51
|
Oprisan SA, Imperatore J, Helms J, Tompa T, Lavin A. Cocaine-Induced Changes in Low-Dimensional Attractors of Local Field Potentials in Optogenetic Mice. Front Comput Neurosci 2018; 12:2. [PMID: 29445337 PMCID: PMC5797774 DOI: 10.3389/fncom.2018.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Optogenetically evoked local field potential (LFP) recorded from the medial prefrontal cortex (mPFC) of mice during basal conditions and following a systemic cocaine administration were analyzed. Blue light stimuli were delivered to mPFC through a fiber optic every 2 s and each trial was repeated 100 times. As in the previous study, we used a surrogate data method to check that nonlinearity was present in the experimental LFPs and only used the last 1.5 s of steady activity to measure the LFPs phase resetting induced by the brief 10 ms light stimulus. We found that the steady dynamics of the mPFC in response to light stimuli could be reconstructed in a three-dimensional phase space with topologically similar "8"-shaped attractors across different animals. Therefore, cocaine did not change the complexity of the recorded nonlinear data compared to the control case. The phase space of the reconstructed attractor is determined by the LFP time series and its temporally shifted versions by a multiple of some lag time. We also compared the change in the attractor shape between cocaine-injected and control using (1) dendrogram clustering and (2) Frechet distance. We found about 20% overlap between control and cocaine trials when classified using dendrogram method, which suggest that it may be possible to describe mathematically both data sets with the same model and slightly different model parameters. We also found that the lag times are about three times shorter for cocaine trials compared to control. As a result, although the phase space trajectories for control and cocaine may look similar, their dynamics is significantly different.
Collapse
Affiliation(s)
- Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Julia Imperatore
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Jessica Helms
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Department of Preventive Medicine, Faculty of Healthcare, University of Miskolc, Miskolc, Hungary
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
52
|
Knoth IS, Lajnef T, Rigoulot S, Lacourse K, Vannasing P, Michaud JL, Jacquemont S, Major P, Jerbi K, Lippé S. Auditory repetition suppression alterations in relation to cognitive functioning in fragile X syndrome: a combined EEG and machine learning approach. J Neurodev Disord 2018; 10:4. [PMID: 29378522 PMCID: PMC5789548 DOI: 10.1186/s11689-018-9223-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background Fragile X syndrome (FXS) is a neurodevelopmental genetic disorder causing cognitive and behavioural deficits. Repetition suppression (RS), a learning phenomenon in which stimulus repetitions result in diminished brain activity, has been found to be impaired in FXS. Alterations in RS have been associated with behavioural problems in FXS; however, relations between RS and intellectual functioning have not yet been elucidated. Methods EEG was recorded in 14 FXS participants and 25 neurotypical controls during an auditory habituation paradigm using repeatedly presented pseudowords. Non-phased locked signal energy was compared across presentations and between groups using linear mixed models (LMMs) in order to investigate RS effects across repetitions and brain areas and a possible relation to non-verbal IQ (NVIQ) in FXS. In addition, we explored group differences according to NVIQ and we probed the feasibility of training a support vector machine to predict cognitive functioning levels across FXS participants based on single-trial RS features. Results LMM analyses showed that repetition effects differ between groups (FXS vs. controls) as well as with respect to NVIQ in FXS. When exploring group differences in RS patterns, we found that neurotypical controls revealed the expected pattern of RS between the first and second presentations of a pseudoword. More importantly, while FXS participants in the ≤ 42 NVIQ group showed no RS, the > 42 NVIQ group showed a delayed RS response after several presentations. Concordantly, single-trial estimates of repetition effects over the first four repetitions provided the highest decoding accuracies in the classification between the FXS participant groups. Conclusion Electrophysiological measures of repetition effects provide a non-invasive and unbiased measure of brain responses sensitive to cognitive functioning levels, which may be useful for clinical trials in FXS. Electronic supplementary material The online version of this article (10.1186/s11689-018-9223-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inga Sophia Knoth
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada. .,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Tarek Lajnef
- Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada
| | - Simon Rigoulot
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada
| | - Karine Lacourse
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Phetsamone Vannasing
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Jacques L Michaud
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Faculty of Medicine, Université de Montréal, 2900 boulevard Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Sébastien Jacquemont
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Philippe Major
