51
|
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova K, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-A Key Player in Immunity and Diseases. Int J Mol Sci 2023; 24:12767. [PMID: 37628949 PMCID: PMC10454149 DOI: 10.3390/ijms241612767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
miRNA-146a, a single-stranded, non-coding RNA molecule, has emerged as a valuable diagnostic and prognostic biomarker for numerous pathological conditions. Its primary function lies in regulating inflammatory processes, haemopoiesis, allergic responses, and other key aspects of the innate immune system. Several studies have indicated that polymorphisms in miRNA-146a can influence the pathogenesis of various human diseases, including autoimmune disorders and cancer. One of the key mechanisms by which miRNA-146a exerts its effects is by controlling the expression of certain proteins involved in critical pathways. It can modulate the activity of interleukin-1 receptor-associated kinase, IRAK1, IRAK2 adaptor proteins, and tumour necrosis factor (TNF) targeting protein receptor 6, which is a regulator of the TNF signalling pathway. In addition, miRNA-146a affects gene expression through multiple signalling pathways, such as TNF, NF-κB and MEK-1/2, and JNK-1/2. Studies have been carried out to determine the effect of miRNA-146a on cancer pathogenesis, revealing its involvement in the synthesis of stem cells, which contributes to tumourigenesis. In this review, we focus on recent discoveries that highlight the significant role played by miRNA-146a in regulating various defence mechanisms and oncogenesis. The aim of this review article is to systematically examine miRNA-146a's impact on the control of signalling pathways involved in oncopathology, immune system development, and the corresponding response to therapy.
Collapse
Affiliation(s)
- Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Artur Mustafin
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Elizaveta Ivanova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Ksenia Bakhtiyarova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Elza Khusnutdinova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| |
Collapse
|
52
|
Yang HY, Huang PZ, Ma Q, Sun Y, Feng WJ, He YL, Chen JJ, Gao K. Anti-inflammatory ent-cleistanthane-type diterpenoids from Phyllanthus rheophyticus. PHYTOCHEMISTRY 2023; 212:113723. [PMID: 37182686 DOI: 10.1016/j.phytochem.2023.113723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
A bioactivity-guided isolation from the aerial parts of Phyllanthus rheophyticus obtained 17 undescribed ent-cleistanthane-type diterpenoids, namely phyllarheophols A-Q, as well as 12 known analogs. Their structures were characterized by a combination of spectroscopic data interpretation, single-crystal X-ray diffraction and ECD analysis. The anti-inflammatory activities of these compounds were evaluated by measuring their inhibitory effects on NO production in LPS-stimulated RAW264.7 macrophages, and their preliminary structure-activity relationships were also discussed. Further study showed that promising compounds phyllarheophol D and phyacioid B significantly suppressed the expressions of cytokines and nitric oxide synthase through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Pei-Zhi Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qian Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yue Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wei-Jiao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yi-Lin He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China; Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
53
|
Hamidi F, Mohammadi-Yeganeh S, Haji Molla Hoseini M, Tabaei SJS, Taghipour N, Koochaki A, Hosseini V, Haghighi A. TGF-β Targeted by miR-27a Modulates Anti-Parasite Responses of Immune System. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:390-399. [PMID: 37886255 PMCID: PMC10597889 DOI: 10.18502/ijpa.v18i3.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/19/2023] [Indexed: 10/28/2023]
Abstract
Background Immune cells and their secreted cytokines are known as the first barrier against pathogens. Leishmania major as an intracellular protozoan produces anti-inflammatory cytokines that lead to proliferation and survival of the parasite in the macrophages. miRNAs are small non-coding RNA molecules that regulate mRNAs expression. We aimed to investigate the relationship between the expression of TGF-β and a bioinformatically candidate miRNA, in leishmaniasis as a model of TGF-β overexpression. Methods The miRNAs that target TGF-β -3'UTR were predicted and scored by bioinformatic tools. After cloning of TGF-β-3'UTR in psi-CHECK ™- 2 vector, targeting validation was confirmed using Luciferase assay. After miRNA mimic transfection, the expression of miR-27a, TGF-β, as well as Nitric Oxide concentration was evaluated. Results miR-27a received the highest score for targeting TGF-β in bioinformatic predictions. Luciferase assay confirmed that miR-27a is targeting TGF-β-3'UTR, since miR-27a transfection decreased the luciferase activity. After miRNA transfection, TGF-β expression and Nitric Oxide concentration were declined in L. major infected macrophages. Conclusion Bioinformatic prediction, luciferase assay, and miRNA transfection results showed that miR-27a targets TGF-β. Since miRNA and cytokine-base therapies are developing in infectious diseases, finding and validating miRNAs targeting regulatory cytokines can be a novel strategy for controlling and treating leishmaniasis.
Collapse
Affiliation(s)
- Faezeh Hamidi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahedeh Hosseini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Haghighi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Mai HT, Vanness BC, Linz TH. Reverse transcription-free digital-quantitative-PCR for microRNA analysis. Analyst 2023; 148:3019-3027. [PMID: 37264955 PMCID: PMC10318481 DOI: 10.1039/d3an00351e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNA sequences that regulate many biological processes and have become central targets of biomedical research. However, their naturally low abundances in biological samples necessitates the development of sensitive analytical techniques to conduct routine miRNA measurements in research laboratories. Digital PCR has the potential to meet this need because of its single-molecule detection capabilities, but PCR analyses of miRNAs are slowed by the ligation and reverse transcription steps first required to prepare samples. This report describes the development of a method to rapidly quantify miRNA in digital microwell arrays using base-stacking digital-quantitative-PCR (BS-dqPCR). BS-dqPCR expedites miRNA measurements by eliminating the need for ligation and reverse transcription steps, which reduces the time and cost compared to conventional miRNA PCR analyses. Under standard PCR thermocycling conditions, digital signals from miRNA samples were lower than expected, while signals from blanks were high. Therefore, a novel asymmetric thermocycling program was developed that maximized on-target signal from miRNA while minimizing non-specific amplification. The analytical response of BS-dqPCR was then evaluated over a range of miRNA concentrations. The digital PCR dimension increased in signal with increasing miRNA copy numbers. When the digital signal saturated, the quantitative PCR dimension readily discerned miRNA copy number differences. Overall, BS-dqPCR provides rapid, high-sensitivity measurements of miRNA over a wide dynamic range, which demonstrates its utility for routine miRNA analyses.
Collapse
Affiliation(s)
- Hao T Mai
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| | - Brice C Vanness
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| | - Thomas H Linz
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| |
Collapse
|
55
|
Duisenbek A, Lopez-Armas GC, Pérez M, Avilés Pérez MD, Aguilar Benitez JM, Pereira Pérez VR, Gorts Ortega J, Yessenbekova A, Ablaikhanova N, Escames G, Acuña-Castroviejo D, Rusanova I. Insights into the Role of Plasmatic and Exosomal microRNAs in Oxidative Stress-Related Metabolic Diseases. Antioxidants (Basel) 2023; 12:1290. [PMID: 37372020 DOI: 10.3390/antiox12061290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
A common denominator of metabolic diseases, including type 2 diabetes Mellitus, dyslipidemia, and atherosclerosis, are elevated oxidative stress and chronic inflammation. These complex, multi-factorial diseases are caused by the detrimental interaction between the individual genetic background and multiple environmental stimuli. The cells, including the endothelial ones, acquire a preactivated phenotype and metabolic memory, exhibiting increased oxidative stress, inflammatory gene expression, endothelial vascular activation, and prothrombotic events, leading to vascular complications. There are different pathways involved in the pathogenesis of metabolic diseases, and increased knowledge suggests a role of the activation of the NF-kB pathway and NLRP3 inflammasome as key mediators of metabolic inflammation. Epigenetic-wide associated studies provide new insight into the role of microRNAs in the phenomenon of metabolic memory and the development consequences of vessel damage. In this review, we will focus on the microRNAs related to the control of anti-oxidative enzymes, as well as microRNAs related to the control of mitochondrial functions and inflammation. The objective is the search for new therapeutic targets to improve the functioning of mitochondria and reduce oxidative stress and inflammation, despite the acquired metabolic memory.
Collapse
Affiliation(s)
- Ayauly Duisenbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Gabriela C Lopez-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico
| | - Miguel Pérez
- Hospital de Alta Resolución de Alcalá la Real, 23680 Jaén, Spain
| | - María D Avilés Pérez
- Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), University Hospital Clínico San Cecilio, 18016 Granada, Spain
| | | | - Víctor Roger Pereira Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Juan Gorts Ortega
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
56
|
Victoria B, Noureddine SA, Shehat MG, Jewett TJ, Jewett MW. Borrelia burgdorferi-mediated induction of miR146a-5p fine tunes the inflammatory response in human dermal fibroblasts. PLoS One 2023; 18:e0286959. [PMID: 37319241 PMCID: PMC10270362 DOI: 10.1371/journal.pone.0286959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Colonization of a localized area of human skin by Borrelia burgdorferi after a bite from an infected tick is the first step in the development of Lyme disease. The initial interaction between the pathogen and the human host cells is suggested to impact later outcomes of the infection. MicroRNAs (miRNAs) are well known to be important regulators of host inflammatory and immune responses. While miRNAs have been shown to play a role in the inflammatory response to B. burgdorferi at late stages of infection in the joints, the contributions of miRNAs to early B. burgdorferi infection have yet to be explored. To address this knowledge gap, we used the published host transcriptional responses to B. burgdorferi in erythema migrans skin lesions of early Lyme disease patients and a human dermal fibroblasts (HDFs)/B. burgdorferi co-culture model to predict putative upstream regulator miRNAs. This analysis predicted a role for miR146a-5p in both, B. burgdorferi-infected skin and -stimulated HDFs. miR146a-5p was confirmed to be significantly upregulated in HDF stimulated with B. burgdorferi for 24 hours compared to uninfected control cells. Furthermore, manipulation of miR146a-5p expression (overexpression or inhibition) altered the B. burgdorferi driven inflammatory profile of HDF cells. Our results suggest that miR146a-5p is an important upstream regulator of the transcriptional and immune early response to early B. burgdorferi infection.
