51
|
Sommen SL, Zhao Z, Segtnan S, Stiansen-Sonerud T, Selvakumar J, Beier Havdal L, Gjerstad J, Wyller VBB, Lund Berven L. Bulk RNA sequencing for analysis of post COVID-19 condition in adolescents and young adults. J Transl Med 2024; 22:312. [PMID: 38532465 PMCID: PMC10964710 DOI: 10.1186/s12967-024-05117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Post COVID-19 condition (PCC) is a complication of SARS-COV-2 infection and can lead to long-term disability. METHODS The present study was designed to analyse the gene expression patterns of PCC through bulk RNA sequencing of whole blood and to explore the potential molecular mechanisms of PCC. Whole blood was collected from 80 participants enrolled in a prospective cohort study following SARS-CoV-2 infected and non-infected individuals for 6 months after recruitment and was used for bulk RNA sequencing. Identification of differentially expressed genes (DEG), pathway enrichment and immune cell deconvolution was performed to explore potential biological pathways involved in PCC. RESULTS We have found 13 differentially expressed genes associated with PCC. Enriched pathways were related to interferon-signalling and anti-viral immune processes. CONCLUSION The PCC transcriptome is characterized by a modest overexpression of interferon-stimulated genes, pointing to a subtle ongoing inflammatory response.
Collapse
Affiliation(s)
- Silke Lauren Sommen
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- University of Oslo, Oslo, Norway
| | - Zhi Zhao
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Tonje Stiansen-Sonerud
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Department of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Joel Selvakumar
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lise Beier Havdal
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
| | - Johannes Gjerstad
- Department of Behavioural Sciences, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Vegard Bruun Bratholm Wyller
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lise Lund Berven
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
52
|
Ye Z, Deng X, Zhang J, Shao R, Song C, Zhao J, Tang H. Causal relationship between immune cells and prostate cancer: a Mendelian randomization study. Front Cell Dev Biol 2024; 12:1381920. [PMID: 38566827 PMCID: PMC10985200 DOI: 10.3389/fcell.2024.1381920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Despite the abundance of research indicating the participation of immune cells in prostate cancer development, establishing a definitive cause-and-effect relationship has proven to be a difficult undertaking. Methods This study employs Mendelian randomization (MR), leveraging genetic variables related to immune cells from publicly available genome-wide association studies (GWAS), to investigate this association. The primary analytical method used in this study is inverse variance weighting (IVW) analysis. Comprehensive sensitivity analyses were conducted to assess the heterogeneity and horizontal pleiotropy of the results. Results The study identifies four immune cell traits as causally contributing to prostate cancer risk, including CD127- CD8+ T cell %CD8+ T cell (OR = 1.0042, 95%CI:1.0011-1.0073, p = 0.0077), CD45RA on CD39+ resting CD4 regulatory T cell (OR = 1.0029, 95%CI:1.0008-1.0050, p = 0.0065), CD62L- Dendritic Cell Absolute Count (OR = 1.0016; 95%CI:1.0005-1.0026; p = 0.0039), CX3CR1 on CD14+ CD16- monocyte (OR = 1.0024, 95%CI:1.0007-1.0040, p = 0.0060). Additionally, two immune cell traits are identified as causally protective factors: CD4 on monocyte (OR = 0.9975, 95%CI:0.9958-0.9992, p = 0.0047), FSC-A on plasmacytoid Dendritic Cell (OR = 0.9983, 95%CI:0.9970-0.9995, p = 0.0070). Sensitivity analyses indicated no horizontal pleiotropy. Discussion Our MR study provide evidence for a causal relationship between immune cells and prostate cancer, holding implications for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhipeng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ruonan Shao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianfu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
53
|
Henley K, Tresselt E, Hook JS, Patel PA, Gill MA, Moreland JG. Granular Insights: Neutrophil Predominance and Elastase Release in Severe Asthma Exacerbations in a Pediatric Cohort. Cells 2024; 13:533. [PMID: 38534377 DOI: 10.3390/cells13060533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The chronic inflammatory component of asthma is propagated by granulocytes, including neutrophils and eosinophils, in the peripheral circulation and airway. Previous studies have suggested that these cells have an altered expression of adhesion-related molecules and a propensity for the release of granule contents that may contribute to tissue damage and enhance inflammatory complications in patients with status asthmaticus. The goal of this prospective cohort study at a tertiary care pediatric hospital with a large population of asthma patients was to assess the role of granulocyte-based inflammation in the development of asthma exacerbation. Subjects were enrolled from two patient populations: those with mild-to-moderate asthma exacerbations seen in the emergency department and those with severe asthma admitted to the intensive care unit (PICU). Clinical data were collected, and blood was drawn. Granulocytes were immediately purified, and the phenotype was assessed, including the expression of cell surface markers, elastase release, and cytokine production. Severe asthmatics admitted to the PICU displayed a significantly higher total neutrophil count when compared with healthy donors. Moreover, little to no eosinophils were found in granulocyte preparations from severe asthmatics. Circulating neutrophils from severe asthmatics admitted to the PICU displayed significantly increased elastase release ex vivo when compared with the PMN from healthy donors. These data suggest that the neutrophil-based activation and release of inflammatory products displayed by severe asthmatics may contribute to the propagation of asthma exacerbations.
Collapse
Affiliation(s)
- Kirstin Henley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin Tresselt
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parth A Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
54
|
Wang Q, Han J, Liang Z, Geng X, Du Y, Zhou J, Yao W, Xu T. FSH Is Responsible for Androgen Deprivation Therapy-Associated Atherosclerosis in Mice by Exaggerating Endothelial Inflammation and Monocyte Adhesion. Arterioscler Thromb Vasc Biol 2024; 44:698-719. [PMID: 38205641 PMCID: PMC10880942 DOI: 10.1161/atvbaha.123.319426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases. METHODS We administered orchiectomy, GnRH agonist, or GnRH antagonist in male ApoE-/- mice fed with Western diet and manipulated FSH levels by testosterone and FSH supplementation or FSH antibody to investigate the role of FSH elevation on atherosclerosis. By combining lipidomics, in vitro study, and intraluminal FSHR (FSH receptor) inhibition, we delineated the effects of FSH on endothelium and monocytes and the underlying mechanisms. RESULTS Orchiectomy and GnRH agonist, but not GnRH antagonist, induced long- or short-term FSH elevation and significantly accelerated atherogenesis. In orchiectomized and testosterone-supplemented mice, FSH exposure increased atherosclerosis. In GnRH agonist-treated mice, blocking of short FSH surge by anti-FSHβ antibody greatly alleviated endothelial inflammation and delayed atherogenesis. In GnRH antagonist-treated mice, FSH supplementation aggravated atherogenesis. Mechanistically, FSH, synergizing with TNF-α (tumor necrosis factor alpha), exacerbated endothelial inflammation by elevating VCAM-1 (vascular cell adhesion protein 1) expression through the cAMP/PKA (protein kinase A)/CREB (cAMP response element-binding protein)/c-Jun and PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B)/GSK-3β (glycogen synthase kinase 3 beta)/GATA-6 (GATA-binding protein 6) pathways. In monocytes, FSH upregulated CD29 (cluster of differentiation 29) expression via the PI3K/AKT/GSK-3β/SP1 (specificity protein 1) pathway and promoted monocyte-endothelial adhesion both in vitro and in vivo. Importantly, FSHR knockdown by shRNA in endothelium of carotid arteries markedly reduced GnRH agonist-induced endothelial inflammation and atherosclerosis in mice. CONCLUSIONS FSH is responsible for ADT-associated atherosclerosis by exaggerating endothelial inflammation and promoting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
- Department of Urology, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu (Q.W.)
| | - Jingli Han
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Zhenhui Liang
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Xueyu Geng
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Yiqing Du
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (W.Y.)
