51
|
Liu M, Thijssen S, Hennink WE, Garssen J, van Nostrum CF, Willemsen LM. Oral pretreatment with β-lactoglobulin derived peptide and CpG co-encapsulated in PLGA nanoparticles prior to sensitizations attenuates cow's milk allergy development in mice. Front Immunol 2023; 13:1053107. [PMID: 36703973 PMCID: PMC9872660 DOI: 10.3389/fimmu.2022.1053107] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Cow's milk allergy is a common food allergy among infants. Improved hygiene conditions and loss of microbial diversity are associated with increased risk of allergy development. The intestinal immune system is essential for oral tolerance induction. In this respect, bacterial CpG DNA is known to drive Th1 and regulatory T-cell (Treg) development via Toll-Like-Receptor 9 (TLR-9) signaling, skewing away from the allergic Th2 phenotype. We aimed to induce allergen specific tolerance via oral delivery of poly (lactic-co-glycolic acid) nanoparticles (NP) co-encapsulated with a selected β-lactoglobulin derived peptide (BLG-Pep) and TLR-9 ligand CpG oligodeoxynucleotide (CpG). In vivo, 3-4-week-old female C3H/HeOuJ mice housed in individually ventilated cages received 6-consecutive-daily gavages of either PBS, whey, BLG-Pep/NP, CpG/NP, a mixture of BLG-Pep/NP plus CpG/NP or co-encapsulated BLG-Pep+CpG/NP, before 5-weekly oral sensitizations with whey plus cholera toxin (CT) or only CT (sham) and were challenged with whey 5 days after the last sensitization. The co-encapsulated BLG-Pep+CpG/NP pretreatment, but not BLG-Pep/NP, CpG/NP or the mixture of BLG-Pep/NP plus CpG/NP, prevented the whey-induced allergic skin reactivity and prevented rise in serum BLG-specific IgE compared to whey-sensitized mice. Importantly, co-encapsulated BLG-Pep+CpG/NP pretreatment reduced dendritic cell (DC) activation and lowered the frequencies of PD-L1+ DC in the mesenteric lymph nodes compared to whey-sensitized mice. By contrast, co-encapsulated BLG-Pep+CpG/NP pretreatment increased the frequency of splenic PD-L1+ DC compared to the BLG-Pep/NP plus CpG/NP recipients, in association with lower Th2 development and increased Treg/Th2 and Th1/Th2 ratios in the spleen. Oral administration of PLGA NP co-encapsulated with BLG-Pep and CpG prevented rise in serum BLG-specific IgE and symptom development while lowering splenic Th2 cell frequency in these mice which were kept under strict hygienic conditions.
Collapse
Affiliation(s)
- Mengshan Liu
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Wim E. Hennink
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Department of Immunology, Nutricia Research B.V., Utrecht, Netherlands
| | - Cornelus F. van Nostrum
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,*Correspondence: Linette E. M. Willemsen,
| |
Collapse
|
52
|
Zhao J, Yu L, Xue X, Xu Y, Huang T, Xu D, Wang Z, Luo L, Wang H. Diminished α7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid-β induced atrial remodeling by oxi-CaMKII/MAPK/AP-1 axis-mediated mitochondrial oxidative stress. Redox Biol 2023; 59:102594. [PMID: 36603528 PMCID: PMC9813735 DOI: 10.1016/j.redox.2022.102594] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The potential coexistence of Alzheimer's disease (AD) and atrial fibrillation (AF) is increasingly common as aging-related diseases. However, little is known about mechanisms responsible for atrial remodeling in AD pathogenesis. α7 nicotinic acetylcholine receptors (α7nAChR) has been shown to have profound effects on mitochondrial oxidative stress in both organ diseases. Here, we investigate the role of α7nAChR in mediating the effects of amyloid-β (Aβ) in cultured mouse atrial cardiomyocytes (HL-1 cells) and AD model mice (APP/PS1). In vitro, apoptosis, oxidative stress and mitochondrial dysfunction induced by Aβ long-term (72h) in HL-1 cells were prevented by α-Bungarotoxin(α-BTX), an antagonist of α7nAChR. This cardioprotective effect was due to reinstating Ca2+ mishandling by decreasing the activation of CaMKII and MAPK signaling pathway, especially the oxidation of CaMKII (oxi-CaMKII). In vivo studies demonstrated that targeting knockdown of α7nAChR in cardiomyocytes could ameliorate AF progression in late-stage (12 months) APP/PS1 mice. Moreover, α7nAChR deficiency in cardiomyocytes attenuated APP/PS1-mutant induced atrial remodeling characterized by reducing fibrosis, atrial dilation, conduction dysfunction, and inflammatory mediator activities via suppressing oxi-CaMKII/MAPK/AP-1. Taken together, our findings suggest that diminished α7nAChR could rescue Aβ-induced atrial remodeling through oxi-CaMKII/MAPK/AP-1-mediated mitochondrial oxidative stress in atrial cells and AD mice.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Dengyue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China,Postgraduate College, China Medical University, Shenyang, PR China
| | - Zhishang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Linyu Luo
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China,Postgraduate College, Dalian Medical University, Dalian, PR China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China.
| |
Collapse
|
53
|
Irahara M, Yamamoto-Hanada K, Sato M, Saito-Abe M, Miyaji Y, Yang L, Nishizato M, Kumasaka N, Mezawa H, Ohya Y. Endotoxin concentration and persistent eczema in early childhood. J Dermatol 2022; 50:646-655. [PMID: 36578125 DOI: 10.1111/1346-8138.16686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022]
Abstract
Although endotoxin concentration in the environment is negatively associated with atopic dermatitis (AD) onset in early childhood, the association between endotoxin concentration in the environment and eczema resolution in children with preexisting eczema is unclear. The aim of this study was to evaluate the association between endotoxin concentration in house dust and eczema persistence in young children. The authors used data from children participating in JECS (Japan Environment and Children's Study). In children who had AD or AD-like lesions at the age of 1 year, the authors investigated the association between the prevalence of eczema at the age of 3 years and endotoxin concentration (categorized by quartiles) in the dust on children's mattresses at the ages of 1.5 and 3 years. This study included 605 children. Eczema was significantly less prevalent among children whose mattresses were in the second and third quartiles of endotoxin concentration when they were 18 months old than among children whose mattresses were in the first quartile (adjusted odds ratio, 0.57 [95% confidence interval, 0.35-0.93] and adjusted odds ratio, 0.49 [95% confidence interval, 0.29-0.83], respectively). Moreover, of the children with eczema at age 3 years, those whose mattresses had endotoxin concentrations in the first quartile had significantly worse sleep disturbance caused by itchy rash (>1 time per week) than did those whose mattresses were in the third and fourth quartiles (20.0% vs 3.3% and 3.7%, both p values < 0.01). The findings indicate that low endotoxin exposure is associated with a higher prevalence of persistent eczema during early childhood.
Collapse
Affiliation(s)
- Makoto Irahara
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Kiwako Yamamoto-Hanada
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Miori Sato
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Mayako Saito-Abe
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Yumiko Miyaji
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Limin Yang
- Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Minaho Nishizato
- Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Natsuhiko Kumasaka
- Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Hidetohi Mezawa
- Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
54
|
Zhang B, Zeng M, Zhang Q, Wang R, Jia J, Cao B, Liu M, Guo P, Zhang Y, Zheng X, Feng W. Ephedrae Herba polysaccharides inhibit the inflammation of ovalbumin induced asthma by regulating Th1/Th2 and Th17/Treg cell immune imbalance. Mol Immunol 2022; 152:14-26. [DOI: 10.1016/j.molimm.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
|
55
|
Li Y, Li Y, Xu S, Chen Y, Zhou P, Hu T, Li H, Liu Y, Xu Y, Ren J, Qiu Y, Lu C. N-Acylethanolamine acid amidase (NAAA) exacerbates psoriasis inflammation by enhancing dendritic cell (DCs) maturation. Pharmacol Res 2022; 185:106491. [DOI: 10.1016/j.phrs.2022.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
56
|
Yang Y, Lin Y, Xu R, Zhang Z, Zeng W, Xu Q, Deng F. Micro/Nanostructured Topography on Titanium Orchestrates Dendritic Cell Adhesion and Activation via β2 Integrin-FAK Signals. Int J Nanomedicine 2022; 17:5117-5136. [PMID: 36345509 PMCID: PMC9636866 DOI: 10.2147/ijn.s381222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Background and Purpose In clinical application of dental implants, the functional state of dendritic cells (DCs) has been suggested to have a close relationship with the implant survival rate or speed of osseointegration. Although microscale surfaces have a stable osteogenesis property, they also incline to trigger unfavorable DCs activation and threaten the osseointegration process. Nanoscale structures have an advantage in regulating cell immune response through orchestrating cell adhesion, indicating the potential of hierarchical micro/nanostructured surface in regulation of DCs’ activation without sacrificing the advantage of microscale topography. Materials and Methods Two micro/nanostructures were fabricated based on microscale rough surfaces through anodization or alkali treatment, the sand-blasted and acid-etched (SA) surface served as control. The surface characteristics, in vitro and in vivo DC immune reactions and β2 integrin-FAK signal expression were systematically investigated. The DC responses to different surface topographies after FAK inhibition were also tested. Results Both micro/nano-modified surfaces exhibited unique composite structures, with higher hydrophilicity and lower roughness compared to the SA surface. The DCs showed relatively immature functional states with round morphologies and significantly downregulated β2 integrin-FAK levels on micro/nanostructures. Implant surfaces with micro/nano-topographies also triggered lower levels of DC inflammatory responses than SA surfaces in vivo. The inhibited FAK activation effectively reduced the differences in topography-caused DC activation and narrowed the differences in DC activation among the three groups. Conclusion Compared to the SA surface with solely micro-scale topography, titanium surfaces with hybrid micro/nano-topographies reduced DC inflammatory response by influencing their adhesion states. This regulatory effect was accompanied by the modulation of β2 integrin-FAK signal expression. The β2 integrin-FAK-mediated adhesion plays a critical role in topography-induced DC activation, which represents a potential target for material–cell interaction regulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yujing Lin
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Wenyi Zeng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Qiong Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China,Correspondence: Qiong Xu; Feilong Deng, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Ling Yuan Xi Road, Guangzhou, 510055, People’s Republic of China, Tel +86 20 83862537, Fax +86 20 83822807, Email ;
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
57
|
Fan K, Liu H, Pei Z, Brown PB, Huang Y. A study of the potential effect of dietary fishmeal replacement with cricket meal (Gryllus bimaculatus) on growth performance, blood health, liver antioxidant activities, intestinal microbiota and immune-related gene expression of juvenile channel catfish. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Huo JL, Fu WJ, Liu ZH, Lu N, Jia XQ, Liu ZS. Research advance of natural products in tumor immunotherapy. Front Immunol 2022; 13:972345. [PMID: 36159787 PMCID: PMC9494295 DOI: 10.3389/fimmu.2022.972345] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy has emerged as a novel anti-tumor treatment. Despite significant breakthroughs, cancer immunotherapy remains focused on several types of tumors that are sensitive to the immune system. Therefore, effective strategies to expand its indications and improve its efficacy become key factors for the further development of cancer immunotherapy. In recent decades, the anticancer activities of natural products are reported to have this effect on cancer immunotherapy. And the mechanism is largely attributed to the remodeling of the tumor immunosuppressive microenvironment. The compelling data highlight that natural products offer an alternative method option to improve immune function in the tumor microenvironment (TME). Currently, more attention is being paid to the discovery of new potential modulators of tumor immunotherapy from natural products. In this review, we describe current advances in employing natural products and natural small-molecule drugs targeting immune cells to avoid tumor immune escape, which may bring some insight for guiding tumor treatment.
