51
|
Aguilar EC, Fernandes-Braga W, Leocádio PCL, Campos GP, Lemos VS, de Oliveira RP, Caetano de Faria AM, Dos Santos Aggum Capettini L, Alvarez-Leite JI. Dietary gluten worsens hepatic steatosis by increasing inflammation and oxidative stress in ApoE-/- mice fed a high-fat diet. Food Funct 2023; 14:3332-3347. [PMID: 36940107 DOI: 10.1039/d3fo00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder in the world. We have seen that gluten intake exacerbated obesity and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. In this study, we investigated the effect of gluten consumption on inflammation and oxidative stress in the liver of mice with NAFLD. Male ApoE-/- mice were fed a gluten-free (GF-HFD) or gluten-containing (G-HFD) high-fat diet for 10 weeks. Blood, liver, and spleen were collected to perform the analyses. The animals of the gluten group had increased hepatic steatosis, followed by increased serum AST and ALT. Gluten intake increased hepatic infiltration of neutrophils, macrophages, and eosinophils, as well as the levels of chemotaxis-related factors CCL2, Cxcl2, and Cxcr3. The production of the TNF, IL-1β, IFNγ, and IL-4 cytokines in the liver was also increased by gluten intake. Furthermore, gluten exacerbated the hepatic lipid peroxidation and nitrotyrosine deposition, which were associated with increased production of ROS and nitric oxide. These effects were related to increased expression of NADPH oxidase and iNOS, as well as decreased activity of superoxide dismutase and catalase enzymes. There was an increased hepatic expression of the NF-κB and AP1 transcription factors, corroborating the worsening effect of gluten on inflammation and oxidative stress. Finally, we found an increased frequency of CD4+FOXP3+ lymphocytes in the spleen and increased gene expression of Foxp3 in the livers of the G-HFD group. In conclusion, dietary gluten aggravates NAFLD, exacerbating hepatic inflammation and oxidative stress in obese ApoE-deficient mice.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil. .,Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, USA
| | - Paola Caroline Lacerda Leocádio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | - Ana Maria Caetano de Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | | | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| |
Collapse
|
52
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. What Do NAFLD, Liver Fibrosis, and Inflammatory Bowel Disease Have in Common? Review of the Current Literature. Metabolites 2023; 13:metabo13030378. [PMID: 36984818 PMCID: PMC10051776 DOI: 10.3390/metabo13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Liver disease is one of the most common extraintestinal manifestations of inflammatory bowel disease (IBD). Often the course of liver disease is associated with an exacerbation of the underlying disease (Crohn’s Disease/Ulcerative Colitis). Nonalcoholic steatohepatitis encompasses a wide spectrum of liver damage. The most common form is nonalcoholic fatty liver disease (NAFLD) (75–80%), and the less common but more dangerous form is nonalcoholic steatohepatitis (NASH). NAFLD is now the most common cause of chronic liver disease in developed countries and the leading indication for liver transplantation in the United States. Genetic, demographic, clinical, and environmental factors can play a role in the pathogenesis of NAFLD. The increasing prevalence of NAFLD is associated with a widespread obesity epidemic, metabolic complications, including hypertension, type 2 diabetes, and dyslipidaemia. Some of the most common manifestations of IBD are liver, biliary tract, and gallbladder diseases. The liver fibrosis process has a complex pathophysiology and is often dependent on exogenous factors such as the treatment used and endogenous factors such as the gut microbiome. However, the factors that link IBD and liver fibrosis are not yet clear. The main purpose of the review is to try to find links between IBD and selected liver diseases and to identify knowledge gaps that will inform further research.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-959 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
53
|
Yang L, Hao Y, Boeckmans J, Rodrigues RM, He Y. Immune cells and their derived microRNA-enriched extracellular vesicles in nonalcoholic fatty liver diseases: Novel therapeutic targets. Pharmacol Ther 2023; 243:108353. [PMID: 36738973 DOI: 10.1016/j.pharmthera.2023.108353] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Despite extensive research and multiple clinical trials, there are still no FDA-approved therapies to treat the most severe forms of NAFLD. This is largely due to its complicated etiology and pathogenesis, which involves visceral obesity, insulin resistance, gut dysbiosis, etc. Although inflammation is generally believed to be one of the critical factors that drive the progression of simple steatosis to nonalcoholic steatohepatitis (NASH), the exact type of inflammation and how it contributes to NASH pathogenesis remain largely unknown. Liver inflammation is accompanied by the elevation of inflammatory mediators, including cytokines and chemokines and consequently intrahepatic infiltration of multiple types of immune cells. Recent studies revealed that extracellular vesicles (EVs) derived from inflammatory cells and hepatocytes play an important role in controlling liver inflammation during NASH. In this review, we highlight the roles of innate and adaptive immune cells and their microRNA-enriched EVs during NAFLD development and discuss potential drugs that target inflammatory pathways for the treatment of NAFLD.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Hao
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
54
|
van Son KC, Verschuren L, Hanemaaijer R, Reeves H, Takkenberg RB, Drenth JPH, Tushuizen ME, Holleboom AG. Non-Parenchymal Cells and the Extracellular Matrix in Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease. Cancers (Basel) 2023; 15:1308. [PMID: 36831649 PMCID: PMC9954729 DOI: 10.3390/cancers15041308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) in the setting of non-alcoholic fatty liver disease (NAFLD)-related cirrhosis and even in the pre-cirrhotic state is increasing in incidence. NAFLD-related HCC has a poor clinical outcome as it is often advanced at diagnosis due to late diagnosis and systemic treatment response is poor due to reduced immune surveillance. Much of the focus of molecular research has been on the pathological changes in hepatocytes; however, immune cells, hepatic stellate cells, liver sinusoidal endothelial cells and the extracellular matrix may play important roles in the pathogenesis of NAFLD-related HCC as well. Here, we review the role of non-parenchymal cells in the liver in the pathogenesis of HCC in the context of NAFLD-NASH, with a particular focus on the innate and the adaptive immune system, fibrogenesis and angiogenesis. We review the key roles of macrophages, hepatic stellate cells (HSCs), T cells, natural killer (NK) cells, NKT cells and liver sinusoidal endothelial cells (LSECs) and the role of the extracellular matrix in hepatocarcinogenesis within the steatotic milieu.
Collapse
Affiliation(s)
- Koen C. van Son
- Department of Vascular and Internal Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research, 2333 BE Leiden, The Netherlands
| | - Roeland Hanemaaijer
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research, 2333 BE Leiden, The Netherlands
| | - Helen Reeves
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne NE2 4HH, UK
| | - R. Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Maarten E. Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular and Internal Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
55
|
Oates JR, Sawada K, Giles DA, Alarcon PC, Damen MS, Szabo S, Stankiewicz TE, Moreno-Fernandez ME, Divanovic S. Thermoneutral housing shapes hepatic inflammation and damage in mouse models of non-alcoholic fatty liver disease. Front Immunol 2023; 14:1095132. [PMID: 36875069 PMCID: PMC9982161 DOI: 10.3389/fimmu.2023.1095132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Inflammation is a common unifying factor in experimental models of non-alcoholic fatty liver disease (NAFLD) progression. Recent evidence suggests that housing temperature-driven alterations in hepatic inflammation correlate with exacerbated hepatic steatosis, development of hepatic fibrosis, and hepatocellular damage in a model of high fat diet-driven NAFLD. However, the congruency of these findings across other, frequently employed, experimental mouse models of NAFLD has not been studied. Methods Here, we examine the impact of housing temperature on steatosis, hepatocellular damage, hepatic inflammation, and fibrosis in NASH diet, methionine and choline deficient diet, and western diet + carbon tetrachloride experimental models of NAFLD in C57BL/6 mice. Results We show that differences relevant to NAFLD pathology uncovered by thermoneutral housing include: (i) augmented NASH diet-driven hepatic immune cell accrual, exacerbated serum alanine transaminase levels and increased liver tissue damage as determined by NAFLD activity score; (ii) augmented methionine choline deficient diet-driven hepatic immune cell accrual and increased liver tissue damage as indicated by amplified hepatocellular ballooning, lobular inflammation, fibrosis and overall NAFLD activity score; and (iii) dampened western diet + carbon tetrachloride driven hepatic immune cell accrual and serum alanine aminotransferase levels but similar NAFLD activity score. Discussion Collectively, our findings demonstrate that thermoneutral housing has broad but divergent effects on hepatic immune cell inflammation and hepatocellular damage across existing experimental NAFLD models in mice. These insights may serve as a foundation for future mechanistic interrogations focused on immune cell function in shaping NAFLD progression.
Collapse
Affiliation(s)
- Jarren R. Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Daniel A. Giles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pablo C. Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michelle S.M.A. Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sara Szabo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Traci E. Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
56
|
Chen Q, Lou Y. G protein-coupled receptor 39 alleviates mitochondrial dysfunction and hepatocyte lipid accumulation via SIRT1/Nrf2 signaling. J Bioenerg Biomembr 2023; 55:33-42. [PMID: 36525212 DOI: 10.1007/s10863-022-09953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Data in the GEO database (GSE63067) showed that G protein-coupled receptor 39 (GPR39) was down-regulated in tissues from patients with non-alcoholic fatty liver disease (NAFLD). It was intended to explore the mechanism of GPR39 in NAFLD. METHODS HepG2 cells were treated with a mixture of oleic acid and palmitic acid (OA/PA) to mimic NAFLD cell models. The level of GPR39 and the functions of GPR39 on cellular oxidative stress, lipid accumulation, the SIRT1/Nrf2 signaling and mitochondrial dysfunction were assessed. To verify the mediation of the SIRT1 signaling pathway in GPR39 regulation, cells were subjected to SIRT1 inhibitor EX-527 treatment. Afterwards, the abovementioned aspects of cells were all determined. RESULTS GPR39 presented a downward trend in response to OA/PA. GPR39 overexpression could suppress oxidative stress, lipid accumulation and activate the SIRT1/Nrf2 signaling. GPR39 overexpression likewise alleviated mitochondrial dysfunction, whereas EX-527 treatment disturbed the effects of GPR39 overexpression on these aspects. CONCLUSION The present study found that GPR39 reduced oxidative stress and maintained mitochondrial homeostasis in a cellular model of NAFLD, a process mediated by SIRT1/Nrf2 signaling.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Gastroenterology, Sanmen County People's Hospital, 15 Taihe Road, Hairun Street, 317100, Taizhou, Zhejiang, China.