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Karim Jerbi
- Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal (CRIUSMM), 7401 Rue Hochelaga, Montréal, QC, H1N 3M5, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4565, chemin Queen-Mary, Montreal, QC, H3W 1W5, Canada
| | - Sarah Lippé
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada
| |
Collapse
|
53
|
Garg S, Green J. Studying child development in genetic models of ASD. PROGRESS IN BRAIN RESEARCH 2018; 241:159-192. [DOI: 10.1016/bs.pbr.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
54
|
McCullagh EA, Salcedo E, Huntsman MM, Klug A. Tonotopic alterations in inhibitory input to the medial nucleus of the trapezoid body in a mouse model of Fragile X syndrome. J Comp Neurol 2017; 525:3543-3562. [PMID: 28744893 PMCID: PMC5615817 DOI: 10.1002/cne.24290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
Hyperexcitability and the imbalance of excitation/inhibition are one of the leading causes of abnormal sensory processing in Fragile X syndrome (FXS). The precise timing and distribution of excitation and inhibition is crucial for auditory processing at the level of the auditory brainstem, which is responsible for sound localization ability. Sound localization is one of the sensory abilities disrupted by loss of the Fragile X Mental Retardation 1 (Fmr1) gene. Using triple immunofluorescence staining we tested whether there were alterations in the number and size of presynaptic structures for the three primary neurotransmitters (glutamate, glycine, and GABA) in the auditory brainstem of Fmr1 knockout mice. We found decreases in either glycinergic or GABAergic inhibition to the medial nucleus of the trapezoid body (MNTB) specific to the tonotopic location within the nucleus. MNTB is one of the primary inhibitory nuclei in the auditory brainstem and participates in the sound localization process with fast and well-timed inhibition. Thus, a decrease in inhibitory afferents to MNTB neurons should lead to greater inhibitory output to the projections from this nucleus. In contrast, we did not see any other significant alterations in balance of excitation/inhibition in any of the other auditory brainstem nuclei measured, suggesting that the alterations observed in the MNTB are both nucleus and frequency specific. We furthermore show that glycinergic inhibition may be an important contributor to imbalances in excitation and inhibition in FXS and that the auditory brainstem is a useful circuit for testing these imbalances.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Ernesto Salcedo
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Molly M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, School of Medicinen University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
55
|
Sakano H, Zorio DAR, Wang X, Ting YS, Noble WS, MacCoss MJ, Rubel EW, Wang Y. Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein. J Comp Neurol 2017; 525:3341-3359. [PMID: 28685837 DOI: 10.1002/cne.24281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
The avian nucleus laminaris (NL) is a brainstem nucleus necessary for binaural processing, analogous in structure and function to the mammalian medial superior olive. In chickens (Gallus gallus), NL is a well-studied model system for activity-dependent neural plasticity. Its neurons have bipolar extension of dendrites, which receive segregated inputs from two ears and display rapid and compartment-specific reorganization in response to unilateral changes in auditory input. More recently, fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates local protein translation, has been shown to be enriched in NL dendrites, suggesting its potential role in the structural dynamics of these dendrites. To explore the molecular role of FMRP in this nucleus, we performed proteomic analysis of NL, using micro laser capture and liquid chromatography tandem mass spectrometry. We identified 657 proteins, greatly represented in pathways involved in mitochondria, translation and metabolism, consistent with high levels of activity of NL neurons. Of these, 94 are potential FMRP targets, by comparative analysis with previously proposed FMRP targets in mammals. These proteins are enriched in pathways involved in cellular growth, cellular trafficking and transmembrane transport. Immunocytochemistry verified the dendritic localization of several proteins in NL. Furthermore, we confirmed the direct interaction of FMRP with one candidate, RhoC, by in vitro RNA binding assays. In summary, we provide a database of highly expressed proteins in NL and in particular a list of potential FMRP targets, with the goal of facilitating molecular characterization of FMRP signaling in future studies.
Collapse
Affiliation(s)
- Hitomi Sakano
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, School of Medicine, Seattle, Washington
| | - Diego A R Zorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Xiaoyu Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Ying S Ting
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, School of Medicine, Seattle, Washington
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
56
|
Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice. J Neurosci 2017; 37:7403-7419. [PMID: 28674175 DOI: 10.1523/jneurosci.2310-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 06/06/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS (Fmr1 KO), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS.SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS.