Collapse
Affiliation(s)
- Jin-Ling Huo
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Wen-Jia Fu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zheng-Han Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| | - Xiang-Qian Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| | - Zhang-Suo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| |
Collapse
|
59
|
Wang Z, Sun Y, Shen R, Tang X, Xu Y, Zhang Y, Liu Y. Global scientific trends on the immunomodulation of mesenchymal stem cells in the 21st century: A bibliometric and visualized analysis. Front Immunol 2022; 13:984984. [PMID: 36090982 PMCID: PMC9449834 DOI: 10.3389/fimmu.2022.984984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background Since the discovery of the immunomodulatory functions of mesenchymal stem cells (MSCs), their application in immunomodulation has attracted considerable attention, and an increasing number of studies have been conducted worldwide. Our research aimed to investigate the global status and trends in this field. Methods Publications on the immunomodulatory functions of MSCs from 1 January 2000 to 7 March 2022 were retrieved from the Web of Science Core Collection. The data were studied and indexed using the bibliometric methodology. Visualization analysis, co-authorship, co-occurrence analysis, and publication trends in MSC immunomodulation were conducted using the VOSviewer software. Results In total, 4,227 papers were included in the study. The number of publications and research interests has significantly increased globally. China published the highest number of related articles, while the US published articles with the highest number of citations. Stem Cell Research & Therapy had the highest number of publications. Sun Yat-sen University, Shanghai Jiao Tong University, Harvard University, and Seoul National University were the most contributive institutions. Furthermore, the studies were divided into four research hotspots for MSC immunomodulation: MSC immunomodulation in regenerative medicine, the effects and mechanisms of MSC immunomodulation, MSC therapy for immune diseases, and the cell source of MSCs. Conclusion This study indicates that the number of publications on MSC immunomodulation will increase in the future, and MSC immunomodulation mechanisms and clinical applications of MSC immunotherapy should be the next hotspots in this research field.
Collapse
Affiliation(s)
- Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Yuqiang Sun
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Rou Shen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xia Tang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yingxin Xu
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Yao Liu,
| |
Collapse
|
60
|
Increased Production of Inflammatory Cytokines after Inoculation with Recombinant Zoster Vaccine in Mice. Vaccines (Basel) 2022; 10:vaccines10081339. [PMID: 36016227 PMCID: PMC9413309 DOI: 10.3390/vaccines10081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing numbers of patients with zoster were reported recently, and recombinant zoster vaccine (Shingrix®) was licensed using the AS01B adjuvant system. Although it induces highly effective protection, a high incidence of local adverse events (regional pain, erythema, and swelling) has been reported with systemic reactions of fever, fatigue, and headache. To investigate the mechanism of local adverse events, cytokine profiles were investigated in mice injected with 0.1 mL of Shingrix®. Muscle tissue and serum samples were obtained on days 0, 1, 3, 5, and 7, and at 2 and 4 weeks after the first dose. The second dose was given 4 weeks after the first dose and samples were obtained on days 1, 3, 5, 7, and 14. IL-6 and G-CSF were detected in muscle tissues on day 1 of the first injection, decreased on day 3 and afterward, and enhanced production was demonstrated on day 1 of the second dose. In sera, the elevated levels of IL-6 were detected on day 1 of the first dose, and IL-10 was detected on day 1 with increased levels on day 3 of the first dose. IL-4 was detected in muscle tissue on day 1 of the second dose and IL-5 on day 1 of both the first and second doses. IFN-γ production was not enhanced in muscle tissue but increased in serum samples on day 1 of the first dose. These results in the mouse model indicate that the induction of inflammatory cytokines is related to the cause of adverse events in humans.
Collapse
|
61
|
He Q, Zhang W, Zhang J, Deng Y. Cannabinoid Analogue WIN 55212-2 Protects Paraquat-Induced Lung Injury and Enhances Macrophage M2 Polarization. Inflammation 2022; 45:2256-2267. [PMID: 35674874 PMCID: PMC9174632 DOI: 10.1007/s10753-022-01688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023]
Abstract
WIN 55212-2 is an endocannabinoids analogue that has been reported to have anti-inflammatory and anti-fibrosis effects on different models. In this study, we investigated the protective effects of WIN 55212-2 on paraquat (PQ)-induced poison on mice especially on lung injury. Mice were administrated with different dose of PQ and thereafter treated with 0.2 mg/kg or 1 mg/kg WIN 55212-2. The survival of mice was recorded during 4 weeks of observation. Twenty-eight days after PQ treatment, the cell population and inflammatory factors IL-6, IL-10, and TNF-α were measured in bronchoalveolar lavage fluid (BALF). Pulmonary fibrosis was evaluated by Masson staining. Our results showed that WIN 55212-2 treatment reduced PQ-induced mortality of mice in a dose dependent manner. It decreased the number of inflammation-associated cells, as well as the level of pro-inflammatory factors in BALF (P < 0.05). WIN 55212-2 increased M2 cells in BALF (P < 0.05), improved the lung histology, reduced fibrosis formation, and decreased TGF-β, α-SMA and PDGFRa expression. The protective effects of WIN 55212-2 on PQ-induced lung injury and fibrosis were associated with an increase inM2 cells and increased expressions of IL-10, CD163, and CD206, suggesting that polarization of M2 macrophages may be involved in WIN 55212-2 protective effects on PQ-induced lung injury.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China.
| | - Wen Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Jinjuan Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Yuanyou Deng
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| |
Collapse
|
62
|
Saber S, Alomar SY, Yahya G. Blocking prostanoid receptors switches on multiple immune responses and cascades of inflammatory signaling against larval stages in snail fever. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43546-43555. [PMID: 35396684 PMCID: PMC9200668 DOI: 10.1007/s11356-022-20108-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/01/2022] [Indexed: 05/27/2023]
Abstract
Schistosomiasis, also known as snail fever or bilharziasis, is a worm infection caused by trematode called schistosomes that affects humans and animals worldwide. Schistosomiasis endemically exists in developing countries. Inflammatory responses elicited in the early phase of infection represent the rate limiting step for parasite migration and pathogenesis and could be a valuable target for therapeutic interventions. Prostaglandin E2 (PGE2) and interleukin (IL)-10 were found to be differentially affected in case of immune-modulation studies and cytokine analysis of hosts infected with either normal or radiation-attenuated parasite (RA) which switches off the development of an effective immune response against the migrating parasite in the early phase of schistosomiasis. Normal parasites induce predominantly a T helper 2 (Th2)-type cytokine response (IL-4 and IL-5) which is essential for parasite survival; here, we discuss in detail the downstream effects and cascades of inflammatory signaling of PGE2 and IL10 induced by normal parasites and the effect of blocking PGE2 receptors. We suggest that by selectively constraining the production of PGE2 during vaccination or therapy of susceptible persons or infected patients of schistosomiasis, this would boost IL-12 and reduce IL-10 production leading to a polarization toward the anti-worm Thl cytokine synthesis (IL-2 and Interferon (IFN)-γ).
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Suliman Y. Alomar
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharkia, 44519 Egypt
| |
Collapse
|
63
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
64
|
Zawistowska-Deniziak A, Lambooij JM, Kalinowska A, Patente TA, Łapiński M, van der Zande HJP, Basałaj K, de Korne CM, Chayé MAM, Gasan TA, Norbury LJ, Giera M, Zaldumbide A, Smits HH, Guigas B. Fasciola hepatica Fatty Acid Binding Protein 1 Modulates T cell Polarization by Promoting Dendritic Cell Thrombospondin-1 Secretion Without Affecting Metabolic Homeostasis in Obese Mice. Front Immunol 2022; 13:884663. [PMID: 35720355 PMCID: PMC9204345 DOI: 10.3389/fimmu.2022.884663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background The parasitic trematode Fasciola hepatica evades host immune defenses through secretion of various immunomodulatory molecules. Fatty Acid Binding Proteins (fhFABPs) are among the main excreted/secreted proteins and have been shown to display anti-inflammatory properties. However, little is currently known regarding their impact on dendritic cells (DCs) and their subsequent capacity to prime specific CD4+ T cell subsets. Methodology/Principal Findings The immunomodulatory effects of both native F. hepatica extracts and recombinant fhFABPs were assessed on monocyte-derived human DCs (moDCs) and the underlying mechanism was next investigated using various approaches, including DC-allogenic T cell co-culture and DC phenotyping through transcriptomic, proteomic and FACS analyses. We mainly showed that fhFABP1 induced a tolerogenic-like phenotype in LPS-stimulated moDCs characterized by a dose-dependent increase in the cell-surface tolerogenic marker CD103 and IL-10 secretion, while DC co-stimulatory markers were not affected. A significant decrease in secretion of the pro-inflammatory cytokines IL-12p70 and IL-6 was also observed. In addition, these effects were associated with an increase in both Th2-on-Th1 ratio and IL-10 secretion by CD4+ T cells following DC-T cell co-culture. RNA sequencing and targeted proteomic analyses identified thrombospondin-1 (TSP-1) as a non-canonical factor highly expressed and secreted by fhFABP1-primed moDCs. The effect of fhFABP1 on T cell skewing was abolished when using a TSP-1 blocking antibody during DC-T cell co-culture. Immunomodulation by helminth molecules has been linked to improved metabolic homeostasis during obesity. Although fhFABP1 injection in high-fat diet-fed obese mice induced a potent Th2 immune response in adipose tissue, it did not improved insulin sensitivity or glucose homeostasis. Conclusions/Significance We show that fhFABP1 modulates T cell polarization, notably by promoting DC TSP-1 secretion in vitro, without affecting metabolic homeostasis in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Anna Zawistowska-Deniziak
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Thiago A. Patente
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Hendrik J. P. van der Zande
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Clarize M. de Korne
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mathilde A. M. Chayé
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
| | - Thomas A. Gasan
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
| | - Luke J. Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center for Infectious Diseases (LU-CID), Leiden, Netherlands
| |
Collapse
|
65
|
Lin H, Peng S, Guo S, Ma B, Lucherelli MA, Royer C, Ippolito S, Samorì P, Bianco A. 2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107652. [PMID: 35451183 DOI: 10.1002/smll.202107652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Human health can be affected by materials indirectly through exposure to the environment or directly through close contact and uptake. With the ever-growing use of 2D materials in many applications such as electronics, medical therapeutics, molecular sensing, and energy storage, it has become more pertinent to investigate their impact on the immune system. Dendritic cells (DCs) are highly important, considering their role as the main link between the innate and the adaptive immune system. By using primary human DCs, it is shown that hexagonal boron nitride (hBN), graphene oxide (GO) and molybdenum disulphide have minimal effects on viability. In particular, it is evidenced that hBN and GO increase DC maturation, while GO leads to the release of reactive oxygen species and pro-inflammatory cytokines. hBN and MoS2 increase T cell proliferation with and without the presence of DCs. hBN in particular does not show any sign of downstream T cell polarization. The study allows ranking of the three materials in terms of inherent toxicity, providing the following trend: GO > hBN ≈ MoS2 , with GO the most cytotoxic.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cathy Royer
- Plateforme Imagerie In Vitro de l'ITI Neurostra, CNRS UAR 3156, University of Strasbourg, Strasbourg, 67000, France
| | | | - Paolo Samorì
- CNRS, ISIS, Université de Strasbourg, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
66
|
Dendritic Cells and Their Immunotherapeutic Potential for Treating Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23094885. [PMID: 35563276 PMCID: PMC9099521 DOI: 10.3390/ijms23094885] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.