| | - Tao Xu
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| |
Collapse
|
55
|
Li J, Wei T, Ma K, Zhang J, Lu J, Zhao J, Huang J, Zeng T, Xie Y, Liang Y, Li X, Zhang Q, Liang T. Single-cell RNA sequencing highlights epithelial and microenvironmental heterogeneity in malignant progression of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 584:216607. [PMID: 38246225 DOI: 10.1016/j.canlet.2024.216607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). Single-cell transcriptomics provides a unique perspective for dissecting the epithelial and microenvironmental heterogeneity that accompanies progression from benign IPMNs to invasive PDAC. Single-cell RNA sequencing was performed through droplet-based sequencing on 35 693 cells from three high-grade IPMNs and two IPMN-derived PDACs (all surgically resected). Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. For epithelial cells, we identified acinar-ductal cells and isthmus-pit cells enriched in IPMN lesions and profiled three types of PDAC-unique ductal cells. Notably, a proinflammatory immune component was distinctly observed in IPMNs, comprising CD4+ T cells, CD8+ T cells, and B cells, whereas M2 macrophages were significantly accumulated in PDAC. Through the analysis of cellular communication, the osteopontin gene (SPP1)-CD44 pathway between macrophages and epithelial cells were particularly strengthened in the PDAC group. Further prognostic analysis revealed that SPP1 is a biomarker of IPMN carcinogenesis for surveillance. This study demonstrates the ability to perform high-resolution profiling of single cellular transcriptomes during the progression of high-grade IPMNs to cancer. Notably, single-cell analysis provides an unparalleled insight into both epithelial and microenvironmental heterogeneity associated with early cancer pathogenesis and provides practical markers for surveillance and targets for cancer interception.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianfeng Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jinyan Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Zeng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yali Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yingjiqiong Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Xuejie Li
- Department of Pathology, The First Affiliated Hospital of Medical School of Zhejiang University, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
56
|
Wang Z, Guo Y, Zhang Y, Wu L, Wang L, Lin Q, Wan B. An Intriguing Structural Modification in Neutrophil Migration Across Blood Vessels to Inflammatory Sites: Progress in the Core Mechanisms. Cell Biochem Biophys 2024; 82:67-75. [PMID: 37962751 DOI: 10.1007/s12013-023-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The role and function of neutrophils are well known, but we still have incomplete understanding of the mechanisms by which neutrophils migrate from blood vessels to inflammatory sites. Neutrophil migration is a complex process that involves several distinct steps. To resist the blood flow and maintain their rolling, neutrophils employ tether and sling formation. They also polarize and form pseudopods and uropods, guided by hierarchical chemotactic agents that enable precise directional movement. Meanwhile, chemotactic agents secreted by neutrophils, such as CXCL1, CXCL8, LTB4, and C5a, can recruit more neutrophils and amplify their response. In the context of diapedesis neutrophils traverse the endothelial cells via two pathways: the transmigratory cup and the lateral border recycling department. These structures aid in overcoming the narrow pore size of the endothelial barrier, resulting in more efficient transmembrane migration. Interestingly, neutrophils exhibit a preference for the paracellular pathway over the transcellular pathway, likely due to the former's lower resistance. In this review, we will delve into the intricate process of neutrophil migration by focusing on critical structures that underpins this process.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yulei Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| |
Collapse
|
57
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of circulating adhesion molecules in rheumatoid arthritis. Inflamm Res 2024; 73:305-327. [PMID: 38240792 PMCID: PMC10894129 DOI: 10.1007/s00011-023-01837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The availability of robust biomarkers of endothelial activation might enhance the identification of subclinical atherosclerosis in rheumatoid arthritis (RA). We investigated this issue by conducting a systematic review and meta-analysis of cell adhesion molecules in RA patients. METHODS We searched electronic databases from inception to 31 July 2023 for case-control studies assessing the circulating concentrations of immunoglobulin-like adhesion molecules (vascular cell, VCAM-1, intercellular, ICAM-1, and platelet endothelial cell, PECAM-1, adhesion molecule-1) and selectins (E, L, and P selectin) in RA patients and healthy controls. Risk of bias and certainty of evidence were assessed using the JBI checklist and GRADE, respectively. RESULTS In 39 studies, compared to controls, RA patients had significantly higher concentrations of ICAM-1 (standard mean difference, SMD = 0.81, 95% CI 0.62-1.00, p < 0.001; I2 = 83.0%, p < 0.001), VCAM-1 (SMD = 1.17, 95% CI 0.73-1.61, p < 0.001; I2 = 95.8%, p < 0.001), PECAM-1 (SMD = 0.82, 95% CI 0.57-1.08, p < 0.001; I2 = 0.0%, p = 0.90), E-selectin (SMD = 0.64, 95% CI 0.42-0.86, p < 0.001; I2 = 75.0%, p < 0.001), and P-selectin (SMD = 1.06, 95% CI 0.50-1.60, p < 0.001; I2 = 84.8%, p < 0.001), but not L-selectin. In meta-regression and subgroup analysis, significant associations were observed between the effect size and use of glucocorticoids (ICAM-1), erythrocyte sedimentation rate (VCAM-1), study continent (VCAM-1, E-selectin, and P-selectin), and matrix assessed (P-selectin). CONCLUSIONS The results of our study support a significant role of cell adhesion molecules in mediating the interplay between RA and atherosclerosis. Further studies are warranted to determine whether the routine use of these biomarkers can facilitate the detection and management of early atherosclerosis in this patient group. PROSPERO Registration Number: CRD42023466662.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA, 5042, Australia.
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
58
|
Michelis S, Pompili C, Niedergang F, Fattaccioli J, Dumat B, Mallet JM. FRET-Sensing of Multivalent Protein Binding at the Interface of Biomimetic Microparticles Functionalized with Fluorescent Glycolipids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9669-9679. [PMID: 38349191 DOI: 10.1021/acsami.3c15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Cell adhesion is a central process in cellular communication and regulation. Adhesion sites are triggered by specific ligand-receptor interactions inducing the clustering of both partners at the contact point. Investigating cell adhesion using microscopy techniques requires targeted fluorescent particles with a signal sensitive to the clustering of receptors and ligands at the interface. Herein, we report on simple cell or bacterial mimics, based on liquid microparticles made of lipiodol functionalized with custom-designed fluorescent lipids. These lipids are targeted toward lectins or biotin membrane receptors, and the resulting particles can be specifically identified and internalized by cells, as demonstrated by their phagocytosis in primary murine bone marrow-derived macrophages. We also evidence the possibility to sense the binding of a multivalent lectin, concanavalin A, in solution by monitoring the energy transfer between two matching fluorescent lipids on the surface of the particles. We anticipate that these liquid particle-based sensors, which are able to report via Förster resonance energy transfer (FRET) on the movement of ligands on their interface upon protein binding, will provide a useful tool to study receptor binding and cooperation during adhesion processes such as phagocytosis.
Collapse
Affiliation(s)
- Sophie Michelis
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Chiara Pompili
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 Paris, France
| | | | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Blaise Dumat
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
59
|
Al-Amoodi AS, Kai J, Li Y, Malki JS, Alghamdi A, Al-Ghuneim A, Saera-Vila A, Habuchi S, Merzaban JS. α1,3-fucosylation treatment improves cord blood CD34 negative hematopoietic stem cell navigation. iScience 2024; 27:108882. [PMID: 38322982 PMCID: PMC10845921 DOI: 10.1016/j.isci.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
For almost two decades, clinicians have overlooked the diagnostic potential of CD34neg hematopoietic stem cells because of their limited homing capacity relative to CD34posHSCs when injected intravenously. This has contributed to the lack of appeal of using umbilical cord blood in HSC transplantation because its stem cell count is lower than bone marrow. The present study reveals that the homing and engraftment of CD34negHSCs can be improved by adding the Sialyl Lewis X molecule via α1,3-fucosylation. This unlocks the potential for using this more primitive stem cell to treat blood disorders because our findings show CD34negHSCs have the capacity to regenerate cells in the bone marrow of mice for several months. Furthermore, our RNA sequencing analysis revealed that CD34negHSCs have unique adhesion pathways, downregulated in CD34posHSCs, that facilitate interaction with the bone marrow niche. Our findings suggest that CD34neg cells will best thrive when the HSC resides in its microenvironment.
Collapse
Affiliation(s)
- Asma S. Al-Amoodi
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jing Kai
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yanyan Li
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jana S. Malki
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Abdullah Alghamdi
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Arwa Al-Ghuneim
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Satoshi Habuchi
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jasmeen S. Merzaban
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Smart-Health Initiative, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
60
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
61
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
62
|
Marsile-Medun S, Souchard M, Abba Moussa D, Reynaud É, Tuaillon E, Naranjo-Gomez M, Pelegrin M. Fc receptors are key discriminatory markers of granulocytes subsets in people living with HIV-1. Front Immunol 2024; 15:1345422. [PMID: 38384451 PMCID: PMC10879334 DOI: 10.3389/fimmu.2024.1345422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Granulocytes are innate immune cells that play a key role in pathogen elimination. Recent studies revealed the diversity of granulocytes in terms of phenotype and function. In particular, a subset of granulocytes identified as low-density granulocytes (LDG) has been described in physiological conditions and with increased frequencies in several pathological contexts. However, the properties of LDG are still controversial as they vary according to the pathophysiological environment. Here we investigated the heterogeneity of granulocyte populations and the potential differences in phenotype and immunomodulatory capacity between LDG and normal density granulocytes (NDG) in people living with HIV-1 (PLWH). Methods To this end, we developed an optimized method to purify LDG and NDG from a single blood sample, and performed in-depth, comparative phenotypic characterization of both granulocyte subtypes. We also assessed the impact of purification steps on the expression of cell surface markers on LDG by immunophenotyping them at different stages of isolation. Results We identified 9 cell surface markers (CD16, CD32, CD89, CD62L, CD177, CD31, CD10, CXCR4 and CD172α) differentially expressed between LDG and NDG. Noteworthy, markers that distinguish the two subsets include receptors for the Fc part of IgG (CD16, CD32) and IgA (CD89). Importantly, we also highlighted that the purification procedure affects the expression of several cell surface markers (i.e.CD63, CD66b, …) which must be taken into account when characterizing LDG. Our work sheds new light on the properties of LDG in PLWH and provides an extensive characterization of this granulocyte subset in which Fc receptors are key discriminatory markers.