Collapse
|
57
|
McDiarmid TA, Bernardos AC, Rankin CH. Habituation is altered in neuropsychiatric disorders-A comprehensive review with recommendations for experimental design and analysis. Neurosci Biobehav Rev 2017; 80:286-305. [PMID: 28579490 DOI: 10.1016/j.neubiorev.2017.05.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/29/2017] [Indexed: 02/03/2023]
Abstract
Abnormalities in the simplest form of learning, habituation, have been reported in a variety of neuropsychiatric disorders as etiologically diverse as Autism Spectrum Disorder, Fragile X syndrome, Schizophrenia, Parkinson's Disease, Huntington's Disease, Attention Deficit Hyperactivity Disorder, Tourette's Syndrome, and Migraine. Here we provide the first comprehensive review of what is known about alterations in this form of non-associative learning in each disorder. Across several disorders, abnormal habituation is predictive of symptom severity, highlighting the clinical significance of habituation and its importance to normal cognitive function. Abnormal habituation is discussed within the greater framework of learning theory and how it may relate to disease phenotype either as a cause, symptom, or therapy. Important considerations for the design and interpretation of habituation experiments are outlined with the hope that these will aid both clinicians and basic researchers investigating how this simple form of learning is altered in disease.
Collapse
Affiliation(s)
- Troy A McDiarmid
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Aram C Bernardos
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada.
| |
Collapse
|
58
|
Sinclair D, Oranje B, Razak KA, Siegel SJ, Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models. Neurosci Biobehav Rev 2017; 76:235-253. [PMID: 27235081 PMCID: PMC5465967 DOI: 10.1016/j.neubiorev.2016.05.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/08/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023]
Abstract
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - B Oranje
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HP A 01.126 Heidelberglaan 100, CX Utrecht, 3584, The Netherlands; Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup, Ndr. Ringvej 29-67, Glostrup, 2600, Denmark; Faculty of Health Sciences, Department of Neurology, Psychiatry, and Sensory Sciences, University of Copenhagen, Denmark
| | - K A Razak
- Psychology Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - S J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - S Schmid
- Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, MSB 470, London, ON N6A 5C1, Canada.
| |
Collapse
|
59
|
Kang JY, Chadchankar J, Vien TN, Mighdoll MI, Hyde TM, Mather RJ, Deeb TZ, Pangalos MN, Brandon NJ, Dunlop J, Moss SJ. Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome. J Biol Chem 2017; 292:6621-6632. [PMID: 28213518 PMCID: PMC5399111 DOI: 10.1074/jbc.m116.772541] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
The behavioral and anatomical deficits seen in fragile X syndrome (FXS) are widely believed to result from imbalances in the relative strengths of excitatory and inhibitory neurotransmission. Although modified neuronal excitability is thought to be of significance, the contribution that alterations in GABAergic inhibition play in the pathophysiology of FXS are ill defined. Slow sustained neuronal inhibition is mediated by γ-aminobutyric acid type B (GABAB) receptors, which are heterodimeric G-protein-coupled receptors constructed from R1a and R2 or R1b and R2 subunits. Via the activation of Gi/o, they limit cAMP accumulation, diminish neurotransmitter release, and induce neuronal hyperpolarization. Here we reveal that selective deficits in R1a subunit expression are seen in Fmr1 knock-out mice (KO) mice, a widely used animal model of FXS, but the levels of the respective mRNAs were unaffected. Similar trends of R1a expression were seen in a subset of FXS patients. GABAB receptors (GABABRs) exert powerful pre- and postsynaptic inhibitory effects on neurotransmission. R1a-containing GABABRs are believed to mediate presynaptic inhibition in principal neurons. In accordance with this result, deficits in the ability of GABABRs to suppress glutamate release were seen in Fmr1-KO mice. In contrast, the ability of GABABRs to suppress GABA release and induce postsynaptic hyperpolarization was unaffected. Significantly, this deficit contributes to the pathophysiology of FXS as the GABABR agonist (R)-baclofen rescued the imbalances between excitatory and inhibitory neurotransmission evident in Fmr1-KO mice. Collectively, our results provided evidence that selective deficits in the activity of presynaptic GABABRs contribute to the pathophysiology of FXS.