Collapse
|
67
|
Zhang Q, Liang H, Longshaw M, Wang J, Ge X, Zhu J, Li S, Ren M. Effects of replacing fishmeal with methanotroph (Methylococcus capsulatus, Bath) bacteria meal (FeedKind®) on growth and intestinal health status of juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 122:298-305. [PMID: 35143988 DOI: 10.1016/j.fsi.2022.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
A ten-week feeding trial evaluated the feasibility of methanotroph (Methylococcus capsulatus) bacteria meal (FeedKind®, FK) as a fishmeal substitute in largemouth bass (Micropterus salmoides) diets. Six isonitrogenous and isoenergetic diets with different inclusion levels of FK (0 (fishmeal group), 43, 86, 129, 172 and 215 g/kg) were formulated to replace 0, 50, 100, 150, 200 and 250 g/kg fishmeal, respectively. The results showed that FK inclusion level could reach 129 g/kg without significantly affecting growth or feed coefficient rate (P > 0.05), while growth performance was decreased and feed coefficient rate increased when FK inclusion levels exceeded 129 g/kg (P < 0.05). Increase in FK inclusion levels tended to reduce plasma total cholesterol and total triglyceride whilst plasma total protein, albumin, alanine aminotransferase and aspartate aminotransferase in FK treatment groups were unchanged compared with fishmeal group (P > 0.05). FK inclusion levels at 43 g/kg and 86 g/kg were not detrimental to intestinal morphology whilst it was unfavourable when FK inclusion levels exceeded 86 g/kg as the total length of intestinal wall thickness and villus height, villus height were obviously decreased compared with fishmeal group (P < 0.05). As regards to inflammatory cytokine genes, FK instead of fishmeal increased the expression levels of TLR2, RelA, TNF-α, IL-1β, IL-10 and TGF-β, 43 g/kg and 86 g/kg FK decreased the expression level of Caspase-3 (P < 0.05). In conclusion, 129 g/kg FK can replace 150 g/kg fishmeal without negative effects on the growth performance, and replacing 100 g/kg fishmeal with 86 g/kg FK is more beneficial to intestinal health.
Collapse
Affiliation(s)
- Qile Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, FreshwaterFisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | | | - Jia Wang
- Calysta, Inc., San Mateo, CA, USA
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, FreshwaterFisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Jian Zhu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, FreshwaterFisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, FreshwaterFisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| |
Collapse
|
68
|
Heluany CS, Scharf P, Schneider AH, Donate PB, Dos Reis Pedreira Filho W, de Oliveira TF, Cunha FQ, Farsky SHP. Toxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor inhalation on rheumatoid arthritis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151097. [PMID: 34695477 DOI: 10.1016/j.scitotenv.2021.151097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Tobacco combustion exposure worsens rheumatoid arthritis (RA). Non-combustible tobacco devices, as heat-not-burn tobacco (HNBT), are emerging as harm reduction to smokers by releasing nicotine and lower combustible tobacco products. Nevertheless, HNBT toxicity remains unclear. Hence, here we investigated the impacts of the tobacco combustible product (cigarette smoke; CS) or HNBT vapor exposures on antigen-induced arthritis (AIA) in C57BL/6 mice. Animals were exposed to airflow, HNBT vapor, or CS during 1 h/twice a day, under the Health Canada Intense (HCI) smoking regime, between days 14 to 20 after the first immunization. At day 21, 16 h after the last exposures, mice were i.a. challenged and the AIA effects were evaluated 24 h later. CS- or HNBT-exposed mice presented equivalent blood nicotine levels. CS exposure worsened articular symptoms, pulmonary inflammation, and expression of lung metallothioneins. Nevertheless, CS or HNBT exposures reduced lymphoid organs' cellularity, splenocyte proliferation and IL-2 secretion. Additional in vitro CS or HNBT exposures confirmed the harmful effects on splenocytes, which were partially mediated by the activation of nicotine/α7nAchR pathway. Associated, data demonstrate the toxic mechanisms of CS or HNBT inhalation at HCI regime on RA, and highlight that further investigations are fundamental to assure the toxicity of emerging tobacco products on the immune system during specific challenges.
Collapse
Affiliation(s)
- Cintia Scucuglia Heluany
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | | | - Paula Barbim Donate
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | | | - Tiago Franco de Oliveira
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil.
| |
Collapse
|
69
|
Zeng Y, Lin D, Gao M, Du G, Cai Y. Systematic evaluation of the prognostic and immunological role of PDLIM2 across 33 cancer types. Sci Rep 2022; 12:1933. [PMID: 35121770 PMCID: PMC8817018 DOI: 10.1038/s41598-022-05987-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
The protein PDLIM2 regulates the stability of various transcription factors and is required for polarized cell migration. However, the clinical relevance and immune infiltration of PDLIM2 in cancer are not well-understood. We utilized The Cancer Genome Atlas and Genotype-Tissue Expression database to characterize alterations in PDLIM2 in pan-cancer. TIMER was used to explore PDLIM2 expression and immune infiltration levels. We assessed the correlation between PDLIM2 expression and immune-associated gene expression, immune score, tumor mutation burden, and DNA microsatellite instability. PDLIM2 significantly affected the prognosis of various cancers. Increased expression of PDLIM2 was significantly correlated with the tumor grade in seven types of tumors. The expression level of PDLIM2 was positively correlated with immune infiltrates, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and dendritic cells in bladder urothelial, kidney renal papillary cell, and colon adenocarcinoma. High expression levels of PDLIM2 tended to be associated with higher immune and stromal scores. PDLIM2 expression was associated with the tumor mutation burden in 12 cancer types and microsatellite instability in 5 cancer types. PDLIM2 levels were strongly correlated with diverse immune-related genes. PDLIM2 can act as a prognostic-related therapeutic target and is correlated with immune infiltrates in pan-cancer.
Collapse
Affiliation(s)
- Yudan Zeng
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongtao Lin
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqian Gao
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoxia Du
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongming Cai
- Guangdong Pharmaceutical University, Guangzhou, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Guangdong Provincial TCM Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou, China.
