" chemotherapy or immune checkpoint drugs. IDO/TDO function is rooted in inflammatory programming, thereby influencing tumor neovascularization, MDSC generation, and metastasis beyond effects on adaptive immune tolerance. Discovery and development of two small molecule enzyme inhibitors of IDO1 have advanced furthest to date in Phase II/III human trials (epacadostat and navoximod, respectively). Indoximod, a tryptophan mimetic compound with a different mechanism of action in the IDO pathway has also advanced in multiple Phase II trials. Second generation combined IDO/TDO inhibitors may broaden impact in cancer treatment, for example, in addressing IDO1 bypass (inherent resistance) or acquired resistance to IDO1 inhibitors. This review surveys knowledge about IDO1 function and how IDO1 inhibitors reprogram inflammation to heighten therapeutic responses in cancer.
Collapse
Affiliation(s)
- George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, United States; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | | | - Arpita Mondal
- Lankenau Institute for Medical Research, Wynnewood, PA, United States; Drexel University College of Medicine, Philadelphia, PA, United States
| | - Peggy Scherle
- Incyte Corporation Inc., Wilmington, DE, United States
| | - Alexander J Muller
- Lankenau Institute for Medical Research, Wynnewood, PA, United States; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
77
|
Abram DM, Fernandes LGR, Ramos Filho ACS, Simioni PU. The modulation of enzyme indoleamine 2,3-dioxygenase from dendritic cells for the treatment of type 1 diabetes mellitus. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2171-2178. [PMID: 28769554 PMCID: PMC5533566 DOI: 10.2147/dddt.s135367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus type 1 (DM1) is an autoimmune disease in which β-cells of the pancreas islet are destroyed by T lymphocytes. Specific T cells are activated by antigen-presenting cells, mainly dendritic cells (DCs). It is already known that the regulation of tryptophan pathway in DC can be a mechanism of immunomodulation. The enzyme indoleamine 2,3-dioxygenase (IDO) is present in many cells, including DC, and participates in the metabolism of the amino acid tryptophan. Recent studies suggest the involvement of IDO in the modulation of immune response, which became more evident after the in vitro demonstration of IDO production by DC and of the ability of these cells to inhibit lymphocyte function through the control of tryptophan metabolism. Current studies on immunotherapies describe the use of DC and IDO to control the progression of the immune response that triggers DM1. The initial results obtained are promising and indicate the possibility of developing therapies for the treatment or prevention of the DM1. Clinical trials using these cells in DM1 patients represent an interesting alternative treatment. However, clinical trials are still in the initial phase and a robust group of assays is necessary.
Collapse
Affiliation(s)
- Débora Moitinho Abram
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Luis Gustavo Romani Fernandes
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.,Department of Biomedical Science, Faculty of Americana, Americana, SP, Brazil
| | | | - Patrícia Ucelli Simioni
- Department of Biomedical Science, Faculty of Americana, Americana, SP, Brazil.,Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Biochemistry and Microbiology, Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| |
Collapse
|
78
|
Bilir C, Sarisozen C. Indoleamine 2,3-dioxygenase (IDO): Only an enzyme or a checkpoint controller? JOURNAL OF ONCOLOGICAL SCIENCES 2017. [DOI: 10.1016/j.jons.2017.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
79
|
Hassanpour P, Amirfarhangi A, Hosseini-Fard SR, Yarnazari A, Najafi M. Interleukin 6 may be related to indoleamine 2,3-dioxygense function in M2 macrophages treated with small dense LDL particles. Gene 2017; 626:442-446. [PMID: 28596088 DOI: 10.1016/j.gene.2017.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/12/2017] [Accepted: 05/31/2017] [Indexed: 01/23/2023]
Abstract
Macrophages are known as important immune cells involved in the improvement of atherosclerosis plaques. The M2 macrophages are beneficial because scavenging the non-functional components in vessel sub-endothelial space. In this study, we investigated the effects of small dense LDL (sdLDL) on the changes of indoleamine 2,3-dioxygense (IDO) and interleukin (IL6) in the differentiated M2 macrophages. The patients were selected from who underwent coronary artery angiography. The monocytes were isolated from the whole blood samples of healthy (<5% stenosis) and patient (>70% stenosis; SVD, 2VD and 3VD) subjects and, were differentiated into M2 macrophages. The IDO gene expression, activity and IL6 values were measured by RT-qPCR, colorimetry and ELISA techniques, respectively. In contrast with healthy group, the IDO gene expression and activity were significantly reduced in SVD and 2VD groups (P<0.05). Furthermore, they were conversely associated to secretion of IL6. In conclusion, the data suggested that inflammatory responses in M2 macrophages differentiated from monocytes of patients after treatment of sdLDL may be related to the reduced IDO function.
