51
|
Paudel R, Singh S. Selection of Young Animal Models of Autism over Adult: Benefits and Limitations. Integr Psychol Behav Sci 2023; 57:697-712. [PMID: 33447895 DOI: 10.1007/s12124-020-09595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Autism is a complex neurodevelopmental broad-spectrum disorder characterized by social interaction, and aberrant restrictive and repetitive behavior. The complex pathophysiology and unexplored drug targets make it difficult to standardize and validate the animal models of autism. The review was purposed for determining the benefits of younger animal models over adult models of autism. Similarly, animal models with respect to age, sex, body weight, number of animals used, along with autism inducing agents have been reviewed in this article. The differentiation of behavioral parameters has shown the benefits in the selection of younger animal models. Thus, we conclude that young and adolescence animal models of autism will be supporting for early detection and interventions with significant results.
Collapse
Affiliation(s)
- Raju Paudel
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
52
|
Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci 2023; 24:ijms24119605. [PMID: 37298554 DOI: 10.3390/ijms24119605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
S100B is a calcium-binding protein mainly concentrated in astrocytes in the nervous system. Its levels in biological fluids are recognized as a reliable biomarker of active neural distress, and more recently, mounting evidence points to S100B as a Damage-Associated Molecular Pattern molecule, which, at high concentration, triggers tissue reactions to damage. S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease. In addition, in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic and vascular acute neural injury, epilepsy, and inflammatory bowel disease, alteration of S100B levels correlates with the occurrence of clinical and/or toxic parameters. In general, overexpression/administration of S100B worsens the clinical presentation, whereas deletion/inactivation of the protein contributes to the amelioration of the symptoms. Thus, the S100B protein may be proposed as a common pathogenic factor in different disorders, sharing different symptoms and etiologies but appearing to share some common pathogenic processes reasonably attributable to neuroinflammation.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | | | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
53
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
54
|
Latham AS, Geer CE, Ackart DF, Anderson IK, Vittoria KM, Podell BK, Basaraba RJ, Moreno JA. Gliosis, misfolded protein aggregation, and neuronal loss in a guinea pig model of pulmonary tuberculosis. Front Neurosci 2023; 17:1157652. [PMID: 37274195 PMCID: PMC10235533 DOI: 10.3389/fnins.2023.1157652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis infection, is an ongoing epidemic with an estimated ten million active cases of the disease worldwide. Pulmonary tuberculosis is associated with cognitive and memory deficits, and patients with this disease are at an increased risk for Parkinson's disease and dementia. Although epidemiological data correlates neurological effects with peripheral disease, the pathology in the central nervous system is unknown. In an established guinea pig model of low-dose, aerosolized Mycobacterium tuberculosis infection, we see behavior changes and memory loss in infected animals. We correlate these findings with pathological changes within brain regions related to motor, cognition, and sensation across disease progression. This includes microglial and astrocytic proliferation and reactivity. These cellular changes are followed by the aggregation of neurotoxic amyloid β and phosphorylated tau and, ultimately, neuronal degeneration in the hippocampus. Through these data, we have obtained a greater understanding of the neuropathological effects of a peripheral disease that affects millions of persons worldwide.
Collapse
Affiliation(s)
- Amanda S. Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Charlize E. Geer
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - David F. Ackart
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Isla K. Anderson
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Biomedical Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kaley M. Vittoria
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Randall J. Basaraba
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Julie A. Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
55
|
Walter KR, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer's Disease mouse model. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:302-320. [PMID: 36194703 PMCID: PMC11040461 DOI: 10.1080/00952990.2022.2119571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/06/2022]
Abstract
Background: Prenatal alcohol exposure (PAE) causes behavioral deficits and increases risk of metabolic diseases. Alzheimer's Disease (AD) is a neurodegenerative disease that has a higher risk in adults with metabolic diseases. Both present with persistent neuroinflammation.Objectives: We tested whether PAE exacerbates AD-related cognitive decline in a mouse model (3xTg-AD; presenilin/amyloid precursor protein/tau), and assessed associations among cognition, metabolic impairment, and microglial reactivity.Methods: Alcohol-exposed (ALC) pregnant 3xTg-AD mice received 3 g/kg alcohol from embryonic day 8.5-17.5. We evaluated recognition memory and associative memory (fear conditioning) in 8-10 males and females per group at 3 months of age (3mo), 7mo, and 11mo, then assessed glucose tolerance, body composition, and hippocampal microglial activation at 12mo.Results: ALC females had higher body weights than controls from 5mo (p < .0001). Controls showed improved recognition memory at 11mo compared with 3mo (p = .007); this was not seen in ALC mice. Older animals froze more during fear conditioning than younger, and ALC mice were hyper-responsive to the fear-related cue (p = .017). Fasting blood glucose was lower in ALC males and higher in ALC females than controls. Positive associations occurred between glucose and fear-related context (p = .04) and adiposity and fear-related cue (p = .0002) in ALC animals. Hippocampal microglial activation was higher in ALC than controls (p < .0001); this trended to correlate with recognition memory.Conclusions: ALC animals showed age-related cognitive impairments that did not interact with AD risk but did correlate with metabolic dysfunction and somewhat with microglial activation. Thus, metabolic disorders may be a therapeutic target for people with FASDs.