| |
Collapse
|
70
|
Chang JH, Chuang HC, Hsiao G, Hou TY, Wang CC, Huang SC, Li BY, Lee YL. Acteoside exerts immunomodulatory effects on dendritic cells via aryl hydrocarbon receptor activation and ameliorates Th2-mediated allergic asthma by inducing Foxp3 + regulatory T cells. Int Immunopharmacol 2022; 106:108603. [PMID: 35123286 DOI: 10.1016/j.intimp.2022.108603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses and are involved in the pathogenesis of allergic asthma. Acteoside, an active phenylethanoid glycoside, is widely distributed in many medicinal plants. Herein, we explored the immunomodulatory effects of acteoside on bone marrow-derived DCs in vitro, and further investigated the immunosuppressive ability of acteoside to manipulate T helper type 2 (Th2)-mediated allergic asthma in mice. Following lipopolysaccharide activation, 50 μM of acteoside significantly reduced the production of proinflammatory mediators, including interleukin (IL)-12 and tumor necrosis factor (TNF)-α, whereas it enhanced secretion of the anti-inflammatory cytokine, IL-10, by DCs. However, these effects of acteoside on DCs were reversed by pretreatment with CH223191, an aryl hydrocarbon receptor (AhR) antagonist. Additionally, coculture of acteoside-treated DCs with CD4+ T cells promoted the generation of forkhead box P3-positive (Foxp3+) regulatory T cells (Tregs) via AhR activation. Using a murine asthma model, our results demonstrated that oral administration of 50 mg/kg of acteoside decreased levels of Th2-type cytokines, such as IL-4, IL-5, and IL-13, whereas the level of IL-10 and the frequency of CD4+Foxp3+ Tregs were augmented. Moreover, acteoside treatment markedly inhibited the elevated serum level of ovalbumin-specific immunoglobulin E, attenuated the development of airway hyperresponsiveness, and reduced inflammatory cell counts in bronchoalveolar lavage fluid. Additionally, histological results reveled that acteoside ameliorated pulmonary inflammation in asthmatic mice. Taken together, these results indicated that acteoside exhibits immunomodulatory effects on DCs and plays an anti-inflammatory role in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Yun Hou
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Chiung Wang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chun Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bo-Yi Li
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
71
|
Brandt O, Wegenstein B, Müller I, Smith D, Nqweniso S, Adams L, Müller S, du Randt R, Pühse U, Gerber M, Navarini AA, Utzinger J, Daniel Labhardt N, Schindler C, Walter C. Association between allergic sensitization and intestinal parasite infection in schoolchildren in Gqeberha, South Africa. Clin Exp Allergy 2022; 52:670-683. [PMID: 35073608 PMCID: PMC9310757 DOI: 10.1111/cea.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Background Inconsistent data exist regarding the influence of parasitic infection on the prevalence of allergic sensitization and disorders. Objective To investigate the impact of geohelminth and protozoan infections on sensitization patterns and allergic symptoms of children living in low‐income communities in Gqeberha, South Africa. Methods In a cross‐sectional study, 587 schoolchildren aged 8–12 years were recruited in June 2016 and screened for reactivity to common allergens by skin prick tests (SPTs) and for parasitic infections by stool examination. Additionally, questionnaires were completed to record allergic symptoms the children may have experienced. Results Positive SPTs were found in 237/587 children (40.4%), and about one‐third of whom were polysensitized. Sensitizations were most frequently detected against the house dust mites (HDM) Dermatophagoides spp. (31.9%) and Blomia tropicalis (21.0%). Infections with geohelminths (Ascaris lumbricoides, Trichuris trichiura) were found in 26.8% and protozoan infections (Giardia intestinalis, Cryptosporidia spp.) in 13.9% of study participants. Mixed logistic regression analyses revealed negative associations between parasite infection and sensitization to Blomia tropicalis (OR: 0.54, 95% CI 0.33–0.89) and to Dermatophagoides spp. (OR 0.65, 95% CI 0.43–0.96), and between protozoan infection and allergic sensitization to any aeroallergen, although these associations were not significant when adjusted for false discovery. Geohelminth infection and intensity of geohelminth infection were both associated with reduced risk of polysensitization (OR 0.41, 95% CI 0.21–0.86), and this association remained significant with adjustment for false discovery. Reported respiratory symptoms were associated with HDM sensitization (ORs from 1.54 to 2.48), but not with parasite infection. Conclusions and clinical relevance Our data suggest that geohelminth infection and high geohelminth infection intensity are associated with a reduced risk of polysensitization.
Collapse
Affiliation(s)
- Oliver Brandt
- Department of Dermatology, Allergy Unit, University Hospital, University of Basel, Basel, Switzerland.,Department of Dermatology, University Hospital, University of Basel, Basel, Switzerland.,Pediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Benjamin Wegenstein
- Department of Dermatology, Allergy Unit, University Hospital, University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Ivan Müller
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Danielle Smith
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| | - Siphesihle Nqweniso
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| | - Larissa Adams
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| | - Simon Müller
- Department of Dermatology, University Hospital, University of Basel, Basel, Switzerland
| | - Rosa du Randt
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| | - Uwe Pühse
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Alexander A Navarini
- Department of Dermatology, University Hospital, University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | - Cheryl Walter
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| |
Collapse
|
72
|
Druszczyńska M, Godkowicz M, Kulesza J, Wawrocki S, Fol M. Cytokine Receptors-Regulators of Antimycobacterial Immune Response. Int J Mol Sci 2022; 23:1112. [PMID: 35163035 PMCID: PMC8835057 DOI: 10.3390/ijms23031112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Cytokine receptors are critical regulators of the antimycobacterial immune response, playing a key role in initiating and coordinating the recruitment and activation of immune cells during infection. They recognize and bind specific cytokines and are involved in inducing intracellular signal transduction pathways that regulate a diverse range of biological functions, including proliferation, differentiation, metabolism and cell growth. Due to mutations in cytokine receptor genes, defective signaling may contribute to increased susceptibility to mycobacteria, allowing the pathogens to avoid killing and immune surveillance. This paper provides an overview of cytokine receptors important for the innate and adaptive immune responses against mycobacteria and discusses the implications of receptor gene defects for the course of mycobacterial infection.
Collapse
Affiliation(s)
- Magdalena Druszczyńska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
| | - Magdalena Godkowicz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland;
| | - Sebastian Wawrocki
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
| |
Collapse
|
73
|
Song Y, Wang ZZ, Wang L, Faybusovich P, Srivastava K, Liu C, Tversky J, Dunkin D, Busse P, Ren X, Miller R, Miao M, Li XM. Sophora flavescens Alkaloids and Corticosteroid Synergistically Augment IL-10/IL-5 Ratio with Foxp3-Gene-Epigenetic Modification in Asthma PBMCs. J Asthma Allergy 2022; 14:1559-1571. [PMID: 34992384 PMCID: PMC8711843 DOI: 10.2147/jaa.s321616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background It has been demonstrated that ASHMI (antiasthma-simplified herbal medicine intervention) can improve airway function and reduce inflammation in human asthmatic patients with high safety and tolerability. In addition, ASHMI significantly suppresses Th2 cytokine production and increases Th1 cytokine production in treating asthma. Objective Allergic asthma is associated with dysregulation of cytokines. We focused on IL-5 and IL-10 as signature Th2 and Treg cytokines to characterize ASHMI immunomodulatory components. Methods The effects of ASHMI and individual herbal constituents on IL-5 and IL-10 production by PBMCs from asthmatic subjects were determined ex vivo. Sophora flavescens (SF)-F2, containing alkaloid compounds, effects on PBMC IL-10 and IL-5 production in the presence or absence of dexamethasone (Dex), and on DNA methylation levels at the foxp3 gene promoter were determined. Results The ratio of anti-CD3/CD28 stimulated IL-10/IL-5 production by PBMCs from asthmatic subjects was significantly reduced compared to healthy subjects. In PBMCs from asthmatic subjects, ASHMI significantly reduced IL-5 production and increased IL-10 secretion in a dose-dependent manner (p < 0.05–0.01). SF-F2 was most effective in increasing IL-10, whereas SF-F4 (flavonoid compounds) was most effective in suppressing IL-5 production. Dex-treated PBMCs from asthma subjects showed a trend of increasing ratio of IL-10/IL-5 while demonstrating reduced levels in both IL-5 and IL-10 (p < 0.05). Co-culture with Dex and SF-F2 significantly prevented Dex suppression of IL-10, while retained Dex-suppression of IL-5 production, and increased IL-10/IL-5 ratio by Dex. Co-culture with SF-F2 and Dex significantly reduced DNA methylation levels at the foxp3 gene promoter at CpG−126. Conclusion The SF alkaloid-rich fraction may be responsible for ASHMI induction of IL-10 production by PBMCs and plays a synergistic effect with Dex for augmenting IL-10/IL-5 ratio.
Collapse
Affiliation(s)
- Ying Song
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhen-Zhen Wang
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Lixin Wang
- Integrated TCM & Western Medicine Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Paul Faybusovich
- Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kamal Srivastava
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,General Nutraceutical Technology LLC, Elmsford, NY, USA
| | - Changda Liu
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jody Tversky
- The Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
| | - David Dunkin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Busse
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianqing Ren
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, People's Republic of China
| | - Rachel Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mingsan Miao
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Department of Otolaryngology, New York Medical College, Ardsley, NY, USA
| |
Collapse
|
74
|
Small Extracellular Vesicles Loaded with Immunosuppressive miRNAs Leads to an Inhibition of Dendritic Cell Maturation. Arch Immunol Ther Exp (Warsz) 2022; 70:27. [PMID: 36318344 PMCID: PMC9626419 DOI: 10.1007/s00005-022-00664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022]
Abstract
In particular conditions, inhibition of an immune response is required to prevent tissue damage. Among these conditions are diseases caused by an over-reactive immune response, such as autoimmune or allergic disorders, or imminent organ rejection after transplantation. To avoid tissue damage, drug-mediated systemic immune suppression is an option, but it comes with high costs in the form of susceptibility to viral and bacterial infections. Thus, the induction of antigen-specific tolerance is preferable. Extracellular vesicles (EVs) are capable of delivering antigen together with immunosuppressive signals and may be used to specifically induce antigen-specific tolerance. However, naturally occurring EVs are heterogeneous and not all of them show immunosuppressive character. In our trials to engineer cell culture derived EVs to increase their tolerogenic potential, we equipped them with immunosuppressive miRNA mimics. Small EVs (sEVs) were isolated and purified from the human monocytic THP-1 cell line or from healthy donor peripheral blood mononuclear cells, and electroporated with miR-494 and miR-146a mimics. The acquired immunosuppressive potential of the modified sEVs was demonstrated by their ability to alter the major histocompatibility complex molecules and co-stimulatory receptors present on dendritic cells (DCs). To avoid allogeneic responses, the same cells that produced the sEVs served also as recipient cells. In contrast to the treatment with unmodified sEVs, the tolerogenic sEVs impeded lipopolysaccharide-induced maturation and kept DCs in a more immature developmental stage. Our experiments show that simple manipulations of sEVs using immunosuppressive cargo can lead to the inhibition of DC maturation.