| | - Yifeng Lou
- Department of Infection, Sanmen County People's Hospital, 317100, Taizhou, Zhejiang, China
| |
Collapse
|
57
|
Liu J, Ding M, Bai J, Luo R, Liu R, Qu J, Li X. Decoding the role of immune T cells: A new territory for improvement of metabolic-associated fatty liver disease. IMETA 2023; 2:e76. [PMID: 38868343 PMCID: PMC10989916 DOI: 10.1002/imt2.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/14/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new emerging concept and is associated with metabolic dysfunction, generally replacing the name of nonalcoholic fatty liver disease (NAFLD) due to heterogeneous liver condition and inaccuracies in definition. The prevalence of MAFLD is rising by year due to dietary changes, metabolic disorders, and no approved therapy, affecting a quarter of the global population and representing a major economic problem that burdens healthcare systems. Currently, in addition to the common causative factors like insulin resistance, oxidative stress, and lipotoxicity, the role of immune cells, especially T cells, played in MAFLD is increasingly being emphasized by global scholars. Based on the diverse classification and pathophysiological effects of immune T cells, we comprehensively analyzed their bidirectional regulatory effects on the hepatic inflammatory microenvironment and MAFLD progression. This interaction between MAFLD and T cells was also associated with hepatic-intestinal immune crosstalk and gut microbiota homeostasis. Moreover, we pointed out several T-cell-based therapeutic approaches including but not limited to adoptive transfer of T cells, fecal microbiota transplantation, and drug therapy, especially for natural products and Chinese herbal prescriptions. Overall, this study contributes to a better understanding of the important role of T cells played in MAFLD progression and corresponding therapeutic options and provides a potential reference for further drug development.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Mingning Ding
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Jinzhao Bai
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Ranyi Luo
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Runping Liu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jiaorong Qu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
58
|
Overview of Cellular and Soluble Mediators in Systemic Inflammation Associated with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032313. [PMID: 36768637 PMCID: PMC9916753 DOI: 10.3390/ijms24032313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent chronic liver disease in Western countries, affecting approximately 25% of the adult population. This condition encompasses a spectrum of liver diseases characterized by abnormal accumulation of fat in liver tissue (non-alcoholic fatty liver, NAFL) that can progress to non-alcoholic steatohepatitis (NASH), characterized by the presence of liver inflammation and damage. The latter form often coexists with liver fibrosis which, in turn, may progress to a state of cirrhosis and, potentially, hepatocarcinoma, both irreversible processes that often lead to the patient's death and/or the need for liver transplantation. Along with the high associated economic burden, the high mortality rate among NAFLD patients raises interest, not only in the search for novel therapeutic approaches, but also in early diagnosis and prevention to reduce the incidence of NAFLD-related complications. In this line, an exhaustive characterization of the immune status of patients with NAFLD is mandatory. Herein, we attempted to gather and compare the current and relevant scientific evidence on this matter, mainly on human reports. We addressed the current knowledge related to circulating cellular and soluble mediators, particularly platelets, different leukocyte subsets and relevant inflammatory soluble mediators.
Collapse
|
59
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
60
|
IL-1β neutralization prevents diastolic dysfunction development, but lacks hepatoprotective effect in an aged mouse model of NASH. Sci Rep 2023; 13:356. [PMID: 36611037 PMCID: PMC9825403 DOI: 10.1038/s41598-022-26896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Interleukin-1β (IL-1β) is a key mediator of non-alcoholic steatohepatitis (NASH), a chronic liver disease, and of systemic inflammation-driven aging. IL-1β contributes to cardio-metabolic decline, and may promote hepatic oncogenic transformation. Therefore, IL-1β is a potential therapeutic target in these pathologies. We aimed to investigate the hepatic and cardiac effects of an IL-1β targeting monoclonal antibody in an aged mouse model of NASH. 24 months old male C57Bl/6J mice were fed with control or choline deficient (CDAA) diet and were treated with isotype control or anti-IL-1β Mab for 8 weeks. Cardiac functions were assessed by conventional-and 2D speckle tracking echocardiography. Liver samples were analyzed by immunohistochemistry and qRT-PCR. Echocardiography revealed improved cardiac diastolic function in anti-IL-1β treated mice with NASH. Marked hepatic fibrosis developed in CDAA-fed group, but IL-1β inhibition affected fibrosis only at transcriptomic level. Hepatic inflammation was not affected by the IL-1β inhibitor. PCNA staining revealed intensive hepatocyte proliferation in CDAA-fed animals, which was not influenced by neutralization of IL-1β. IL-1β inhibition increased hepatic expression of Pd-1 and Ctla4, while Pd-l1 expression increased in NASH. In conclusion, IL-1β inhibition improved cardiac diastolic function, but did not ameliorate features of NASH; moreover, even promoted hepatic immune checkpoint expression, with concomitant NASH-related hepatocellular proliferation.
Collapse
|
61
|
Metabolic Associated Fatty Liver Disease as a Risk Factor for the Development of Central Nervous System Disorders. LIVERS 2023. [DOI: 10.3390/livers3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MAFLD/NAFLD is the most ordinary liver disease categorized by hepatic steatosis with the increase of surplus fat in the liver and metabolic liver dysfunction, which is associated with bigger mortality and a high medical burden. An association between MAFLD/NAFLD and central nervous system disorders including psychological disorders has been demonstrated. Additionally, MAFLD/NAFLD has been correlated with various types of neurodegenerative disorders such as amyotrophic lateral sclerosis or Parkinson’s disease. Contrasted to healthy controls, patients with MAFLD/NAFLD have a greater prevalence risk of extrahepatic complications within multiple organs. Dietary interventions have emerged as effective strategies for MAFLD/NAFLD. The PI3K/AKT/mTOR signaling pathway involved in the regulation of Th17/Treg balance might promote the pathogenesis of several diseases including MAFLD/NAFLD. As extrahepatic complications may happen across various organs including CNS, cooperative care with individual experts is also necessary for managing patients with MAFLD/NAFLD.
Collapse
|
62
|
Identification of Cuproptosis-Related Genes in Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9245667. [PMID: 36865349 PMCID: PMC9974253 DOI: 10.1155/2023/9245667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent hepatic pathology worldwide. However, the precise molecular mechanisms for NAFLD are still not sufficiently explained. Recently, a new mode of cell death (cuproptosis) is found. However, the relationship between NAFLD and cuproptosis remains unclear. We analyzed three public datasets (GSE89632, GSE130970, and GSE135251) to identify cuproptosis-related genes stably expressed in NAFLD. Then, we performed a series of bioinformatics analyses to explore the relationship between NAFLD and cuproptosis-related genes. Finally, 6 high-fat diet- (HFD-) induced NAFLD C57BL/6J mouse models were established to carry out transcriptome analysis. The results of gene set variation analysis (GSVA) revealed that the cuproptosis pathway was abnormally activated to a certain degree (p = 0.035 in GSE89632, p = 0.016 in GSE130970, p = 0.22 in GSE135251), and the principal component analysis (PCA) of the cuproptosis-related genes showed that the NAFLD group separated from the control group, with the first two principal components accounting for 58.63%-74.88% of the variation. Among three datasets, two cuproptosis-related genes (DLD and PDHB, p < 0.01 or 0.001) were stably upregulated in NAFLD. Additionally, both DLD (AUC = 0.786-0.856) and PDHB (AUC = 0.771-0.836) had favorable diagnostic properties, and the multivariate logistics regression model further improved the diagnostic properties (AUC = 0.839-0.889). NADH, flavin adenine dinucleotide, and glycine targeted DLD, and pyruvic acid and NADH targeted PDHB in the DrugBank database. The DLD and PDHB were also associated with clinical pathology, especially with steatosis (DLD, p = 0.0013-0.025; PDHB, p = 0.002-0.0026) and NAFLD activity score (DLD, p = 0.004-0.02; PDHB, p = 0.003-0.031). What is more, DLD and PDHB were correlated with stromal score (DLD, R = 0.38, p < 0.001; PDHB, R = 0.31, p < 0.001) and immune score (DLD, R = 0.26, p < 0.001; PDHB, R = 0.27, p < 0.001) in NAFLD. Furthermore, Dld and Pdhb were also significantly upregulated in the NAFLD mouse model. In conclusion, cuproptosis pathways, especially DLD and PDHB, could be potential candidate genes for NAFLD diagnostic and therapeutic options.
Collapse
|
63
|
Zheng J, Yao Z, Xue L, Wang D, Tan Z. The role of immune cells in modulating chronic inflammation and osteonecrosis. Front Immunol 2022; 13:1064245. [PMID: 36582244 PMCID: PMC9792770 DOI: 10.3389/fimmu.2022.1064245] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis occurs when, under continuous stimulation by adverse factors such as glucocorticoids or alcohol, the death of local bone and marrow cells leads to abnormal osteoimmune function. This creates a chronic inflammatory microenvironment, which interferes with bone regeneration and repair. In a variety of bone tissue diseases, innate immune cells and adaptive immune cells interact with bone cells, and their effects on bone metabolic homeostasis have attracted more and more attention, thus developing into a new discipline - osteoimmunology. Immune cells are the most important regulator of inflammation, and osteoimmune disorder may be an important cause of osteonecrosis. Elucidating the chronic inflammatory microenvironment regulated by abnormal osteoimmune may help develop potential treatments for osteonecrosis. This review summarizes the inflammatory regulation of bone immunity in osteonecrosis, explains the pathophysiological mechanism of osteonecrosis from the perspective of osteoimmunology, and provides new ideas for the treatment of osteonecrosis.