Collapse
Affiliation(s)
- Kathleen R. Walter
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Dane K. Ricketts
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Brandon H. Presswood
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| |
Collapse
|
56
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
57
|
Yan J, Kothur K, Mohammad S, Chung J, Patel S, Jones HF, Keating BA, Han VX, Webster R, Ardern-Holmes S, Antony J, Menezes MP, Tantsis E, Gill D, Gupta S, Kandula T, Sampaio H, Farrar MA, Troedson C, Andrews PI, Pillai SC, Heng B, Guillemin GJ, Guller A, Bandodkar S, Dale RC. CSF neopterin, quinolinic acid and kynurenine/tryptophan ratio are biomarkers of active neuroinflammation. EBioMedicine 2023; 91:104589. [PMID: 37119734 PMCID: PMC10165192 DOI: 10.1016/j.ebiom.2023.104589] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Defining the presence of acute and chronic brain inflammation remains a challenge to clinicians due to the heterogeneity of clinical presentations and aetiologies. However, defining the presence of neuroinflammation, and monitoring the effects of therapy is important given its reversible and potentially damaging nature. We investigated the utility of CSF metabolites in the diagnosis of primary neuroinflammatory disorders such as encephalitis and explored the potential pathogenic role of inflammation in epilepsy. METHODS Cerebrospinal fluid (CSF) collected from 341 paediatric patients (169 males, median age 5.8 years, range 0.1-17.1) were examined. The patients were separated into a primary inflammatory disorder group (n = 90) and epilepsy group (n = 80), who were compared with three control groups including neurogenetic and structural (n = 76), neurodevelopmental disorders, psychiatric and functional neurological disorders (n = 63), and headache (n = 32). FINDINGS There were statistically significant increases of CSF neopterin, kynurenine, quinolinic acid and kynurenine/tryptophan ratio (KYN/TRP) in the inflammation group compared to all control groups (all p < 0.0003). As biomarkers, at thresholds with 95% specificity, CSF neopterin had the best sensitivity for defining neuroinflammation (82%, CI 73-89), then quinolinic acid (57%, CI 47-67), KYN/TRP ratio (47%, CI 36-56) and kynurenine (37%, CI 28-48). CSF pleocytosis had sensitivity of 53%, CI 42-64). The area under the receiver operating characteristic curve (ROC AUC) of CSF neopterin (94.4% CI 91.0-97.7%) was superior to that of CSF pleocytosis (84.9% CI 79.5-90.4%) (p = 0.005). CSF kynurenic acid/kynurenine ratio (KYNA/KYN) was statistically decreased in the epilepsy group compared to all control groups (all p ≤ 0.0003), which was evident in most epilepsy subgroups. INTERPRETATION Here we show that CSF neopterin, kynurenine, quinolinic acid and KYN/TRP are useful diagnostic and monitoring biomarkers of neuroinflammation. These findings provide biological insights into the role of inflammatory metabolism in neurological disorders and provide diagnostic and therapeutic opportunities for improved management of neurological diseases. FUNDING Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, University of Sydney, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP 1176660 and Macquarie University.