Collapse
|
75
|
Lu X, Oh-Hora M, Takeda K, Yamasaki S. Selective suppression of IL-10 transcription by calcineurin in dendritic cells through inactivation of CREB. Int Immunol 2021; 34:197-206. [PMID: 34953165 DOI: 10.1093/intimm/dxab112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022] Open
Abstract
Myeloid cells play a pivotal role in immune responses against bacterial and fungal infection. Among innate immune receptors, C-type lectin receptors (CLRs) can induce a wide spectrum of cytokines through immunoreceptor tyrosine-based activation motifs (ITAMs)-mediated signaling pathways. Dendritic cells (DCs) produce IL-10 through CLR stimulation; however, the regulatory mechanism of IL-10 expression has not been elucidated. In the current study, we report that calcium (Ca 2+) signaling-deficient DCs produced more IL-10 than wild type DCs. Mechanistically, Ca 2+-dependent phosphatase calcineurin directly inactivates cAMP response element binding protein (CREB), a transcription factor of Il10 in DCs, through dephosphorylating CREB at serine 133. In calcineurin-deficient DCs, CREB was highly phosphorylated and increased its binding to Il10 promoter. Elimination of MAPK signaling that phosphorylates CREB, deficiency of CREB, as well as deletion of CREB-binding site in Il10 promoter could diminish IL-10 production in DCs. Our findings identified a novel substrate of calcineurin as well as a mechanism through which Ca 2+ signaling regulates IL-10 expression downstream of CLRs. As IL-10 is a crucial immunosuppressive cytokine, this mechanism may counteract the over-activated IL-10 producing signals induced by CARD9 and MAPK pathways, preventing the ineffectiveness of immune system during bacterial and fungal infection.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Masatsugu Oh-Hora
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Mucosal Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University (CiDER), Suita, Japan
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University (CiDER), Suita, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
76
|
Blockade of protease-activated receptor 2 attenuates allergen-mediated acute lung inflammation and leukocyte recruitment in mice. J Biosci 2021. [DOI: 10.1007/s12038-021-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
77
|
Paris JL, de la Torre P, Flores AI. New Therapeutic Approaches for Allergy: A Review of Cell Therapy and Bio- or Nano-Material-Based Strategies. Pharmaceutics 2021; 13:pharmaceutics13122149. [PMID: 34959429 PMCID: PMC8707403 DOI: 10.3390/pharmaceutics13122149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Allergy constitutes a major health issue due to its large prevalence. The established therapeutic approaches (allergen avoidance, antihistamines, and corticosteroids) do not address the underlying causes of the pathology, highlighting the need for other long-term treatment options. Antigen-specific immunotherapy enables the long-term control of allergic diseases by promoting immunological tolerance to the allergen. However, efficacious immunotherapies are not available for all possible allergens, and the risk of undesired reactions during therapy remains a concern, especially in patients with severe allergic reactions. In this context, two types of therapeutic strategies appear especially promising for the future in the context of allergy: cell therapy and bio- or nano-material-based therapy. In this review, the main strategies developed this far in these two types of strategies are discussed, with several examples illustrating the different approaches.
Collapse
Affiliation(s)
- Juan L. Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain;
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|
78
|
Huehn M, Gaebel J, Oeser A, Dietz A, Neumuth T, Wichmann G, Stoehr M. Bayesian Networks to Support Decision-Making for Immune-Checkpoint Blockade in Recurrent/Metastatic (R/M) Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2021; 13:cancers13235890. [PMID: 34884998 PMCID: PMC8657168 DOI: 10.3390/cancers13235890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumor therapy in many human malignancies, including head and neck cancer, is increasingly demanding due to advances in diagnostics and individualized treatments. Multidisciplinary tumor boards, especially molecular tumor boards, consider a great amount of information to find the optimal treatment decision. Clinical decision support systems can help in optimizing this complex decision-making process. We designed a digital patient model based on conditional probability algorithms as Bayesian networks to support the decision-making process regarding treatment with approved immunotherapeutic agents (Nivolumab and Pembrolizumab). The model is able to process relevant clinical information to recommend a certain immunotherapeutic agent based on literature, approval, and guidelines. Abstract New diagnostic methods and novel therapeutic agents spawn additional and heterogeneous information, leading to an increasingly complex decision-making process for optimal treatment of cancer. A great amount of information is collected in organ-specific multidisciplinary tumor boards (MDTBs). By considering the patient’s tumor properties, molecular pathological test results, and comorbidities, the MDTB has to consent an evidence-based treatment decision. Immunotherapies are increasingly important in today’s cancer treatment, resulting in detailed information that influences the decision-making process. Clinical decision support systems can facilitate a better understanding via processing of multiple datasets of oncological cases and molecular genetic information, potentially fostering transparency and comprehensibility of available information, eventually leading to an optimum treatment decision for the individual patient. We constructed a digital patient model based on Bayesian networks to combine the relevant patient-specific and molecular data with depended probabilities derived from pertinent studies and clinical guidelines to calculate treatment decisions in head and neck squamous cell carcinoma (HNSCC). In a validation analysis, the model can provide guidance within the growing subject of immunotherapy in HNSCC and, based on its ability to calculate reliable probabilities, facilitates estimation of suitable therapy options. We compared actual treatment decisions of 25 patients with the calculated recommendations of our model and found significant concordance (Cohen’s κ = 0.505, p = 0.009) and 84% accuracy.
Collapse
Affiliation(s)
- Marius Huehn
- Head and Neck Surgery, Department of Otorhinolaryngology, University Hospital Leipzig, 04103 Leipzig, Germany; (M.H.); (A.D.); (G.W.)
- Innovation Center Computer Assisted Surgery (ICCAS), Faculty of Medicine, University Leipzig, 04103 Leipzig, Germany; (J.G.); (A.O.); (T.N.)
| | - Jan Gaebel
- Innovation Center Computer Assisted Surgery (ICCAS), Faculty of Medicine, University Leipzig, 04103 Leipzig, Germany; (J.G.); (A.O.); (T.N.)
| | - Alexander Oeser
- Innovation Center Computer Assisted Surgery (ICCAS), Faculty of Medicine, University Leipzig, 04103 Leipzig, Germany; (J.G.); (A.O.); (T.N.)
| | - Andreas Dietz
- Head and Neck Surgery, Department of Otorhinolaryngology, University Hospital Leipzig, 04103 Leipzig, Germany; (M.H.); (A.D.); (G.W.)
| | - Thomas Neumuth
- Innovation Center Computer Assisted Surgery (ICCAS), Faculty of Medicine, University Leipzig, 04103 Leipzig, Germany; (J.G.); (A.O.); (T.N.)
| | - Gunnar Wichmann
- Head and Neck Surgery, Department of Otorhinolaryngology, University Hospital Leipzig, 04103 Leipzig, Germany; (M.H.); (A.D.); (G.W.)
| | - Matthaeus Stoehr
- Head and Neck Surgery, Department of Otorhinolaryngology, University Hospital Leipzig, 04103 Leipzig, Germany; (M.H.); (A.D.); (G.W.)
- Correspondence: ; Tel.: +49-341-97-21700
| |
Collapse
|
79
|
Engevik MA, Herrmann B, Ruan W, Engevik AC, Engevik KA, Ihekweazu F, Shi Z, Luck B, Chang-Graham AL, Esparza M, Venable S, Horvath TD, Haidacher SJ, Hoch KM, Haag AM, Schady DA, Hyser JM, Spinler JK, Versalovic J. Bifidobacterium dentium-derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes 2021; 13:1-21. [PMID: 33985416 PMCID: PMC8128206 DOI: 10.1080/19490976.2021.1902717] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endoplasmic reticulum (ER) stress compromises the secretion of MUC2 from goblet cells and has been linked with inflammatory bowel disease (IBD). Although Bifidobacterium can beneficially modulate mucin production, little work has been done investigating the effects of Bifidobacterium on goblet cell ER stress. We hypothesized that secreted factors from Bifidobacterium dentium downregulate ER stress genes and modulates the unfolded protein response (UPR) to promote MUC2 secretion. We identified by mass spectrometry that B. dentium secretes the antioxidant γ-glutamylcysteine, which we speculate dampens ER stress-mediated ROS and minimizes ER stress phenotypes. B. dentium cell-free supernatant and γ-glutamylcysteine were taken up by human colonic T84 cells, increased glutathione levels, and reduced ROS generated by the ER-stressors thapsigargin and tunicamycin. Moreover, B. dentium supernatant and γ-glutamylcysteine were able to suppress NF-kB activation and IL-8 secretion. We found that B. dentium supernatant, γ-glutamylcysteine, and the positive control IL-10 attenuated the induction of UPR genes GRP78, CHOP, and sXBP1. To examine ER stress in vivo, we first examined mono-association of B. dentium in germ-free mice which increased MUC2 and IL-10 levels compared to germ-free controls. However, no changes were observed in ER stress-related genes, indicating that B. dentium can promote mucus secretion without inducing ER stress. In a TNBS-mediated ER stress model, we observed increased levels of UPR genes and pro-inflammatory cytokines in TNBS treated mice, which were reduced with addition of live B. dentium or γ-glutamylcysteine. We also observed increased colonic and serum levels of IL-10 in B. dentium- and γ-glutamylcysteine-treated mice compared to vehicle control. Immunostaining revealed retention of goblet cells and mucus secretion in both B. dentium- and γ-glutamylcysteine-treated animals. Collectively, these data demonstrate positive modulation of the UPR and MUC2 production by B. dentium-secreted compounds.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA,CONTACT Melinda A. Engevik Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Amy C. Engevik
- Department of Surgery, Vanderbilt University Medical Center, NashvilleTN, USA
| | - Kristen A. Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Faith Ihekweazu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Berkley Luck
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | | | - Magdalena Esparza
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Susan Venable
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Thomas D. Horvath
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Sigmund J. Haidacher
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Kathleen M. Hoch
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Anthony M. Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Deborah A. Schady
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Joseph M. Hyser
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA,Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - James Versalovic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
80
|
Oxidative Stress Caused by Ozone Exposure Induces Changes in P2X7 Receptors, Neuroinflammation, and Neurodegeneration in the Rat Hippocampus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3790477. [PMID: 34790285 PMCID: PMC8592727 DOI: 10.1155/2021/3790477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
Low-ozone doses cause alterations in the oxidation-reduction mechanisms due to the increase in reactive oxygen species, alter cell signaling, and produce deleterious metabolic responses for cells. Adenosine 5'triphosphate (ATP) can act as a mediator in intercellular communication between neurons and glial cells. When there is an increase in extracellular ATP, a modification is promoted in the regulation of inflammation, energy metabolism, by affecting the intracellular signaling pathways that participate in these processes. The objective of this work was to study changes in the P2X7 receptor, and their relationship with the inflammatory response and energy metabolism, in a model of progressive neurodegeneration in the hippocampus of rats chronically exposed to low-ozone doses. Therefore, 72 male rats were exposed to low-ozone doses for different periods of time. After exposure to ozone was finished, rats were processed for immunohistochemical techniques, western blot, quantitative polymerase chain reaction (qPCR), and histological techniques for periodic acid-Schiff staining. The results showed immunoreactivity changes in the amount of the P2X7 protein. There was an increase in phosphorylation for glycogen synthase kinase 3-β (GSK3-β) as treatment continued. There were also increases in 27 interleukin 1 beta (IL-1 β) and interleukin 17 (IL-17) and a decrease in interleukin 10 (IL-10). Furthermore, neuronal glycogen was found at 30 and 60 days, and an increase in caspase 3. An increase in mRNA was also shown for the P2X7 gene at 60 days, and GSK3-β at 90 days of exposure. In conclusion, these results suggest that repeated exposure to low-ozone doses, such as those that can occur during highly polluted days, causes a state of oxidative stress, leading to alterations in the P2X7 receptors, which promote changes in the activation of signaling pathways for inflammatory processes and cell death, converging at a progressive neurodegeneration process, as may be happening in Alzheimer's disease.