Collapse
Affiliation(s)
- Ji-Yong Kang
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Jayashree Chadchankar
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Thuy N Vien
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Thomas M Hyde
- the Lieber Institute for Brain Development and
- Departments of Neurology and Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J Mather
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - Tarek Z Deeb
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Menelas N Pangalos
- Innovative Medicines and Early Development, AstraZeneca, Melbourn Science Park, Cambridge Road, Royston Herts SG8 6EE, United Kingdom, and
| | - Nicholas J Brandon
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - John Dunlop
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - Stephen J Moss
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111,
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
- the Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, United Kingdom
| |
Collapse
|
60
|
Rigoulot S, Knoth IS, Lafontaine M, Vannasing P, Major P, Jacquemont S, Michaud JL, Jerbi K, Lippé S. Altered visual repetition suppression in Fragile X Syndrome: New evidence from ERPs and oscillatory activity. Int J Dev Neurosci 2017; 59:52-59. [DOI: 10.1016/j.ijdevneu.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/31/2016] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Simon Rigoulot
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
| | - Inga S. Knoth
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Marc‐Philippe Lafontaine
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Phetsamone Vannasing
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Philippe Major
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Sébastien Jacquemont
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Jacques L. Michaud
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Karim Jerbi
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal (CRIUSMM)
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM)
| | - Sarah Lippé
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
| |
Collapse
|
61
|
Sinclair D, Featherstone R, Naschek M, Nam J, Du A, Wright S, Pance K, Melnychenko O, Weger R, Akuzawa S, Matsumoto M, Siegel SJ. GABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome. eNeuro 2017; 4:ENEURO.0380-16.2017. [PMID: 28451631 PMCID: PMC5394929 DOI: 10.1523/eneuro.0380-16.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigated whether racemic baclofen can remediate abnormalities of neural circuit function, sensory processing, and behavior in Fmr1 knockout mice, a rodent model of fragile X syndrome. Fmr1 knockout mice showed increased baseline and auditory-evoked high-frequency gamma (30-80 Hz) power relative to C57BL/6 controls, as measured by electroencephalography. These deficits were accompanied by decreased T maze spontaneous alternation, decreased social interactions, and increased open field center time, suggestive of diminished working memory, sociability, and anxiety-like behavior, respectively. Abnormal auditory-evoked gamma oscillations, working memory, and anxiety-related behavior were normalized by treatment with baclofen, but impaired sociability was not. Improvements in working memory were evident predominantly in mice whose auditory-evoked gamma oscillations were dampened by baclofen. These findings suggest that racemic baclofen may be useful for targeting sensory and cognitive disturbances in fragile X syndrome.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Featherstone
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Naschek
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Nam
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Du
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Wright
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K Pance
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - O Melnychenko
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Weger
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Akuzawa
- Neuroscience Research Unit, DDR, Astellas Pharma Inc., Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - M Matsumoto
- Neuroscience Research Unit, DDR, Astellas Pharma Inc., Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - S J Siegel
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
62
|
Somatosensory map expansion and altered processing of tactile inputs in a mouse model of fragile X syndrome. Neurobiol Dis 2016; 96:201-215. [PMID: 27616423 DOI: 10.1016/j.nbd.2016.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a common inherited form of intellectual disability caused by the absence or reduction of the fragile X mental retardation protein (FMRP) encoded by the FMR1 gene. In humans, one symptom of FXS is hypersensitivity to sensory stimuli, including touch. We used a mouse model of FXS (Fmr1 KO) to study sensory processing of tactile information conveyed via the whisker system. In vivo electrophysiological recordings in somatosensory barrel cortex showed layer-specific broadening of the receptive fields at the level of layer 2/3 but not layer 4, in response to whisker stimulation. Furthermore, the encoding of tactile stimuli at different frequencies was severely affected in layer 2/3. The behavioral effect of this broadening of the receptive fields was tested in the gap-crossing task, a whisker-dependent behavioral paradigm. In this task the Fmr1 KO mice showed differences in the number of whisker contacts with platforms, decrease in the whisker sampling duration and reduction in the whisker touch-time while performing the task. We propose that the increased excitability in the somatosensory barrel cortex upon whisker stimulation may contribute to changes in the whisking strategy as well as to other observed behavioral phenotypes related to tactile processing in Fmr1 KO mice.