Collapse
Affiliation(s)
- Berta Victoria
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Sarah A. Noureddine
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Michael G. Shehat
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
57
|
Wu Z, Yan Y, Li W, Li Y, Yang H. Expression Profile of miR-199a and Its Role in the Regulation of Intestinal Inflammation. Animals (Basel) 2023; 13:1979. [PMID: 37370489 DOI: 10.3390/ani13121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Early weaning stress impairs intestinal health in piglets. miRNAs are crucial for maintaining host homeostasis, while their implication for animal health remains unclear. To identify weaning-associated miRNAs, piglets were sampled at day 0, 1, 3, 7 and 14 after weaning. The data indicated that the highest levels of miR-199a-5p in jejunal villus upper cells were observed on day 14 after weaning, while the lowest levels in crypt cells were noted on day 7 and 14. In contrast, miR-199a-3p was down-regulated in both of these two cells on day 7 after weaning compared with day 0. Both miR-199a-5p and -3p were differently expressed along the villus-crypt axis. To further clarify the function of miR-199a, mice deficient in miR-199a were exposed to dextran sulfate sodium (DSS) to induce colitis. Results revealed that silencing of miR-199a enhanced sensitivity to DSS-induced colitis. Moreover, the increased morbidity and mortality were correlated with enhanced inflammatory cell infiltration, elevated pro-inflammatory cytokine expression, impaired barrier function, and a concomitant increase in permeability-related parameters. Bioinformatic analysis further demonstrated that lipid metabolism-related pathways were significantly enriched and Ndrg1 was verified as a target of miR-199a-3p. These findings indicate that miR-199a may be important for animal health management.
Collapse
Affiliation(s)
- Zijuan Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Yanyun Yan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Wenli Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| |
Collapse
|
58
|
Oh J, Riek AE, Bauerle KT, Dusso A, McNerney KP, Barve RA, Darwech I, Sprague JE, Moynihan C, Zhang RM, Kutz G, Wang T, Xing X, Li D, Mrad M, Wigge NM, Castelblanco E, Collin A, Bambouskova M, Head RD, Sands MS, Bernal-Mizrachi C. Embryonic vitamin D deficiency programs hematopoietic stem cells to induce type 2 diabetes. Nat Commun 2023; 14:3278. [PMID: 37311757 PMCID: PMC10264405 DOI: 10.1038/s41467-023-38849-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Environmental factors may alter the fetal genome to cause metabolic diseases. It is unknown whether embryonic immune cell programming impacts the risk of type 2 diabetes in later life. We demonstrate that transplantation of fetal hematopoietic stem cells (HSCs) made vitamin D deficient in utero induce diabetes in vitamin D-sufficient mice. Vitamin D deficiency epigenetically suppresses Jarid2 expression and activates the Mef2/PGC1a pathway in HSCs, which persists in recipient bone marrow, resulting in adipose macrophage infiltration. These macrophages secrete miR106-5p, which promotes adipose insulin resistance by repressing PIK3 catalytic and regulatory subunits and down-regulating AKT signaling. Vitamin D-deficient monocytes from human cord blood have comparable Jarid2/Mef2/PGC1a expression changes and secrete miR-106b-5p, causing adipocyte insulin resistance. These findings suggest that vitamin D deficiency during development has epigenetic consequences impacting the systemic metabolic milieu.
Collapse
Affiliation(s)
- Jisu Oh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy E Riek
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin T Bauerle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, VA Medical Center, St. Louis, MO, USA
| | - Adriana Dusso
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle P McNerney
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Isra Darwech
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Clare Moynihan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rong M Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Greta Kutz
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marguerite Mrad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas M Wigge
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Alejandro Collin
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Monika Bambouskova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Bernal-Mizrachi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, VA Medical Center, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
59
|
Zhao L, Zhang M, Liu YW, Tan Y, Yin J, Chen Y, Chen D, Ni B. Sinomenine alleviates lipopolysaccharide-induced acute lung injury via a PPARβ/δ-dependent mechanism. Eur J Pharmacol 2023:175838. [PMID: 37307937 DOI: 10.1016/j.ejphar.2023.175838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Evidence is mounting that sinomenine and peroxisome proliferator-activated receptor β/δ (PPARβ/δ) are effective against lipopolysaccharide (LPS)-induced acute lung injury (ALI) via anti-inflammatory properties. However, it is unknown whether PPARβ/δ plays a role in the protective effect of sinomenine on ALI. Here, we initially observed that preemptive administration of sinomenine markedly alleviated lung pathological changes, pulmonary edema and neutrophil infiltration, accompanied by inhibition of the expression of the pro-inflammatory cytokines Tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), which were largely reversed following the addition of a PPARβ/δ antagonist. Subsequently, we also noticed that sinomenine upregulated adenosine A2A receptor expression in a PPARβ/δ-dependent manner in LPS-stimulated bone marrow-derived macrophages (BMDMs). Further investigation indicated that PPARβ/δ directly bound to the functional peroxisome proliferator responsive element (PPRE) in the adenosine A2A receptor gene promoter region to enhance the expression of the adenosine A2A receptor. Sinomenine was identified as a PPARβ/δ agonist. It could bind with PPARβ/δ, and promote the nuclear translocation and transcriptional activity of PPARβ/δ. In addition, combined treatment with sinomenine and an adenosine A2A receptor agonist exhibited synergistic effects and better protective roles than their single use against ALI. Taken together, our results reveal that sinomenine exerts advantageous effects on ALI by activating of PPARβ/δ, with the subsequent upregulation of adenosine A2A receptor expression, and provide a novel and potential therapeutic application for ALI.
Collapse
Affiliation(s)
- Li Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Tan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Jun Yin
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Yuanyuan Chen
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Dewei Chen
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China; Department of High Altitude Physiology & Biology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China.
| |
Collapse
|
60
|
Bhati T, Ray A, Arora R, Siraj F, Parvez S, Rastogi S. Immunomodulation of cytokine signalling at feto-maternal interface by microRNA-223 and -150-5p in infection-associated spontaneous preterm birth. Mol Immunol 2023; 160:1-11. [PMID: 37285685 DOI: 10.1016/j.molimm.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spontaneous preterm birth (sPTB) is a global health concern and it is the most prevalent cause of infant mortality and morbidity with occurrence rate of 5 - 18% worldwide. Studies suggest infection and infection-driven activation of inflammatory responses are the potential risk factors for sPTB. MicroRNAs (miRNAs) are thought to control the expression of several immune genes, making them crucial components of the intricate immune regulatory network and the dysregulation of miRNAs in placenta has been associated to several pregnancy-related complications. However, studies on possible role of miRNAs in immunomodulation of cytokine signalling in infection-associated sPTB are scarce. Present study aimed to investigate expression/ correlation of a few circulating miRNAs (miR-223, -150-5p, -185-5p, -191-5p), miRNA target genes and associated cytokines in sPTB women found infected with Chlamydia trachomatis/ Mycoplasma hominis/ Ureaplasma urealyticum. Non-heparinized blood and placental sample were collected from 140 sPTB and 140 term women visiting Safdarjung hospital, New Delhi (India) for conducting PCR and RT-PCR for pathogen detection and miRNA/ target gene/ cytokine expression, respectively. Common target genes of differentially expressed miRNAs were obtained from databases. The correlation between select target genes/ cytokines and serum miRNAs was determined by Spearman's rank correlation. 43 sPTB were infected with either pathogen and a significant upregulation of serum miRNAs was observed. However, miR-223 and 150-5p showed maximum fold-change (4.78 and 5.58, respectively) in PTB versus control group. IL-6ST, TGF-β R3 and MMP-14 were important target genes among 454 common targets, whereas, IL-6 and TGF-β were associated cytokines. miR-223 and 150-5p showed significant negative correlation with IL-6ST/ IL-6/ MMP-14 and positive correlation with TGF-β R3/ TGF-β. A significant positive correlation was found between IL-6ST and IL-6, TGF-β R3 and TGF-β. However, miR-185-5p and 191-5p were not significantly correlated. Although post-transcriptional validation is required, yet on the basis of mRNA findings, the study concludes that miR-223 and 150-5p are apparently of clinical importance in regulation of inflammatory processes during infection-associated sPTB.