Collapse
Affiliation(s)
| | - Manon Souchard
- IRMB, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Élisa Reynaud
- Laboratoire de Virologie, Centre Hospitalier-Universitaire de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Laboratoire de Virologie, Centre Hospitalier-Universitaire de Montpellier, Montpellier, France
| | | | | |
Collapse
|
63
|
Zinellu A, Mangoni AA. The pathophysiological role of circulating adhesion molecules in schizophrenia: A systematic review and meta-analysis. Schizophr Res 2024; 264:157-169. [PMID: 38150848 DOI: 10.1016/j.schres.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Increasing evidence suggests an association between schizophrenia and atherosclerosis. We conducted a systematic review and meta-analysis of cell adhesion molecules, critically involved in early atherosclerosis, in schizophrenia. METHODS We searched electronic databases from inception to 11 November 2023 for case-control studies assessing vascular cell, VCAM-1, intercellular, ICAM-1, platelet endothelial cell, PECAM-1, neural cell, NCAM, and Down syndrome cell, DSCAM, adhesion molecules, selectins (E-, L-, and P-selectin), integrins, and cadherins in patients with schizophrenia and healthy controls. Risk of bias and certainty of evidence were assessed using the JBI checklist and GRADE, respectively. RESULTS In 19 eligible studies, there were non-significant between-group differences in the concentrations of cell adhesion molecules, barring higher P-selectin in patients with schizophrenia (standard mean difference, SMD = 2.05, 95 % CI 0.72 to 3.38, p = 0.003; I2 = 97.2 %, p<0.001; very low certainty of evidence). Limited or no information was available regarding PECAM-1, DSCAM, ESAM, integrins, and cadherins. In meta-regression and subgroup analysis, there were significant associations between the SMD of ICAM-1 and matrix used (plasma or serum) and pharmacological treatment of schizophrenia, and between the SMD of VCAM-1 and pharmacological treatment, but not with other study and patient characteristics. CONCLUSIONS The results of our systematic review and meta-analysis do not support a significant role of immunoglobulin-like adhesion molecules, selectins, integrins, or cadherins in mediating the associations between schizophrenia, atherosclerosis, and cardiovascular disease. Further studies are warranted to investigate these associations in patients with different cardiovascular risk and the effects of antipsychotic treatments on cell adhesion molecules and surrogate markers of atherosclerosis (PROSPERO registration number: CRD42023463916).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
64
|
Juengel JL, Reader KL, Maclean PH, Quirke LD, Zellhuber-McMillan S, Haack NA, Heiser A. The role of the oviduct environment in embryo survival. Reprod Fertil Dev 2024; 36:RD23171. [PMID: 38402905 DOI: 10.1071/rd23171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
CONTEXT Declining fertility is an issue in multiple mammalian species. As the site of fertilisation and early embryo development, the oviduct plays a critical role in embryo survival, yet there is a paucity of information on how the oviduct regulates this process. AIMS We hypothesised that differences in steroid hormone signalling and/or immune function would be observed in a model of poor embryo survival, the peripubertal ewe. METHODS We examined expression of steroid hormones in systemic circulation, oviductal expression of oestrogen receptorαand genes important in steroid hormone signalling, and immune function in pregnant and cyclic peripubertal and adult ewes on day 3 after oestrus. KEY RESULTS Concentrations of progesterone, but not oestradiol, were decreased in the peripubertal ewe compared to the adult ewe. Oestrogen receptorαprotein expression was increased in the peripubertal ewe, but pathway analysis of gene expression revealed downregulation of the oestrogen signalling pathway compared to the adult ewe. Differential expression of several genes involved in immune function between the peripubertal and adult ewe was consistent with an unfavourable oviductal environment in the peripubertal ewe lamb. Oestradiol concentration was positively correlated with the expression of multiple genes involved in the regulation of immune function. CONCLUSIONS Differences in the immune environment of the oviduct, potentially linked to differential modulation by steroid hormones, may partially underly the poor fertilisation and early embryo survival observed in the peripubertal ewe. IMPLICATIONS A unfavourable oviductal environment may play an important role in limiting reproductive success.
Collapse
Affiliation(s)
- Jennifer L Juengel
- Agricultural Systems and Reproduction, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9092, New Zealand
| | - Karen L Reader
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Paul H Maclean
- Bioinformatics and Statistics, AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Laurel D Quirke
- Agricultural Systems and Reproduction, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9092, New Zealand
| | | | - Neville A Haack
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Axel Heiser
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd, Private Bag 11008, Palmerston North 4442, New Zealand
| |
Collapse
|
65
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
66
|
Wei Z, Kawashima H. Prevention of Collagen-Induced Arthritis by an Anti-Glycan Monoclonal Antibody Reactive with 6-Sulfo Sialyl Lewis x in DBA/1 Mice. Monoclon Antib Immunodiagn Immunother 2024; 43:3-9. [PMID: 38064497 DOI: 10.1089/mab.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial tissue inflammation, substantially impacting the quality of life of patients. The interaction between L-selectin and its glycoprotein ligands modified with 6-sulfo sialyl Lewis x (6-sulfo sLex) is known to mediate lymphocyte homing to initiate immune responses. Thus, this process could be a potential therapeutic target for RA. Herein, we explored the preventive effects of an anti-6-sulfo sLex monoclonal antibody (mAb), SF1, on collagen-induced arthritis (CIA) in DBA/1 mice. Mice were administered SF1 from day 21 postfirst immunization with type II collagen (CII), and the effects of SF1 on both clinical and histopathological disease progression evoked by the second immunization were examined. SF1 significantly suppressed clinical features and histological levels associated with arthritis severity. Enzyme-linked immunosorbent assay consistently indicated that SF1 inhibited the production of CII-specific IgG2a. Based on the reverse transcription-quantitative PCR analysis, SF1 suppressed the expression of interferon-γ, a T helper 1 cytokine, as well as that of inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, in draining lymph nodes. Collectively, these results indicate that SF1, an anti-sulfated glycan mAb, could be beneficial in preventing CIA in mice and may afford as a novel agent to treat RA.
Collapse
Affiliation(s)
- Zihong Wei
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
67
|
Orach J, Hemshekhar M, Rider CF, Spicer V, Lee AH, Yuen ACY, Mookherjee N, Carlsten C. Concentration-dependent alterations in the human plasma proteome following controlled exposure to diesel exhaust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123087. [PMID: 38061431 DOI: 10.1016/j.envpol.2023.123087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Traffic-related air pollution (TRAP) exposure is associated with systemic health effects, which can be studied using blood-based markers. Although we have previously shown that high TRAP concentrations alter the plasma proteome, the concentration-response relationship between blood proteins and TRAP is unexplored in controlled human exposure studies. We aimed to identify concentration-dependent plasma markers of diesel exhaust (DE), a model of TRAP. Fifteen healthy non-smokers were enrolled into a double-blinded, crossover study where they were exposed to filtered air (FA) and DE at 20, 50 and 150 μg/m3 PM2.5 for 4h, separated by ≥ 4-week washouts. We collected blood at 24h post-exposure and used label-free mass spectrometry to quantify proteins in plasma. Proteins exhibiting a concentration-response, as determined by linear mixed effects models (LMEMs), were assessed for pathway enrichment using WebGestalt. Top candidates, identified by sparse partial least squares discriminant analysis and LMEMs, were confirmed using enzyme-linked immunoassays. Thereafter, we assessed correlations between proteins that showed a DE concentration-response and acute inflammatory endpoints, forced expiratory volume in 1 s (FEV1) and methacholine provocation concentration causing a 20% drop in FEV1 (PC20). DE exposure was associated with concentration-dependent alterations in 45 proteins, which were enriched in complement pathways. Of the 9 proteins selected for confirmatory immunoassays, based on complementary bioinformatic approaches to narrow targets and availability of high-quality assays, complement factor I (CFI) exhibited a significant concentration-dependent decrease (-0.02 μg/mL per μg/m3 of PM2.5, p = 0.04). Comparing to FA at discrete concentrations, CFI trended downward at 50 (-2.14 ± 1.18, p = 0.08) and significantly decreased at 150 μg/m3 PM2.5 (-2.93 ± 1.18, p = 0.02). CFI levels were correlated with FEV1, PC20 and nasal interleukin (IL)-6 and IL-1β. This study details concentration-dependent alterations in the plasma proteome following DE exposure at concentrations relevant to occupational and community settings. CFI shows a robust concentration-response and association with established measures of airway function and inflammation.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, British Columbia, Vancouver, V5Z1W9, Canada
| | - Mahadevappa Hemshekhar
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Manitoba, Winnipeg, R3E 3P4, Canada
| | - Christopher Francis Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, British Columbia, Vancouver, V5Z1W9, Canada
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Manitoba, Winnipeg, R3E 3P4, Canada
| | - Amy H Lee
- Molecular Biology and Biochemistry, Department of Molecular Biology and Biochemistry, Simon Fraser University, British Columbia, Burnaby, V5A 1S6, Canada
| | - Agnes Che Yan Yuen
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, British Columbia, Vancouver, V5Z1W9, Canada
| | - Neeloffer Mookherjee
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Manitoba, Winnipeg, R3E 3P4, Canada; Department of Immunology, University of Manitoba, Manitoba, Winnipeg, R3E 0T5, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, British Columbia, Vancouver, V5Z1W9, Canada.
| |
Collapse
|
68
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. Factors Influencing Venous Remodeling in the Development of Varicose Veins of the Lower Limbs. Int J Mol Sci 2024; 25:1560. [PMID: 38338837 PMCID: PMC10855638 DOI: 10.3390/ijms25031560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
One of the early symptoms of chronic venous disease (CVD) is varicose veins (VV) of the lower limbs. There are many etiological environmental factors influencing the development of chronic venous insufficiency (CVI), although genetic factors and family history of the disease play a key role. All these factors induce changes in the hemodynamic in the venous system of the lower limbs leading to blood stasis, hypoxia, inflammation, oxidative stress, proteolytic activity of matrix metalloproteinases (MMPs), changes in microcirculation and, consequently, the remodeling of the venous wall. The aim of this review is to present current knowledge on CVD, including the pathophysiology and mechanisms related to vein wall remodeling. Particular emphasis has been placed on describing the role of inflammation and oxidative stress and the involvement of extracellular hemoglobin as pathogenetic factors of VV. Additionally, active substances used in the treatment of VV were discussed.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
69
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2024. [PMID: 38243683 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of Queensland, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
70
|
Ghanbar MI, Suresh K. Pulmonary toxicity of immune checkpoint immunotherapy. J Clin Invest 2024; 134:e170503. [PMID: 38226621 PMCID: PMC10786690 DOI: 10.1172/jci170503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Cancer remains a leading cause of mortality on a global scale. Lung cancer, specifically non-small cell lung cancer (NSCLC), is a prominent contributor to this burden. The management of NSCLC has advanced substantially in recent years, with immunotherapeutic agents, such as immune checkpoint inhibitors (ICIs), leading to improved patient outcomes. Although generally well tolerated, the administration of ICIs can result in unique side effects known as immune-related adverse events (irAEs). The occurrence of irAEs involving the lungs, specifically checkpoint inhibitor pneumonitis (CIP), can have a profound effect on both future therapy options and overall survival. Despite CIP being one of the more common serious irAEs, limited treatment options are currently available, in part due to a lack of understanding of the underlying mechanisms involved in its development. In this Review, we aim to provide an overview of the epidemiology and clinical characteristics of CIP, followed by an examination of the emerging literature on the pathobiology of this condition.