Collapse
|
81
|
Sakaguchi A, Horimoto Y, Onagi H, Ikarashi D, Nakayama T, Nakatsura T, Shimizu H, Kojima K, Yao T, Matsumoto T, Ogura K, Kitano S. Plasma cell infiltration and treatment effect in breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res 2021; 23:99. [PMID: 34715905 PMCID: PMC8555250 DOI: 10.1186/s13058-021-01477-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Tumour-infiltrating lymphocyte (TIL)-high breast tumours have a high rate of pathological complete response (pCR) with neoadjuvant chemotherapy. In our routine pathological diagnoses of biopsy specimens from pCR cases, we have observed a high infiltration of plasma cells (PCs). A positive correlation of PCs with favourable patient outcome has recently been reported, but little is known about how PCs contribute to local tumour immunity. Methods We retrospectively examined biopsy specimens from 146 patients with invasive breast cancer who received neoadjuvant chemotherapy. CD138+ PC infiltration was assessed by immunohistochemistry. Multiplexed fluorescent immunohistochemistry (mfIHC) with T and B cell markers was also conducted to elucidate the profile of immune cells. Results Greater PC infiltration was observed in the pCR group (p = 0.028) and this trend was confirmed in another patient cohort. With mfIHC, we observed significantly more CD8+, T-bet+CD4+, and CD8+FOXP3+ T cells, total B cells and PCs in pCR cases. Such cases were also characterised by high expression of both PD-1 and PD-L1 on B cells and PCs. In patients with hormone receptor-negative tumours, high PC infiltration was correlated with significantly longer disease-free survival (p = 0.034). Conclusions We found that higher PC infiltration in biopsy specimens before neoadjuvant chemotherapy was associated with pCR. With mfIHC, we also revealed that the local cytotoxic immune response was clearly enhanced in pCR cases, as was the infiltration of B cells including PCs. Moreover, higher PC levels were correlated with favourable outcomes in hormone receptor-negative breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01477-w.
Collapse
Affiliation(s)
- Asumi Sakaguchi
- Department of Diagnostic Pathology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiya Horimoto
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan. .,Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hiroko Onagi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Daiki Ikarashi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takayuki Nakayama
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hideo Shimizu
- Department of General Surgery, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Kuniaki Kojima
- Department of General Surgery, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiharu Matsumoto
- Department of Diagnostic Pathology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Kanako Ogura
- Department of Diagnostic Pathology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| |
Collapse
|
82
|
Zhang MZ, Chu SS, Xia YK, Wang DD, Wang X. Environmental exposure during pregnancy and the risk of childhood allergic diseases. World J Pediatr 2021; 17:467-475. [PMID: 34476758 DOI: 10.1007/s12519-021-00448-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Allergic diseases are one of the most common and important diseases that can exert hazardous effects on children's health. The prevalence of allergic diseases in childhood is gradually increasing all over the world in recent decades. Known causes of these diseases include anomalous immune responses and allergic inflammatory reactions, but the causes of allergic diseases in childhood are complex. DATA SOURCES PubMed, Cochrane Library, Embase and Web of Science were searched for articles focusing on environmental exposure during pregnancy and the risk of childhood allergic diseases, including asthma and atopic dermatitis, and the possible underlying mechanism. RESULTS In terms of environmental factors, allergic diseases in childhood are closely related to environmental chemical exposure during pregnancy, including bisphenols, phthalates acid esters, perfluorochemicals, polybrominated diphenyl ethers, and polychlorinated biphenyls. However, allergic diseases in childhood are also closely associated with maternal dietary nutrition, maternal intake of drugs, such as acetylsalicylic acid (aspirin), paracetamol and antibiotics, and maternal lifestyle. CONCLUSIONS Several harmful environmental factors during pregnancy can result in the interruption of the function of helper T cells (Th1/Th2), cytokines and immunoglobulins and may activate allergic reactions, which can lead to allergic diseases during childhood.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shan-Shan Chu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd, Nanjing, 210008, China
| | - Yan-Kai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dan-Dan Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd, Nanjing, 210008, China
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd, Nanjing, 210008, China.
| |
Collapse
|
83
|
Soleimani-Jadidi S, Abbasi H, Javaheri A, Behforouz A, Zanbagh L, Meibodi B, Hadadan A, Tabatabaei RS, Neamatzadeh H. Cumulative Evidence for Association of IL-10 -1082G > A Polymorphism with Susceptibility to Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis. Fetal Pediatr Pathol 2021; 40:471-485. [PMID: 31990237 DOI: 10.1080/15513815.2020.1716903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The IL-10 -1082 G > A polymorphism has been reported to be associated with a risk of recurrent pregnancy loss (RPL) with inconsistent results. Thus, to clarify the effect of the polymorphism on the susceptibility to RPL, a meta-analysis was performed. Methods: A systematic literature search in PubMed, Web of Science, Scopus and SciELO was performed to identify the relevant studies published up to December 20, 2019, and related information was extracted. Results: A total of 17 case-control studies with 3,224 RPL cases and 3,295 controls were selected. Pooled data revealed that IL-10 -1082 G > A polymorphism was significantly associated with risk of RPL in the global population. Moreover, subgroup analysis indicated a significant association in Caucasians, but not in Asian or mixed populations. Conclusions: Our pooled data highlights that IL-10 -1082 G > A polymorphism is a risk factor for RPL susceptibility in the global population, especially in Caucasians.
Collapse
Affiliation(s)
- Sara Soleimani-Jadidi
- Department of Obstetrics and Gynecology, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Hajar Abbasi
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Javaheri
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Athena Behforouz
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Zanbagh
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Obstetrics and Gynecology, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Bahare Meibodi
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amaneh Hadadan
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Sadat Tabatabaei
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
84
|
Maulloo CD, Cao S, Watkins EA, Raczy MM, Solanki AS, Nguyen M, Reda JW, Shim HN, Wilson DS, Swartz MA, Hubbell JA. Lymph Node-Targeted Synthetically Glycosylated Antigen Leads to Antigen-Specific Immunological Tolerance. Front Immunol 2021; 12:714842. [PMID: 34630389 PMCID: PMC8498032 DOI: 10.3389/fimmu.2021.714842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Inverse vaccines that tolerogenically target antigens to antigen-presenting cells (APCs) offer promise in prevention of immunity to allergens and protein drugs and treatment of autoimmunity. We have previously shown that targeting hepatic APCs through intravenous injection of synthetically glycosylated antigen leads to effective induction of antigen-specific immunological tolerance. Here, we demonstrate that targeting these glycoconjugates to lymph node (LN) APCs under homeostatic conditions leads to local and increased accumulation in the LNs compared to unmodified antigen and induces a tolerogenic state both locally and systemically. Subcutaneous administration directs the polymeric glycoconjugate to the draining LN, where the glycoconjugated antigen generates robust antigen-specific CD4+ and CD8+ T cell tolerance and hypo-responsiveness to antigenic challenge via a number of mechanisms, including clonal deletion, anergy of activated T cells, and expansion of regulatory T cells. Lag-3 up-regulation on CD4+ and CD8+ T cells represents an essential mechanism of suppression. Additionally, presentation of antigen released from the glycoconjugate to naïve T cells is mediated mainly by LN-resident CD8+ and CD11b+ dendritic cells. Thus, here we demonstrate that antigen targeting via synthetic glycosylation to impart affinity for APC scavenger receptors generates tolerance when LN dendritic cells are the cellular target.
Collapse
Affiliation(s)
- Chitavi D. Maulloo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Elyse A. Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Michal M. Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Ani. S. Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, United States
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Joseph W. Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - D. Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, United States
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Committee on Immunology, University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Committee on Immunology, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
85
|
Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Adv Biol Regul 2021; 81:100820. [PMID: 34419773 PMCID: PMC8359569 DOI: 10.1016/j.jbior.2021.100820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several “converging” evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1–7 and Ang 1–9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome.
Collapse
|
86
|
Atanaskovic-Markovic M, Tsabouri S. Exanthematous reactions to drugs in children. Curr Opin Allergy Clin Immunol 2021; 21:335-339. [PMID: 33993141 DOI: 10.1097/aci.0000000000000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The true exanthematous reactions to drugs in children are rare and overdiagnosed. Drugs may cause exanthema either due to inducing an immune response or because of their interaction with viruses, if drugs are taken in the course of a viral infection. Also, viral infections are very often in children and they can provoke an exanthema which is difficult to differentiate from exanthematous reactions to drugs. Consequently, the majority of children are incorrectly labeled as 'allergic'. RECENT FINDINGS The correct diagnosis of exanthematous drug reactions in children is still an important and hot topic. Most information about the approach and management of drug hypersensitivity in children is applied from available guidelines and consensus statement for adults. Recently, a systematic clinical approach for timely differential diagnosis and management of rashes in children who present a cutaneous exanthema while receiving a drug, is proposed. SUMMARY It is important to consider the detailed clinical history of appearing and developing exanthematous drug reaction, as well as physical examination which includes the description and the distribution of exanthema and at the end making the appropriate diagnosis. Thus, it could reduce overdiagnosis and promote appropriate procedures, that will prevent the overlabeling of drug hypersensitivity in children.