Collapse
Affiliation(s)
- Tanu Bhati
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box no. 4909, New Delhi 110029, India; Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | - Ankita Ray
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box no. 4909, New Delhi 110029, India; Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi 110029, India
| | - Fouzia Siraj
- Pathology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box no. 4909, New Delhi 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | - Sangita Rastogi
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box no. 4909, New Delhi 110029, India.
| |
Collapse
|
61
|
Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, Reyhani E, Neghab HK. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell Tissue Res 2023:10.1007/s00441-023-03792-4. [PMID: 37247032 DOI: 10.1007/s00441-023-03792-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.
Collapse
Affiliation(s)
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Reyhani
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
62
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
63
|
Wooff Y, Cioanca AV, Wills E, Chu-Tan JA, Sekar R, Natoli R. Short exposure to photo-oxidative damage triggers molecular signals indicative of early retinal degeneration. Front Immunol 2023; 14:1088654. [PMID: 37180103 PMCID: PMC10174249 DOI: 10.3389/fimmu.2023.1088654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, currently affecting over 350 billion people globally. For the most prevalent late-stage form of this disease, atrophic AMD, there are no available prevention strategies or treatments, in part due to inherent difficulties in early-stage diagnosis. Photo-oxidative damage is a well-established model for studying inflammatory and cell death features that occur in late-stage atrophic AMD, however to date has not been investigated as a potential model for studying early features of disease onset. Therefore, in this study we aimed to determine if short exposure to photo-oxidative damage could be used to induce early retinal molecular changes and advance this as a potential model for studying early-stage AMD. Methods C57BL/6J mice were exposed to 1, 3, 6, 12, or 24h photo-oxidative damage (PD) using 100k lux bright white light. Mice were compared to dim-reared (DR) healthy controls as well as mice which had undergone long periods of photo-oxidative damage (3d and 5d-PD) as known timepoints for inducing late-stage retinal degeneration pathologies. Cell death and retinal inflammation were measured using immunohistochemistry and qRT-PCR. To identify retinal molecular changes, retinal lysates were sent for RNA sequencing, following which bioinformatics analyses including differential expression and pathway analyses were performed. Finally, to investigate modulations in gene regulation as a consequence of degeneration, microRNA (miRNA) expression patterns were quantified using qRT-PCR and visualized using in situ hybridization. Results Short exposure to photo-oxidative damage (1-24h-PD) induced early molecular changes in the retina, with progressive downregulation of homeostatic pathways including metabolism, transport and phototransduction observed across this time-course. Inflammatory pathway upregulation was observed from 3h-PD, preceding observable levels of microglia/macrophage activation which was noted from 6h-PD, as well as significant photoreceptor row loss from 24h-PD. Further rapid and dynamic movement of inflammatory regulator miRNA, miR-124-3p and miR-155-5p, was visualized in the retina in response to degeneration. Conclusion These results support the use of short exposure to photo-oxidative damage as a model of early AMD and suggest that early inflammatory changes in the retina may contribute to pathological features of AMD progression including immune cell activation and photoreceptor cell death. We suggest that early intervention of these inflammatory pathways by targeting miRNA such as miR-124-3p and miR-155-5p or their target genes may prevent progression into late-stage pathology.
Collapse
Affiliation(s)
- Yvette Wooff
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Adrian V. Cioanca
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Elly Wills
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Joshua A. Chu-Tan
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Rakshanya Sekar
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Riccardo Natoli
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
64
|
Naguib M, El Sawy S, Rashed L, AlHelf M, Abdelgwad M. Long non-coding RNA maternally expressed gene 3, miR-125a-5p, CXCL13, and NF-kB in patients with immune thrombocytopenia. Genes Immun 2023; 24:108-115. [PMID: 37045944 PMCID: PMC10110462 DOI: 10.1038/s41435-023-00200-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 04/14/2023]
Abstract
The main aim of this study was to assess the expression level of circulating long non-coding RNA maternally expressed gene 3 (lncRNA-MEG3), microRNA (miR-125a-5P), the chemokine C-X-C motif ligand13 (CXCL13), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in immune thrombocytopenia (ITP) cases and to study its relation to the disease severity and treatment response. This case-control study included 45 patients newly diagnosed as ITP and 45 healthy subjects. We assessed complete blood count, antinuclear antibodies, hepatitis B and C virus serology, lncRNA-MEG3, miR-125a-5P, and CXCL13 expression in serum by real-time PCR and NF-kb protein by ELISA. In ITP patients compared to control, lncRNA-MEG3 was significantly increased, and miRNA-125a-5P was decreased, and this was associated with higher CXCL13 and NF-kB levels (P < 0.001, for all).There was a significant negative correlation between platelet count and lncRNA-MEG3, CXCL13, and NF-kb, while a positive correlation with miR-125a-5p in ITP patients. Patients who responded to steroids had significantly higher miR-125a-5p (P = 0.016) and significantly lower lncRNA-MEG3 (P < 0.001), CXCL13 (P = 0.005), and NF-kb (p = 0.002). Based on the ROC curves, lncRNA-MEG3 displayed the highest area under the curve (AUC) in the identification of organ bleeding (AUC = 0.805), the response to steroids (AUC = 0.853), and the need for splenectomy (AUC = 0.75).
Collapse
Affiliation(s)
- Mervat Naguib
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Cairo, Egypt.
| | - Shereen El Sawy
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha AlHelf
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Biotechnology School, Nile University, Giza, Egypt
| | - Marwa Abdelgwad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
65
|
Lee YZ, Cheng SH, Chang MY, Lin YF, Wu CC, Tsai YC. Neuroprotective Effects of Lactobacillus plantarum PS128 in a Mouse Model of Parkinson’s Disease: The Role of Gut Microbiota and MicroRNAs. Int J Mol Sci 2023; 24:ijms24076794. [PMID: 37047769 PMCID: PMC10095543 DOI: 10.3390/ijms24076794] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by motor deficits and marked neuroinflammation in various brain regions. The pathophysiology of PD is complex and mounting evidence has suggested an association with the dysregulation of microRNAs (miRNAs) and gut dysbiosis. Using a rotenone-induced PD mouse model, we observed that administration of Lactobacillus plantarum PS128 (PS128) significantly improved motor deficits in PD-like mice, accompanied by an increased level of dopamine, reduced dopaminergic neuron loss, reduced microglial activation, reduced levels of inflammatory factors, and enhanced expression of neurotrophic factor in the brain. Notably, the inflammation-related expression of miR-155-5p was significantly upregulated in the proximal colon, midbrain, and striatum of PD-like mice. PS128 reduced the level of miR-155-5p, whereas it increased the expression of suppressor of cytokine signaling 1 (SOCS1), a direct target of miR-155-5p and a critical inhibitor of the inflammatory response in the brain. Alteration of the fecal microbiota in PD-like mice was partially restored by PS128 administration. Among them, Bifidobacterium, Ruminiclostridium_6, Bacteroides, and Alistipes were statistically correlated with the improvement of rotenone-induced motor deficits and the expression of miR-155-5p and SOCS1. Our findings suggested that PS128 ameliorates motor deficits and exerts neuroprotective effects by regulating the gut microbiota and miR-155-5p/SOCS1 pathway in rotenone-induced PD-like mice.
Collapse
Affiliation(s)
- Yan Zhang Lee
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | | | - Min-Yu Chang
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | - Yu-Fen Lin
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | | | - Ying-Chieh Tsai
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
66
|
Wu Z, Pi G, Song W, Li Y. Investigation of the Expression Pattern and Functional Role of miR-10b in Intestinal Inflammation. Animals (Basel) 2023; 13:ani13071236. [PMID: 37048492 PMCID: PMC10093392 DOI: 10.3390/ani13071236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Implications of miRNAs for animal health management in livestock remain elusive. To identify suitable miRNAs as monitoring biomarkers, piglets were randomly selected for sampling on days 0, 1, 3, 7, and 14 post-weaning. The results show that miR-10b levels in the villus upper cells of the jejunum on days 3 and 7 were significantly lower than that on day 14 post-weaning and reduced by approximately 30% on day 3 and 55% on day 7 compared to day 0. In contrast, miR-10b in crypt cells decreased by approximately 82% on day 7 and 64% on day 14 compared with day 0. Next, miR-10 knockout mice and wild-type mice were subjected to dextran sulfate sodium (DSS) for 7 days. The findings demonstrate that mice lacking miR-10b were more susceptible to DSS administration, as demonstrated by worse survival, greater weight loss, more severe tissue damage, and increased intestinal permeability. Moreover, the increased disease severity was correlated with enhanced macrophage infiltration, coincident with significantly elevated pro-inflammatory mediators and immunoglobulins. Bioinformatic analysis further reveals that the enriched pathways were mainly involved in host immune responses, and Igtp was identified as a potential target of miR-10b. These findings may provide new strategies for future interventions for swine health and production.