Collapse
Affiliation(s)
| | - Karthik Suresh
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
71
|
Ying Y, Tao N, Zhang F, Wen X, Zhou M, Gao J. Thymosin β4 Regulates the Differentiation of Thymocytes by Controlling the Cytoskeletal Rearrangement and Mitochondrial Transfer of Thymus Epithelial Cells. Int J Mol Sci 2024; 25:1088. [PMID: 38256161 PMCID: PMC10816181 DOI: 10.3390/ijms25021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The thymus is one of the most crucial immunological organs, undergoing visible age-related shrinkage. Thymic epithelial cells (TECs) play a vital role in maintaining the normal function of the thymus, and their degeneration is the primary cause of age-induced thymic devolution. Thymosin β4 (Tβ4) serves as a significant important G-actin sequestering peptide. The objective of this study was to explore whether Tβ4 influences thymocyte differentiation by regulating the cytoskeletal rearrangement and mitochondrial transfer of TECs. A combination of H&E staining, immunofluorescence, transmission electron microscopy, RT-qPCR, flow cytometry, cytoskeletal immunolabeling, and mitochondrial immunolabeling were employed to observe the effects of Tβ4 on TECs' skeleton rearrangement, mitochondrial transfer, and thymocyte differentiation. The study revealed that the Tβ4 primarily regulates the formation of microfilaments and the mitochondrial transfer of TECs, along with the formation and maturation of double-negative cells (CD4-CD8-) and CD4 single-positive cells (CD3+TCRβ+CD4+CD8-) thymocytes. This study suggests that Tβ4 plays a crucial role in thymocyte differentiation by influencing the cytoskeletal rearrangement and mitochondrial transfer of TECs. These effects may be associated with Tβ4's impact on the aggregation of F-actin. This finding opens up new avenues for research in the field of immune aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.Y.); (N.T.); (F.Z.); (X.W.); (M.Z.)
| |
Collapse
|
72
|
Lee HJ, Zhao Y, Fleming I, Mehta S, Wang X, Wyk BV, Ronca SE, Kang H, Chou CH, Fatou B, Smolen KK, Levy O, Clish CB, Xavier RJ, Steen H, Hafler DA, Love JC, Shalek AK, Guan L, Murray KO, Kleinstein SH, Montgomery RR. Early cellular and molecular signatures correlate with severity of West Nile virus infection. iScience 2023; 26:108387. [PMID: 38047068 PMCID: PMC10692672 DOI: 10.1016/j.isci.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ira Fleming
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sameet Mehta
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannon E. Ronca
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Kang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kinga K. Smolen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Department of Infectious Disease, Precision Vaccines Program, Boston Children’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hanno Steen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - J. Christopher Love
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Kristy O. Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
73
|
He J, Ni Z, Li Z. Intercellular adhesion molecule 1 and selectin l play crucial roles in ulcerative colitis. Medicine (Baltimore) 2023; 102:e36552. [PMID: 38065859 PMCID: PMC10713187 DOI: 10.1097/md.0000000000036552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease that primarily affects the mucosal layer of the colon (large intestine). However, the relationship between Intercellular Adhesion Molecule-1 (ICAM1), SELL and UC is unclear. The UC datasets, GSE87466 and GSE36807, were downloaded from the gene expression omnibus database. The R package limma was utilized to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis was conducted. The construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis, and comparative toxicogenomics database analysis were performed. TargetScan was employed to screen miRNAs regulating central DEGs. Western blot (WB) was used to verify. A total of 2118 DEGs were identified in our study. Gene ontology analysis indicated their enrichment primarily in immune system processes, cellular responses to chemical stimuli, responses to organic substances, responses to external stimuli, and immune responses. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the target cells were mainly enriched in chemokine signaling pathways and TNF signaling pathways. Gene set enrichment analysis enrichment analysis showed significant enrichment in chemokine signaling pathways and cell adhesion molecules. In the Metascape enrichment project, gene ontology terms included regulation of cell activation and positive regulation of immune response. Through the construction and analysis of a protein-protein interaction network, we identified 11 core genes (ICAM1, SELL, CD44, CD40, CCR7, CXCL8, CD19, CCL4, CD274, IL7R, IL1B). We found that the core genes (ICAM1, SELL) were highly expressed in UC samples and lowly expressed in normal samples, suggesting their potential regulatory roles in UC. These core genes were associated with lymphoproliferative disorders, inflammation and necrosis. WB results confirmed the high expression of ICAM1 and SELL in UC. ICAM1 and SELL are highly expressed in UC, and the higher the ICAM1 and SELL genes, the worse the prognosis.
Collapse
Affiliation(s)
- Jie He
- Department of Colorectal Surgery, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Zhijie Ni
- Department of Colorectal Surgery, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Zhongbo Li
- Department of Colorectal Surgery, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| |
Collapse
|
74
|
Casaro S, Prim JG, Gonzalez TD, Bisinotto RS, Chebel RC, Marrero MG, Silva ACM, Santos JEP, Nelson CD, Laporta J, Jeon SJ, Bicalho RC, Driver JP, Galvão KN. Unraveling the immune and metabolic changes associated with metritis in dairy cows. J Dairy Sci 2023; 106:9244-9259. [PMID: 37641354 DOI: 10.3168/jds.2023-23289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/11/2023] [Indexed: 08/31/2023]
Abstract
The objective was to unravel the peripartum immune and metabolic changes associated with metritis in Holstein cows. Holstein cows (n = 128) had blood collected at -14, 0, 3, and 7 d relative to parturition (DRP). Flow cytometry was used to evaluate blood leukocyte counts, proportions, and activation. Total cells, live cells, single cells, monocytes (CD172α+/CD14+), polymorphonuclears (CD172α+/CD14-/SSChigh), B-cells (CD21+/MHCII+), CD4+ T-cells (CD4+), CD8+ T-cells (CD8+), and γδ T-cells (γδTCR+) were evaluated. Both CD62L and CD11b were used as markers of cell activation. Major histocompatibility complex class II was used as a marker of antigen presentation in monocytes. A Milliplex Bovine Cytokine/Chemokine 08-plex kit was used to evaluate plasma concentrations of IFN-γ, IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, and tumor necrosis factor-α. The body weight (BW) change prepartum was calculated as the difference between calving BW and prepartum BW divided by the number of days between measurements. Plasma fatty acids (FA) were measured at -14 and 0 DRP using untargeted gas chromatography with time-of-flight mass spectrometry. Data were analyzed by ANOVA for repeated measures. Cows that developed metritis (n = 57) had greater prepartum BW, prepartum BW loss, and greater FA concentrations at calving. Plasma FA at calving was positively correlated with IL-1β. Cows that developed metritis had persistent systemic inflammation, which was demonstrated by greater B-cell activation, greater pro-inflammatory cytokine concentrations, and greater cell damage pre- and postpartum. Postpartum, we observed greater polymorphonuclear cell activation and extravasation but lesser monocytes and CD4+ T-cells activation and extravasation, which suggests postpartum immune tolerance. Greater prepartum adiposity in cows that developed metritis may lead to systemic inflammation pre- and postpartum and immune tolerance postpartum, which may lead to failure to prevent bacterial infection, and development of puerperal metritis.
Collapse
Affiliation(s)
- S Casaro
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32610
| | - J G Prim
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32610
| | - T D Gonzalez
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32610
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32610
| | - R C Chebel
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32610
| | - M G Marrero
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610
| | - A C M Silva
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610; D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610; D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610
| | - J Laporta
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - S J Jeon
- Department of Veterinary Biomedical Sciences, Long Island University, Brookville, NY 11548
| | - R C Bicalho
- FERA Diagnostics and Biologicals, College Station, TX 77845
| | - J P Driver
- Division of Animals Sciences, University of Missouri-Columbia, Columbia, MO 65211
| | - K N Galvão
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32610; D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610.
| |
Collapse
|
75
|
Zhan Z, Shi-Jin L, Yi-Ran Z, Zhi-Long L, Xiao-Xu Z, Hui D, Pan YL, Pan JH. High endothelial venules proportion in tertiary lymphoid structure is a prognostic marker and correlated with anti-tumor immune microenvironment in colorectal cancer. Ann Med 2023; 55:114-126. [PMID: 36503344 PMCID: PMC9754014 DOI: 10.1080/07853890.2022.2153911] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND High endothelial venules (HEV) and tertiary lymphoid structures (TLS) are associated with clinical outcomes of patients with colorectal cancer (CRC). However, because HEV are components of TLS, there have been few studies of the role of the HEV proportion in TLS (HEV/TLS). This study investigated the role of the HEV/TLS and its relationship with the tumor immune microenvironment in CRC. METHODS A retrospective analysis of 203 cases of tissue pathologically diagnosed as CRC after general surgery was performed at the First Affiliated Hospital of Jinan University from January 2014 to July 2017. Paraffin sections were obtained from the paracancerous intestinal mucosal tissues. The area of HEV and TLS and immune cells were detected by immunohistochemistry. We further divided the positive HEV expression group into the high HEV/TLS group and the low HEV/TLS group by the average area of HEV/TLS. After grouping, the data were also analyzed using the chi-square test, Kaplan-Meier method, and univariate and multivariate Cox proportional risk regression analyses. A correlation analysis of the HEV/TLS and immune cells as well as angiogenesis was performed. RESULTS Patients with a high HEV/TLS in CRC tissue were associated with longer OS, DFS and lower TNM stage. Meanwhile, CRC tissue with a high HEV/TLS showed a greater ability to recruit the CD3+ T cells, CD8+ T cells and M1 macrophages and correlated with less angiogenesis. Conclusively, high HEV/TLS links to the favorable prognosis of CRC patients and correlated with anti-tumor immune microenvironment, which can be a potential biomarker for prognosis of CRC patients. CONCLUSION A high HEV/TLS is associated with a favorable prognosis for CRC and is correlated with the anti-tumor immune microenvironment. Therefore, it is a potential biomarker of the CRC prognosis.KEY MESSAGESHigh HEV/TLS is associated with a favorable prognosis for CRC.High HEV/TLS correlated with the anti-tumor immune microenvironment of CRC and can serve as a novel prognostic biomarker.