Collapse
Affiliation(s)
| | - Sophia Tsabouri
- Child Health Department, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
87
|
Banstola A, Poudel K, Kim JO, Jeong JH, Yook S. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J Control Release 2021; 337:505-520. [PMID: 34314800 DOI: 10.1016/j.jconrel.2021.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023]
Abstract
Low immunogenicity and immunosuppressive tumor microenvironments are major hurdles in the application of cancer immunotherapy. To date, several immunogenic cell death (ICD) inducers have been reported to boost cancer immunotherapy by triggering ICD. ICD is characterized by the release of proinflammatory cytokines, danger-associated molecular patterns (DAMPs) and tumor associated antigens which will generate anticancer immunity by triggering adaptive immune cells. However, application of ICD inducers is limited due to severe toxicity issues and inefficient localization in the tumor microenvironment. To circumvent these challenges, stimuli-responsive nanoparticles have been exploited for improving cancer immunotherapy by limiting its toxicity. The combination of stimuli-responsive nanoparticles with an ICD inducer serves as a promising strategy for increasing the clinical applications of ICD induction in cancer immunotherapy. Here, we outline recent advances in ICD mediated by stimuli-responsive nanoparticles that may be near-infrared (NIR)-responsive, pH-responsive, redox responsive, pH and enzyme responsive, or pH and redox responsive, and evaluate their significant potential for successful clinical translation in cancer immunotherapy.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
88
|
Pyclik MJ, Srutkova D, Razim A, Hermanova P, Svabova T, Pacyga K, Schwarzer M, Górska S. Viability Status-Dependent Effect of Bifidobacterium longum ssp . longum CCM 7952 on Prevention of Allergic Inflammation in Mouse Model. Front Immunol 2021; 12:707728. [PMID: 34354710 PMCID: PMC8329652 DOI: 10.3389/fimmu.2021.707728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
The classical definition of probiotics states that bacteria must be alive to be beneficial for human organism. However, recent reports show that inactivated bacteria or their effector molecules can also possess such properties. In this study, we investigated the physical and immunomodulatory properties of four Bifidobacterium strains in the heat-treated (HT) and untreated (UN) forms. We showed that temperature treatment of bacteria changes their size and charge, which affects their interaction with epithelial and immune cells. Based on the in vitro assays, we observed that all tested strains reduced the level of OVA-induced IL-4, IL-5, and IL-13 in the spleen culture of OVA-sensitized mice. We selected Bifidobacterium longum ssp. longum CCM 7952 (Bl 7952) for further analysis. In vivo experiments confirmed that untreated Bl 7952 exhibited allergy-reducing properties when administered intranasally to OVA-sensitized mice, which manifested in significant suppression of airway inflammation. Untreated Bl 7952 decreased local and systemic levels of Th2 related cytokines, OVA-specific IgE antibodies and simultaneously inhibited airway eosinophilia. In contrast, heat-treated Bl 7952 was only able to reduce IL-4 levels in the lungs and eosinophils in bronchoalveolar lavage, but increased neutrophil and macrophage numbers. We demonstrated that the viability status of Bl 7952 is a prerequisite for the beneficial effects of bacteria, and that heat treatment reduces but does not completely abolish these properties. Further research on bacterial effector molecules to elucidate the beneficial effects of probiotics in the prevention of allergic diseases is warranted.
Collapse
Affiliation(s)
- Marcelina Joanna Pyclik
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Agnieszka Razim
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Tereza Svabova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Katarzyna Pacyga
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
89
|
Grant AH, Estrada A, Ayala-Marin YM, Alvidrez-Camacho AY, Rodriguez G, Robles-Escajeda E, Cadena-Medina DA, Rodriguez AC, Kirken RA. The Many Faces of JAKs and STATs Within the COVID-19 Storm. Front Immunol 2021; 12:690477. [PMID: 34326843 PMCID: PMC8313986 DOI: 10.3389/fimmu.2021.690477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
The positive-sense single stranded RNA virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), resulted in a global pandemic with horrendous health and economic consequences not seen in a century. At a finer scale, immunologically, many of these devastating effects by SARS-CoV-2 can be traced to a "cytokine storm" resulting in the simultaneous activation of Janus Kinases (JAKs) and Signal Transducers and Activators of Transcription (STAT) proteins downstream of the many cytokine receptor families triggered by elevated cytokines found in Coronavirus Disease 2019 (COVID-19). In this report, cytokines found in the storm are discussed in relation to the JAK-STAT pathway in response to SARS-CoV-2 and the lessons learned from RNA viruses and previous Coronaviruses (CoVs). Therapeutic strategies to counteract the SARS-CoV-2 mediated storm are discussed with an emphasis on cell signaling and JAK inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
90
|
Zanza C, Tassi MF, Romenskaya T, Piccolella F, Abenavoli L, Franceschi F, Piccioni A, Ojetti V, Saviano A, Canonico B, Montanari M, Zamai L, Artico M, Robba C, Racca F, Longhitano Y. Lock, Stock and Barrel: Role of Renin-Angiotensin-Aldosterone System in Coronavirus Disease 2019. Cells 2021; 10:1752. [PMID: 34359922 PMCID: PMC8306543 DOI: 10.3390/cells10071752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Since the end of 2019, the medical-scientific community has been facing a terrible pandemic caused by a new airborne viral agent known as SARS-CoV2. Already in the early stages of the pandemic, following the discovery that the virus uses the ACE2 cell receptor as a molecular target to infect the cells of our body, it was hypothesized that the renin-angiotensin-aldosterone system was involved in the pathogenesis of the disease. Since then, numerous studies have been published on the subject, but the exact role of the renin-angiotensin-aldosterone system in the pathogenesis of COVID-19 is still a matter of debate. RAAS represents an important protagonist in the pathogenesis of COVID-19, providing the virus with the receptor of entry into host cells and determining its organotropism. Furthermore, following infection, the virus is able to cause an increase in plasma ACE2 activity, compromising the normal function of the RAAS. This dysfunction could contribute to the establishment of the thrombo-inflammatory state characteristic of severe forms of COVID-19. Drugs targeting RAAS represent promising therapeutic options for COVID-19 sufferers.
Collapse
Affiliation(s)
- Christian Zanza
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| | - Michele Fidel Tassi
- Department of Emergency Medicine, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Tatsiana Romenskaya
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Francesco Franceschi
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Andrea Piccioni
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Veronica Ojetti
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Angela Saviano
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi L’Aquila, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy;
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Fabrizio Racca
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| |
Collapse
|
91
|
Maura D, Elmekki N, Goddard CA. The ammonia oxidizing bacterium Nitrosomonas eutropha blocks T helper 2 cell polarization via the anti-inflammatory cytokine IL-10. Sci Rep 2021; 11:14162. [PMID: 34238943 PMCID: PMC8266879 DOI: 10.1038/s41598-021-93299-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of atopic diseases has been steadily increasing since the mid twentieth century, a rise that has been linked to modern hygienic lifestyles that limit exposure to microbes and immune system maturation. Overactive type 2 CD4+ helper T (Th2) cells are known to be closely associated with atopy and represent a key target for treatment. In this study, we present an initial characterization of ammonia oxidizing bacteria (AOB) Nitrosomonas eutropha D23, an environmental microbe that is not associated with human pathology, and show AOB effectively suppress the polarization of Th2 cells and production of Th2-associated cytokines (IL-5, IL-13, and IL-4) by human peripheral blood mononuclear cells (PBMC). We show that AOB inhibit Th2 cell polarization not through Th1-mediated suppression, but rather through mechanisms involving the anti-inflammatory cytokine IL-10 and the potential inhibition of dendritic cells, as evidenced by a reduction in Major Histocompatibility Complex Class II (MHC II) and CD86 expression following AOB treatment. This is the first report of immunomodulatory properties of AOB, and provides initial support for the development of AOB as a potential therapeutic for atopic diseases.
Collapse
|
92
|
Tabares-Guevara JH, Jaramillo JC, Ospina-Quintero L, Piedrahíta-Ochoa CA, García-Valencia N, Bautista-Erazo DE, Caro-Gómez E, Covián C, Retamal-Díaz A, Duarte LF, González PA, Bueno SM, Riedel CA, Kalergis AM, Ramírez-Pineda JR. IL-10-Dependent Amelioration of Chronic Inflammatory Disease by Microdose Subcutaneous Delivery of a Prototypic Immunoregulatory Small Molecule. Front Immunol 2021; 12:708955. [PMID: 34305950 PMCID: PMC8297659 DOI: 10.3389/fimmu.2021.708955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
One of the interventional strategies to reestablish the immune effector/regulatory balance, that is typically altered in chronic inflammatory diseases (CID), is the reinforcement of endogenous immunomodulatory pathways as the one triggered by interleukin (IL)-10. In a recent work, we demonstrated that the subcutaneous (sc) administration of an IL-10/Treg-inducing small molecule-based formulation, using a repetitive microdose (REMID) treatment strategy to preferentially direct the effects to the regional immune system, delays the progression of atherosclerosis. Here we investigated whether the same approach using other IL-10-inducing small molecule, such as the safe, inexpensive, and widely available polyphenol curcumin, could induce a similar protective effect in two different CID models. We found that, in apolipoprotein E deficient mice, sc treatment with curcumin following the REMID strategy induced atheroprotection that was not consequence of its direct systemic lipid-modifying or antioxidant activity, but instead paralleled immunomodulatory effects, such as reduced proatherogenic IFNγ/TNFα-producing cells and increased atheroprotective FOXP3+ Tregs and IL-10-producing dendritic and B cells. Remarkably, when a similar strategy was used in the neuroinflammatory model of experimental autoimmune encephalomyelitis (EAE), significant clinical and histopathological protective effects were evidenced, and these were related to an improved effector/regulatory cytokine balance in restimulated splenocytes. The essential role of curcumin-induced IL-10 for neuroprotection was confirmed by the complete abrogation of the clinical effects in IL-10-deficient mice. Finally, the translational therapeutic prospection of this strategy was evidenced by the neuroprotection observed in mice starting the treatment one week after disease triggering. Collectively, results demonstrate the power of a simple natural IL-10-inducing small molecule to tackle chronic inflammation, when its classical systemic and direct pharmacological view is shifted towards the targeting of regional immune cells, in order to rationally harness its immunopharmacological potential. This shift implies that many well-known IL-10-inducing small molecules could be easily reformulated and repurposed to develop safe, innovative, and accessible immune-based interventions for CID.
Collapse
Affiliation(s)
- Jorge H Tabares-Guevara
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Julio C Jaramillo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Laura Ospina-Quintero
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Christian A Piedrahíta-Ochoa
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Natalia García-Valencia
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - David E Bautista-Erazo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Erika Caro-Gómez
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Camila Covián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
93
|
Pointner LN, Ferreira F, Aglas L. B Cell Functions in the Development of Type I Allergy and Induction of Immune Tolerance. Handb Exp Pharmacol 2021; 268:249-264. [PMID: 34196808 DOI: 10.1007/164_2021_479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
B cells are key players in the mechanisms underlying allergic sensitization, allergic reactions, and tolerance to allergens. Allergen-specific immune responses are initiated when peptide:MHCII complexes on dendritic cells are recognized by antigen-specific receptors on T cells followed by interactions between costimulatory molecules on the surfaces of B and T cells. In the presence of IL-4, such T-B cell interactions result in clonal expansion and isotype class-switching to IgE in B cells, which will further differentiate into either memory B cells or PCs. Allergic reactions are then triggered upon cross-linking of IgE-FcɛRI complexes on basophils and mast cells, leading to cell degranulation and the release of pro-inflammatory mediators.Mechanisms underlying effective allergen-specific immunotherapy (AIT) involve the induction of Tregs and the secretion of blocking IgG4 antibodies, which together mediate the onset and maintenance of immune tolerance towards non-hazardous environmental antigens. However, the importance of regulatory B cells (Breg) for tolerance induction during AIT has gained more attention lately. Studies in grass pollen- and house dust mite-allergic patients undergoing SCIT reported increased frequencies of IL-10+ Breg cells and a positive correlation between their number and the improvement of clinical symptoms. Thus, Breg are emerging as biomarkers for monitoring tolerance to allergens under natural exposure conditions and during AIT. Further research on the role of other anti-inflammatory cytokines secreted by Breg will help to understand their role in disease development and tolerance induction.