Collapse
Affiliation(s)
- Zijuan Wu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Guolin Pi
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Wenxin Song
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
67
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
68
|
Wadhonkar K, Singh N, Heralde FM, Parihar SP, Hirani N, Baig MS. Exosome-derived miRNAs regulate macrophage-colorectal cancer cell cross-talk during aggressive tumor development. COLORECTAL CANCER 2023. [DOI: 10.2217/crc-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Colorectal cancer is one of the leading causes of death worldwide. Its incidence and mortality have significantly increased during the past few years. Colorectal cancer cells cross-talk with other cells through exosomes in their tumor microenvironment. The miRNAs containing exosomes are responsible for tumor growth, invasion, and metastasis. Multiple studies have shown that exosomal miRNAs are key players in the crosstalk between cancerous, immune, and stromal cells during colorectal cancer development. They help in the establishment of the tumorigenic microenvironment by reprogramming macrophages towards a pro-tumorigenic phenotype. In this review, we discussed various exosomal miRNAs derived both from colorectal cancer cells and macrophages that promote or inhibit cancer aggression. We also discussed various miRNA-based therapeutic approaches to inhibit cancer progression.
Collapse
Affiliation(s)
- Khandu Wadhonkar
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol-453552, Indore, India
| | - Neha Singh
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol-453552, Indore, India
| | - Francisco M Heralde
- Department of Biochemistry & Molecular Biology, College of Medicine, University of the Philippines-Manila, Manila 1000, Philippines
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) & Institute of Infectious Diseases & Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Department of Biochemistry, Human Metabolomics, Faculty of Natural & Agricultural Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mirza S Baig
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol-453552, Indore, India
| |
Collapse
|
69
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
70
|
Doghish AS, Ismail A, El-Mahdy HA, Elkhawaga SY, Elsakka EGE, Mady EA, Elrebehy MA, Khalil MAF, El-Husseiny HM. miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life Sci 2023; 314:121321. [PMID: 36574943 DOI: 10.1016/j.lfs.2022.121321] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a severe autoimmune inflammation that mostly affects the joints. It's a multifactorial disease. Its clinical picture depends on genetic and epigenetic factors such as miRNAs. The miRNAs are small noncoding molecules that are able to negatively or positively modulate their target gene expression. In RA, miRNAs are linked to its pathogenesis. They disrupt immunity balance by controlling granulocytes, triggering the release of several proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α, finally leading to synovium hyperplasia and inflammation. Besides, they also may trigger activation of some pathways as nuclear factor kappa-β disrupts the balance between osteoclast and osteoblast activity, leading to increased bone destruction. Moreover, miRNAs are also applied with efficiency in RA diagnosis and prognosis. Besides the significant association between miRNAs and RA response to treatment, they are also applied as a choice for treatment based on their effects on the immune system and inflammatory cytokines. Hence, the review aims to present an updated overview of miRNAs, their biogenesis, implications in RA pathogenesis, and finally, the role of miRNAs in RA treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukfh, Elqaliobiya 13736, Egypt; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| |
Collapse
|
71
|
McAlpine SM, Roberts SE, Hargreaves BKV, Bullock C, Ramsey S, Stringer E, Lang B, Huber A, György B, Erdélyi F, Issekutz TB, Dérfalvi B. Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis. J Rheumatol 2023; 50:227-235. [PMID: 35840148 DOI: 10.3899/jrheum.220160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To evaluate microRNA expression in synovial fluid (SF), plasma, and leukocytes from patients with juvenile idiopathic arthritis (JIA). METHODS MicroRNA expression in pooled JIA plasma and SF was assessed by absolute quantitative droplet digital PCR array. The results were validated in individual patient samples. MicroRNA content in leukocytes and extracellular vesicles was evaluated by real-time PCR in JIA blood and SF. Blood microRNA expression was compared with healthy controls (HCs). Principal component analysis was used to profile JIA plasma and SF microRNAs, and the potential biological consequences of microRNA dysregulation were investigated by pathway analysis. RESULTS MiR-15a-5p and miR-409-3p levels were higher in JIA plasma than in HC plasma. JIA SF contained elevated levels of miR-21-5p, miR-27a-3p, miR-146b-5p, miR-155-5p, and miR-423-5p, and decreased miR-192-5p and miR-451a, compared to JIA plasma. Extracellular vesicle analysis demonstrated variable encapsulation among selected microRNAs, with only miR-155-5p being represented substantially in extracellular vesicles. SF leukocytes also had higher expression of miR-21-5p, miR-27a-3p, miR-146b-5p, and miR-155-5p, and lower expression of miR-409-3p and miR-451a, relative to blood. No differences were observed between JIA and HC blood leukocytes. Clusters of microRNAs were commonly altered in JIA joint fluid and leukocytes compared to JIA blood samples. In silico analysis predicted that differentially expressed microRNAs in JIA target the transforming growth factor (TGF)-β pathway. CONCLUSION The expression of multiple microRNAs is dysregulated in JIA both locally and systemically, which may inhibit the TGF-β pathway. These findings advance our knowledge of JIA immunopathogenesis and may lead to the development of targeted therapies.
Collapse
Affiliation(s)
- Sarah M McAlpine
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Sarah E Roberts
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Breanna K V Hargreaves
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claire Bullock
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suzanne Ramsey
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth Stringer
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bianca Lang
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam Huber
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bence György
- B. György, MD, PhD, Department of Ophthalmology, University of Basel, and Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | | | - Thomas B Issekutz
- S.M. McAlpine, PhD, S.E. Roberts, BSc, B.K.V. Hargreaves, MSc, C. Bullock, BSc, S. Ramsey, MD, E. Stringer, MD, B. Lang, MD, A. Huber, MD, T.B. Issekutz, MD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Beáta Dérfalvi
- Beáta Dérfalvi, MD, PhD, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada, and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
72
|
Boccardi V, Poli G, Cecchetti R, Bastiani P, Scamosci M, Febo M, Mazzon E, Bruscoli S, Brancorsini S, Mecocci P. miRNAs and Alzheimer's Disease: Exploring the Role of Inflammation and Vitamin E in an Old-Age Population. Nutrients 2023; 15:nu15030634. [PMID: 36771341 PMCID: PMC9919026 DOI: 10.3390/nu15030634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia worldwide and represents one of the leading factors for severe disability in older persons. Although its etiology is not fully known yet, AD may develop due to multiple factors, including inflammation and oxidative stress, conditions where microRNAs (miRNAs) seem to play a pivotal role as a molecular switch. All these aspects may be modulated by nutritional factors. Among them, vitamin E has been widely studied in AD, given the plausibility of its various biological functions in influencing neurodegeneration. From a cohort of old-aged people, we measured eight vitamin E forms (tocopherols and tocotrienols), thirty cytokines/chemokines, and thirteen exosome-extracted miRNAs in plasma of subjects suffering from subjects affected by AD and age-matched healthy controls (HC). The sample population included 80 subjects (40 AD and 40 HC) with a mean age of 77.6 ± 3.8 years, mostly women (45; 56.2%). Of the vitamin E forms, only α-tocopherol differed between groups, with significantly lower levels in AD. Regarding the examined inflammatory molecules, G-CSF, GM-CSF, INF-α2, IL-3, and IL-8 were significantly higher and IL-17 lower in AD than HC. Among all miRNAs examined, AD showed downregulation of miR-9, miR-21, miR29-b, miR-122, and miR-132 compared to controls. MiR-122 positively and significantly correlated with some inflammatory molecules (GM-CSF, INF-α2, IL-1α, IL-8, and MIP-1β) as well as with α-tocopherol even after correction for age and gender. A final binary logistic regression analysis showed that α-tocopherol serum levels were associated with a higher AD probability and partially mediated by miR-122. Our results suggest an interplay between α-tocopherol, inflammatory molecules, and microRNAs in AD, where miR-122 may be a good candidate as modulating factor.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Correspondence: ; Tel.: +39-0755783524
| | - Giulia Poli
- Department of Medicine and Surgery, University of Perugia, 05100 Terni, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Patrizia Bastiani
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Michela Scamosci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 05100 Terni, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 05100 Terni, Italy
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, 05100 Terni, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet Stockholm, 17177 Stockholm, Sweden
| |
Collapse
|
73
|
Eldosoky MA, Hammad R, Rushdi A, Ibrahim HF, Tawfeik AM, Mora A, Fahmy SF, El-Ashmawy H, Ali E, Hamed DH, Mohammed AR, Mashaal A, Mohsen H. MicroRNA-146a-5p and microRNA-210-3p Correlate with T Regulatory Cells Frequency and Predict Asthma Severity in Egyptian Pediatric Population. J Asthma Allergy 2023; 16:107-121. [PMID: 36714048 PMCID: PMC9880026 DOI: 10.2147/jaa.s398494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Background Severe bronchial asthma (BA) affects 5-10% of children, which imposes socioeconomic burden. Therefore, it is crucial to identify biomarkers for risk stratification in children with BA. T regulatory cells (Tregs) play a balancing role in allergic response regulation. We aimed to investigate the relationship between Treg, miR-210-3p, and miR-146a-5p in relation to asthma phenotypes in search of novel biomarkers of disease severity. Methods This study included 50 children with BA classified into Group 1 (n = 25) children with mild to moderate asthma and Group 2 (n = 25) children with severe asthma. In addition to 26 control subjects. Flow cytometry was used to detect Tregs. Plasma miR-210-3p and miR-146a levels were determined using quantitative real-time PCR. Patients' FEV1 (Forced Expiratory Volume in the first second) was measured. Results miR-210-3p level correlated negatively with Treg frequency (r = -0.828, P < 0.001) and FEV1 (r = -0.621, P < 0.001). The level of miR-146a-5p positively correlated positively with Treg% (r = 0.303, P = 0.032). ROC curve analysis revealed that miR-210-3p was the most sensitive biomarker of severity, with the area under curve (AUC) = 0.923, 96% sensitivity, and 60% specificity. According to multivariate analysis, miR-210-3p is an independent risk factor for BA severity [OR =3.119, P = 0.030], while miR-146a-5p is a protective factor [OR =0.811, P = 0.049]. Conclusion Treg frequency is linked to FEV1, miR-146a-5p and miR-210-3p in childhood BA. Upregulation of miR-210-3p is a sensitive biomarker and an independent risk factor for BA severity in Egyptian children.