Collapse
Affiliation(s)
- Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhi Yao
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| |
Collapse
|
64
|
Zheng S, Yang W, Yao D, Tang S, Hou J, Chang X. A comparative study on roles of natural killer T cells in two diet-induced non-alcoholic steatohepatitis-related fibrosis in mice. Ann Med 2022; 54:2233-2245. [PMID: 35950602 PMCID: PMC9377241 DOI: 10.1080/07853890.2022.2108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Immune responses are important in the progression of non-alcoholic fatty liver disease (NAFLD). Natural killer T (NKT) cells are main components of the innate immune system that modulate immunity. However, the role of NKT cells in NAFLD remains controversial. OBJECTIVE We aimed to investigate the role of NKT cells in non-alcoholic steatohepatitis (NASH)-related fibrosis in fast food diet (FFD)- and methionine choline-deficient (MCD) diet-induced mouse models. METHODS Hepatic NKT cells were analysed in wild-type (WT) and CD1d-/- mice fed FFD or MCD diets. Hepatic pathology, cytokine profiles and liver fibrosis were evaluated. Furthermore, the effect of chronic administration of α-galactosylceramide (α-GalCer) on liver fibrosis was investigated in both FFD- and MCD-treated mice. RESULTS FFD induced a significant depletion of hepatic NKT cells, thus leading to mild to moderate NASH and early-stage fibrosis, while mice fed MCD diets developed severe liver inflammation and progressive fibrosis without a significant change in hepatic NKT cell abundance. FFD induced a similar liver fibrogenic response in CD1d-/- and WT mice, while MCD induced a higher hepatic mRNA expression of Col1α1 and TIMP1 as well as relative fibrosis density in CD1d-/- mice than WT mice (31.8 vs. 16.3, p = .039; 40.0 vs. 22.6, p = .019; 2.24 vs. 1.59, p = .036). Chronic administration of α-GalCer induced a higher hepatic mRNA expression of TIMP1 in MCD-treated mice than controls (36.7 vs. 14.9, p = .005). CONCLUSION NKT cells have protective roles in NAFLD as the disease progresses. During diet-induced steatosis, mild to moderate NASH and the early stage of fibrosis, hepatic NKT cells are relatively depleted, leading to a proinflammatory status. In severe NASH and the advanced stage of liver fibrosis, NKT cells play a role in inhibiting the NASH-related fibrogenic response. Chronic administration of α-GalCer induces NKT cell anergy and tolerance, which may play a role in promoting the liver fibrogenic response.
Collapse
Affiliation(s)
- Shumei Zheng
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Shanghai Tongji Hospital, Shanghai Tongji University, Shanghai, China
| | - Dongmei Yao
- Department of Gastroenterology and Hepatology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shanhong Tang
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, China
| | - Juanni Hou
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xing Chang
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
65
|
Geerling E, Hameed M, Weger-Lucarelli J, Pinto AK. Metabolic syndrome and aberrant immune responses to viral infection and vaccination: Insights from small animal models. Front Immunol 2022; 13:1015563. [PMID: 36532060 PMCID: PMC9747772 DOI: 10.3389/fimmu.2022.1015563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
This review outlines the propensity for metabolic syndrome (MetS) to induce elevated disease severity, higher mortality rates post-infection, and poor vaccination outcomes for viral pathogens. MetS is a cluster of conditions including high blood glucose, an increase in circulating low-density lipoproteins and triglycerides, abdominal obesity, and elevated blood pressure which often overlap in their occurrence. MetS diagnoses are on the rise, as reported cases have increased by greater than 35% since 1988, resulting in one-third of United States adults currently diagnosed as MetS patients. In the aftermath of the 2009 H1N1 pandemic, a link between MetS and disease severity was established. Since then, numerous studies have been conducted to illuminate the impact of MetS on enhancing virally induced morbidity and dysregulation of the host immune response. These correlative studies have emphasized the need for elucidating the mechanisms by which these alterations occur, and animal studies conducted as early as the 1940s have linked the conditions associated with MetS with enhanced viral disease severity and poor vaccine outcomes. In this review, we provide an overview of the importance of considering overall metabolic health in terms of cholesterolemia, glycemia, triglyceridemia, insulin and other metabolic molecules, along with blood pressure levels and obesity when studying the impact of metabolism-related malignancies on immune function. We highlight the novel insights that small animal models have provided for MetS-associated immune dysfunction following viral infection. Such animal models of aberrant metabolism have paved the way for our current understanding of MetS and its impact on viral disease severity, dysregulated immune responses to viral pathogens, poor vaccination outcomes, and contributions to the emergence of viral variants.
Collapse
Affiliation(s)
- Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Muddassar Hameed
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
66
|
Liang T, Li D, Zunong J, Li M, Amaerjiang N, Xiao H, Khattab NM, Vermund SH, Hu Y. Interplay of Lymphocytes with the Intestinal Microbiota in Children with Nonalcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14214641. [PMID: 36364902 PMCID: PMC9657134 DOI: 10.3390/nu14214641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Abnormally high lymphocyte counts are seen in persons with nonalcoholic fatty liver disease (NAFLD). Gut microbiota dysbiosis is a risk factor for NAFLD. We assessed the gut microbiota of 63 healthy children and 63 children with NAFLD using 16S rRNA gene and metagenomic sequencing to explore the relationships. Compared with healthy children (HC group), the Bacteroidetes, Verrucomicrobia, and Akkermansia were less abundant, while the Actinobacteria were more abundant in children with NAFLD (FLD group). To understand the effect of lymphocytes on the gut microbiota of children with NAFLD, we compared the microbiota of 41 children with NAFLD and high numbers of lymphocytes (FLD_HL group) and 22 children with NAFLD and low numbers of lymphocytes (FLD_LL group). The abundances of Bacteroidetes, Verrucobacterium, and Akkermansia increased and Actinobacteria decreased in the FLD_LL group compared to the FLD_HL group. Akkermansia was negatively correlated with lymphocyte count. NAFLD may disturb the gut microbiota in children through reducing the abundance of Akkermansia and increasing the abundance of proinflammatory bacteria, such as Escherichia-Shigella. Conclusions: High lymphocyte counts are associated with disturbances of gut microbiota and emergence of opportunistic pathogens in children with NAFLD.
Collapse
Affiliation(s)
- Tian Liang
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Dan Li
- Yale School of Public Health, Yale University, New Haven, CT 06510-3201, USA
| | - Jiawulan Zunong
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Menglong Li
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Nubiya Amaerjiang
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huidi Xiao
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Nourhan M. Khattab
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Sten H. Vermund
- Yale School of Public Health, Yale University, New Haven, CT 06510-3201, USA
| | - Yifei Hu
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: or ; Tel.: +86-10-83911747
| |
Collapse
|
67
|
Francque SMA. Editorial: differences in altered duodenal T-cell immunology in alcoholic liver damage versus NAFLD. Aliment Pharmacol Ther 2022; 56:1501-1502. [PMID: 36271476 DOI: 10.1111/apt.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sven M A Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Edegem, Belgium.,InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER)
| |
Collapse
|
68
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
69
|
Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. Molecules 2022; 27:molecules27217352. [PMID: 36364178 PMCID: PMC9657994 DOI: 10.3390/molecules27217352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders, the characteristics of which include chronic hyperglycemia owing to defects in insulin function, insulin secretion, or both. Inflammation plays a crucial role in DM pathogenesis and innate immunity in the development of microvascular complications of diabetes. In addition, hyperglycemia and DM mediate a proinflammatory microenvironment that can result in various microvascular complications, including diabetic nephropathy (DNP), diabetic neuropathy (DN), and diabetic retinopathy (DR). DNP is a major cause of end-stage renal disease. DNP can lead to albuminuria, decreased filtration, mesangium expansion, thickening of the basement membrane, and eventually renal failure. Furthermore, inflammatory cells can accumulate in the interstitium and glomeruli to deteriorate DNP. DN is another most prevalent microvascular complication of DM and the main cause of high mortality, disability, and a poor quality of life. DNs have a wide range of clinical manifestations because of the types of fiber dysfunctions and complex structures of the peripheral nervous system. DR is also a microvascular and multifactorial disease, as well as a major cause of visual impairment globally. Pathogenesis of DR is yet to be fully revealed, however, numerous studies have already confirmed the role of inflammation in the onset and advancement of DR. Despite evidence, and better knowledge regarding the pathogenesis of these microvascular complications of diabetes, there is still a deficiency of effective therapies. Bioactive compounds are mainly derived from plants, and these molecules have promising therapeutic potential. In this review, evidence and molecular mechanisms regarding the role of inflammation in various microvascular complications of diabetes including DNP, DN, and DR, have been summarized. The therapeutic potential of several bioactive compounds derived from plants in the treatment of these microvascular complications of diabetes has also been discussed.
Collapse
|
70
|
Hoogerland JA, Staels B, Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol Metab 2022; 33:690-709. [PMID: 35961913 DOI: 10.1016/j.tem.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) has increased significantly over the past two decades. NAFLD ranges from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) and predisposes to fibrosis and hepatocellular carcinoma (HCC). The importance of the immune system in hepatic physiology and in the progression of NAFLD is increasingly recognized. At homeostasis, the liver participates in immune defense against pathogens and in tolerance of gut-derived microbial compounds. Hepatic immune cells also respond to metabolic stimuli and have a role in NAFLD progression to NASH. In this review, we discuss how metabolic perturbations affect immune cell phenotype and function in NAFL and NASH, and then focus on the role of immune cells in liver homeostasis and in the development of NASH.
Collapse
Affiliation(s)
- Joanne A Hoogerland
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
71
|
Xia Y, Gao B, Zhang X. Targeting mitochondrial quality control of T cells: Regulating the immune response in HCC. Front Oncol 2022; 12:993437. [PMID: 36212470 PMCID: PMC9539266 DOI: 10.3389/fonc.2022.993437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Most of the primary hepatocellular carcinoma (HCC) develops from Viral Hepatitis including Hepatitis B virus, Hepatitis C Virus, and Nonalcoholic Steatohepatitis. Herein, T cells play crucial roles combined with chronic inflammation and chronic viral infection. However, T cells are gradually exhausted under chronic antigenic stimulation, which leads to T cell exhaustion in the tumor microenvironment, and the exhaustion is associated with mitochondrial dysfunction in T cells. Meanwhile, mitochondria play a crucial role in altering T cells’ metabolism modes to achieve desirable immunological responses, wherein mitochondria maintain quality control (MQC) and promote metabolism regulation in the microenvironment. Although immune checkpoint inhibitors have been widely used in clinical practice, there are some limitations in the therapeutic effect, thus combining immune checkpoint inhibitors with targeting mitochondrial biogenesis may enhance cellular metabolic adaptation and reverse the exhausted state. At present, several studies on mitochondrial quality control in HCC have been reported, however, there are gaps in the regulation of immune cell function by mitochondrial metabolism, particularly the modulating of T cell immune function. Hence, this review summarizes and discusses existing studies on the effects of MQC on T cell populations in liver diseases induced by HCC, it would be clued by mitochondrial quality control events.
Collapse
Affiliation(s)
- Yixue Xia
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| | - Xue Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| |
Collapse
|
72
|
Yu S, Wang J, Zheng H, Wang R, Johnson N, Li T, Li P, Lin J, Li Y, Yan J, Zhang Y, Zhu Z, Ding X. Pathogenesis from Inflammation to Cancer in NASH-Derived HCC. J Hepatocell Carcinoma 2022; 9:855-867. [PMID: 36051860 PMCID: PMC9426868 DOI: 10.2147/jhc.s377768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. As opposed to the majority of patients with HCC, approximately 20–30% of cases of non-alcoholic steatohepatitis (NASH)-derived HCC develop malignant tumours in the absence of liver cirrhosis. NASH is characterized by metabolic dysregulation, chronic inflammation and cell death in the liver, which provide a favorable setting for the transformation of inflammation into cancer. This review aims to describe the pathogenesis and the underlying mechanism of the transition from inflammation to cancer in NASH.