Collapse
Affiliation(s)
- Parisa Hassanpour
- Iran University of Medical Sciences, School of Medicine, International Branch, Tehran, Iran
| | | | | | - Amaneh Yarnazari
- Iran University of Medical Sciences, School of Medicine, International Branch, Tehran, Iran
| | - Mohammad Najafi
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
Yue EW, Sparks R, Polam P, Modi D, Douty B, Wayland B, Glass B, Takvorian A, Glenn J, Zhu W, Bower M, Liu X, Leffet L, Wang Q, Bowman KJ, Hansbury MJ, Wei M, Li Y, Wynn R, Burn TC, Koblish HK, Fridman JS, Emm T, Scherle PA, Metcalf B, Combs AP. INCB24360 (Epacadostat), a Highly Potent and Selective Indoleamine-2,3-dioxygenase 1 (IDO1) Inhibitor for Immuno-oncology. ACS Med Chem Lett 2017; 8:486-491. [PMID: 28523098 PMCID: PMC5430407 DOI: 10.1021/acsmedchemlett.6b00391] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/24/2017] [Indexed: 01/25/2023] Open
Abstract
A data-centric medicinal chemistry approach led to the invention of a potent and selective IDO1 inhibitor 4f, INCB24360 (epacadostat). The molecular structure of INCB24360 contains several previously unknown or underutilized functional groups in drug substances, including a hydroxyamidine, furazan, bromide, and sulfamide. These moieties taken together in a single structure afford a compound that falls outside of "drug-like" space. Nevertheless, the in vitro ADME data is consistent with the good cell permeability and oral bioavailability observed in all species (rat, dog, monkey) tested. The extensive intramolecular hydrogen bonding observed in the small molecule crystal structure of 4f is believed to significantly contribute to the observed permeability and PK. Epacadostat in combination with anti-PD1 mAb pembrolizumab is currently being studied in a phase 3 clinical trial in patients with unresectable or metastatic melanoma.