Collapse
Affiliation(s)
- Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Areej Rushdi
- Microbiology and Immunology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Hanan F Ibrahim
- Microbiology and Immunology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Amany M Tawfeik
- Microbiology and Immunology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ahmed Mora
- Chemistry Department, Faculty of Science (for Boys), Al-Azhar University, Cairo, Egypt
| | - Sarah F Fahmy
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hossam El-Ashmawy
- Clinical Pathology Department, Faculty of Medicine (for Boys), Al-Azhar University, Assuit, Egypt
| | - Elham Ali
- Molecular Biology, Zoology and Entomology Department, Faculty of Science (For Girls), Al-Azhar University, Cairo, Egypt
| | - Dina H Hamed
- Pediatric Department, Pediatric Allergy and Pulmonology Unit, Children’s Hospital, Cairo University, Cairo, Egypt,Correspondence: Dina H Hamed, Email
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (For Girls), Al-Azhar University, Cairo, Egypt
| | - Hanan Mohsen
- Pediatric Department, Pediatric Allergy and Pulmonology Unit, Children’s Hospital, Cairo University, Cairo, Egypt
| |
Collapse
|
74
|
Li R, Sano T, Mizokami A, Fukuda T, Shinjo T, Iwashita M, Yamashita A, Sanui T, Nakatsu Y, Sotomaru Y, Asano T, Kanematsu T, Nishimura F. miR-582-5p targets Skp1 and regulates NF-κB signaling-mediated inflammation. Arch Biochem Biophys 2023; 734:109501. [PMID: 36592647 DOI: 10.1016/j.abb.2022.109501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
A well-tuned inflammatory response is crucial for an effective immune process. Nuclear factor-kappa B (NF-κB) is a key mediator of inflammatory and innate immunity responses, and its dysregulation is closely associated with immune-related diseases. MicroRNAs (miRNAs) are important inflammation modulators. However, miRNA-regulated mechanisms that implicate NF-κB activity are not fully understood. This study aimed to identify a potential miRNA that could modulate the dysregulated NF-κB signaling during inflammation. We identified miR-582-5p that was significantly downregulated in inflamed murine adipose tissues and RAW264.7 cells. S-phase kinase-associated protein 1 (SKP1), a core component of an E3 ubiquitin ligase that regulates the NF-κB pathway, was proposed as a biological target of miR-582-5p by using TargetScan. The binding of miR-582-5p to a 3'-untranslated region site on Skp1 was confirmed using a dual-luciferase reporter assay; in addition, transfection with a miR-582-5p mimic suppressed SKP1 expression in RAW264.7 cells. Importantly, exogenous miR-582-5p attenuated the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 through suppressing the degradation of the NF-κB inhibitor alpha, followed by the nuclear translocation of NF-κB. Therefore, exogenously applied miR-582-5p can attenuate the NF-κB signaling pathway via targeting Skp1; this provides a prospective therapeutic strategy for treating inflammatory and immune diseases.
Collapse
Affiliation(s)
- Rongzhi Li
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomomi Sano
- Department of Cell Biology, Aging Science, and Pharmacology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Akiko Mizokami
- Oral, Brain and Total Health Science, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Misaki Iwashita
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akiko Yamashita
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yusuke Nakatsu
- Department of Biological Chemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Biological Chemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Kanematsu
- Department of Cell Biology, Aging Science, and Pharmacology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
75
|
Qin H, Wang C, He Y, Lu A, Li T, Zhang B, Shen J. Silencing miR-146a-5p Protects against Injury-Induced Osteoarthritis in Mice. Biomolecules 2023; 13:123. [PMID: 36671508 PMCID: PMC9856058 DOI: 10.3390/biom13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA), the most prevalent joint disease and the leading cause of disability, remains an incurable disease largely because the etiology and pathogenesis underlying this degenerative process are poorly understood. Low-grade inflammation within joints is a well-established factor that disturbs joint homeostasis and leads to an imbalance between anabolic and catabolic processes in articular cartilage; however, the complexity of the network between inflammatory factors that often involves positive and negative feedback loops makes current anti-cytokine therapy ineffective. MicroRNAs (miRNAs) have emerged as key regulators to control inflammation, and aberrant miRNAs expression has recently been linked to OA pathophysiology. In the present study, we characterized transcriptomic profiles of miRNAs in primary murine articular chondrocytes in response to a proinflammatory cytokine, IL-1β, and identified miR-146a-5p as the most responsive miRNA to IL-1β. miR-146a-5p was also found to be upregulated in human OA cartilage. We further demonstrated that knockdown of miR-146a-5p antagonized IL-1β-mediated inflammatory responses and IL-1β-induced catabolism in vitro, and silencing of miR-146a in chondrocytes ameliorated articular cartilage destruction and reduced OA-evoked pain in an injury-induced murine OA model. Moreover, parallel RNA sequencing revealed that differentially expressed genes in response to IL-1β were enriched in pathways related to inflammatory processes, cartilage matrix homeostasis, and cell metabolism. Bioinformatic analyses of putative miR-146a-5p gene targets and following prediction of protein-protein interactions suggest a functional role of miR-146a-5p in mediating inflammatory processes and regulation of cartilage homeostasis. Our genetic and transcriptomic data define a crucial role of miR-146a-5p in OA pathogenesis and implicate modulation of miR-146a-5p in articular chondrocytes as a potential therapeutic strategy to alleviate OA.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
- The 2nd Xiangya Hospital, Central South University, Changsha 410021, China
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
76
|
Abu-Shahba N, Hegazy E, Khan FM, Elhefnawi M. In Silico Analysis of MicroRNA Expression Data in Liver Cancer. Cancer Inform 2023; 22:11769351231171743. [PMID: 37200943 PMCID: PMC10185868 DOI: 10.1177/11769351231171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (P-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (P-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
- Mahmoud Elhefnawi, Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, 33, elbohouth street, Cairo 11211, Egypt.
| |
Collapse
|
77
|
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023; 8:e10343. [PMID: 36684081 PMCID: PMC9842058 DOI: 10.1002/btm2.10343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.
Collapse
Affiliation(s)
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100RomeItaly
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterCardiovascular Research Institute, Isfahan University of Medical SciencesIsfahanIran
| | | | - Sumit Jamwal
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjanIran
- Cancer Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | | | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
- LAQV, REQUIMTE, Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
| | - Ali Tamayol
- Department of Biomedical EngineeringUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaItaly
- School of Chemistry, Damghan UniversityDamghanIran
| |
Collapse
|
78
|
Ngum JA, Tatang FJ, Toumeni MH, Nguengo SN, Simo USF, Mezajou CF, Kameni C, Ngongang NN, Tchinda MF, Dongho Dongmo FF, Akami M, Ngane Ngono AR, Tamgue O. An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Front Pharmacol 2023; 14:1144836. [PMID: 37168992 PMCID: PMC10165025 DOI: 10.3389/fphar.2023.1144836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Oxidative stress is a state in which oxidants are produced in excess in the body's tissues and cells, resulting in a biological imbalance amid the generation of reactive oxygen and nitrogen species (RONS) from redox reactions. In case of insufficient antioxidants to balance, the immune system triggers signaling cascades to mount inflammatory responses. Oxidative stress can have deleterious effects on major macromolecules such as lipids, proteins, and nucleic acids, hence, Oxidative stress and inflammation are among the multiple factors contributing to the etiology of several disorders such as diabetes, cancers, and cardiovascular diseases. Non-coding RNAs (ncRNAs) which were once referred to as dark matter have been found to function as key regulators of gene expression through different mechanisms. They have dynamic roles in the onset and development of inflammatory and oxidative stress-related diseases, therefore, are potential targets for the control of those diseases. One way of controlling those diseases is through the use of natural products, a rich source of antioxidants that have drawn attention with several studies showing their involvement in combating chronic diseases given their enormous gains, low side effects, and toxicity. In this review, we highlighted the natural products that have been reported to target ncRNAs as mediators of their biological effects on oxidative stress and several inflammation-associated disorders. Those natural products include Baicalein, Tanshinone IIA, Geniposide, Carvacrol/Thymol, Triptolide, Oleacein, Curcumin, Resveratrol, Solarmargine, Allicin, aqueous extract or pulp of Açai, Quercetin, and Genistein. We also draw attention to some other compounds including Zanthoxylum bungeanum, Canna genus rhizome, Fuzi-ganjiang herb pair, Aronia melanocarpa, Peppermint, and Gingerol that are effective against oxidative stress and inflammation-related disorders, however, have no known effect on ncRNAs. Lastly, we touched on the many ncRNAs that were found to play a role in oxidative stress and inflammation-related disorders but have not yet been investigated as targets of a natural product. Shedding more light into these two last points of shadow will be of great interest in the valorization of natural compounds in the control and therapy of oxidative stress- and inflammation-associated disorders.