Collapse
|
63
|
Sadowski RN, Stebbings KA, Slater BJ, Bandara SB, Llano DA, Schantz SL. Developmental exposure to PCBs alters the activation of the auditory cortex in response to GABA A antagonism. Neurotoxicology 2016; 56:86-93. [PMID: 27422581 DOI: 10.1016/j.neuro.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
Abstract
Developmental exposure of rats to polychlorinated biphenyls (PCBs) causes impairments in hearing and in the functioning of peripheral and central auditory structures. Additionally, recent work from our laboratory has demonstrated an increase in audiogenic seizures. The current study aimed to further characterize the effects of PCBs on auditory brain structures by investigating whether developmental exposure altered the magnitude of activation in the auditory cortex (AC) in response to electrical stimulation of thalamocortical afferents. Long-Evans female rats were fed cookies containing either 0 or 6mg/kg of an environmental PCB mixture daily from 4 weeks prior to breeding until postnatal day 21. Brain slices containing projections from the thalamus to the AC were collected from adult female offspring and were bathed in artificial cerebrospinal fluid (aCSF) alone, aCSF containing a gamma-aminobutyric acid (GABA) receptor antagonist (200nM SR95531), and aCSF containing an and N-methyl-d-aspartate (NMDA) receptor antagonist (50μM AP5). During each of these drug conditions, electrical stimulations ranging from 25 to 600μA were delivered to the thalamocortical afferents. Activation of the AC was measured using flavoprotein autofluorescence imaging. Although there were no differences seen between treatment groups in the aCSF condition, there were significant increases in the ratio of aCSF/SR95531 activation in slices from PCB-exposed animals compared to control animals. This effect was seen in both the upper and lower layers of the AC. No differences in activation were noted between treatment groups when slices were exposed to AP5. These data suggest that developmental PCB exposure leads to increased sensitivity to antagonism of GABAA receptors in the AC without a change in NMDA-mediated intrinsic excitability.
Collapse
Affiliation(s)
- Renee N Sadowski
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Kevin A Stebbings
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Bernard J Slater
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Suren B Bandara
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel A Llano
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Susan L Schantz
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
64
|
Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice. J Neurosci 2016; 36:2131-47. [PMID: 26888925 DOI: 10.1523/jneurosci.2921-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and behavioral symptoms observed in the fragile X mouse. This work provides strong evidence that Homer-mGlu5 binding contributes to symptoms associated with neurodevelopmental disorders.
Collapse
|
65
|
Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Neurobiol Dis 2016; 89:126-35. [PMID: 26850918 DOI: 10.1016/j.nbd.2016.02.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/21/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. SIGNIFICANCE Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits in habituation of neural responses to repeated sounds in the Fmr1 KO mice as seen in humans with FXS. We also report an abnormally high level of matrix metalloprotease-9 (MMP-9) in the auditory cortex of Fmr1 KO mice and that deletion of Mmp-9 from Fmr1 KO mice reverses habituation deficits. These data provide a translation relevant electrophysiological biomarker for sensory deficits in FXS and implicate MMP-9 as a target for drug discovery.
Collapse
|
66
|
Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIα and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell Rep 2015; 13:2297-311. [PMID: 26670047 DOI: 10.1016/j.celrep.2015.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/09/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
Abnormal metabotropic glutamate receptor 5 (mGluR5) function, as a result of disrupted scaffolding with its binding partner Homer, contributes to the pathophysiology of fragile X syndrome, a common inherited form of intellectual disability and autism caused by mutations in Fmr1. How loss of Fmr1 disrupts mGluR5-Homer scaffolds is unknown, and little is known about the dynamic regulation of mGluR5-Homer scaffolds in wild-type neurons. Here, we demonstrate that brief (minutes-long) elevations in neural activity cause CaMKIIα-mediated phosphorylation of long Homer proteins and dissociation from mGluR5 at synapses. In Fmr1 knockout (KO) cortex, Homers are hyperphosphorylated as a result of elevated CaMKIIα protein. Genetic or pharmacological inhibition of CaMKIIα or replacement of Homers with dephosphomimetics restores mGluR5-Homer scaffolds and multiple Fmr1 KO phenotypes, including circuit hyperexcitability and/or seizures. This work links translational control of an FMRP target mRNA, CaMKIIα, to the molecular-, cellular-, and circuit-level brain dysfunction in a complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Weirui Guo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Ceolin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Katie A Collins