Collapse
Affiliation(s)
- Eddy W. Yue
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Richard Sparks
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Padmaja Polam
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Dilip Modi
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Brent Douty
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Brian Wayland
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Brian Glass
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Amy Takvorian
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Joseph Glenn
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Wenyu Zhu
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Michael Bower
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Xiangdong Liu
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Lynn Leffet
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Qian Wang
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kevin J. Bowman
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Michael J. Hansbury
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Min Wei
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Yanlong Li
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Richard Wynn
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Timothy C. Burn
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Holly K. Koblish
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Jordan S. Fridman
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Tom Emm
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Peggy A. Scherle
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Brian Metcalf
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Andrew P. Combs
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| |
Collapse
|
81
|
de Vries LV, Minović I, Franssen CFM, van Faassen M, Sanders JSF, Berger SP, Navis G, Kema IP, Bakker SJL. The tryptophan/kynurenine pathway, systemic inflammation, and long-term outcome after kidney transplantation. Am J Physiol Renal Physiol 2017; 313:F475-F486. [PMID: 28490533 DOI: 10.1152/ajprenal.00690.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Tryptophan is metabolized along the kynurenine pathway, initially to kynurenine, and subsequently to cytotoxic 3-hydroxykynurenine. There is increasing interest in this pathway because of its proinflammatory nature, and drugs interfering in it have received increasing attention. We aimed to investigate whether serum and urinary parameters of the tryptophan/kynurenine pathway, and particularly cytotoxic 3-hydroxykynurenine, are associated with systemic inflammation and long-term outcome in renal transplant recipients (RTR). Data were collected in outpatient RTR with a functioning graft for >1 yr. Tryptophan, kynurenine, and 3-hydroxykynurenine in serum and urine were measured using LC-MS/MS. A total of 561 RTR (age: 51 ± 12 yr; 56% male) were included at a median of 6.0 (2.6-11.6) yr posttransplantation. Baseline median serum tryptophan was 40.0 (34.5-46.0) µmol/l, serum kynurenine was 1.8 (1.4-2.2) µmol/l, and serum 3-hydroxykynurenine was 42.2 (31.0-61.7) nmol/l. Serum kynurenine and 3-hydroxykynurenine were strongly associated with parameters of systemic inflammation. During follow-up for 7.0 (6.2-7.5) yr, 51 RTR (9%) developed graft failure and 120 RTR (21%) died. Both serum kynurenine and 3-hydroxykynurenine were independently associated with graft failure [HR 1.72 (1.23-2.41), P = 0.002; and HR 2.03 (1.42-2.90), P < 0.001]. Serum 3-hydroxykynurenine was also independently associated with mortality [HR 1.37 (1.08-1.73), P = 0.01], whereas serum kynurenine was not. Urinary tryptophan/kynurenine pathway parameters were not associated with outcome. Of tryptophan metabolites, serum 3-hydroxykynurenine is cross-sectionally most strongly and consistently associated with systemic inflammation and prospectively with adverse long-term outcome after kidney transplantation. Serum 3-hydroxykynurenine may be an interesting biomarker and target for the evaluation of drugs interfering in the tryptophan/kynurenine pathway.
Collapse
Affiliation(s)
- Laura V de Vries
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - Isidor Minović
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and.,Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Casper F M Franssen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Jan-Stephan F Sanders
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Top Institute Food and Nutrition, Wageningen, The Netherlands
| |
Collapse
|
82
|
Ferreira P, Shin I, Sosova I, Dornevil K, Jain S, Dewey D, Liu F, Liu A. Hypertryptophanemia due to tryptophan 2,3-dioxygenase deficiency. Mol Genet Metab 2017; 120:317-324. [PMID: 28285122 PMCID: PMC5421356 DOI: 10.1016/j.ymgme.2017.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
In this report we describe the first human case of hypertryptophanemia confirmed to be due to tryptophan 2,3-dioxygenase deficiency. The underlying etiology was established by sequencing the TDO2 gene, in which there was compound heterozygosity for two rare variants: c.324G>C, p.Met108Ile and c.491dup, p.Ile165Aspfs*12. The pathogenicity of these variants was confirmed by molecular-level studies, which showed that c.491dup does not produce soluble protein and c.324G>C results in a catalytically less efficient Met108Ile enzyme that is prone to proteolytic degradation. The biochemical phenotype of hypertryptophanemia and hyperserotoninemia does not appear to have significant clinical consequences.
Collapse
Affiliation(s)
- Patrick Ferreira
- Division of Medical Genetics, Alberta Children's Hospital, Calgary, AB, Canada.