Collapse
Affiliation(s)
- Zhao Zhan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liu Shi-Jin
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhang Yi-Ran
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liu Zhi-Long
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhao Xiao-Xu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ding Hui
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing-Hua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
76
|
Cantu A, Gutierrez MC, Dong X, Leek C, Anguera M, Lingappan K. Modulation of recovery from neonatal hyperoxic lung injury by sex as a biological variable. Redox Biol 2023; 68:102933. [PMID: 38661305 PMCID: PMC10628633 DOI: 10.1016/j.redox.2023.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 04/26/2024] Open
Abstract
Recovery from lung injury during the neonatal period requires the orchestration of many biological pathways. The modulation of such pathways can drive the developing lung towards proper repair or persistent maldevelopment that can lead to a disease phenotype. Sex as a biological variable can regulate these pathways differently in the male and female lung exposed to neonatal hyperoxia. In this study, we assessed the contribution of cellular diversity in the male and female neonatal lung following injury. Our objective was to investigate sex and cell-type specific transcriptional changes that drive repair or persistent injury in the neonatal lung and delineate the alterations in the immune-endothelial cell communication networks using single cell RNA sequencing (sc-RNAseq) in a murine model of hyperoxic injury. We generated transcriptional profiles of >55,000 cells isolated from the lungs of postnatal day 1 (PND 1; pre-exposure), PND 7, and PND 21neonatal male and female C57BL/6 mice exposed to 95 % FiO2 between PND 1-5 (saccular stage of lung development). We show the presence of sex-based differences in the transcriptional states of lung endothelial and immune cells at PND 1 and PND 21. Furthermore, we demonstrate that biological sex significantly influences the response to injury, with a greater number of differentially expressed genes showing sex-specific patterns than those shared between male and female lungs. Pseudotime trajectory analysis highlighted genes needed for lung development that were altered by hyperoxia. Finally, we show intercellular communication between endothelial and immune cells at saccular and alveolar stages of lung development with sex-based biases in the crosstalk and identify novel ligand-receptor pairs. Our findings provide valuable insights into the cell diversity, transcriptional state, developmental trajectory, and cell-cell communication underlying neonatal lung injury, with implications for understanding lung development and possible therapeutic interventions while highlighting the crucial role of sex as a biological variable.
Collapse
Affiliation(s)
- Abiud Cantu
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Connor Leek
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Montserrat Anguera
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
77
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
78
|
Shi F, Tang S, Chen D, Mo F, Li J, Fang C, Wei H, Xing J, Liu L, Gong Y, Tan Z, Zhang Z, Pan X, Zhao S, Huang J. Immunological characteristics of CD103 +CD8 + Tc cells in the liver of C57BL/6 mouse infected with plasmodium NSM. Parasitol Res 2023; 122:2513-2524. [PMID: 37707607 DOI: 10.1007/s00436-023-07950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
CD103 is an important marker of tissue-resident memory T cells (TRM) which play important roles in fighting against infection. However, the immunological characteristics of CD103+ T cells are not thoroughly elucidated in the liver of mouse infected with Plasmodium. Six- to eight-week-old C57BL/6 mice were infected with Plasmodium yoelii nigeriensis NSM. Mice were sacrificed on 12-16 days after infection and the livers were picked out. Sections of the livers were stained, and serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were measured. Moreover, lymphocytes in the liver were isolated, and the expression of CD103 was determined by using qPCR. The percentage of CD103 on different immune cell populations was dynamically observed by using flow cytometry (FCM). In addition, the phenotype and cytokine production characteristics of CD103+CD8+ Tc cell were analyzed by using flow cytometry, respectively. Erythrocyte stage plasmodium infection could result in severe hepatic damage, a widespread inflammatory response and the decrease of CD103 expression on hepatic immune cells. Only CD8+ Tc and γδT cells expressed higher levels of CD103 in the uninfected state.CD103 expression in CD8+ Tc cells significantly decreased after infection. Compared to that of CD103- CD8+ Tc cells, CD103+ CD8+ Tc cells from the infected mice expressed lower level of CD69, higher level of CD62L, and secreted more IL-4, IL-10, IL-17, and secreted less IFN-γ. CD103+CD8+ Tc cells might mediate the hepatic immune response by secreting IL-4, IL-10, and IL-17 except IFN-γ in the mice infected with the erythrocytic phase plasmodium, which could be involved in the pathogenesis of severe liver damage resulted from the erythrocytic phase plasmodium yoelii nigeriensis NSM infection.
Collapse
Affiliation(s)
- Feihu Shi
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Shanni Tang
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Zhang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shan Zhao
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Jun Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
79
|
Villanueva-Martin G, Acosta-Herrera M, Carmona EG, Kerick M, Ortego-Centeno N, Callejas-Rubio JL, Mages N, Klages S, Börno S, Timmermann B, Bossini-Castillo L, Martin J. Non-classical circulating monocytes expressing high levels of microsomal prostaglandin E2 synthase-1 tag an aberrant IFN-response in systemic sclerosis. J Autoimmun 2023; 140:103097. [PMID: 37633117 DOI: 10.1016/j.jaut.2023.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Systemic sclerosis (SSc) is a complex disease that affects the connective tissue, causing fibrosis. SSc patients show altered immune cell composition and activation in the peripheral blood (PB). PB monocytes (Mos) are recruited into tissues where they differentiate into macrophages, which are directly involved in fibrosis. To understand the role of CD14+ PB Mos in SSc, a single-cell transcriptome analysis (scRNA-seq) was conducted on 8 SSc patients and 8 controls. Using unsupervised clustering methods, CD14+ cells were assigned to 11 clusters, which added granularity to the known monocyte subsets: classical (cMos), intermediate (iMos) and non-classical Mos (ncMos) or type 2 dendritic cells. NcMos were significantly overrepresented in SSc patients and showed an active IFN-signature and increased expression levels of PTGES, in addition to monocyte motility and adhesion markers. We identified a SSc-related cluster of IRF7+ STAT1+ iMos with an aberrant IFN-response. Finally, a depletion of M2 polarised cMos in SSc was observed. Our results highlighted the potential of PB Mos as biomarkers for SSc and provided new possibilities for putative drug targets for modulating the innate immune response in SSc.
Collapse
Affiliation(s)
- Gonzalo Villanueva-Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain; Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Elio G Carmona
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain; Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Norberto Ortego-Centeno
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain; Department of Medicine, University of Granada, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Jose Luis Callejas-Rubio
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Norbert Mages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Stefan Börno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Lara Bossini-Castillo
- Department of Genetics and Biotechnology Institute, Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain; Advanced Therapies and Biomedical Technologies (TEC-14), Biosanitary Research Institute Ibs. GRANADA, 18016, Granada, Spain.
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| |
Collapse
|
80
|
Liu C, Wang Y, Zhang YH, Yuan Z, Zhang Z, Zeng X, Guan Z, Bahabayi A, Lu S. Elevated Layilin-Positive Monocyte Levels in the Peripheral Blood of Patients with Systemic Lupus Erythematosus Reflect Their Autoimmune Status. Immunol Invest 2023; 52:879-896. [PMID: 37642473 DOI: 10.1080/08820139.2023.2249531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
OBJECTIVE To investigate the expression of layilin (LAYN) in human circulating monocytes and lymphocytes and its clinical significance in systemic lupus erythematosus (SLE). METHODS Blood samples were collected from 51 SLE patients and 50 healthy controls. Flow cytometry was used to analyze LAYN in lymphocytes and monocyte subsets. Functionally characterized molecules including human HLA, CD74 and CD62L were studied in LAYN+ monocytes. A correlation analysis was conducted between LAYN-related subsets and clinical indicators of SLE such as anti-double-stranded DNA and complements levels. ROC curves were used to explore the potential clinical diagnostic value of LAYN in SLE. RESULTS LAYN was significantly higher in monocytes than in lymphocytes and higher in CD14+CD16+ monocytes than in CD14-CD16+ and CD14+CD16- monocytes. CD74 was upregulated and CD62L was downregulated in LAYN+ monocytes compared with LAYN- monocytes. The absolute number of LAYN+ monocytes was increased in SLE patients, and the median fluorescence intensity of HLA was decreased. LAYN+ monocytes were positively correlated with complement C4, while decreased CD62L+ percentages in LAYN+ monocytes were negatively correlated with C4. The ROC analysis revealed that the area under the curve (AUCs) for CD62L+ percentages in LAYN+ monocytes, LAYN+ lymphocyte numbers, and LAYN+ monocyte numbers to distinguish SLE from healthy individuals were 0.6245, 0.6196 and 0.6173, respectively. CONCLUSION LAYN is differentially expressed in monocytes and their subpopulations and has corresponding functional differences. Changes in LAYN expression on monocytes are associated with complement C4 levels in SLE patients. These suggest that LAYN may be involved in the pathogenesis of SLE. ABBREVIATION ANOVA: analysis of variance; anti-dsDNA: anti-double-stranded DNA; anti-ENA: anti-extractable nuclear antigen; anti-SSA: anti-Sjogren syndrome A; anti-SSB: anti-Sjogren syndrome B; anti-U1RNP: anti-U1 ribonucleoprotein; AUC: area under the ROC curve; CBC: complete blood count; CD62L: L-selectin; CD74/Ii: MHC class II invariant chain; CD44/HCAM: homing cell adhesion molecule; cMos: classical monocytes; CRP: C-reactive protein; CXCR2: C-X-C motif chemokine receptor 2; CXCR4: C-X-C motif chemokine receptor 4; ESR: erythrocyte sedimentation rate; HCs: healthy controls; HA: hyaluronan; HLA: human leukocyte antigen; Ig: immunoglobulin; iMos: intermediate monocytes; LAYN: layilin; MFI: median fluorescence intensity; MIF: migration inhibitory factor; ncMos: nonclassical monocytes; PBMCs: peripheral blood mononuclear cells; ROC: receiver operating characteristic curve; SLE: systemic lupus erythematosus; SLEDAI, SLE disease activity index; Treg: regulatory T cells; WBCs: white blood cells.