Collapse
Affiliation(s)
| | - Fatima Ferreira
- Biosciences Department, University of Salzburg, Salzburg, Austria.
| | - Lorenz Aglas
- Biosciences Department, University of Salzburg, Salzburg, Austria
| |
Collapse
|
94
|
Tsabouri S, Atanaskovic-Markovic M. Skin eruptions in children: Drug hypersensitivity vs viral exanthema. Pediatr Allergy Immunol 2021; 32:824-834. [PMID: 33621365 DOI: 10.1111/pai.13485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022]
Abstract
Childhood rashes or exanthemas are common and are usually relatively benign. There are many causes of rash in children, including mainly viruses, and less often bacterial toxins, drugs, allergens and other diseases. Viral exanthema often appears while children are taking a medication in the course of a viral infection; it can mimic drug exanthema and is perceived as a drug allergy in 10% of cases. In the vast majority of cases, the distinction between virus-induced and drug-induced skin eruption during the acute phase is not possible. The drugs most commonly implicated are beta-lactams (BL) and non-steroidal anti-inflammatory drugs (NSAIDs). Viruses, commonly Epstein-Barr virus (EBV), human herpesvirus 6 (HHV6) and cytomegalovirus (CMV), and the bacterium, Mycoplasma pneumoniae, may cause exanthema either from the infection itself (active or latent) or because of interaction with drugs that are taken simultaneously. Determination of the exact diagnosis requires a careful clinical history and thorough physical examination. Haematological and biochemical investigations and histology are not always helpful in differentiating between the two types of exanthema. Serological and polymerase chain reaction (PCR) assays can be helpful, although a concomitant acute infection does not exclude drug hypersensitivity. A drug provocation test (DPT) is although considered the gold standard for the diagnosis and is not preferred by the patients. Skin tests are not well tolerated, and in vitro tests, such as the basophil activation test and lymphocyte transformation, are of low sensitivity and specificity and their relevance is debatable. Based on current evidence, we propose a systematic clinical approach for timely differential diagnosis and management of rashes in children who present a cutaneous eruption while receiving a drug.
Collapse
Affiliation(s)
- Sophia Tsabouri
- Child Health Department, Medical School, University of Ioannina, Ioannina, Greece
| | - Marina Atanaskovic-Markovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,University Children's Hospital of Belgrade, Belgrade, Serbia
| |
Collapse
|
95
|
Keratinocytes Regulate the Threshold of Inflammation by Inhibiting T Cell Effector Functions. Cells 2021; 10:cells10071606. [PMID: 34206914 PMCID: PMC8306889 DOI: 10.3390/cells10071606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Whilst the importance of keratinocytes as a first-line defense has been widely investigated, little is known about their interactions with non-resident immune cells. In this study, the impact of human keratinocytes on T cell effector functions was analyzed in an antigen-specific in vitro model of allergic contact dermatitis (ACD) to nickel sulfate. Keratinocytes partially inhibited T cell proliferation and cytokine production. This effect was dependent on the keratinocyte/T cell ratio and was partially reversible by increasing the number of autologous dendritic cells. The inhibition of T cell proliferation by keratinocytes was independent of the T cell subtype and antigen presentation by different professional antigen-presenting cells. Autologous and heterologous keratinocytes showed comparable effects, while the fixation of keratinocytes with paraformaldehyde abrogated the immunosuppressive effect. The separation of keratinocytes and T cells by a transwell chamber, as well as a cell-free keratinocyte supernatant, inhibited T cell effector functions to the same amount as directly co-cultured keratinocytes, thus proving that soluble factor/s account for the observed suppressive effects. In conclusion, keratinocytes critically control the threshold of inflammatory processes in the skin by inhibiting T cell proliferation and cytokine production.
Collapse
|
96
|
Li Q, Li X, Quan H, Wang Y, Qu G, Shen Z, He C. IL-10 -/- Enhances DCs Immunity Against Chlamydia psittaci Infection via OX40L/NLRP3 and IDO/Treg Pathways. Front Immunol 2021; 12:645653. [PMID: 34093535 PMCID: PMC8176032 DOI: 10.3389/fimmu.2021.645653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia psittaci (C. psittaci) is a common zoonotic agent that affects both poultry and humans. Interleukin 10 (IL-10) is an anti-inflammatory factor produced during chlamydial infection, while dendritic cells (DCs) are powerful antigen-presenting cells that induce a primary immune response in the host. However, IL-10 and DCs regulatory mechanisms in C. psittaci infection remain elusive. In vivo and in vitro investigations of the regulatory mechanisms were performed. IL-10−/− mice, conditional DCs depletion mice (zinc finger dendritic cell-diphtheria toxin receptor [zDC-DTR]), and double-deficient mice (DD, IL-10−/−/zDCDTR/DTR) were intranasally infected with C. psittaci. The results showed that more than 90% of IL-10−/− mice, 70% of wild-type mice, and 60% of double-deficient mice survived, whereas all zDC-DTR mice died. A higher lymphocyte proliferation index was found in the IL-10 inhibitor mice and IL-10−/− mice. Moreover, severe lesions and high bacterial loads were detected in the zDC-DTR mice compared with double-deficient mice. In vitro studies revealed increased OX40-OX40 ligand (OX40-OX40L) activation and CD4+T cell proliferation. Besides, the expression of indoleamine 2, 3-dioxygenase (IDO), and regulatory T cells were significantly reduced in the co-culture system of CD4+ T cells and IL-10−/− DCs in C. psittaci infection. Additionally, the activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome increased to facilitate the apoptosis of DCs, leading to rapid clearance of C. psittaci. Our study showed that IL-10−/− upregulated the function of deficient DCs by activating OX40-OX40L, T cells, and the NLPR3 inflammasome, and inhibiting IDO, and regulatory T cells. These effects enhanced the survival rate of mice and C. psittaci clearance. Our research highlights the mechanism of IL-10 interaction with DCs, OX40-OX40L, and the NLPR3 inflammasome, as potential targets against C. psittaci infection.
Collapse
Affiliation(s)
- Qiang Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongkun Quan
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guanggang Qu
- Preventive Veterinary Research Group, Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Zhiqiang Shen
- Preventive Veterinary Research Group, Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
97
|
Lu J, Li P, Du X, Liu Y, Zhang B, Qi F. Regulatory T cells induce transplant immune tolerance. Transpl Immunol 2021; 67:101411. [PMID: 34020045 DOI: 10.1016/j.trim.2021.101411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023]
Abstract
Organ transplantation is the preferred treatment option for end-stage organ failure. Although immunosuppressants are effective for preventing the occurrence of acute rejection, they also cause a series of side effects in transplant recipients. To improve the quality of patient survival, a new therapeutic strategy that has fewer side effects than current immunosuppressive regimens and can induce allograft immune tolerance and effectively prevent transplant rejection is needed. In this context, regulatory T cells (Tregs) are considered to be promising research targets. With the increasing understanding of the immunomodulatory role of Tregs, the use of Treg-based cellular therapies has shifted from prevention/treatment of autoimmune diseases to clinical trials for organ transplantation. This review describes the phenotype and in vitro expansion of Tregs and the mechanisms by which they exert immunomodulatory effects in transplantation immunity, highlights recent clinical trial data on Treg-based cellular therapies in transplantation, and describes future directions and limitations.
Collapse
Affiliation(s)
- Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Xuezhi Du
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Yanhong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
98
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
99
|
Gu X, Hua YH, Zhang YD, Bao DI, Lv J, Hu HF. The Pathogenesis of Aspergillus fumigatus, Host Defense Mechanisms, and the Development of AFMP4 Antigen as a Vaccine. Pol J Microbiol 2021; 70:3-11. [PMID: 33815522 PMCID: PMC8008755 DOI: 10.33073/pjm-2021-003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines' current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines.
Collapse
Affiliation(s)
- Xiang Gu
- College of Law and Political Science, Nanjing University of Information Science and Technology, Nanjing, China.,The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yan-Hong Hua
- The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yang-Dong Zhang
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - D I Bao
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jin Lv
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hong-Fang Hu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
100
|
Eslami-Kaliji F, Sarafbidabad M, Kiani-Esfahani A, Mirahmadi-Zare SZ, Dormiani K. 10-hydroxy-2-decenoic acid a bio-immunomodulator in tissue engineering; generates tolerogenic dendritic cells by blocking the toll-like receptor4. J Biomed Mater Res A 2021; 109:1575-1587. [PMID: 33638611 DOI: 10.1002/jbm.a.37152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs), in response to the biomaterials, utilize toll-like receptors (TLRs) to become mature or tolerogenic through TLRs-dependent signaling pathways, especially TLR4. Regarding the physicochemical properties of biomaterials, some of such signaling pathways are activated. Unsaturated fatty acids have been explored as an antagonist for TLRs and lead to the tolerogenic phenotype of DCs. Here we showed that, although cultured DCs on both chitosan and Alginate-polyethyleneimine (Alg-PEI) films became fully mature, 10-hydroxy-2-decanoic acid (10-HDA), an unsaturated fatty acid found in royal jelly, led to the tolerogenic immunophenotype of DCs on both films. The cultured cells on the films possessed iDCs-like morphology in the presence of 10-HDA. Moreover, 10-HDA expressed lower levels of CD80, CD83, CD86, and HLA-DR, a higher level of IL-10, and lower level of IL-12 in the cultured DCs on both films. Furthermore, HEK293T cells expressing only TLR4 (HEK-TLR4 cells) were co-cultured with LPS, a specific agonist for TLR4, and 10-HDA. The 10-HDA significantly reduced the expression of tumor necrosis factor-a (TNF-α) in the HEK-TLR4 cells compared to treated only with LPS. These findings indicate that the 10-HDA acts as an antagonist of TLR4; therefore, potentially can be used in autoimmune diseases and preventing the rejection of biomaterials implantation and allograft transplantation.
Collapse
Affiliation(s)
- Farshid Eslami-Kaliji
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Sarafbidabad
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|