| | - Inchul Shin
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Iveta Sosova
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Shailly Jain
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Deborah Dewey
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Fange Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
83
|
Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol Life Sci 2017; 74:2899-2916. [PMID: 28314892 DOI: 10.1007/s00018-017-2504-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/26/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Kynurenine pathway (KP) is the primary path of tryptophan (Trp) catabolism in most mammalian cells. The KP generates several bioactive catabolites, such as kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), and 3-hydroxyanthranilic acid (3-HAA). Increased catabolite concentrations in serum are associated with several cardiovascular diseases (CVD), including heart disease, atherosclerosis, and endothelial dysfunction, as well as their risk factors, including hypertension, diabetes, obesity, and aging. The first catabolic step in KP is primarily controlled by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). Following this first step, the KP has two major branches, one branch is mediated by kynurenine 3-monooxygenase (KMO) and kynureninase (KYNU) and is responsible for the formation of 3-HK, 3-HAA, and quinolinic acid (QA); and another branch is controlled by kynurenine amino-transferase (KAT), which generates KA. Uncontrolled Trp catabolism has been demonstrated in distinct CVD, thus, understanding the underlying mechanisms by which regulates KP enzyme expression and activity is paramount. This review highlights the recent advances on the effect of KP enzyme expression and activity in different tissues on the pathological mechanisms of specific CVD, KP is an inflammatory sensor and modulator in the cardiovascular system, and KP catabolites act as the potential biomarkers for CVD initiation and progression. Moreover, the biochemical features of critical KP enzymes and principles of enzyme inhibitor development are briefly summarized, as well as the therapeutic potential of KP enzyme inhibitors against CVD is briefly discussed.
Collapse
|
84
|
Badawy AAB. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res 2017; 10:1178646917691938. [PMID: 28469468 PMCID: PMC5398323 DOI: 10.1177/1178646917691938] [Citation(s) in RCA: 738] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Regulatory and functional aspects of the kynurenine (K) pathway (KP) of tryptophan (Trp) degradation are reviewed. The KP accounts for ~95% of dietary Trp degradation, of which 90% is attributed to the hepatic KP. During immune activation, the minor extrahepatic KP plays a more active role. The KP is rate-limited by its first enzyme, Trp 2,3-dioxygenase (TDO), in liver and indoleamine 2,3-dioxygenase (IDO) elsewhere. TDO is regulated by glucocorticoid induction, substrate activation and stabilization by Trp, cofactor activation by heme, and end-product inhibition by reduced nicotinamide adenine dinucleotide (phosphate). IDO is regulated by IFN-γ and other cytokines and by nitric oxide. The KP disposes of excess Trp, controls hepatic heme synthesis and Trp availability for cerebral serotonin synthesis, and produces immunoregulatory and neuroactive metabolites, the B3 “vitamin” nicotinic acid, and oxidized nicotinamide adenine dinucleotide. Various KP enzymes are undermined in disease and are targeted for therapy of conditions ranging from immunological, neurological, and neurodegenerative conditions to cancer.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
85
|
Debnath S, Velagapudi C, Redus L, Thameem F, Kasinath B, Hura CE, Lorenzo C, Abboud HE, O'Connor JC. Tryptophan Metabolism in Patients With Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory Markers. Int J Tryptophan Res 2017; 10:1178646917694600. [PMID: 28469469 PMCID: PMC5398653 DOI: 10.1177/1178646917694600] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Objective: Type 2 diabetes (T2D) is the primary case of chronic kidney disease (CKD). Inflammation is associated with metabolic dysregulation in patients with T2D and CKD. Tryptophan (TRP) metabolism may have relevance to the CKD outcomes and associated symptoms. We investigated the relationships of TRP metabolism with inflammatory markers in patients with T2D and CKD. Methods: Data were collected from a well-characterized cohort of type 2 diabetic individuals with all stages of CKD, including patients on hemodialysis. Key TRP metabolites (kynurenine [KYN], kynurenic acid [KYNA], and quinolinic acid [QA]), proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]), and C-reactive protein were measured in plasma. The KYN/TRP ratio was utilized as a surrogate marker for indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity. Results: There was a significant inverse association between circulating TRP level and stages of CKD (P < 0.0001). Downstream bioactive TRP metabolites KYN, KYNA, and QA were positively and robustly correlated with the severity of kidney disease (P < 0.0001). In multiple linear regression, neither TNF-α nor IL-6 was independently related to KYN/TRP ratio after adjusting for estimated glomerular filtration rate (eGFR). Only TNF-α was independently related to KYN after taking into account the effect of eGFR. Conclusions: Chronic kidney disease secondary to T2D may be associated with accumulation of toxic TRP metabolites due to both inflammation and impaired kidney function. Future longitudinal studies to determine whether the accumulation of KYN directly contributes to CKD progression and associated symptoms in patients with T2D are warranted.