Collapse
|
79
|
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat Res 2023; 199:89-111. [PMID: 36368026 PMCID: PMC10279411 DOI: 10.1667/rade-21-00187.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
Collapse
Affiliation(s)
- Sushil K Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetha N Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynnette Cary
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
80
|
miR-15a-5p enhances the malignant phenotypes of colorectal cancer cells through the STAT3/TWIST1 and PTEN/AKT signaling pathways by targeting SIRT4. Cell Signal 2023; 101:110517. [PMID: 36332797 DOI: 10.1016/j.cellsig.2022.110517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) continues to represent one of the major causes of cancer-related mortality and morbidity. MicroRNAs (miRNAs) are confirmed to be involved in modulating substential biological processes by affecting the expression of targeted genes, including carcinogenesis. In the present study, the expression pattern and functional roles of microRNA-15a-5p (miR-15a-5p) in CRC cells were investigated. The data from TCGA database indicated that miR-15a-5p is highly expressed in CRC tissues. Moreover, ectopic expression of miR-15a-5p facilitated the proliferation, migration, and invasion of CRC cells. Furthermore, bioinformatic analysis combinating with dual-luciferase assay revealed that SIRT4 acts as a crucial target of miR-15a-5p. Accordingly, overexpression of SIRT4 suppresses the miR-15a-5p-mediated enhancement in the proliferation, migration, and invasion of CRC cells, while the opposite phenotypes were observed after inhibition of SIRT4. Moreover, we further revealed that miR-15a-5p restrained the expression of SIRT4 to exacerbate the malignant phenotypes by modulating STAT3/TWIST1 and PETN/AKT signaling in CRC cells. Alternatively, inhibition of the miR-15a-5p/SIRT4 axis enhanced the chemosensitivity of 5-fluorouracil- and oxaliplatin-resistant HCT116 cells. Altogether, our evidence suggests that miR-15a-5p plays an essential role in promoting the proliferation, migration, and chemoresistance of CRC cells via targeting SIRT4 to modulate STAT3/TWIST1 and PETN/AKT signaling, which may serve as a promising therapeutic target for CRC therapy.
Collapse
|
81
|
AlMatar M, Ramli ANM, Albarri O, Yi CX. Insights into the Structural Complexities of SARS-CoV-2 for Therapeutic and Vaccine Development. Comb Chem High Throughput Screen 2023; 26:1945-1959. [PMID: 36366840 DOI: 10.2174/1386207326666221108095705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022]
Abstract
SARS-CoV-2 is a disease that endangers both human life and the economy. There was an 11- month period of relative evolutionary standstill following the appearance of SARS-CoV-2 in late 2019. However, the emergence of clusters of mutations known as' variants of concern 'with variable viral properties such as transmissibility and antigenicity defined the evolution of SARS-CoV-2. Several efforts have been made in recent months to understand the atomic level properties of SARS-CoV-2. A review of the literature on SARS-CoV-2 mutations is offered in this paper. The critical activities performed by different domains of the SARS-CoV-2 genome throughout the virus's entry into the host and overall viral life cycle are discussed in detail. These structural traits may potentially pave the way for the development of a vaccine and medication to combat the SARS-CoV-2 sickness.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Education and Art, Sohar University, Sohar, 311, Sultanate of Oman
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Science and Technology, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova
University, Adana, Turkey
| | - Osman Albarri
- Bio Aromatic Research Centre of Excellence, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Choong Xin Yi
- Faculty of Industrial Science and Technology, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
82
|
Gaytán-Pacheco N, Ibáñez-Salazar A, Herrera-Van Oostdam AS, Oropeza-Valdez JJ, Magaña-Aquino M, Adrián López J, Monárrez-Espino J, López-Hernández Y. miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients. Diagnostics (Basel) 2022; 13:133. [PMID: 36611425 PMCID: PMC9818442 DOI: 10.3390/diagnostics13010133] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
COVID-19 infection triggered a global public health crisis during the 2020-2022 period, and it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying immunological mechanisms, and their possible use as biomarkers to discriminate against patients with severe COVID-19. Functional analysis showed that most enriched pathways were significantly associated with processes related to cell proliferation and immune responses (innate and adaptive). Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential use as predictive prognosis biomarkers.
Collapse
Affiliation(s)
- Noemí Gaytán-Pacheco
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Alejandro Ibáñez-Salazar
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | | | - Juan José Oropeza-Valdez
- Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98600, Mexico
| | | | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Joel Monárrez-Espino
- Department of Health Research, Christus Muguerza del Parque Hospital Chihuahua, University of Monterrey, San Pedro Garza García 66238, Mexico
| | - Yamilé López-Hernández
- CONACyT-Metabolomics and Proteomics Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
83
|
Ma X, Liu B, Fan L, Liu Y, Zhao Y, Ren T, Li Y, Li Y. Native and engineered exosomes for inflammatory disease. NANO RESEARCH 2022; 16:6991-7006. [PMID: 36591564 PMCID: PMC9793369 DOI: 10.1007/s12274-022-5275-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Exosomes are extracellular vesicles which carry specific molecular information from donor cells and act as an intercellular communication vehicle, which have emerged as a novel cell-free strategy for the treatment of many diseases including inflammatory disease. Recently, rising studies have developed exosome-based strategies for novel inflammation therapy due to their biocompatibility and bioactivity. Researchers not only use native exosomes as therapeutic agents for inflammation, but also strive to make up for the natural defects of exosomes through engineering methods to improve and update the property of exosomes for enhanced therapeutic effects. The engineered exosomes can improve cargo-loading efficiency, targeting ability, stability, etc., to achieve combined and diverse treatment strategies in inflammation diseases. Herein, a comprehensive overview of the recent advances in application studies of native and engineered exosomes as well as the engineered methods is provided. Meanwhile, potential application prospects, possible challenges, and the development of clinical researches of exosome treatment strategy are concluded from plentiful examples, which may be able to provide guidance and suggestions for the future research and application of exosomes.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Bingbing Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Limin Fan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Tianbin Ren
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
84
|
Identifying differentially expressed genes and miRNAs in Kawasaki disease by bioinformatics analysis. Sci Rep 2022; 12:21879. [PMID: 36536067 PMCID: PMC9763244 DOI: 10.1038/s41598-022-26608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic immune vasculitis caused by infection, and its etiology and underlying mechanisms are not completely clear. This study aimed to identify differentially expressed genes (DEGs) with diagnostic and treatment potential for KD using bioinformatics analysis. In this study, three KD datasets (GSE68004, GSE73461, GSE18606) were downloaded from the Gene Expression Omnibus (GEO) database. Identification of DEGs between normal and KD whole blood was performed using the GEO2R online tool. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of DEGs was undertaken with Metascape. Analysis and visualization of protein-protein interaction networks (PPI) were carried out with STRING and Cytoscape. Lastly, miRNA-genes regulatory networks were built by Cytoscape to predict the underlying microRNAs (miRNAs) associated with DEGs. Overall, 269 DEGs were identified, including 230 up-regulated and 39 down-regulated genes. The enrichment functions and pathways of DEGs involve regulation of defense response, inflammatory response, response to bacterium, and T cell differentiation. KEGG analysis indicates that the genes were significantly enriched in Neutrophil extracellular trap formation, TNF signaling pathway, Cytokine-cytokine receptor interaction, and Primary immunodeficiency. After combining the results of the protein-protein interaction (PPI) network and CytoHubba, 9 hub genes were selected, including TLR8, ITGAX, HCK, LILRB2, IL1B, FCGR2A, S100A12, SPI1, and CD8A. Based on the DEGs-miRNAs network construction, 3 miRNAs including mir-126-3p, mir-375 and mir-146a-5p were determined to be potential key miRNAs. To summarize, a total of 269 DEGs, 9 hub genes and 3 miRNAs were identified, which could be considered as KD biomarkers. However, further studies are needed to clarify the biological roles of these genes in KD.