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
67
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
68
|
Reinhard SM, Razak K, Ethell IM. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front Cell Neurosci 2015; 9:280. [PMID: 26283917 PMCID: PMC4518323 DOI: 10.3389/fncel.2015.00280] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sarah M Reinhard
- Psychology Department, University of California, Riverside Riverside, CA, USA
| | - Khaleel Razak
- Psychology Department, University of California, Riverside Riverside, CA, USA
| | - Iryna M Ethell
- Biomedical Sciences Division, School of Medicine, University of California, Riverside Riverside, CA, USA
| |
Collapse
|
69
|
Wang T, de Kok L, Willemsen R, Elgersma Y, Borst JGG. In vivo synaptic transmission and morphology in mouse models of Tuberous sclerosis, Fragile X syndrome, Neurofibromatosis type 1, and Costello syndrome. Front Cell Neurosci 2015; 9:234. [PMID: 26190969 PMCID: PMC4490249 DOI: 10.3389/fncel.2015.00234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
Defects in the rat sarcoma viral oncogene homolog (Ras)/extracellular-signal-regulated kinase and the phosphatidylinositol 3-kinase-mammalian target of rapamycin (mTOR) signaling pathways are responsible for several neurodevelopmental disorders. These disorders are an important cause for intellectual disability; additional manifestations include autism spectrum disorder, seizures, and brain malformations. Changes in synaptic function are thought to underlie the neurological conditions associated with these syndromes. We therefore studied morphology and in vivo synaptic transmission of the calyx of Held synapse, a relay synapse in the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, in mouse models of tuberous sclerosis complex (TSC), Fragile X syndrome (FXS), Neurofibromatosis type 1 (NF1), and Costello syndrome. Calyces from both Tsc1+/- and from Fmr1 knock-out (KO) mice showed increased volume and surface area compared to wild-type (WT) controls. In addition, in Fmr1 KO animals a larger fraction of calyces showed complex morphology. In MNTB principal neurons of Nf1+/- mice the average delay between EPSPs and APs was slightly smaller compared to WT controls, which could indicate an increased excitability. Otherwise, no obvious changes in synaptic transmission, or short-term plasticity were observed during juxtacellular recordings in any of the four lines. Our results in these four mutants thus indicate that abnormalities of mTOR or Ras signaling do not necessarily result in changes in in vivo synaptic transmission.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Laura de Kok
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands ; ENCORE Expertise Center for Neurodevelopmental disorders, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| |
Collapse
|
70
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
71
|
Wang H, Doering LC. Autism spectrum disorders: emerging mechanisms and mechanism-based treatment. Front Cell Neurosci 2015; 9:183. [PMID: 26029053 PMCID: PMC4428121 DOI: 10.3389/fncel.2015.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/27/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Laurie C Doering
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| |
Collapse
|
72
|
Schilit Nitenson A, Stackpole EE, Truszkowski TLS, Midroit M, Fallon JR, Bath KG. Fragile X mental retardation protein regulates olfactory sensitivity but not odorant discrimination. Chem Senses 2015; 40:345-50. [PMID: 25917509 DOI: 10.1093/chemse/bjv019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and is characterized by cognitive impairments and altered sensory function. It is caused by absence of fragile X mental retardation protein (FMRP), an RNA-binding protein essential for normal synaptic plasticity and function. Animal models have provided important insights into mechanisms through which loss of FMRP impacts cognitive and sensory development and function. While FMRP is highly enriched in the developing and adult olfactory bulb (OB), its role in olfactory sensory function remains poorly understood. Here, we used a mouse model of FXS, the fmr1 (-/y) mouse, to test whether loss of FMRP impacts olfactory discrimination, habituation, or sensitivity using a spontaneous olfactory cross-habituation task at a range of odorant concentrations. We demonstrated that fmr1 (-/y) mice have a significant decrease in olfactory sensitivity compared with wild type controls. When we controlled for differences in sensitivity, we found no effect of loss of FMRP on the ability to habituate to or spontaneously discriminate between odorants. These data indicate that loss of FMRP significantly alters olfactory sensitivity, but not other facets of basal olfactory function. These findings have important implications for future studies aimed at understanding the role of FMRP on sensory functioning.