Collapse
Affiliation(s)
- Simiao Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ruilin Wang
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jin Yan
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Zhenyu Zhu
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Centre of Research for Traditional Chinese Medicine Digestive, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
73
|
Kong J, Yang F, Bai M, Zong Y, Li Z, Meng X, Zhao X, Wang J. Airway immune response in the mouse models of obesity-related asthma. Front Physiol 2022; 13:909209. [PMID: 36051916 PMCID: PMC9424553 DOI: 10.3389/fphys.2022.909209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence rates of obesity and its complications have increased dramatically worldwide. Obesity can lead to low-grade chronic systemic inflammation, which predisposes individuals to an increased risk of morbidity and mortality. Although obesity has received considerable interest in recent years, the essential role of obesity in asthma development has not been explored. Asthma is a common chronic inflammatory airway disease caused by various environmental allergens. Obesity is a critical risk factor for asthma exacerbation due to systemic inflammation, and obesity-related asthma is listed as an asthma phenotype. A suitable model can contribute to the understanding of the in-depth mechanisms of obese asthma. However, stable models for simulating clinical phenotypes and the impact of modeling on immune response vary across studies. Given that inflammation is one of the central mechanisms in asthma pathogenesis, this review will discuss immune responses in the airways of obese asthmatic mice on the basis of diverse modeling protocols.
Collapse
Affiliation(s)
- Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Minghua Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianghe Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| |
Collapse
|
74
|
Zhou Y, Zhang H, Yao Y, Zhang X, Guan Y, Zheng F. CD4 + T cell activation and inflammation in NASH-related fibrosis. Front Immunol 2022; 13:967410. [PMID: 36032141 PMCID: PMC9399803 DOI: 10.3389/fimmu.2022.967410] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common pathological feature of end stage liver failure, a severe life-threatening disease worldwide. Nonalcoholic fatty liver disease (NAFLD), especially its more severe form with steatohepatitis (NASH), results from obesity, type 2 diabetes and metabolic syndrome and becomes a leading cause of liver fibrosis. Genetic factor, lipid overload/toxicity, oxidative stress and inflammation have all been implicated in the development and progression of NASH. Both innate immune response and adaptive immunity contribute to NASH-associated inflammation. Innate immunity may cause inflammation and subsequently fibrosis via danger-associated molecular patterns. Increasing evidence indicates that T cell-mediated adaptive immunity also provokes inflammation and fibrosis in NASH via cytotoxicity, cytokines and other proinflammatory and profibrotic mediators. Recently, the single-cell transcriptome profiling has revealed that the populations of CD4+ T cells, CD8+ T cells, γδ T cells, and TEMs are expanded in the liver with NASH. The activation of T cells requires antigen presentation from professional antigen-presenting cells (APCs), including macrophages, dendritic cells, and B-cells. However, since hepatocytes express MHCII molecules and costimulators, they may also act as an atypical APC to promote T cell activation. Additionally, the phenotypic switch of hepatocytes to proinflammatory cells in NASH contributes to the development of inflammation. In this review, we focus on T cells and in particular CD4+ T cells and discuss the role of different subsets of CD4+ T cells including Th1, Th2, Th17, Th22, and Treg in NASH-related liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Department of Physiology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Haibo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yao Yao
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyan Zhang
- Wuhu Hospital & Health Science Center, East China Normal University, Shanghai, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
75
|
Correlation between T-Lymphocyte Subsets, Regulatory T Cells, and Hepatic Fibrosis in Patients with Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6250751. [PMID: 35958908 PMCID: PMC9357701 DOI: 10.1155/2022/6250751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 01/11/2023]
Abstract
Objective The aim of this study is to assess the relationship between T-lymphocyte subsets, regulatory T cells (Treg), and hepatic fibrosis in patients with a nonalcoholic fatty liver disease (NAFLD). Methods A retrospective analysis was conducted on 64 NAFLD patients (research group) and 73 healthy subjects (control group) in our hospital from January 2020 to December 2021. T-lymphocyte subsets (Th17) and Treg, liver function (alanine aminotransferase (ALT), aspartate aminotransferase (AST)), hepatic fibrosis indexes (type III procollagen (PCIII), type IV collagen (CIV), laminin (LN), hyaluronic acid (HA)), inflammatory factors (high-sensitivity C-reactive protein (hs-CRP), interleukin 6 (IL-6), interleukin-8 (IL-8)), and oxidative stress (OS) response ((superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA)) were tested. The relationship between Th17/Treg and the abovementioned indexes in NAFLD patients was analyzed. Results In comparison to the control group, Th17 and Th17/Treg were higher in the research group (P < 0.05). In addition, liver function, liver fibrosis markers, inflammatory factors, and MDA were elevated, while SOD and GSH-PX decreased (P < 0.05). Subsequently, NAFLD patients were divided into groups A (Th17/Treg <1.15, n = 33) and B (Th17/Treg ≥1.15, n = 31) based on their median Th17/Treg levels. It was seen that liver injury, hepatic fibrosis, inflammation, and OS in group A were more severe (P < 0.05). The Pearson correlation coefficient revealed that Th17/Treg was positively correlated with AST, ALT, PCIII, MDA, and inflammatory factors but negatively correlated with SOD and GSH-PX (P < 0.05).
Collapse
|
76
|
Liu Z, Li Y, Yu C. Identification of the Non-Alcoholic Fatty Liver Disease Molecular Subtypes Associated With Clinical and Immunological Features via Bioinformatics Methods. Front Immunol 2022; 13:857892. [PMID: 35958576 PMCID: PMC9358963 DOI: 10.3389/fimmu.2022.857892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome in the liver with varying severity. Heterogeneity in terms of molecules and immune cell infiltration drives NAFLD from one stage to the next. However, a precise molecular classification of NAFLD is still lacking, and the effects of complex clinical phenotypes on the efficacy of drugs are usually ignored. Methods We introduced multiple omics data to differentiate NAFLD subtypes via consensus clustering, and a weighted gene co-expression network analysis was used to identify eight co-expression modules. Further, eigengenes of eight modules were analyzed with regard to Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, the infiltration rates of 22 immune cell types were calculated with CIBERSORT and the ESTIMATE algorithm. Results In total, 111 NAFLD patients from three independent GEO datasets were divided into four molecular subtypes, and the corresponding clinical features and immune cell infiltration traits were determined. Based on high gene expression correlations, four molecular subtypes were further divided into eight co-expression modules. We also demonstrated a significant correlation between gene modules and clinical phenotypes. Moreover, we integrated phenotypic, immunologic, and genetic data to assess the potential for progression of different molecular subtypes. Furthermore, the efficacy of drugs against various NAFLD molecular subtypes was discussed to aid in individualized therapy. Conclusion Overall, this study could provide new insights into the underlying pathogenesis of and drug targets for NAFLD.
Collapse
Affiliation(s)
| | - Yufei Li
- *Correspondence: Yufei Li, ; Caihong Yu,
| | - Caihong Yu
- *Correspondence: Yufei Li, ; Caihong Yu,
| |
Collapse
|
77
|
Li B, Su R, Yan H, Liu J, Gao C, Li X, Wang C. Immunological risk factors for nonalcoholic fatty liver disease in patients with psoriatic arthritis: New predictive nomograms and natural killer cells. Front Immunol 2022; 13:907729. [PMID: 35935983 PMCID: PMC9355654 DOI: 10.3389/fimmu.2022.907729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/27/2022] [Indexed: 01/22/2023] Open
Abstract
Objective To search for the immunological risk factors of Psoriatic arthritis (PsA) combined with nonalcoholic fatty liver disease (NAFLD), development and assessment of predictive nomograms for NAFLD risk in patients with PsA, and to further explore the correlation between risk factors and dyslipidemia. Methds A total of 127 patients with PsA (46 with NAFLD and 81 without NAFLD) were included in this retrospective study. The clinical and serological parameters of the patients were collected. The percentage and the absolute number of lymphocytes and CD4+T cells were determined by Flow cytometry. Univariate and multivariate binary logistic regression analysis was used to screen independent risk factors of PsA complicated with NAFLD in the model population, and a nomogram prediction model was developed and assessed. Results (1) Univariate and multivariate logistic regression analysis of the modeling population showed that the percentage of peripheral blood T helper 1 cells (Th1%) (OR=1.12, P=0.001), body mass index (BMI) (OR=1.22, P=0.005) and triglycerides (TG) (OR=4.78, P=0.003) were independent risk factors for NAFLD in patients with PsA, which were incorporated and established a nomogram prediction model. The model has good discrimination and calibration, and also has certain clinical application value. (2) The number of peripheral blood NK cells in PsA patients was significantly positively correlated with serum triglyceride (TG) (r=0.489, P<0.001), cholesterol (CHOL) (r=0.314, P=0.003) and low-density lipoprotein (LDL) (r=0.362, P=0.001) levels. Conclusions Our study shows that the novel NAFLD nomogram could assess the risk of NAFLD in PsA patients with good efficiency. In addition, peripheral blood NK cell levels may be associated with dyslipidemia in patients with PsA.
Collapse
Affiliation(s)
- Baochen Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yan
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Juanjuan Liu
- Department of General Medicine, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
78
|
Velliou RI, Mitroulis I, Chatzigeorgiou A. Neutrophil extracellular traps contribute to the development of hepatocellular carcinoma in NASH by promoting Treg differentiation. Hepatobiliary Surg Nutr 2022; 11:415-418. [PMID: 35693419 PMCID: PMC9186212 DOI: 10.21037/hbsn-21-557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 07/30/2023]
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Mitroulis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| |
Collapse
|
79
|
Papic N, Samadan L, Vrsaljko N, Radmanic L, Jelicic K, Simicic P, Svoboda P, Lepej SZ, Vince A. Distinct Cytokine Profiles in Severe COVID-19 and Non-Alcoholic Fatty Liver Disease. Life (Basel) 2022; 12:life12060795. [PMID: 35743825 PMCID: PMC9225218 DOI: 10.3390/life12060795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is identified as a risk factor for developing severe COVID-19. While NAFLD is associated with chronic low-grade inflammation, mechanisms leading to immune system hyperactivation remain unclear. The aim of this prospective observational study is to analyze cytokine profiles in patients with severe COVID-19 and NAFLD. A total of 94 patients with severe COVID-19 were included. Upon admission, clinical and laboratory data were collected, a liver ultrasound was performed to determine the presence of steatosis, and subsequently, 51 were diagnosed with NAFLD according to the current guidelines. There were no differences in age, sex, comorbidities, and baseline disease severity between the groups. Serum cytokine concentrations were analyzed using a multiplex bead-based assay by flow cytometry. Upon admission, the NAFLD group had higher C-reactive protein, procalcitonin, alanine aminotransferase, lactate dehydrogenase, and fibrinogen. Interleukins-6, -8, and -10 and CXCL10 were significantly higher, while IFN-γ was lower in NAFLD patients. Patients with NAFLD who progressed to critical illness had higher concentrations of IL-6, -8, -10, and IFN-β, and IL-8 and IL-10 appear to be effective prognostic biomarkers associated with time to recovery. In conclusion, NAFLD is associated with distinct cytokine profiles in COVID-19, possibly associated with disease severity and adverse outcomes.