Collapse
Affiliation(s)
- Subrata Debnath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chakradhar Velagapudi
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Laney Redus
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Farook Thameem
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Balakuntalam Kasinath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Claudia E Hura
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carlos Lorenzo
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanna E Abboud
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jason C O'Connor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
86
|
Merlo LMF, Grabler S, DuHadaway JB, Pigott E, Manley K, Prendergast GC, Laury-Kleintop LD, Mandik-Nayak L. Therapeutic antibody targeting of indoleamine-2,3-dioxygenase (IDO2) inhibits autoimmune arthritis. Clin Immunol 2017; 179:8-16. [PMID: 28223071 DOI: 10.1016/j.clim.2017.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a debilitating inflammatory autoimmune disease with no known cure. Recently, we identified the immunomodulatory enzyme indoleamine-2,3-dioxygenase 2 (IDO2) as an essential mediator of autoreactive B and T cell responses driving RA. However, therapeutically targeting IDO2 has been challenging given the lack of small molecules that specifically inhibit IDO2 without also affecting the closely related IDO1. In this study, we develop a novel monoclonal antibody (mAb)-based approach to therapeutically target IDO2. Treatment with IDO2-specific mAb alleviated arthritis in two independent preclinical arthritis models, reducing autoreactive T and B cell activation and recapitulating the strong anti-arthritic effect of genetic IDO2 deficiency. Mechanistic investigations identified FcγRIIb as necessary for mAb internalization, allowing targeting of an intracellular antigen traditionally considered inaccessible to mAb therapy. Taken together, our results offer preclinical proof of concept for antibody-mediated targeting of IDO2 as a new therapeutic strategy to treat RA and other autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Lauren M F Merlo
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Samantha Grabler
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - James B DuHadaway
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Elizabeth Pigott
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Kaylend Manley
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - George C Prendergast
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA; Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut St. #100, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th St. Suite 1050, Philadelphia, PA 19107, USA
| | - Lisa D Laury-Kleintop
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Laura Mandik-Nayak
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA.
| |
Collapse
|
87
|
Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, Guillemin GJ, Brew BJ. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 2017; 112:373-388. [DOI: 10.1016/j.neuropharm.2016.03.024] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 12/13/2022]
|
88
|
Li J, Li Y, Yang D, Hu N, Guo Z, Kuang C, Yang Q. Establishment of a human indoleamine 2, 3-dioxygenase 2 (hIDO2) bioassay system and discovery of tryptanthrin derivatives as potent hIDO2 inhibitors. Eur J Med Chem 2016; 123:171-179. [DOI: 10.1016/j.ejmech.2016.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/03/2016] [Accepted: 07/07/2016] [Indexed: 11/29/2022]
|
89
|
Yuasa HJ. Highl-Trp affinity of indoleamine 2,3-dioxygenase 1 is attributed to two residues located in the distal heme pocket. FEBS J 2016; 283:3651-3661. [DOI: 10.1111/febs.13834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 05/31/2016] [Accepted: 08/12/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Hajime J. Yuasa
- Laboratory of Biochemistry; Department of Applied Science; Faculty of Science; National University Corporation Kochi University; Japan
| |
Collapse
|
90
|
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med 2016; 53:10-27. [PMID: 27593095 DOI: 10.1016/j.mam.2016.08.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| |
Collapse
|
91
|
1,2,3-Triazoles as inhibitors of indoleamine 2,3-dioxygenase 2 (IDO2). Bioorg Med Chem Lett 2016; 26:4330-3. [DOI: 10.1016/j.bmcl.2016.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
|
92
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
93
|