Collapse
Affiliation(s)
- Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiying Wang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ya-Hui Zhang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
81
|
Kare AJ, Nichols L, Zermeno R, Raie MN, Tumbale SK, Ferrara KW. OMIP-095: 40-Color spectral flow cytometry delineates all major leukocyte populations in murine lymphoid tissues. Cytometry A 2023; 103:839-850. [PMID: 37768325 PMCID: PMC10843696 DOI: 10.1002/cyto.a.24788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
High-dimensional immunoprofiling is essential for studying host response to immunotherapy, infection, and disease in murine model systems. However, the difficulty of multiparameter panel design combined with a lack of existing murine tools has prevented the comprehensive study of all major leukocyte phenotypes in a single assay. Herein, we present a 40-color flow cytometry panel for deep immunophenotyping of murine lymphoid tissues, including the spleen, blood, Peyer's patches, inguinal lymph nodes, bone marrow, and thymus. This panel uses a robust set of surface markers capable of differentiating leukocyte subsets without the use of intracellular staining, thus allowing for the use of cells in downstream functional experiments or multiomic analyses. Our panel classifies T cells, B cells, natural killer cells, innate lymphoid cells, monocytes, macrophages, dendritic cells, basophils, neutrophils, eosinophils, progenitors, and their functional subsets by using a series of co-stimulatory, checkpoint, activation, migration, and maturation markers. This tool has a multitude of systems immunology applications ranging from serial monitoring of circulating blood signatures to complex endpoint analysis, especially in pre-clinical settings where treatments can modulate leukocyte abundance and/or function. Ultimately, this 40-color panel resolves a diverse array of immune cells on the axes of time, tissue, and treatment, filling the niche for a modern tool dedicated to murine immunophenotyping.
Collapse
Affiliation(s)
- Aris J. Kare
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lisa Nichols
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Zermeno
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Marina N. Raie
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
82
|
Abberger H, Hose M, Ninnemann A, Menne C, Eilbrecht M, Lang KS, Matuschewski K, Geffers R, Herz J, Buer J, Westendorf AM, Hansen W. Neuropilin-1 identifies a subset of highly activated CD8+ T cells during parasitic and viral infections. PLoS Pathog 2023; 19:e1011837. [PMID: 38019895 PMCID: PMC10718454 DOI: 10.1371/journal.ppat.1011837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.
Collapse
Affiliation(s)
- Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Hose
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Anne Ninnemann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Christopher Menne
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Mareike Eilbrecht
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Karl S. Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josephine Herz
- Department of Pediatrics 1, Neonatology & Experimental perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Germany
- Centre for Translational Neuro- and Behavioral Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| |
Collapse
|
83
|
Messina A, Crescimanno C, Cuccì G, Caraci F, Signorelli MS. Cell adhesion molecules in the pathogenesis of the schizophrenia. Folia Med (Plovdiv) 2023; 65:707-712. [PMID: 38351751 DOI: 10.3897/folmed.65.e101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 02/16/2024] Open
Abstract
The causes of schizophrenia remain obscure and complex to identify. Alterations in dopaminergic and serotonergic neurotransmission are, to date, the primary pharmacological targets in treatment. Underlying abnormalities in neural networks have been identified as cell adhesion molecules (CAMs) involved in synaptic remodeling and interplay between neurons-neurons and neurons-glial cells. Among the CAMs, several families have been identified, such as integrins, selectins, cadherins, immunoglobulins, nectins, and the neuroligin-neurexin complex. In this paper, cell adhesion molecules involved in the pathogenesis of schizophrenia will be described.
Collapse
|
84
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
85
|
Xiang N, Xu H, Zhou Z, Wang J, Cai P, Wang L, Tan Z, Zhou Y, Zhang T, Zhou J, Liu K, Luo S, Fang M, Wang G, Chen Z, Guo C, Li X. Single-cell transcriptome profiling reveals immune and stromal cell heterogeneity in primary Sjögren's syndrome. iScience 2023; 26:107943. [PMID: 37810210 PMCID: PMC10558796 DOI: 10.1016/j.isci.2023.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/13/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a complex autoimmune disease characterized by lymphocytic infiltration and exocrine dysfunction, particularly affecting the salivary gland (SG). We employed single-cell RNA sequencing to investigate cellular heterogeneity in 11 patients with pSS and 5 non-SS controls. Notably, patients with pSS exhibited downregulated SOX9 in myoepithelial cells, potentially associated with impaired epithelial regeneration. An expanded ACKR1+ endothelial subpopulation in patients with pSS suggested a role in facilitating lymphocyte transendothelial migration. Our analysis of immune cells revealed expanded IGHD+ naive B cells in peripheral blood from patients with pSS. Pseudotime trajectory analysis outlined a bifurcated differentiation pathway for peripheral B cells, enriching three subtypes (VPREB3+ B, BANK1+ B, CD83+ B cells) within SGs in patients with pSS. Fibroblasts emerged as pivotal components in a stromal-immune interaction network, potentially driving extracellular matrix disruption, epithelial regeneration impairment, and inflammation. Our study illuminates immune and stromal cell heterogeneity in patients with pSS, offering insights into therapeutic strategies.
Collapse
Affiliation(s)
- Nan Xiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hao Xu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Zhou Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Junyu Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Pengfei Cai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Li Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhen Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yingbo Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tianping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jiayuan Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ke Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Songwen Luo
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Minghao Fang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Guosheng Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhuo Chen
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chuang Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
86
|
VanElzakker MB, Bues HF, Brusaferri L, Kim M, Saadi D, Ratai EM, Dougherty DD, Loggia ML. Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [ 11C]PBR28 PET correlates with vascular disease measures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563117. [PMID: 37905031 PMCID: PMC10614970 DOI: 10.1101/2023.10.19.563117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction. In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls. We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction. These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.
Collapse
Affiliation(s)
- Michael B VanElzakker
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- PolyBio Research Foundation, Medford, MA, USA
| | - Hannah F Bues
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Computer Science And Informatics, School of Engineering, London South Bank University, London, UK
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deena Saadi
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
87
|
Requejo Cier CJ, Valentini N, Lamarche C. Unlocking the potential of Tregs: innovations in CAR technology. Front Mol Biosci 2023; 10:1267762. [PMID: 37900916 PMCID: PMC10602912 DOI: 10.3389/fmolb.2023.1267762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Regulatory T cells (Tregs) adoptive immunotherapy is emerging as a viable treatment option for both autoimmune and alloimmune diseases. However, numerous challenges remain, including limitations related to cell number, availability of target-specific cells, stability, purity, homing ability, and safety concerns. To address these challenges, cell engineering strategies have emerged as promising solutions. Indeed, it has become feasible to increase Treg numbers or enhance their stability through Foxp3 overexpression, post-translational modifications, or demethylation of the Treg-specific demethylated region (TSDR). Specificity can be engineered by the addition of chimeric antigen receptors (CARs), with new techniques designed to fine-tune specificity (tandem chimeric antigen receptors, universal chimeric antigen receptors, synNotch chimeric antigen receptors). The introduction of B-cell targeting antibody receptor (BAR) Tregs has paved the way for effective regulation of B cells and plasma cells. In addition, other constructs have emerged to enhance Tregs activation and function, such as optimized chimeric antigen receptors constructs and the use of armour proteins. Chimeric antigen receptor expression can also be better regulated to limit tonic signaling. Furthermore, various opportunities exist for enhancing the homing capabilities of CAR-Tregs to improve therapy outcomes. Many of these genetic modifications have already been explored for conventional CAR-T therapy but need to be further considered for CAR-Tregs therapies. This review highlights innovative CAR-engineering strategies that have the potential to precisely and efficiently manage immune responses in autoimmune diseases and improve transplant outcomes. As these strategies are further explored and optimized, CAR-Treg therapies may emerge as powerful tools for immune intervention.