Collapse
|
85
|
Elisia I, Kowalski S, Yeung M, Wong J, Grants JM, Karsan A, Krystal G. A low carbohydrate diet high in fish oil and soy protein delays inflammation, hematopoietic stem cell depletion, and mortality in miR-146a knock-out mice. Front Nutr 2022; 9:1017347. [PMID: 36505238 PMCID: PMC9729559 DOI: 10.3389/fnut.2022.1017347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Since our previous studies found a low carbohydrate (CHO) diet containing soy protein and fish oil (15%Amylose/Soy/FO) significantly reduced lung and breast cancer in mice we asked herein if this low CHO diet could also delay the onset of myeloid malignancies. To test this we employed a miR-146a knock-out (KO) mouse model and found the 15%Amylose/Soy/FO diet increased their median lifespan by 8.5 month, compared to these mice on a Western diet. This was associated with increased lymphocytes and reduced monocytes, granulocytes, blood glucose and insulin levels. Inflammatory cytokine/chemokine studies carried out with 6-month-old mice, before any signs of illness, revealed the 15%Amylose/Soy/FO diet significantly reduced pro-inflammatory cytokines. This low CHO diet also led to an increase in plasma β-hydroxybutyrate and in liver fatty acid synthase levels. This, together with higher liver carnitine palmitoyltransferase I levels suggested that the 15%Amylose/Soy/FO diet was causing a systemic metabolic shift from glucose to fatty acids as an energy source. Lastly, we found the 15%Amylose/Soy/FO diet resulted in significantly higher numbers of primitive hematopoietic stem cells (HSCs) in the bone marrow of 6-month-old mice than those fed a Western diet. Taken together, these results suggest a 15%Amylose/Soy/FO diet reduces chronic inflammation and increases fatty acid oxidation and that this, in turn, may prevent HSC proliferation and exhaustion, thereby delaying myeloid malignancy-induced death of miR-146a KO mice. We suggest a low CHO diet containing soy protein and fish oil could be beneficial in reducing the risk of myeloid malignancies in patients with low miR-146a levels.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jennifer M. Grants
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Aly Karsan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada,*Correspondence: Gerald Krystal,
| |
Collapse
|
86
|
Park M, Oh HJ, Han J, Hong SH, Park W, Song H. Liposome-mediated small RNA delivery to convert the macrophage polarity: A novel therapeutic approach to treat inflammatory uterine disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:663-676. [PMID: 36569217 PMCID: PMC9758500 DOI: 10.1016/j.omtn.2022.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Macrophages are present in all tissues for maintaining tissue homeostasis, and macrophage polarization plays a vital role in alleviating inflammation. Therefore, specific delivery of polarization modulators to macrophages in situ is critical for treating inflammatory diseases. We demonstrate that a size-controlled miRNA-encapsulated macrophage-targeting liposomes (miR/MT-Lip) specifically targets macrophages to promote M1-to-M2 polarization conversion, alleviating inflammation without cytotoxicity. miR/MT-Lip, approximately 1.2 μm, showed excellent internalization through phagocytosis and/or macropinocytosis in macrophages. miR-10a/MT-Lip, but not scramble miR-Fluorescein amidite (FAM)/MT-Lip as control, effectively converted the polarization of lipopolysaccharide (LPS)-induced M1 macrophages to M2 in vitro. When miR-10a/MT-Lip was intravenously delivered to mice insulted with LPS for inflammation, the proportion of M2 macrophages was significantly increased without disturbing the population of other immune cells. Furthermore, scramble miR-FAM/MT-Lip was mainly detected in macrophages, but not other immune cells. When our miR/MT-Lip was administered to mice with Asherman's syndrome that suffer from infertility because of sterile uterine inflammation, macrophage-specific targeting of miR-10a/MT-Lip facilitated M1-to-M2 conversion for angiogenesis in the impaired uterus, resulting in restoration of healthy uterine conditions. The results indicate that our MT-Lip encapsulating small RNAs has excellent potential to treat various inflammatory disorders by fine-tuning macrophage polarization in vivo without any side effects.
Collapse
Affiliation(s)
- Mira Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Hyeon-Ji Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Corresponding author Wooram Park, PhD, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea.
| | - Haengseok Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi 13488, Republic of Korea,Corresponding author Haengseok Song, PhD, Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi 13488, Republic of Korea.
| |
Collapse
|
87
|
Balakrishnan V, Ganapathy S, Veerasamy V, Subramaniyan S, Mohamed Hussain SA, Duraisamy R. Modifying effects of nerolidol on cell surface glycoconjugates and suppressed inflammation during DMBA-induced oral carcinogenesis: An in vivo and in silico. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
88
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
89
|
Xu S, Chen S, Zhang M, An W, Li J, Sun Z, Xu Y. Reconstruction and Differential Expression Profiling Core Target Analyses of the circRNA-miRNA-mRNA Network Based on Competitive Endogenous RNAs in Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4572181. [PMID: 36310619 PMCID: PMC9616663 DOI: 10.1155/2022/4572181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
Abstract
Ulcerative colitis (UC) is a common autoimmune disease worldwide. Circular RNA (circRNA) is a type of noncoding ribonucleic acids (ncRNAs). In addition to their roles in numerous biological processes, circRNAs are also linked to a vast range of diseases including UC. Although previous studies have examined many circRNAs, the physiological and pathological roles of the circRNA-associated competing endogenous RNA (ceRNA) network in UC remain unclear. Thus, we constructed a circRNA-miRNA-mRNA network based on the ceRNA hypothesis by analyzing data from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) database. Genes with higher degree values than others in the ceRNA network were selected as central nodes when constructing the corresponding core subnetworks. To fully understand the biological function of the ceRNA network, we entered all differentially expressed mRNAs (DEmRNAs) from the ceRNA network into the Database for Annotation and Integrated Discovery (DAVID), which was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We further entered DEmRNAs into the STRING database for protein-protein interaction (PPI) network analysis. The results elucidated that the ceRNA network comprised 403 circRNA nodes, 5 miRNA nodes, 138 mRNA nodes, and 559 edges. Three core ceRNA subnetworks centered on hsa-miR-342-3p, hsa-miR-199a-5p, and hsa-miR-142-3p were reconstructed in this study. GO and KEGG enrichment analyses identified 167 enriched GO categories and 14 enriched KEGG pathway terms. The core PPI network was composed of 15 core targets, of which CD44, HIF1A, and MMP2 were the most significant. In summary, 3 hub miRNAs (hsa-miR-342-3p, hsa-miR-199a-5p, hsa-miR-142-3p) and 3 hub genes (CD44, HIF1A, and MMP2) might play an important role in the development of UC. These hub nodes, first proposed here, might also be used as potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Sai Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Shouqiang Chen
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Menghe Zhang
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Wenrong An
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Jie Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Zhenhai Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Yunsheng Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| |
Collapse
|
90
|
Mahdavi FS, Mardi S, Mohammadi S, Ansari S, Yaslianifard S, Fallah P, Mozhgani SH. MicroRNA-146: Biomarker and Mediator of Cardiovascular Disease. DISEASE MARKERS 2022; 2022:7767598. [PMID: 39281713 PMCID: PMC11401689 DOI: 10.1155/2022/7767598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/15/2022] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the prime cause of morbidity and mortality worldwide. Although noticeable progress has been made in the diagnosis, prognosis, and treatment, there is still a critical demand for new diagnostic biomarkers and novel therapeutic interventions to reduce this disease incidence. Many investigations have been conducted on the regulatory effects of microRNAs in cardiovascular diseases. miRNA circulating serum level changes are correlated with several CVDs. In addition, there is growing evidence representing the potential role of miRNAs as diagnostic biomarkers or potential therapeutic targets for CVD. Preliminary studies identified the prominent role of miR-146 in host defense, innate immunity, and different immunological diseases by regulating cytokine production and innate immunity modification in bacterial infections. However, more recently, it was also associated with CVD development. miR-146 has received much attention, with positive results in most studies. Research demonstrated the crucial role of this molecule in the pathogenesis of cardiac disease and related mechanisms. As a result, many potential applications of miR-146 are expected. In this paper, we provide an overview of recent studies highlighting the role of miR-146 in CVD, focusing on CAD (coronary artery disease), cardiomyopathy, and MI (myocardial infarction) in particular and discussing its current scientific state, and use a prognostic biomarker as a therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Sadat Mahdavi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Mardi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sareh Mohammadi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sarina Ansari
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parviz Fallah
- Department of Laboratory Science, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Noncommunicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
91
|
Naidoo N, Moodley J, Khaliq OP, Naicker T. Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review. Virus Res 2022; 319:198880. [PMID: 35905790 PMCID: PMC9316720 DOI: 10.1016/j.virusres.2022.198880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
Abstract
This review explores the role of transmembrane neuropilin-1 (NRP-1) in pregnancy, preeclampsia (PE), human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Since these conditions are assessed independently, this review attempts to predict their comorbid clinical manifestations. Dysregulation of NRP-1 contributes to the pathogenesis of PE by (a) impairing vascular endothelial growth factor (VEGF) signaling for adequate spiral artery remodeling and placentation, (b) inducing syncytiotrophoblast (ST) cell apoptosis and increasing ST-derived microparticle circulation and (c) by decreasing regulatory T cell activity predisposing maternal immune intolerance. Although NRP-1 is upregulated in SARS-CoV-2 placentae, its exploitation for SARS-CoV-2 internalization and increased infectivity may alter angiogenesis through the competitive inhibition of VEGF. The anti-inflammatory nature of NRP-1 may aid its upregulation in HIV-1 infection; however, the HIV-accessory protein, tat, reduces NRP-1 expression. Upregulated NRP-1 in macrophages and dendritic cells also demonstrated HIV-1 resistance/reduced infectivity. Notably, HIV-1-infected pregnant women receiving antiretroviral therapy (ART) to prevent vertical transmission may experience immune reconstitution, impaired decidualization, and elevated markers of endothelial injury. Since endothelial dysfunction and altered immune responses are central to PE, HIV-1 infection, ART usage and SARS-CoV-2 infection, it is plausible that an exacerbation of both features may prevail in the synergy of these events. Additionally, this review identifies microRNAs (miRNAs) mediating NRP-1 expression. MiR-320 and miR-141 are overexpressed in PE, while miR-206 and miR-124-3p showed increased expression in PE and HIV-1 infection. Additionally, miR-214 is overexpressed in PE, HIV-1 and SARS-CoV-2 infection, implicating treatment strategies to reduce these miRNAs to upregulate and normalize NRP-1 expression. However, inconsistencies in the data of the role and regulation of miRNAs in PE, HIV-1 and SARS-CoV-2 infections require clarification. This review provides a platform for early diagnosis and potential therapeutic intervention of PE, HIV-1, and SARS-CoV-2 infections independently and as comorbidities.