Collapse
Affiliation(s)
- Neven Papic
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.S.); (A.V.)
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (N.V.); (K.J.)
- Correspondence:
| | - Lara Samadan
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.S.); (A.V.)
| | - Nina Vrsaljko
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (N.V.); (K.J.)
| | - Leona Radmanic
- Department for Clinical Immunology and Molecular Diagnostics, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (L.R.); (P.S.); (S.Z.L.)
| | - Karlo Jelicic
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (N.V.); (K.J.)
| | - Petra Simicic
- Department for Clinical Immunology and Molecular Diagnostics, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (L.R.); (P.S.); (S.Z.L.)
| | - Petra Svoboda
- Research Department, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Snjezana Zidovec Lepej
- Department for Clinical Immunology and Molecular Diagnostics, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (L.R.); (P.S.); (S.Z.L.)
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Adriana Vince
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.S.); (A.V.)
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (N.V.); (K.J.)
| |
Collapse
|
80
|
Nedosugova LV, Markina YV, Bochkareva LA, Kuzina IA, Petunina NA, Yudina IY, Kirichenko TV. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines 2022; 10:biomedicines10051168. [PMID: 35625904 PMCID: PMC9138517 DOI: 10.3390/biomedicines10051168] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The main cause of death in patients with type 2 DM is cardiovascular complications resulting from the progression of atherosclerosis. The pathophysiology of the association between diabetes and its vascular complications is complex and multifactorial and closely related to the toxic effects of hyperglycemia that causes increased generation of reactive oxygen species and promotes the secretion of pro-inflammatory cytokines. Subsequent oxidative stress and inflammation are major factors of the progression of type 2 DM and its vascular complications. Data on the pathogenesis of the development of type 2 DM and associated cardiovascular diseases, in particular atherosclerosis, open up broad prospects for the further development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Lyudmila V. Nedosugova
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Leyla A. Bochkareva
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina A. Kuzina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Nina A. Petunina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina Y. Yudina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Correspondence:
| |
Collapse
|
81
|
A Molecular Insight into the Role of Antioxidants in Nonalcoholic Fatty Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9233650. [PMID: 35602098 PMCID: PMC9117022 DOI: 10.1155/2022/9233650] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) defines fat accumulation in the liver, and it is commonly associated with metabolic syndromes like diabetes and obesity. Progressive NAFLD leads to nonalcoholic steatohepatitis (NASH) and ultimately causes cirrhosis and hepatocellular carcinoma, and NASH is currently a frequent cause of liver transplantation. Oxidative stress is often contributed to the progression of NAFLD, and hence, antioxidants such as silymarin, silybin, or silibinin, pentoxifylline, resveratrol, and vitamins A, C, and E are used in clinical trials against NAFLD. Silymarin induces the peroxisome proliferator-activated receptor α (PPARα), a fatty acid sensor, which promotes the transcription of genes that are required for the enzymes involved in lipid oxidation in hepatocytes. Silybin inhibits sterol regulatory element-binding protein 1 and carbohydrate response element-binding protein to downregulate the expression of genes responsible for de novo lipogenesis by activating AMP-activated protein kinase phosphorylation. Pentoxifylline inhibits TNF-α expression and endoplasmic reticulum stress-mediated inflammatory nuclear factor kappa B (NF-κB) activation. Thus, it prevents NAFLD to NASH progression. Resveratrol inhibits methylation at Nrf-2 promoters and NF-κB activity via SIRT1 activation in NAFLD conditions. However, clinically, resveratrol has not shown promising beneficial effects. Vitamin C is beneficial in NAFLD patients. Vitamin E is not effectively regressing hepatic fibrosis. Hence, its combination with antifibrotic agents is used as an adjuvant to produce a synergistic antifibrotic effect. However, to date, none of these antioxidants have been used as a definite therapeutic agent in NAFLD patients. Further, these antioxidants should be studied in NAFLD patients with larger populations and multiple endpoints in the future.
Collapse
|
82
|
Zhao H, Guo P, Zuo Y, Wang Y, Zhao H, Lan T, Xue M, Zhang H, Liang H. Folic acid intervention changes liver Foxp3 methylation and ameliorates the damage caused by Th17/Treg imbalance after long-term alcohol exposure. Food Funct 2022; 13:5262-5274. [PMID: 35438698 DOI: 10.1039/d1fo04267j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Folic acid, as a key source of methyl donor in DNA methylation, has been proved to play a beneficial role in inflammation modulation, which is usually impaired in alcoholic liver disease (ALD). However, the role of folic acid in alcoholic liver inflammation and injury remain elusive. In this study, we sought to uncover the potential protective mechanism by which folic acid ameliorates alcoholic liver injury. 100 male C57BL/6J mice were randomly divided into 5 groups: normal saline group, folic acid control group (5 mg per kg BW), ethanol model group (56% v/v, 10 mL per kg BW), folic acid + ethanol group, and 5-Aza + ethanol group (0.1 mL per 20 g BW). Liquor (10 mL per kg BW) was orally administered 1 h after the folic acid treatment for 10 consecutive weeks. The results showed that folic acid-inhibited ethanol-induced serum TG, TC, and LDL elevation attenuated hepatic fat accumulation and maintained ALT at a normal level. 10 weeks of ethanol administration simultaneously upregulated the hepatic proportion of Th17 and Treg cells to different extents and broke the homeostasis of liver immunization. Folic acid limited ethanol-induced inflammatory injury by increasing the frequency of hepatic Treg cells. Importantly, this effect may be caused by decreased DNMT3a, which in turn downregulates the methylated levels of CPG2 and CPG3 in the Foxp3 promoter region, changing the abundance of Foxp3 expression and improving the Th17/Treg imbalance. In summary, our findings demonstrated that folic acid supplementation may relieve ethanol-induced Th17/Treg disbalance through altering Foxp3 promoter methylation patterns, suggesting that folic acid may be a feasible preventive strategy for ALD.
Collapse
Affiliation(s)
- Huichao Zhao
- Departmnt of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Peiyu Guo
- Departmnt of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Yuwei Zuo
- Departmnt of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Yanhui Wang
- Departmnt of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Hui Zhao
- Departmnt of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Tongtong Lan
- Departmnt of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Meilan Xue
- Basic Medical College, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Huaqi Zhang
- Departmnt of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Hui Liang
- Departmnt of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| |
Collapse
|
83
|
Zi C, He L, Yao H, Ren Y, He T, Gao Y. Changes of Th17 cells, regulatory T cells, Treg/Th17, IL-17 and IL-10 in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Endocrine 2022; 76:263-272. [PMID: 35397088 DOI: 10.1007/s12020-022-03043-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to investigate the changes of Helper T cells 17 (Th17 cells), Regulatory T cells (Treg cells), Treg/Th17, Interleukin-17 (IL-17) and Interleukin-10 (IL-10) in patients with type 2 diabetes mellitus (T2DM). METHODS Four electronic resource databases were searched from their inception to 1 August 2021. Case-control studies about changes of Th17 cells, Treg cells, Treg/Th17, IL-17 and IL-10 in patients with T2DM were retrieved. We performed this meta-analysis via RevMan V.5.3 and Stata14. RESULTS 20 studies with 1242 individuals were included in the meta-analysis. Compared with the controls, the patients with T2DM had significantly increased levels of percentage of Th17 cells (SMD, 1.74; 95% CI, 0.47-3.01; p < 0.001), IL-17 (SMD, 2.17; 95% CI, 0.06-4.28; p < 0.001), IL-10 (SMD, 1.20; 95% CI, 0.81-1.59; p = 0.003), but decreased levels of percentage of Treg cells (SMD, -1.17; 95% CI, -2.22 to -0.13; p < 0.001) and Treg/Th17 ratio (SMD, -4.43; 95% CI, -7.07 to -1.78; p < 0.001). Subgroup analysis showed that percentage of CD4+CD25+FOXP3+ Tregs (SMD, -2.36; 95% CI, -3.19 to -1.52; p = 0.003) in patients was notably lower than controls. While not significant changes were found in the percentage of CD4+CD25+Tregs (SMD, 0.03; 95% CI, -0.34-0.40; p = 0.63) between patients and controls. For plasma or serum IL-10, a higher plasma IL-10 level (SMD,1.37; 95% CI, 0.92-1.82; p = 0.01) was observed in T2DM. While serum IL-10 (SMD, 0.73; 95% CI, 0.35-1.12; p = 0.79) had no obvious difference between patients and controls. For ELISA or flow cytometry, IL-10 (SMD, 1.2; 95% CI, 0.71-1.70; p = 0.001) was higher in T2DM patients by using detection method of ELISA. Yet IL-10 using flow cytometry and subgroup analysis of IL-17 had no significant differences. CONCLUSIONS Adaptive immune system indeed plays an essential role in the process of T2DM. Imbalance between Th17 and Treg triggers pro-inflammatory environment in patients with T2DM.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China.
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China.
| | - Huan Yao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Yuan Ren
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Tingting He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, PR China.
| |
Collapse
|
84
|
Griffett K, Hayes ME, Boeckman MP, Burris TP. The role of REV-ERB in NASH. Acta Pharmacol Sin 2022; 43:1133-1140. [PMID: 35217816 PMCID: PMC9061770 DOI: 10.1038/s41401-022-00883-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
REV-ERBs are atypical nuclear receptors as they function as ligand-regulated transcriptional repressors. The natural ligand for the REV-ERBs (REV-ERBα and REV-ERBβ) is heme, and heme-binding results in recruitment of transcriptional corepressor proteins such as N-CoR that mediates repression of REV-ERB target genes. These two receptors regulate a large range of physiological processes including several important in the pathophysiology of non-alcoholic steatohepatitis (NASH). These include carbohydrate and lipid metabolism as well as inflammatory pathways. A number of synthetic REV-ERB agonists have been developed as chemical tools and they show efficacy in animal models of NASH. Here, we will review the functions of REV-ERB with regard to their relevance to NASH as well as the potential to target REV-ERB for treatment of this disease.