Collapse
Affiliation(s)
- Christopher J. Requejo Cier
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Valentini
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
88
|
Zhang Q, Li S, Tong R, Zhu Y. Sialylation: An alternative to designing long-acting and targeted drug delivery system. Biomed Pharmacother 2023; 166:115353. [PMID: 37611437 DOI: 10.1016/j.biopha.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Long-acting and specific targeting are two important properties of excellent drug delivery systems. Currently, the long-acting strategies based on polyethylene glycol (PEG) are controversial, and PEGylation is incapable of simultaneously possessing targeting ability. Thus, it is crucial to identify and develop approaches to produce long-acting and targeted drug delivery systems. Sialic acid (SA) is an endogenous, negatively charged, nine-carbon monosaccharide. SA not only mediates immune escape in the body but also binds to numerous disease related targets. This suggests a potential strategy, namely "sialylation," for preparing long-acting and targeted drug delivery systems. This review focuses on the application status of SA-based long-acting and targeted agents as a reference for subsequent research.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
89
|
Zhang Q, Liu J, Shen J, Ou J, Wong YK, Xie L, Huang J, Zhang C, Fu C, Chen J, Chen J, He X, Shi F, Luo P, Gong P, Liu X, Wang J. Single-cell RNA sequencing reveals the effects of capsaicin in the treatment of sepsis-induced liver injury. MedComm (Beijing) 2023; 4:e395. [PMID: 37808269 PMCID: PMC10556204 DOI: 10.1002/mco2.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Sepsis is a difficult-to-treat systemic condition in which liver dysfunction acts as both regulator and target. However, the dynamic response of diverse intrahepatic cells to sepsis remains poorly characterized. Capsaicin (CAP), a multifunctional chemical derived from chilli peppers, has recently been shown to potentially possess anti-inflammatory effects, which is also one of the main approaches for drug discovery against sepsis. We performed single-cell RNA transcriptome sequencing on 86,830 intrahepatic cells isolated from normal mice, cecal ligation and puncture-induced sepsis model mice and CAP-treated mice. The transcriptional atlas of these cells revealed dynamic changes in hepatocytes, macrophages, neutrophils, and endothelial cells in response to sepsis. Among the extensive crosstalk across these major subtypes, KC_Cxcl10 shared strong potential interaction with other cells when responding to sepsis. CAP mitigated the severity of inflammation by partly reversing these pathophysiologic processes. Specific cell subpopulations in the liver act collectively to escalate inflammation, ultimately causing liver dysfunction. CAP displays its health-promoting function by ameliorating liver dysfunction induced by sepsis. Our study provides valuable insights into the pathophysiology of sepsis and suggestions for future therapeutic gain.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Jing Liu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jing Shen
- Department of OncologyShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jinhuan Ou
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Yin Kwan Wong
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lulin Xie
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jingnan Huang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Chunting Zhang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Chunjin Fu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Junhui Chen
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Fei Shi
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Piao Luo
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ping Gong
- Department of EmergencyShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Xueyan Liu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jigang Wang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
90
|
Islam MK, Khan M, Gidwani K, Witwer KW, Lamminmäki U, Leivo J. Lectins as potential tools for cancer biomarker discovery from extracellular vesicles. Biomark Res 2023; 11:85. [PMID: 37773167 PMCID: PMC10540341 DOI: 10.1186/s40364-023-00520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023] Open
Abstract
Extracellular vesicles (EVs) have considerable potential as diagnostic, prognostic, and therapeutic agents, in large part because molecular patterns on the EV surface betray the cell of origin and may also be used to "target" EVs to specific cells. Cancer is associated with alterations to cellular and EV glycosylation patterns, and the surface of EVs is enriched with glycan moieties. Glycoconjugates of EVs play versatile roles in cancer including modulating immune response, affecting tumor cell behavior and site of metastasis and as such, paving the way for the development of innovative diagnostic tools and novel therapies. Entities that recognize specific glycans, such as lectins, may thus be powerful tools to discover and detect novel cancer biomarkers. Indeed, the past decade has seen a constant increase in the number of published articles on lectin-based strategies for the detection of EV glycans. This review explores the roles of EV glycosylation in cancer and cancer-related applications. Furthermore, this review summarizes the potential of lectins and lectin-based methods for screening, targeting, separation, and possible identification of improved biomarkers from the surface of EVs.
Collapse
Affiliation(s)
- Md Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Misba Khan
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kamlesh Gidwani
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Urpo Lamminmäki
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
91
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
92
|
Doratt BM, Sureshchandra S, True H, Rincon M, Marshall NE, Messaoudi I. Mild/asymptomatic COVID-19 in unvaccinated pregnant mothers impairs neonatal immune responses. JCI Insight 2023; 8:e172658. [PMID: 37698937 PMCID: PMC10629812 DOI: 10.1172/jci.insight.172658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Maternal SARS-CoV-2 infection triggers placental inflammation and alters cord blood immune cell composition. However, most studies focus on outcomes of severe maternal infection. Therefore, we analyzed cord blood and chorionic villi from newborns of unvaccinated mothers who experienced mild/asymptomatic SARS-CoV-2 infection during pregnancy. We investigated immune cell rewiring using flow cytometry, single-cell RNA sequencing, and functional readouts using ex vivo stimulation with TLR agonists and pathogens. Maternal infection was associated with increased frequency of memory T and B cells and nonclassical monocytes in cord blood. Ex vivo T and B cell responses to stimulation were attenuated, suggesting a tolerogenic state. Maladaptive responses were also observed in cord blood monocytes, where antiviral responses were dampened but responses to bacterial TLRs were increased. Maternal infection was also associated with expansion and activation of placental Hofbauer cells, secreting elevated levels of myeloid cell-recruiting chemokines. Moreover, we reported increased activation of maternally derived monocytes/macrophages in the fetal placenta that were transcriptionally primed for antiviral responses. Our data indicate that even in the absence of vertical transmission or symptoms in the neonate, mild/asymptomatic maternal COVID-19 altered the transcriptional and functional state in fetal immune cells in circulation and in the placenta.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, and
- Institute for Immunology, University of California, Irvine, California, USA
| | - Heather True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Nicole E. Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
93
|
Song Y, You Q, Chen X. Transition Metal-Based Therapies for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212102. [PMID: 36863722 DOI: 10.1002/adma.202212102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory disease (ID) is a general term that covers all diseases in which chronic inflammation performs as the major manifestation of pathogenesis. Traditional therapies based on the anti-inflammatory and immunosuppressive drugs are palliative with the short-term remission. The emergence of nanodrugs has been reported to solve the potential causes and prevent recurrences, thus holding great potential for the treatment of IDs. Among various nanomaterial systems, transition metal-based smart nanosystems (TMSNs) with unique electronic structures possess therapeutic advantages owing to their large surface area to volume ratio, high photothermal conversion efficiency, X-ray absorption capacity, and multiple catalytic enzyme activities. In this review, the rationale, design principle, and therapeutic mechanisms of TMSNs for treatments of various IDs are summarized. Specifically, TMSNs can not only be designed to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, but also can be engineered to block the mechanism of initiating inflammatory responses. In addition, TMSNs can be further applied as nanocarriers to deliver anti-inflammatory drugs. Finally, the opportunities and challenges of TMSNs are discussed, and the future directions of TMSN-based ID treatment for clinical applications are emphasized.
Collapse
Affiliation(s)
- Yilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing You
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
94
|
Cordova-Gomez A, Wong AP, Sims LB, Doncel GF, Dorflinger LJ. Potential biomarkers to predict return to fertility after discontinuation of female contraceptives-looking to the future. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1210083. [PMID: 37674657 PMCID: PMC10477712 DOI: 10.3389/frph.2023.1210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 09/08/2023] Open
Abstract
Nowadays there are multiple types of contraceptive methods, from reversible to permanent, for those choosing to delay pregnancy. Misconceptions about contraception and infertility are a key factor for discontinuation or the uptake of family planning methods. Regaining fertility (the ability to conceive) after contraceptive discontinuation is therefore pivotal. Technical studies to date have evaluated return to fertility by assessing pregnancy as an outcome, with variable results, or return to ovulation as a surrogate measure by assessing hormone levels (such as progesterone, LH, FSH) with or without transvaginal ultrasound. In general, relying on time to pregnancy as an indicator of return to fertility following contraceptive method discontinuation can be problematic due to variable factors independent of contraceptive effects on fertility, hormone clearance, and fertility recovery. Since the ability to conceive after contraceptive method discontinuation is a critical factor influencing product uptake, it is important to have robust biomarkers that easily and accurately predict the timing of fertility return following contraception and isolate that recovery from extrinsic and circumstantial factors. The main aim of this review is to summarize the current approaches, existing knowledge, and gaps in methods of evaluating return-to-fertility as well as to provide insights into the potential of new biomarkers to more accurately predict fertility restoration after contraceptive discontinuation. Biomarker candidates proposed in this document include those associated with folliculogenesis, cumulus cell expansion, follicular rupture and ovulation, and endometrial transport and receptivity which have been selected and scored on predefined criteria meant to evaluate their probable viability for advancement. The review also describes limitations, regulatory requirements, and a potential path to clinically testing these selected biomarkers. It is important to understand fertility restoration after contraceptive method discontinuation to provide users and health providers with accurate evidence-based information. Predictive biomarkers, if easy and low-cost, have the potential to enable robust evaluation of RTF, and provide potential users the information they desire when selecting a contraceptive method. This could lead to expanded uptake and continuation of modern contraception and inform the development of new contraceptive methods to widen user's family planning choices.
Collapse
Affiliation(s)
- Amanda Cordova-Gomez
- Office of Population and Reproductive Health, USAID/Public Health Institute, Washington, DC, United States
| | - Andrew P. Wong
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lee B. Sims
- Office of Population and Reproductive Health, USAID/Public Health Institute, Washington, DC, United States
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Laneta J. Dorflinger
- Department of Product Development and Introduction, FHI 360, Durham, NC, United States
| |
Collapse
|
95
|
Cantu A, Gutierrez MC, Dong X, Leek C, Anguera M, Lingappan K. Modulation of Recovery from Neonatal Hyperoxic Lung Injury by Sex as a Biological Variable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552532. [PMID: 37609288 PMCID: PMC10441379 DOI: 10.1101/2023.08.09.552532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Recovery from lung injury during the neonatal period requires the orchestration of many biological pathways. The modulation of such pathways can drive the developing lung towards proper repair or persistent maldevelopment that can lead to a disease phenotype. Sex as a biological variable can regulate these pathways differently in the male and female lung exposed to neonatal hyperoxia. In this study, we assessed the contribution of cellular diversity in the male and female neonatal lung following injury. Our objective was to investigate sex and cell-type specific transcriptional changes that drive repair or persistent injury in the neonatal lung and delineate the alterations in the immune-endothelial cell communication networks using single cell RNA sequencing (sc-RNAseq) in a murine model of hyperoxic injury. We generated transcriptional profiles of >55,000 cells isolated from the lungs of postnatal day 1 (PND 1) and postnatal day 21 (PND 21) neonatal male and female C57BL/6 mice exposed to 95% FiO 2 between PND 1-5 (saccular stage of lung development). We show the presence of sex-based differences in the transcriptional states of lung endothelial and immune cells at PND 1 and PND 21. Furthermore, we demonstrate that biological sex significantly influences the response to injury, with a greater number of differentially expressed genes showing sex-specific patterns than those shared between male and female lungs. Pseudotime trajectory analysis highlighted genes needed for lung development that were altered by hyperoxia. Finally, we show intercellular communication between endothelial and immune cells at saccular and alveolar stages of lung development with sex-based biases in the crosstalk and identify novel ligand-receptor pairs. Our findings provide valuable insights into the cell diversity, transcriptional state, developmental trajectory, and cell-cell communication underlying neonatal lung injury, with implications for understanding lung development and possible therapeutic interventions while highlighting the crucial role of sex as a biological variable.