Hascitha J, Priya R, Jayavelu S, Dhandapani H, Selvaluxmy G, Sunder Singh S, Rajkumar T. Analysis of Kynurenine/Tryptophan ratio and expression of IDO1 and 2 mRNA in tumour tissue of cervical cancer patients. Clin Biochem 2016; 49:919-24. [DOI: 10.1016/j.clinbiochem.2016.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/16/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
|
94
|
de Bie J, Lim CK, Guillemin GJ. Kynurenines, Gender and Neuroinflammation; Showcase Schizophrenia. Neurotox Res 2016; 30:285-94. [DOI: 10.1007/s12640-016-9641-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022]
|
95
|
Li Q, Harden JL, Anderson CD, Egilmez NK. Tolerogenic Phenotype of IFN-γ-Induced IDO+ Dendritic Cells Is Maintained via an Autocrine IDO-Kynurenine/AhR-IDO Loop. THE JOURNAL OF IMMUNOLOGY 2016; 197:962-70. [PMID: 27316681 DOI: 10.4049/jimmunol.1502615] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/29/2016] [Indexed: 11/19/2022]
Abstract
Previous studies demonstrated that IL-12-driven antitumor activity is short-circuited by a rapid switch in dendritic cell (DC) function from immunogenic to tolerogenic activity. This process was dependent on IFN-γ and the tolerogenic phenotype was conferred by IDO. Extended monitoring of IDO(+) DC in the tumor-draining lymph nodes of IL-12 plus GM-CSF-treated tumor-bearing mice revealed that whereas IFN-γ induction was transient, IDO expression in DC was maintained long-term. An in vitro system modeling the IFN-γ-mediated change in DC function was developed to dissect the molecular basis of persistent IDO expression in post-IL-12 DC. Stimulation of DC with IFN-γ and CD40L resulted in rapid induction of IDO1 and IDO2 transcription and recapitulated the in vivo switch from immunogenic to tolerogenic activity. Long-term maintenance of IDO expression was found to be independent of exogenous and autocrine IFN-γ, or the secondary cytokines TGF-β, TNF-α, and IL-6. In contrast, both IDO enzymatic activity and IFN-γ-induced AhR expression were required for continued IDO transcription in vitro and in vivo. Addition of the tryptophan catabolite kynurenine to DC cultures in which IDO activity was blocked restored long-term IDO expression in wild-type DC but not in AhR-deficient DC, establishing the central role of the kynurenine-AhR pathway in maintaining IDO expression in tolerogenic DC. These findings shed further light on the cellular and molecular biology of the post-IL-12 regulatory rebound and provide insight into how feedback inhibitory mechanisms dominate in the long-term.
Collapse
Affiliation(s)
- Qingsheng Li
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202; and
| | - Jamie L Harden
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Charles D Anderson
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202; and
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|
96
|
Merlo LMF, DuHadaway JB, Grabler S, Prendergast GC, Muller AJ, Mandik-Nayak L. IDO2 Modulates T Cell-Dependent Autoimmune Responses through a B Cell-Intrinsic Mechanism. THE JOURNAL OF IMMUNOLOGY 2016; 196:4487-97. [PMID: 27183624 DOI: 10.4049/jimmunol.1600141] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/02/2016] [Indexed: 12/20/2022]
Abstract
Mechanistic insight into how adaptive immune responses are modified along the self-nonself continuum may offer more effective opportunities to treat autoimmune disease, cancer, and other sterile inflammatory disorders. Recent genetic studies in the KRN mouse model of rheumatoid arthritis demonstrate that the immunomodulatory molecule IDO2 modifies responses to self-antigens; however, the mechanisms involved are obscure. In this study, we show that IDO2 exerts a critical function in B cells to support the generation of autoimmunity. In experiments with IDO2-deficient mice, adoptive transplant experiments demonstrated that IDO2 expression in B cells was both necessary and sufficient to support robust arthritis development. IDO2 function in B cells was contingent on a cognate, Ag-specific interaction to exert its immunomodulatory effects on arthritis development. We confirmed a similar requirement in an established model of contact hypersensitivity, in which IDO2-expressing B cells are required for a robust inflammatory response. Mechanistic investigations showed that IDO2-deficient B cells lacked the ability to upregulate the costimulatory marker CD40, suggesting IDO2 acts at the T-B cell interface to modulate the potency of T cell help needed to promote autoantibody production. Overall, our findings revealed that IDO2 expression by B cells modulates autoimmune responses by supporting the cross talk between autoreactive T and B cells.