Collapse
Affiliation(s)
- Kristine Griffett
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Matthew E Hayes
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Michael P Boeckman
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA.
| |
Collapse
|
85
|
Plochg BFJ, Englert H, Rangaswamy C, Konrath S, Malle M, Lampalzer S, Beisel C, Wollin S, Frye M, Aberle J, Kluwe J, Renné T, Mailer RK. Liver damage promotes pro-inflammatory T-cell responses against apolipoprotein B-100. J Intern Med 2022; 291:648-664. [PMID: 34914849 DOI: 10.1111/joim.13434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Liver-derived apolipoprotein B-100 (ApoB100) is an autoantigen that is recognized by atherogenic CD4+ T cells in cardiovascular disease (CVD). CVD is a major mortality risk for patients with chronic inflammatory liver diseases. However, the impact of liver damage for ApoB100-specific T-cell responses is unknown. METHODS We identified ApoB100-specific T cells in blood from healthy controls, nonalcoholic fatty liver disease (NAFLD) patients, and CVD patients by activation-induced marker expression and analyzed their differentiation pattern in correlation to the lipid profile and liver damage parameters in a cross-sectional study. To assess the induction of extrahepatic ApoB100-specific T cells upon transient liver damage in vivo, we performed hydrodynamic tail vein injections with diphtheria toxin A (DTA)-encoding plasmid in human ApoB100-transgenic mice. RESULTS Utilizing immunodominant ApoB100-derived peptides, we found increased ApoB100-specific T-cell populations in NAFLD and CVD patients compared to healthy controls. In a peptide-specific manner, ApoB100 reactivity in healthy controls was accompanied by expression of the regulatory T (Treg)-cell transcription factor FOXP3. In contrast, FOXP3 expression decreased, whereas expression of pro-inflammatory cytokine interleukin (IL)-17A increased in ApoB100-specific T cells from NAFLD and CVD patients. Dyslipidemia and liver damage parameters in blood correlated with reduced FOXP3 expression and elevated IL-17A production in ApoB100-specific T-cell populations, respectively. Moreover, DTA-mediated transient liver damage in human ApoB100-transgenic mice accumulated IL-17a-expressing ApoB100-specific T cells in the periphery. CONCLUSION Our results show that liver damage promotes pro-inflammatory ApoB100-specific T-cell populations, thereby providing a cellular mechanism for the increased CVD risk in liver disease patients.
Collapse
Affiliation(s)
- Bastian F J Plochg
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chandini Rangaswamy
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mandy Malle
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sibylle Lampalzer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Beisel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Salma Wollin
- Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Aberle
- Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Johannes Kluwe
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
86
|
Bae J, Kim JE, Perumalsamy H, Park S, Kim Y, Jun DW, Yoon TH. Mass Cytometry Study on Hepatic Fibrosis and Its Drug-Induced Recovery Using Mouse Peripheral Blood Mononuclear Cells. Front Immunol 2022; 13:814030. [PMID: 35222390 PMCID: PMC8863676 DOI: 10.3389/fimmu.2022.814030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
The number of patients with liver diseases has increased significantly with the progress of global industrialization. Hepatic fibrosis, one of the most common liver diseases diagnosed in many developed countries, occurs in response to chronic liver injury and is primarily driven by the development of inflammation. Earlier immunological studies have been focused on the importance of the innate immune response in the pathophysiology of steatohepatitis and fibrosis, but recently, it has also been reported that adaptive immunity, particularly B cells, plays an essential role in hepatic inflammation and fibrosis. However, despite recent data showing the importance of adaptive immunity, relatively little is known about the role of B cells in the pathogenesis of steatohepatitis fibrosis. In this study, a single-cell-based, high-dimensional mass cytometric investigation of the peripheral blood mononuclear cells collected from mice belonging to three groups [normal chow (NC), thioacetamide (TAA), and 11beta-HSD inhibitor drug] was conducted to further understand the pathogenesis of liver fibrosis through reliable noninvasive biomarkers. Firstly, major immune cell types and their population changes were qualitatively analyzed using UMAP dimensionality reduction and two-dimensional visualization technique combined with a conventional manual gating strategy. The population of B cells displayed a twofold increase in the TAA group compared to that in the NC group, which was recovered slightly after treatment with the 11beta-HSD inhibitor drug. In contrast, the populations of NK cells, effector CD4+ T cells, and memory CD8+ T cells were significantly reduced in the TAA group compared with those in the NC group. Further identification and quantification of the major immune cell types and their subsets were conducted based on automated clustering approaches [PhenoGraph (PG) and FlowSOM]. The B-cell subset corresponding to PhenoGraph cluster PG#2 (CD62LhighCD44highLy6chigh B cells) and PG#3 (CD62LhighCD44highLy6clow B cell) appears to play a major role in both the development of hepatic fibrosis and recovery via treatment, whereas PG#1 (CD62LlowCD44highLy6clow B cell) seems to play a dominant role in the development of hepatic fibrosis. These findings provide insights into the roles of cellular subsets of B cells during the progression of, and recovery from, hepatic fibrosis.
Collapse
Affiliation(s)
- Jiwon Bae
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Ji Eun Kim
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea
| | - Sehee Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, South Korea.,Department of Clinical Pharmacology and Therapeutics, Hanyang University Hospital, Seoul, South Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea.,Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, South Korea.,Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea.,Institute of Next Generation Material Design, Hanyang University, Seoul, South Korea.,Yoon Idea Lab. Co. Ltd, Seoul, South Korea
| |
Collapse
|
87
|
Chung KW, Cho YE, Kim SJ, Hwang S. Immune-related pathogenesis and therapeutic strategies of nonalcoholic steatohepatitis. Arch Pharm Res 2022; 45:229-244. [PMID: 35391713 DOI: 10.1007/s12272-022-01379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and has become prevalent in the adult population worldwide, given the ongoing obesity pandemic. NAFLD comprises several hepatic disorders, ranging from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and carcinoma. Excessive fat accumulation in the liver can induce the development of fatty liver, whereas the progression of fatty liver to NASH involves various complex factors. The crucial difference between fatty liver and NASH is the presence of inflammation and fibrosis, the emergence of which is closely associated with the action of immune cells and immunological factors, such as chemokines and cytokines. Thus, expanding our understanding of immunological mechanisms contributing to NASH pathogenesis will lead to the identification of therapeutic targets and the development of viable therapeutics against NASH.
Collapse
Affiliation(s)
- Ki Wung Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
88
|
Mirshahi F, Aqbi HF, Isbell M, Manjili SH, Guo C, Saneshaw M, Dozmorov M, Khosla A, Wack K, Carrasco-Zevallos OM, Idowu MO, Wang XY, Sanyal AJ, Manjili MH, Bandyopadhyay D. Distinct hepatic immunological patterns are associated with the progression or inhibition of hepatocellular carcinoma. Cell Rep 2022; 38:110454. [PMID: 35235789 PMCID: PMC9028248 DOI: 10.1016/j.celrep.2022.110454] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
To discover distinct immune responses promoting or inhibiting hepatocellular carcinoma (HCC), we perform a three-dimensional analysis of the immune cells, correlating immune cell types, interactions, and changes over time in an animal model displaying gender disparity in nonalcoholic fatty liver disease (NAFLD)-associated HCC. In response to a Western diet (WD), animals mount acute and chronic patterns of inflammatory cytokines, respectively. Tumor progression in males and females is associated with a predominant CD8+ > CD4+, Th1 > Th17 > Th2, NKT > NK, M1 > M2 pattern in the liver. A complete rescue of females from HCC is associated with an equilibrium Th1 = Th17 = Th2, NKT = NK, M1 = M2 pattern, while a partial rescue of males from HCC is associated with an equilibrium CD8+ = CD4+, NKT = NK and a semi-equilibrium Th1 = Th17 > Th2 but a sustained M1 > M2 pattern in the liver. Our data suggest that immunological pattern-recognition can explain immunobiology of HCC and guide immune modulatory interventions for the treatment of HCC in a gender-specific manner. Mirshahi et al. performed a three-dimensional analysis of hepatic and splenic immune cells, correlating the immune cell types, their interactions and proportions, and changes over time. They discover gender-associated immunological patterns determining tumor progression, as well as partial or complete inhibition of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
| | - Hussein F Aqbi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Madison Isbell
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA 23298, USA
| | - Saeed H Manjili
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human & Molecular Genetics, VCU School of Medicine, Richmond, VA 23298, USA
| | - Mulugeta Saneshaw
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA
| | - Mikhail Dozmorov
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | - Michael O Idowu
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA
| | - Xiang-Yang Wang
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Human & Molecular Genetics, VCU School of Medicine, Richmond, VA 23298, USA; Hunter Holmes McGuire VA Medical Center, Richmond, VA 23298, USA
| | - Arun J Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA.
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA.
| | - Dipankar Bandyopadhyay
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
89
|
Vrsaljko N, Samadan L, Viskovic K, Mehmedović A, Budimir J, Vince A, Papic N. Association of non-alcoholic fatty liver disease with COVID-19 severity and pulmonary thrombosis: CovidFAT, a prospective, observational cohort study. Open Forum Infect Dis 2022; 9:ofac073. [PMID: 35287335 PMCID: PMC8903409 DOI: 10.1093/ofid/ofac073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with systemic changes in immune response, which might be associated with coronavirus disease 2019 (COVID-19) severity. The aim of this study was to investigate the impact of NAFLD on COVID-19 severity and outcomes. Methods A prospective observational study included consecutively hospitalized adult patients, hospitalized between March and June 2021, with severe COVID-19. Patients were screened for fatty liver by ultrasound and subsequently diagnosed with NAFLD. Patients were daily followed until discharge, and demographic, clinical, and laboratory data were collected and correlated to clinical outcomes. Results Of the 216 patients included, 120 (55.5%) had NAFLD. The NAFLD group had higher C-reactive protein (interquartile range [IQR]) (84.7 [38.6–129.8] mg/L vs 66.9 [32.2–97.3] mg/L; P = .0340), interleukin-6 (49.19 [22.66–92.04] ng/L vs 13.22 [5.29–39.75] ng/L; P < .0001), aspartate aminotransferase (58 [40–81] IU/L vs 46 [29–82] IU/L; P = .0123), alanine aminotransferase (51 [32–73] IU/L vs 40 [23–69] IU/L; P = .0345), and lactate dehydrogenase (391 [285–483] IU/L vs 324 [247–411] IU/L; P = .0027). The patients with NAFLD had higher disease severity assessed by 7-category ordinal scale, more frequently required high-flow nasal cannula or noninvasive ventilation (26, 21.66%, vs 10, 10.42%; P = .0289), had longer duration of hospitalization (IQR) (10 [8–15] days vs 9 [6–12] days; P = .0018), and more frequently had pulmonary thromboembolism (26.66% vs 13.54%; P = .0191). On multivariable analyses, NAFLD was negatively associated with time to recovery (hazard ratio, 0.64; 95% CI, 0.48 to 0.86) and was identified as a risk factor for pulmonary thrombosis (odds ratio, 2.15; 95% CI, 1.04 to 4.46). Conclusions NAFLD is associated with higher COVID-19 severity, more adverse outcomes, and more frequent pulmonary thrombosis.