Collapse
Affiliation(s)
- Nitalia Naidoo
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Olive Pearl Khaliq
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
92
|
Can Micro RNA-24 Affect the Cardiovascular Morbidity in Systemic Lupus Erythematosus by Targeting YKL-40? Rep Biochem Mol Biol 2022; 11:511-523. [PMID: 36718306 PMCID: PMC9883035 DOI: 10.52547/rbmb.11.3.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 08/17/2022] [Indexed: 01/17/2023]
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease with inflammatory nature. One of the leading causes of death in SLE patients is cardiovascular (CVS) morbidity. MiRNA-24 is highly expressed in vascular endothelial cells (VECs). This dysregulated expression pattern is associated with dysfunction or even damage of VECs and leads to the occurrence of cardiovascular diseases. YKL- 40 is an inflammatory glycoprotein involved in the pathogenesis of endothelial dysfunction and thereby atherosclerosis. In this work, we aimed at illustrating the possible role of miR-24 and its target YKL-40 in the pathogenesis of the CVS morbidity associated with SLE. Methods This work was conducted on 40 SLE patients and 40 healthy controls. Quantitative real-time PCR (qPCR) was done to estimate the expression level of miRNA-24 in serum. In addition, we measured the serum level of YKL-40 using ELISA. Results miR-24-fold change was found to be down-regulated, whereas serum YKL- 40 was up-regulated among SLE patients with observed significant and negative correlation between the two parameters. Conclusion Our study provided an insight about the role of miR-24 and its target serum YKL-40 protein in the development of SLE-related inflammation and atherosclerosis.
Collapse
|
93
|
Cellular microRNAs correlate with clinical parameters in multiple injury patients. J Trauma Acute Care Surg 2022; 93:427-438. [PMID: 35797620 PMCID: PMC9488942 DOI: 10.1097/ta.0000000000003708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The pathophysiology of the inflammatory response after major trauma is complex, and the magnitude correlates with severity of tissue injury and outcomes. Study of infection-mediated immune pathways has demonstrated that cellular microRNAs may modulate the inflammatory response. The authors hypothesize that the expression of microRNAs would correlate to complicated recoveries in polytrauma patients (PtPs). METHODS Polytrauma patients enrolled in the prospective observational Tissue and Data Acquisition Protocol with Injury Severity Score of >15 were selected for this study. Polytrauma patients were divided into complicated recoveries and uncomplicated recovery groups. Polytrauma patients' blood samples were obtained at the time of admission (T0). Established biomarkers of systemic inflammation, including cytokines and chemokines, were measured using multiplexed Luminex-based methods, and novel microRNAs were measured in plasma samples using multiplex RNA hybridization. RESULTS Polytrauma patients (n = 180) had high Injury Severity Score (26 [20-34]) and complicated recovery rate of 33%. MicroRNAs were lower in PtPs at T0 compared with healthy controls, and bivariate analysis demonstrated that variations of microRNAs correlated with age, race, comorbidities, venous thromboembolism, pulmonary complications, complicated recovery, and mortality. Positive correlations were noted between microRNAs and interleukin 10, vascular endothelial growth factor, Acute Physiology and Chronic Health Evaluation, and Sequential Organ Failure Assessment scores. Multivariable Lasso regression analysis of predictors of complicated recovery based on microRNAs, cytokines, and chemokines revealed that miR-21-3p and monocyte chemoattractant protein-1 were predictive of complicated recovery with an area under the curve of 0.78. CONCLUSION Systemic microRNAs were associated with poor outcomes in PtPs, and results are consistent with previously described trends in critically ill patients. These early biomarkers of inflammation might provide predictive utility in early complicated recovery diagnosis and prognosis. Because of their potential to regulate immune responses, microRNAs may provide therapeutic targets for immunomodulation. LEVEL OF EVIDENCE Diagnostic Tests/Criteria; Level II.
Collapse
|
94
|
Naghdalipour M, Moradi N, Fadaei R, Rezghi Barez S, Sayyahfar S, Mokhtare M, Fard TK, Fallah S, Esteghamati A. Alteration of miR-21, miR-433 and miR-590 tissue expression related to the TGF-β signaling pathway in ulcerative colitis patients. Arch Physiol Biochem 2022; 128:1170-1174. [PMID: 32412349 DOI: 10.1080/13813455.2020.1762656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory disease, and studies have suggested a role for TGF-β signalling pathway in the pathogenesis of UC. In the present study, we evaluated expression of TGF-β signalling genes and their regulatory microRNAs in patients with UC and control subjects. The expression of TGF-β1, SMAD2, SMAD3, miR-21, miR-101, miR-433, and miR-590 were evaluated using real-time PCR in biopsy samples of the patients and controls. Results showed increased expression of TGF-β1 and SMAD3 in the patients compared to controls. In addition, miR-21 and miR-433 were found to be higher in the patients compared to controls; however, miR-590 was found to be lower. Moreover, miR-433 was demonstrated to have positive correlation with SMAD3 and TGF-β while miR-21 was positively correlated with TGF-β1. MiR-590 was negatively correlated with SMAD2 and SMAD3. Results of the present study suggested a role for TGF-β signalling pathway related microRNAs in pathogenesis of UC.
Collapse
Affiliation(s)
- Mehri Naghdalipour
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of medical sciences, Tehran, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shekufe Rezghi Barez
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Sayyahfar
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of medical sciences, Tehran, Iran
| | - Marjan Mokhtare
- Colorectal Research Center, Iran university of medical sciences, Tehran, Iran
| | - Toktam Kazemi Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aboulreza Esteghamati
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of medical sciences, Tehran, Iran
| |
Collapse
|
95
|
miR-182-5p attenuates Schistosoma japonicum-induced hepatic fibrosis by targeting tristetraprolin. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1421-1430. [PMID: 36148947 PMCID: PMC9828319 DOI: 10.3724/abbs.2022130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Egg granuloma formation in the liver is the main pathological lesion caused by Schistosoma japonicum infection, which generally results in liver fibrosis and may lead to death in advanced patients. MicroRNAs (miRNAs) regulate the process of liver fibrosis, but the putative function of miRNAs in liver fibrosis induced by S. japonicum infection is largely unclear. Here, we detect a new miRNA, miR-182-5p, which shows significantly decreased expression in mouse livers after stimulation by soluble egg antigen (SEA) of S. japonicum or S. japonicum infection. Knockdown or overexpression of miR-182-5p in vitro causes the increased or decreased expression of tristetraprolin (TTP), an important immunosuppressive protein in the process of liver fibrosis. Furthermore, knockdown of miR-182-5p in vivo upregulates TTP expression and significantly alleviates S. japonicum-induced hepatic fibrosis. Our data demonstrate that downregulation of miR-182-5p increases the expression of TTP in mouse livers following schistosome infection, which leads to destabilization of inflammatory factor mRNAs and attenuates liver fibrosis. Our results uncover fine-tuning of liver inflammatory reactions related to liver fibrosis caused by S. japonicum infection and provide new insights into the regulation of schistosomiasis-induced hepatic fibrosis.
Collapse
|
96
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
97
|
MicroRNAs in the cancer cell-to-cell communication: An insight into biological vehicles. Biomed Pharmacother 2022; 153:113449. [PMID: 36076563 DOI: 10.1016/j.biopha.2022.113449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
|
98
|
Genedy HH, Delair T, Montembault A. Chitosan Based MicroRNA Nanocarriers. Pharmaceuticals (Basel) 2022; 15:ph15091036. [PMID: 36145257 PMCID: PMC9500875 DOI: 10.3390/ph15091036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vectorization of microRNAs has shown to be a smart approach for their potential delivery to treat many diseases (i.e., cancer, osteopathy, vascular, and infectious diseases). However, there are barriers to genetic in vivo delivery regarding stability, targeting, specificity, and internalization. Polymeric nanoparticles can be very promising candidates to overcome these challenges. One of the most suitable polymers for this purpose is chitosan. Chitosan (CS), a biodegradable biocompatible natural polysaccharide, has always been of interest for drug and gene delivery. Being cationic, chitosan can easily form particles with anionic polymers to encapsulate microRNA or even complex readily forming polyplexes. However, fine tuning of chitosan characteristics is necessary for a successful formulation. In this review, we cover all chitosan miRNA formulations investigated in the last 10 years, to the best of our knowledge, so that we can distinguish their differences in terms of materials, formulation processes, and intended applications. The factors that make some optimized systems superior to their predecessors are also discussed to reach the highest potential of chitosan microRNA nanocarriers.
Collapse
|
99
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
100
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|