Collapse
|
96
|
Simon Davis DA, Ritchie M, Hammill D, Garrett J, Slater RO, Otoo N, Orlov A, Gosling K, Price J, Yip D, Jung K, Syed FM, Atmosukarto II, Quah BJC. Identifying cancer-associated leukocyte profiles using high-resolution flow cytometry screening and machine learning. Front Immunol 2023; 14:1211064. [PMID: 37600768 PMCID: PMC10435879 DOI: 10.3389/fimmu.2023.1211064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background Machine learning (ML) is a valuable tool with the potential to aid clinical decision making. Adoption of ML to this end requires data that reliably correlates with the clinical outcome of interest; the advantage of ML is that it can model these correlations from complex multiparameter data sets that can be difficult to interpret conventionally. While currently available clinical data can be used in ML for this purpose, there exists the potential to discover new "biomarkers" that will enhance the effectiveness of ML in clinical decision making. Since the interaction of the immune system and cancer is a hallmark of tumor establishment and progression, one potential area for cancer biomarker discovery is through the investigation of cancer-related immune cell signatures. Hence, we hypothesize that blood immune cell signatures can act as a biomarker for cancer progression. Methods To probe this, we have developed and tested a multiparameter cell-surface marker screening pipeline, using flow cytometry to obtain high-resolution systemic leukocyte population profiles that correlate with detection and characterization of several cancers in murine syngeneic tumor models. Results We discovered a signature of several blood leukocyte subsets, the most notable of which were monocyte subsets, that could be used to train CATboost ML models to predict the presence and type of cancer present in the animals. Conclusions Our findings highlight the potential utility of a screening approach to identify robust leukocyte biomarkers for cancer detection and characterization. This pipeline can easily be adapted to screen for cancer specific leukocyte markers from the blood of cancer patient.
Collapse
Affiliation(s)
- David A. Simon Davis
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Melissa Ritchie
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Dillon Hammill
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jessica Garrett
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Robert O. Slater
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Naomi Otoo
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Anna Orlov
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Katharine Gosling
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Jason Price
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Desmond Yip
- Australian National University, Canberra, ACT, Australia
- Department of Medical Oncology, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Kylie Jung
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Farhan M. Syed
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Ines I. Atmosukarto
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ben J. C. Quah
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| |
Collapse
|
97
|
Sixt S, Gruber M, Kolle G, Galla T, Bitzinger D. The Effect of Local Anesthetics on Neutrophils in the Context of Different Isolation Techniques. Biomedicines 2023; 11:2170. [PMID: 37626667 PMCID: PMC10452207 DOI: 10.3390/biomedicines11082170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Various functions of polymorphonuclear neutrophils (PMNs) are related to diseases and postoperative plasma changes. The influence of some local anesthetics (LAs) on PMNs obtained by conventional isolation methods and their functions has already been demonstrated. This study investigates the effect of selected LAs on PMNs, comparing a new isolation method with conventional ones. To obtain the PMNs, we performed either gelafundin sedimentation, hypotonic lysis or density gradient centrifugation. Subsequently, PMNs were mixed with different concentrations of bupivacaine, levobupivacaine, lidocaine or ropivacaine. Live cell imaging and flow cytometry were performed to quantify the migration, ROS production, NETosis and antigen expression of PMNs. We found the inhibition of chemotaxis and ROS production by LAs. PMNs showed a strong reduction in time to half maximal NETosis in response to bupivacaine and lidocaine, but not to levobupivacaine and ropivacaine. We also found distinct differences in survival time and migration duration between the isolation methods. This suggests that the careful selection of LAs has a short-term impact on in vitro PMNs.
Collapse
Affiliation(s)
- Sara Sixt
- Department of Anesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany
| | | | | | | | | |
Collapse
|
98
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
99
|
Bierer J, Stanzel R, Henderson M, Sett S, Sapp J, Andreou P, Marshall JS, Horne D. Novel inflammatory mediator profile observed during pediatric heart surgery with cardiopulmonary bypass and continuous ultrafiltration. J Transl Med 2023; 21:439. [PMID: 37408044 DOI: 10.1186/s12967-023-04255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) is associated with systemic inflammation, featuring increased levels of circulating pro-inflammatory cytokines. Intra-operative ultrafiltration extracts fluid and inflammatory factors potentially dampening inflammation-related organ dysfunction and enhancing post-operative recovery. This study aimed to define the impact of continuous subzero-balance ultrafiltration (SBUF) on circulating levels of major inflammatory mediators. METHODS Twenty pediatric patients undergoing cardiac surgery, CPB and SBUF were prospectively enrolled. Blood samples were collected prior to CPB initiation (Pre-CPB Plasma) and immediately before weaning off CPB (End-CPB Plasma). Ultrafiltrate effluent samples were also collected at the End-CPB time-point (End-CPB Effluent). The concentrations of thirty-nine inflammatory factors were assessed and sieving coefficients were calculated. RESULTS A profound increase in inflammatory cytokines and activated complement products were noted in plasma following CBP. Twenty-two inflammatory mediators were detected in the ultrafiltrate effluent. Novel mediators removed by ultrafiltration included cytokines IL1-Ra, IL-2, IL-12, IL-17A, IL-33, TRAIL, GM-CSF, ET-1, and the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2 and CXCL10. Mediator extraction by SBUF was significantly associated with molecular mass < 66 kDa (Chi2 statistic = 18.8, Chi2 with Yates' correction = 16.0, p < 0.0001). There was a moderate negative linear correlation between molecular mass and sieving coefficient (Spearman R = - 0.45 and p = 0.02). Notably, the anti-inflammatory cytokine IL-10 was not efficiently extracted by SBUF. CONCLUSIONS CPB is associated with a burden of circulating inflammatory mediators, and SBUF selectively extracts twenty of these pro-inflammatory factors while preserving the key anti-inflammatory regulator IL-10. Ultrafiltration could potentially function as an immunomodulatory therapy during pediatric cardiac surgery. Trial registration ClinicalTrials.gov, NCT05154864. Registered retrospectively on December 13, 2021. https://clinicaltrials.gov/ct2/show/record/NCT05154864 .
Collapse
Affiliation(s)
- Joel Bierer
- Division of Cardiac Surgery, Dalhousie University, Halifax, Canada.
| | - Roger Stanzel
- Department of Clinical Perfusion, Nova Scotia Health Authority, Halifax, Canada
| | - Mark Henderson
- Department of Clinical Perfusion, Nova Scotia Health Authority, Halifax, Canada
| | - Suvro Sett
- Division of Cardiac Surgery, Dalhousie University, Halifax, Canada
| | - John Sapp
- Division of Cardiology, Dalhousie University, Halifax, Canada
| | - Pantelis Andreou
- Department of Community Health & Epidemiology, Dalhousie University, Halifax, Canada
| | - Jean S Marshall
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - David Horne
- Division of Cardiac Surgery, Dalhousie University, Halifax, Canada
| |
Collapse
|
100
|
Shannon JG, Hinnebusch BJ. Characterization and CRISPR/Cas9-mediated genetic manipulation of neutrophils derived from Hoxb8-ER-immortalized myeloid progenitors. J Leukoc Biol 2023; 114:42-52. [PMID: 36992528 PMCID: PMC10376455 DOI: 10.1093/jleuko/qiad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/23/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
Neutrophils represent a first line of defense against a wide variety of microbial pathogens. Transduction with an estrogen receptor-Hoxb8 transcription factor fusion construct conditionally immortalizes myeloid progenitor cells (NeutPro) capable of differentiation into neutrophils. This system has been very useful for generating large numbers of murine neutrophils for in vitro and in vivo studies. However, some questions remain as to how closely neutrophils derived from these immortalized progenitors reflect primary neutrophils. Here we describe our experience with NeutPro-derived neutrophils as it relates to our studies of Yersinia pestis pathogenesis. NeutPro neutrophils have circular or multilobed nuclei, similar to primary bone marrow neutrophils. Differentiation of neutrophils from NeutPro cells leads to increased expression of CD11b, GR1, CD62L, and Ly6G. However, the NeutPro neutrophils expressed lower levels of Ly6G than bone marrow neutrophils. NeutPro neutrophils produced reactive oxygen species at slightly lower levels than bone marrow neutrophils, and the 2 cell types phagocytosed and killed Y. pestis in vitro to a similar degree. To further demonstrate their utility, we used a nonviral method for nuclear delivery of CRISPR/Cas9 guide RNA complexes to delete genes of interest in NeutPro cells. In summary, we have found these cells to be morphologically and functionally equivalent to primary neutrophils and useful for in vitro assays related to studies of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jeffrey G Shannon
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th St., Hamilton, MT 59840
| | - B Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th St., Hamilton, MT 59840
| |
Collapse
|