Collapse
Affiliation(s)
- Nina Vrsaljko
- University Hospital for Infectious Diseases Zagreb, Zagreb, Croatia
| | - Lara Samadan
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Klaudija Viskovic
- University Hospital for Infectious Diseases Zagreb, Zagreb, Croatia
- Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Armin Mehmedović
- University Hospital for Infectious Diseases Zagreb, Zagreb, Croatia
| | - Jelena Budimir
- University Hospital for Infectious Diseases Zagreb, Zagreb, Croatia
| | - Adriana Vince
- University Hospital for Infectious Diseases Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Neven Papic
- University Hospital for Infectious Diseases Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
90
|
Taheri E, Bostick RM, Hatami B, Pourhoseingholi MA, Asadzadeh Aghdaei H, Moslem A, Mousavi Jarrahi A, Zali MR. Dietary and Lifestyle Inflammation Scores Are Inversely Associated with Metabolic-Associated Fatty Liver Disease among Iranian Adults: A Nested Case-Control Study. J Nutr 2022; 152:559-567. [PMID: 34791370 DOI: 10.1093/jn/nxab391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diet and lifestyle may affect risk for metabolic-associated fatty liver disease (MAFLD) by chronically elevating systemic inflammation. OBJECTIVES In this study we investigated the separate and joint associations of dietary and lifestyle inflammation scores (DIS and LIS, respectively) with MAFLD risk. METHODS For this nested case-control study we identified and recruited 968 patients with MAFLD (defined as having a fatty liver index ≥60 plus ≥1 of the following conditions: overweight or obese, type II diabetes mellitus, evidence of metabolic dysregulation) and 964 controls from among 35-70-y-old men and women in the baseline phase of the Sabzevar Persian Cohort Study. We collected demographic, lifestyle, anthropometric, biochemical, and dietary intake information (via a validated FFQ) from which we calculated a circulating inflammation biomarker-weighted, predominantly whole foods and beverages-based, 19-component DIS and a 3-component LIS. We estimated DIS- and LIS-MAFLD associations using multivariable unconditional logistic regression. We also calculated equal-weight DIS and LIS to capture all potential mechanisms (inflammation plus other mechanisms) for associations of diet and lifestyle with MAFLD risk. RESULTS Among those in the highest relative to the lowest DIS and LIS tertiles, the multivariable-adjusted ORs and their 95% CIs were OR: 1.84; 95% CI: 1.61, 2.07; Ptrend < 0.001, and OR: 1.96; 95% CI: 1.69, 2.21; Ptrend < 0.001, respectively. For those in the highest relative to the lowest joint DIS and LIS tertile, the values were OR: 2.56; 95% CI: 2.19, 2.93; Pinteraction < 0.001. The findings were similar by sex. The third tertile values for the equal-weight DIS- and LIS-MAFLD associations were OR: 1.87; 95% CI: 1.41, 2.34; and OR: 2.16; 95% CI: 1.85, 2.46, respectively. CONCLUSIONS Our results suggest that higher balances of pro- relative to anti-inflammatory dietary and lifestyle exposures, separately and especially jointly, may be associated with higher MAFLD risk among adults. Also, inflammation may be the primary mechanism through which diet affects MAFLD risk.
Collapse
Affiliation(s)
- Ehsaneh Taheri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Roberd M Bostick
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Amin Pourhoseingholi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moslem
- Cellular and Molecular Research Center, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Alireza Mousavi Jarrahi
- Department of Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
91
|
Liraglutide + PYY3-36 Combination Therapy Mimics Effects of Roux-en-Y Bypass on Early NAFLD Whilst Lacking-Behind in Metabolic Improvements. J Clin Med 2022; 11:jcm11030753. [PMID: 35160204 PMCID: PMC8836549 DOI: 10.3390/jcm11030753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Treatment options for NAFLD are still limited. Bariatric surgery, such as Roux-en-Y gastric bypass (RYGB), has been shown to improve metabolic and histologic markers of NAFLD. Glucagon-like-peptide-1 (GLP-1) analogues lead to improvements in phase 2 clinical trials. We directly compared the effects of RYGB with a treatment using liraglutide and/or peptide tyrosine tyrosine 3-36 (PYY3-36) in a rat model for early NAFLD. Methods: Obese male Wistar rats (high-fat diet (HFD)-induced) were randomized into the following treatment groups: RYGB, sham-operation (sham), liraglutide (0.4 mg/kg/day), PYY3-36 (0.1 mg/kg/day), liraglutide+PYY3-36, and saline. After an observation period of 4 weeks, liver samples were histologically evaluated, ELISAs and RNA sequencing + RT-qPCRs were performed. Results: RYGB and liraglutide+PYY3-36 induced a similar body weight loss and, compared to sham/saline, marked histological improvements with significantly less steatosis. However, only RYGB induced significant metabolic improvements (e.g., adiponectin/leptin ratio 18.8 ± 11.8 vs. 2.4 ± 1.2 in liraglutide+PYY3-36- or 1.4 ± 0.9 in sham-treated rats). Furthermore, RNA sequencing revealed a high number of differentially regulated genes in RYGB treated animals only. Conclusions: The combination therapy of liraglutide+PYY3-36 partly mimics the positive effects of RYGB on weight reduction and on hepatic steatosis, while its effects on metabolic function lack behind RYGB.
Collapse
|
92
|
Warner JB, Larsen IS, Hardesty JE, Song YL, Warner DR, McClain CJ, Sun R, Deng Z, Jensen BAH, Kirpich IA. Human Beta Defensin 2 Ameliorated Alcohol-Associated Liver Disease in Mice. Front Physiol 2022; 12:812882. [PMID: 35153819 PMCID: PMC8829467 DOI: 10.3389/fphys.2021.812882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a prevalent liver disorder and significant global healthcare burden with limited effective therapeutic options. The gut-liver axis is a critical factor contributing to susceptibility to liver injury due to alcohol consumption. In the current study, we tested whether human beta defensin-2 (hBD-2), a small anti-microbial peptide, attenuates experimental chronic ALD. Male C57Bl/6J mice were fed an ethanol (EtOH)-containing diet for 6 weeks with daily administration of hBD-2 (1.2 mg/kg) by oral gavage during the final week. Two independent cohorts of mice with distinct baseline gut microbiota were used. Oral hBD-2 administration attenuated liver injury in both cohorts as determined by decreased plasma ALT activity. Notably, the degree of hBD-2-mediated reduction of EtOH-associated liver steatosis, hepatocellular death, and inflammation was different between cohorts, suggesting microbiota-specific mechanisms underlying the beneficial effects of hBD-2. Indeed, we observed differential mechanisms of hBD-2 between cohorts, which included an induction of hepatic and small intestinal IL-17A and IL-22, as well as an increase in T regulatory cell abundance in the gut and mesenteric lymph nodes. Lastly, hBD-2 modulated the gut microbiota composition in EtOH-fed mice in both cohorts, with significant decreases in multiple genera including Barnesiella, Parabacteroides, Akkermansia, and Alistipes, as well as altered abundance of several bacteria within the family Ruminococcaceae. Collectively, our results demonstrated a protective effect of hBD-2 in experimental ALD associated with immunomodulation and microbiota alteration. These data suggest that while the beneficial effects of hBD-2 on liver injury are uniform, the specific mechanisms of action are associated with baseline microbiota.
Collapse
Affiliation(s)
- Jeffrey B. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Ida S. Larsen
- Québec Heart and Lung Institute (IUCPQ), Faculty of Medicine, Laval University, Québec city, QC, Canada
| | - Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Ying L. Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY, United States
- University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States
- Robley Rex Veterans Medical Center, Louisville, KY, United States
| | - Rui Sun
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Zhongbin Deng
- University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY, United States
- University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Surgery, University of Louisville, Louisville, KY, United States
| | - Benjamin A. H. Jensen
- Québec Heart and Lung Institute (IUCPQ), Faculty of Medicine, Laval University, Québec city, QC, Canada
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina A. Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY, United States
- University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
93
|
Inflammatory Cytokines, Adipocytokines, and Th17/Treg Balance in Patients with Nonalcoholic Fatty Liver Disease following Administration of Dahuang Zhechong Pills. Genet Res (Camb) 2022; 2022:8560831. [PMID: 35069014 PMCID: PMC8759922 DOI: 10.1155/2022/8560831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives. The occurrence and development of nonalcoholic fatty liver disease (NAFLD) is related to lipid peroxidation, imbalance of inflammatory response factors, and immune function disorder. This study was conducted with the purpose of investigating the expression levels of inflammatory cytokines and adipocytokines and Th17/Treg balance in NAFLD patients treated with Dahuang Zhechong pills (DHZCPs). Methods. The study recruited 100 NAFLD patients who were then arranged into the test group and control group. Patients in the test group were treated with DHZCPs, while patients in the control group were untreated. Peripheral TH17 and Treg cells were detected by flow cytometry, and peripheral IL-17, IL-10, hs-CRP, and TNF-α expression levels were determined by enzyme-linked immunosorbent assay (ELISA) methods. The concentrations of ghrelin, leptin, and adiponectin were quantitatively examined. Results. The levels of TC, TG, ALT, and AST were declined but the level of HDL-C was increased in NAFLD patients treated with DHZCPs compared with untreated patients (
). The ratio of Th17/Treg in NAFLD patients treated with DHZCPs was (1.52 ± 0.21), which was significantly lower than (2.39 ± 0.45) of untreated patients (
). The levels of IL-17, hs-CRP, and TNF-α were lower, but the level of IL-10 was higher in NAFLD patients treated with DHZCPs than that in untreated patients (
). The expression levels of ghrelin and adiponectin in NAFLD patients treated with DHZCPs were evidently higher than those in untreated patients (
), and the expression level of leptin in NAFLD patients treated with DHZCPs was evidently lower than that in untreated patients (
). Conclusions. Administration of DHZCPs regulates the immune function of NAFLD patients by keeping Th17/Treg balance and affecting the levels of inflammatory cytokines and adipocytokines.