Collapse
Affiliation(s)
| | - Emily E Stackpole
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Torrey L S Truszkowski
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Maellie Midroit
- Universitie Claude Bernard Lyon, Universite de Lyon, Lyon, France
| | - Justin R Fallon
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Kevin G Bath
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA, Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, USA
| |
Collapse
|
73
|
Schaefer TL, Davenport MH, Erickson CA. Emerging pharmacologic treatment options for fragile X syndrome. APPLICATION OF CLINICAL GENETICS 2015; 8:75-93. [PMID: 25897255 PMCID: PMC4396424 DOI: 10.2147/tacg.s35673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and autism spectrum disorder. Caused by a silenced fragile X mental retardation 1 gene and the subsequent deficiency in fragile X mental retardation protein, patients with FXS experience a range of physical, behavioral, and intellectual debilitations. The FXS field, as a whole, has recently met with some challenges, as several targeted clinical trials with high expectations of success have failed to elucidate significant improvements in a variety of symptom domains. As new clinical trials in FXS are planned, there has been much discussion about the use of the commonly used clinical outcome measures, as well as study design considerations, patient stratification, and optimal age range for treatment. The evidence that modification of these drug targets and use of these failed compounds would prove to be efficacious in human clinical study were rooted in years of basic and translational research. There are questions arising as to the use of the mouse models for studying FXS treatment development. This issue is twofold: many of the symptom domains and molecular and biochemical changes assessed and indicative of efficacy in mouse model study are not easily amenable to clinical trials in people with FXS because of the intolerability of the testing paradigm or a lack of noninvasive techniques (prepulse inhibition, sensory hypersensitivity, startle reactivity, or electrophysiologic, biochemical, or structural changes in the brain); and capturing subtle yet meaningful changes in symptom domains such as sociability, anxiety, and hyperactivity in human FXS clinical trials is challenging with the currently used measures (typically parent/caregiver rating scales). Clinicians, researchers, and the pharmaceutical industry have all had to take a step back and critically evaluate the way we think about how to best optimize future investigations into pharmacologic FXS treatments. As new clinical trials are coming down the drug discovery pipeline, it is clear that the field is moving in a direction that values the development of molecular biomarkers, less subjective quantitative measures of symptom improvement, and rating scales developed specifically for use in FXS in conjunction with drug safety. While summarizing preclinical evidence, where applicable, and discussing challenges in FXS treatment development, this review details both completed clinical trials for the targeted and symptomatic treatment of FXS and introduces novel projects on the cusp of clinical trial investigation.
Collapse
Affiliation(s)
- Tori L Schaefer
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew H Davenport
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
74
|
Devitt NM, Gallagher L, Reilly RB. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography-What Can be Interpreted from the Available Information? Brain Sci 2015; 5:92-117. [PMID: 25826237 PMCID: PMC4493458 DOI: 10.3390/brainsci5020092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) and Fragile X syndrome (FXS) are neurodevelopmental disorders with different but potentially related neurobiological underpinnings, which exhibit significant overlap in their behavioural symptoms. FXS is a neurogenetic disorder of known cause whereas ASD is a complex genetic disorder, with both rare and common genetic risk factors and likely genetic and environmental interaction effects. A comparison of the phenotypic presentation of the two disorders may highlight those symptoms that are more likely to be under direct genetic control, for example in FXS as opposed to shared symptoms that are likely to be under the control of multiple mechanisms. This review is focused on the application and analysis of electroencephalography data (EEG) in ASD and FXS. Specifically, Event Related Potentials (ERP) and resting state studies (rEEG) studies investigating ASD and FXS cohorts are compared. This review explores the electrophysiological similarities and differences between the two disorders in addition to the potentially associated neurobiological mechanisms at play. A series of pertinent research questions which are suggested in the literature are also posed within the review.
Collapse
Affiliation(s)
- Niamh Mc Devitt
- School of Medicine, Trinity College, the University of Dublin, Dublin, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
| | - Louise Gallagher
- School of Medicine, Trinity College, the University of Dublin, Dublin, Ireland.
- Trinity College Institute for Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- Department of Psychiatry, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James' Hospital, Dublin, Ireland.
- Linn Dara Child and Adolescent Mental Health Services, Cherry Orchard Hospital Dublin 10, Dublin, Ireland.
| | - Richard B Reilly
- School of Medicine, Trinity College, the University of Dublin, Dublin, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- Trinity College Institute for Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
| |
Collapse
|
75
|
Rotschafer SE, Marshak S, Cramer KS. Deletion of Fmr1 alters function and synaptic inputs in the auditory brainstem. PLoS One 2015; 10:e0117266. [PMID: 25679778 PMCID: PMC4332492 DOI: 10.1371/journal.pone.0117266] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/21/2014] [Indexed: 01/27/2023] Open
Abstract
Fragile X Syndrome (FXS), a neurodevelopmental disorder, is the most prevalent single-gene cause of autism spectrum disorder. Autism has been associated with impaired auditory processing, abnormalities in the auditory brainstem response (ABR), and reduced cell number and size in the auditory brainstem nuclei. FXS is characterized by elevated cortical responses to sound stimuli, with some evidence for aberrant ABRs. Here, we assessed ABRs and auditory brainstem anatomy in Fmr1-/- mice, an animal model of FXS. We found that Fmr1-/- mice showed elevated response thresholds to both click and tone stimuli. Amplitudes of ABR responses were reduced in Fmr1-/- mice for early peaks of the ABR. The growth of the peak I response with sound intensity was less steep in mutants that in wild type mice. In contrast, amplitudes and response growth in peaks IV and V did not differ between these groups. We did not observe differences in peak latencies or in interpeak latencies. Cell size was reduced in Fmr1-/- mice in the ventral cochlear nucleus (VCN) and in the medial nucleus of the trapezoid body (MNTB). We quantified levels of inhibitory and excitatory synaptic inputs in these nuclei using markers for presynaptic proteins. We measured VGAT and VGLUT immunolabeling in VCN, MNTB, and the lateral superior olive (LSO). VGAT expression in MNTB was significantly greater in the Fmr1-/- mouse than in wild type mice. Together, these observations demonstrate that FXS affects peripheral and central aspects of hearing and alters the balance of excitation and inhibition in the auditory brainstem.