Collapse
Affiliation(s)
| | | | | | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA 19096; Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107; and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Alexander J Muller
- Lankenau Institute for Medical Research, Wynnewood, PA 19096; Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107; and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | | |
Collapse
|
97
|
Metabotypes with properly functioning mitochondria and anti-inflammation predict extended productive life span in dairy cows. Sci Rep 2016; 6:24642. [PMID: 27089826 PMCID: PMC4835701 DOI: 10.1038/srep24642] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
The failure to adapt metabolism to the homeorhetic demands of lactation is considered as a main factor in reducing the productive life span of dairy cows. The so far defined markers of production performance and metabolic health in dairy cows do not predict the length of productive life span satisfyingly. This study aimed to identify novel pathways and biomarkers related to productive life in dairy cows by means of (targeted) metabolomics. In a longitudinal study from 42 days before up to 100 days after parturition, we identified metabolites such as long-chain acylcarnitines and biogenic amines associated with extended productive life spans. These metabolites are mainly secreted by the liver and depend on the functionality of hepatic mitochondria. The concentrations of biogenic amines and some acylcarnitines differed already before the onset of lactation thus indicating their predictive potential for continuation or early ending of productive life.
Collapse
|
98
|
Abstract
The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD(+). Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington's disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years.
Collapse
|
99
|
Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WHR. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines (Basel) 2015; 3:703-29. [PMID: 26378585 PMCID: PMC4586474 DOI: 10.3390/vaccines3030703] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase (IDO) is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called "kynurenines" that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells.
Collapse
Affiliation(s)
- Jacques C Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Dequina A Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | | | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju 54896, Korea.
| | - Anthony F Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA.
| | - William H R Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
100
|
van Baren N, Van den Eynde BJ. Tumoral Immune Resistance Mediated by Enzymes That Degrade Tryptophan. Cancer Immunol Res 2015; 3:978-85. [PMID: 26269528 DOI: 10.1158/2326-6066.cir-15-0095] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/03/2015] [Indexed: 11/16/2022]
Abstract
Cancer patients mount T-lymphocyte responses against antigens expressed selectively by their malignancy, but these responses often fail to control their disease, because tumors select mechanisms that allow them to resist immune destruction. Among the numerous resistance mechanisms that have been proposed, metabolic inhibition of T cells by tryptophan catabolism deserves particular attention, because of the frequent expression of tryptophan-degrading enzymes in human tumors, and because in vitro and in vivo studies have shown that their enzymatic activity can be readily blocked by pharmacologic inhibitors, thereby restoring T-cell-mediated tumor cell killing and paving the way to targeted therapeutic intervention. In view of recent observations, and taking into account the differences between human and mouse data that differ in several aspects, in this Cancer Immunology at the Crossroads article, we discuss the role of the three enzymes that have been proposed to control tryptophan catabolism in tumoral immune resistance: indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO), and indoleamine 2,3-dioxygenase 2 (IDO2).
Collapse
Affiliation(s)
- Nicolas van Baren
- Ludwig Institute for Cancer Research, Brussels, Belgium. de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Benoît J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium. WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium. de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|