Collapse
|
94
|
Mao T, Yang R, Luo Y, He K. Crucial role of T cells in NAFLD-related disease: A review and prospect. Front Endocrinol (Lausanne) 2022; 13:1051076. [PMID: 36457551 PMCID: PMC9705593 DOI: 10.3389/fendo.2022.1051076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a series of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis or even hepatocellular carcinoma (HCC). Its incidence is increasing worldwide. Several factors including metabolic dysfunction, oxidative stress, lipotoxicity contribute to the liver inflammation. Several immune cell-mediated inflammatory processes are involved in NAFLD in which T cells play a crucial part in the progression of the disease. In this review, we focus on the role of different subsets of both conventional and unconventional T cells in pathogenesis of NAFLD. Factors regarding inflammation and potential therapeutic approaches targeting immune cells in NASH are also discussed.
Collapse
Affiliation(s)
- Tianyu Mao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Rui Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Kang He, ; Yi Luo,
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Kang He, ; Yi Luo,
| |
Collapse
|
95
|
Wang T, Ishikawa T, Sasaki M, Chiba T. Oral and Gut Microbial Dysbiosis and Non-alcoholic Fatty Liver Disease: The Central Role of Porphyromonas gingivalis. Front Med (Lausanne) 2022; 9:822190. [PMID: 35308549 PMCID: PMC8924514 DOI: 10.3389/fmed.2022.822190] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota play many important roles, such as the regulation of immunity and barrier function in the intestine, and are crucial for maintaining homeostasis in living organisms. The disruption in microbiota is called dysbiosis, which has been associated with various chronic inflammatory conditions, food allergies, colorectal cancer, etc. The gut microbiota is also affected by several other factors such as diet, antibiotics and other medications, or bacterial and viral infections. Moreover, there are some reports on the oral-gut-liver axis indicating that the disruption of oral microbiota affects the intestinal biota. Non-alcoholic fatty liver disease (NAFLD) is one of the systemic diseases caused due to the dysregulation of the oral-gut-liver axis. NAFLD is the most common liver disease reported in the developed countries. It includes liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Recently, accumulating evidence supports an association between NAFLD and dysbiosis of oral and gut microbiota. Periodontopathic bacteria, especially Porphyromonas gingivalis, have been correlated with the pathogenesis and development of NAFLD based on the clinical and basic research, and immunology. P. gingivalis was detected in the liver, and lipopolysaccharide from this bacteria has been shown to be involved in the progression of NAFLD, thereby indicating a direct role of P. gingivalis in NAFLD. Moreover, P. gingivalis induces dysbiosis of gut microbiota, which promotes the progression of NAFLD, through disrupting both metabolic and immunologic pathways. Here, we review the roles of microbial dysbiosis in NAFLD. Focusing on P. gingivalis, we evaluate and summarize the most recent advances in our understanding of the relationship between oral-gut microbiome symbiosis and the pathogenesis and progression of non-alcoholic fatty liver disease, as well as discuss novel strategies targeting both P. gingivalis and microbial dysbiosis.
Collapse
Affiliation(s)
- Ting Wang
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- Ting Wang
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Toshimi Chiba
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- *Correspondence: Toshimi Chiba
| |
Collapse
|
96
|
Wu T, Hu J, Wang X, Luo X, Wang H, Ning Q. High-fat-induced nonalcoholic fatty liver potentiates vulnerability to and the severity of viral hepatitis in a C3H/HeN mouse model. Biofactors 2022; 48:216-227. [PMID: 34921696 DOI: 10.1002/biof.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022]
Abstract
Although the concomitance of nonalcoholic fatty liver disease (NAFLD) and viral hepatitis is soaring, there is not much knowledge about the impact of NAFLD on viral hepatitis. Here, we aimed to investigate how NAFLD influences the pathogenesis of viral hepatitis. Wild-type C3H/HeN mice with NAFLD induced by high-fat diet were infected with murine hepatitis virus 3 (MHV-3) and sacrificed at Days 4, 8, 12, and 16 post infection. Although there was no difference in the survival rate between mice with and without NAFLD, individuals with steatosis suffered more severe and prolonged liver injury demonstrated by transaminases and histology examination. The intrahepatic viral load was higher in NAFLD group during early infection, although it declined ultimately. On the contrary, the serum antiviral antibody titer remained in a lower level in mice with NAFLD throughout the investigation. In NAFLD group, the production of proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, interleukin 6, and interleukin 17A) and the frequencies of antiviral immune cells (NKG2D+ NK cells and CD69+ cytotoxic T lymphocytes [CTLs]) were profoundly increased. Parallelly, the production of anti-inflammatory cytokine (interleukin 10) and inhibitory checkpoint expression (NKG2A on NK cells and programmed cell death-1 on CTLs) were also significantly elevated to maintain homeostasis. However, the upregulation of interleukin 22, a protective cytokine was deficient in NAFLD group post MHV-3 infection. Conclusively, hepatic lipid metabolic abnormalities disturb antiviral immunity and increase the vulnerability to and severity of viral hepatitis.
Collapse
Affiliation(s)
- Ting Wu
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Junjian Hu
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwu Wang
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qin Ning
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
97
|
Affiliation(s)
- Maoxiao Ma
- Hunan University of Chinese Medicine, Changsha, China.,Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wuyin Li
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Hong Zhang
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Youwen Liu
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Chen Yue
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China.,Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
98
|
Taylor JM, Li A, McLachlan CS. Immune cell profile and immune-related gene expression of obese peripheral blood and liver tissue. FEBS Lett 2022; 596:199-210. [PMID: 34850389 DOI: 10.1002/1873-3468.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Obesity is associated with changes in immune cell subpopulations. However, tissue and blood obesity-responsive immune phenotypic pathways have not been contrasted. Here, the local niche immune cell population and gene expression in fatty liver is compared to peripheral blood of obese individuals. The Cibersort algorithm enumerated increased fractions of memory CD4+ T lymphocytes and reductions in natural killer and memory B cells in obese liver tissue and obese blood, with similar reductions found in nonalcoholic fatty liver disease tissue. Gene expression analysis identified inflammatory immune signatures of regulatory CD4+ T cells with inferred Th1, Th17, Th2, or Treg phenotypes that differed between liver and blood. Our study suggests that the local tissue-specific immune phenotype in the liver differs from the obese peripheral circulation, with the latter reflective of multisystemic persistent inflammation that is characteristic of obesity.
Collapse
Affiliation(s)
- Jude M Taylor
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
| | - Amy Li
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bendigo, Australia
| | - Craig S McLachlan
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
| |
Collapse
|
99
|
Gluais‐Dagorn P, Foretz M, Steinberg GR, Batchuluun B, Zawistowska‐Deniziak A, Lambooij JM, Guigas B, Carling D, Monternier P, Moller DE, Bolze S, Hallakou‐Bozec S. Direct AMPK Activation Corrects NASH in Rodents Through Metabolic Effects and Direct Action on Inflammation and Fibrogenesis. Hepatol Commun 2022; 6:101-119. [PMID: 34494384 PMCID: PMC8710801 DOI: 10.1002/hep4.1799] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
No approved therapies are available for nonalcoholic steatohepatitis (NASH). Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of cell metabolism; its activation has been suggested as a therapeutic approach to NASH. Here we aimed to fully characterize the potential for direct AMPK activation in preclinical models and to determine mechanisms that could contribute to efficacy for this disease. A novel small-molecule direct AMPK activator, PXL770, was used. Enzyme activity was measured with recombinant complexes. De novo lipogenesis (DNL) was quantitated in vivo and in mouse and human primary hepatocytes. Metabolic efficacy was assessed in ob/ob and high-fat diet-fed mice. Liver histology, biochemical measures, and immune cell profiling were assessed in diet-induced NASH mice. Direct effects on inflammation and fibrogenesis were assessed using primary mouse and human hepatic stellate cells, mouse adipose tissue explants, and human immune cells. PXL770 directly activated AMPK in vitro and reduced DNL in primary hepatocytes. In rodent models with metabolic syndrome, PXL770 improved glycemia, dyslipidemia, and insulin resistance. In mice with NASH, PXL770 reduced hepatic steatosis, ballooning, inflammation, and fibrogenesis. PXL770 exhibited direct inhibitory effects on pro-inflammatory cytokine production and activation of primary hepatic stellate cells. Conclusion: In rodent models, direct activation of AMPK is sufficient to produce improvements in all core components of NASH and to ameliorate related hyperglycemia, dyslipidemia, and systemic inflammation. Novel properties of direct AMPK activation were also unveiled: improved insulin resistance and direct suppression of inflammation and fibrogenesis. Given effects also documented in human cells (reduced DNL, suppression of inflammation and stellate cell activation), these studies support the potential for direct AMPK activation to effectively treat patients with NASH.
Collapse
Affiliation(s)
| | - Marc Foretz
- Université de ParisInstitut CochinCNRSINSERMParisFrance
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research and Division of Endocrinology and MetabolismDepartment of MedicineMcMaster UniversityHamiltonONCanada
| | - Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research and Division of Endocrinology and MetabolismDepartment of MedicineMcMaster UniversityHamiltonONCanada
| | | | - Joost M. Lambooij
- Department of ParasitologyLeiden University Medical CenterLeidenthe Netherlands
| | - Bruno Guigas
- Department of ParasitologyLeiden University Medical CenterLeidenthe Netherlands
| | - David Carling
- Cellular Stress GroupMedical Research CouncilLondon Institute of Medical SciencesHammersmith HospitalImperial CollegeLondonUnited Kingdom
| | | | | | | | | |
Collapse
|
100
|
Nash MJ, Dobrinskikh E, Newsom SA, Messaoudi I, Janssen RC, Aagaard KM, McCurdy CE, Gannon M, Kievit P, Friedman JE, Wesolowski SR. Maternal Western diet exposure increases periportal fibrosis beginning in utero in nonhuman primate offspring. JCI Insight 2021; 6:e154093. [PMID: 34935645 PMCID: PMC8783685 DOI: 10.1172/jci.insight.154093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean A. Newsom
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics and Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|