Collapse
Affiliation(s)
- Sarah E. Rotschafer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
| | - Sonya Marshak
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
- * E-mail:
| |
Collapse
|
76
|
Jin X, Chen L. Fragile X syndrome as a rare disease in China - Therapeutic challenges and opportunities. Intractable Rare Dis Res 2015; 4:39-48. [PMID: 25674387 PMCID: PMC4322594 DOI: 10.5582/irdr.2014.01037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/14/2015] [Indexed: 12/27/2022] Open
Abstract
Recognized as the most common inherited from of intellectual disability (ID) and the most common known monogenic cause of autism spectrum disorders (ASD), Fragile X syndrome (FXS) is identified as an unmet medical need for the development of personalized medicine and targeted therapeutics for neurodevelopment disorders as a result of improved understanding of the genetic and cellular mechanisms. Consequently promising pharmacological targets have emerged from basic and translational research, are now being pursued by global pharmaceutical and biotech companies in early proof-of-concept clinical trials. With the world's largest rare disease population, China potentially has a large number of FXS patients, many of whom are under-diagnosed or even misdiagnosed, barely with any treatment. In spite of improved awareness of FXS in recent years, big gaps still exist between China and developed countries in multiple aspects. With increased public awareness, strong government support and investment, coupled with an increasingly large number of Western-trained experienced researchers engaging in new drug discovery and development, China has the potential to become an important player in the discovery of effective diagnostics and treatments for a rare disease like FXS.
Collapse
Affiliation(s)
- Xiaowei Jin
- Hua Medicine, Shanghai, China
- Address correspondence to: Dr. Xiaowei Jin, Hua Medicine, 275 Ai Di Sheng Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China. E-mail:
| | - Li Chen
- Hua Medicine, Shanghai, China
| |
Collapse
|
77
|
Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, Sans N, Rossier J, Oostra B, LeMasson G, Frick A. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci 2014; 17:1701-9. [PMID: 25383903 DOI: 10.1038/nn.3864] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
Hypersensitivity in response to sensory stimuli and neocortical hyperexcitability are prominent features of Fragile X Syndrome (FXS) and autism spectrum disorders, but little is known about the dendritic mechanisms underlying these phenomena. We found that the primary somatosensory neocortex (S1) was hyperexcited in response to tactile sensory stimulation in Fmr1(-/y) mice. This correlated with neuronal and dendritic hyperexcitability of S1 pyramidal neurons, which affect all major aspects of neuronal computation, from the integration of synaptic input to the generation of action potential output. Using dendritic electrophysiological recordings, calcium imaging, pharmacology, biochemistry and a computer model, we found that this defect was, at least in part, attributable to the reduction and dysfunction of dendritic h- and BKCa channels. We pharmacologically rescued several core hyperexcitability phenomena by targeting BKCa channels. Our results provide strong evidence pointing to the utility of BKCa channel openers for the treatment of the sensory hypersensitivity aspects of FXS.
Collapse
Affiliation(s)
- Yu Zhang
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Audrey Bonnan
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Guillaume Bony
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Isabelle Ferezou
- Laboratoire de Neurobiologie, ESPCI ParisTech CNRS UMR 7637, Paris, France
| | - Susanna Pietropaolo
- 1] University of Bordeaux, INCIA, Talence, France. [2] CNRS, INCIA, UMR 5287, Talence, France
| | - Melanie Ginger
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Nathalie Sans
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Jean Rossier
- Laboratoire de Neurobiologie, ESPCI ParisTech CNRS UMR 7637, Paris, France
| | - Ben Oostra
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Gwen LeMasson
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Andreas Frick
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| |
Collapse
|