Collapse
Affiliation(s)
- Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Jason Chung
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Hannah F Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brooke A Keating
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Velda X Han
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Richard Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Simone Ardern-Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Manoj P Menezes
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Esther Tantsis
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Deepak Gill
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Tejaswi Kandula
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Hugo Sampaio
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Christopher Troedson
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - P Ian Andrews
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Sekhar C Pillai
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Anna Guller
- Computational NeuroSurgery Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sushil Bandodkar
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
58
|
Payne A, Taka E, Adinew GM, Soliman KFA. Molecular Mechanisms of the Anti-Inflammatory Effects of Epigallocatechin 3-Gallate (EGCG) in LPS-Activated BV-2 Microglia Cells. Brain Sci 2023; 13:632. [PMID: 37190597 PMCID: PMC10137201 DOI: 10.3390/brainsci13040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic neuroinflammation is associated with many neurodegenerative diseases, such as Alzheimer's. Microglia are the brain's primary immune cells, and when activated, they release various proinflammatory cytokines. Several natural compounds with anti-inflammatory and antioxidant properties, such as epigallocatechin 3-gallate (EGCG), may provide a promising strategy for inflammation-related neurodegenerative diseases involving activated microglia cells. The objective of the current study was to examine the molecular targets underlying the anti-inflammatory effects of EGCG in activated microglia cells. BV-2 microglia cells were grown, stimulated, and treated with EGCG. Cytotoxicity and nitric oxide (NO) production were evaluated. Immunoassay, PCR array, and WES™ Technology were utilized to evaluate inflammatory, neuroprotective modulators as well as signaling pathways involved in the mechanistic action of neuroinflammation. Our findings showed that EGCG significantly inhibited proinflammatory mediator NO production in LPS-stimulated BV-2 microglia cells. In addition, ELISA analysis revealed that EGCG significantly decreases the release of proinflammatory cytokine IL-6 while it increases the release of TNF-α. PCR array analysis showed that EGCG downregulated MIF, CCL-2, and CSF2. It also upregulated IL-3, IL-11, and TNFS10. Furthermore, the analysis of inflammatory signaling pathways showed that EGCG significantly downregulated mRNA expression of mTOR, NF-κB2, STAT1, Akt3, CCL5, and SMAD3 while significantly upregulating the expression of mRNA of Ins2, Pld2, A20/TNFAIP3, and GAB1. Additionally, EGCG reduced the relative protein expression of NF-κB2, mTOR, and Akt3. These findings suggest that EGCG may be used for its anti-inflammatory effects to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health (COPPS, IPH), Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
59
|
Chiang MC, Tsai TY, Wang CJ. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int J Mol Sci 2023; 24:6328. [PMID: 37047299 PMCID: PMC10094159 DOI: 10.3390/ijms24076328] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroinflammation is a critical factor in developing and progressing numerous brain diseases, including neurodegenerative diseases. Chronic or excessive neuroinflammation can lead to neurotoxicity, causing brain damage and contributing to the onset and progression of various brain diseases. Therefore, understanding neuroinflammation mechanisms and developing strategies to control them is crucial for treating brain diseases. Studies have shown that neuroinflammation plays a vital role in the progression of neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD), and stroke. Additionally, the effects of PM2.5 pollution on the brain, including neuroinflammation and neurotoxicity, are well-documented. Quercetin is a flavonoid, a plant pigment in many fruits, vegetables, and grains. Quercetin has been studied for its potential health benefits, including its anti-inflammatory, antioxidant, and anti-cancer properties. Quercetin may also have a positive impact on immune function and allergy symptoms. In addition, quercetin has been shown to have anti-inflammatory and neuroprotective properties and can activate AMP-activated protein kinase (AMPK), a cellular energy sensor that modulates inflammation and oxidative stress. By reducing inflammation and protecting against neuroinflammatory toxicity, quercetin holds promise as a safe and effective adjunctive therapy for treating neurodegenerative diseases and other brain disorders. Understanding and controlling the mechanisms of NF-κB and NLRP3 inflammasome pathways are crucial for preventing and treating conditions, and quercetin may be a promising tool in this effort. This review article aims to discuss the role of neuroinflammation in the development and progression of various brain disorders, including neurodegenerative diseases and stroke, and the impact of PM2.5 pollution on the brain. The paper also highlights quercetin's potential health benefits and anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
60
|
De Kleijn KMA, Zuure WA, Straasheijm KR, Martens MB, Avramut MC, Koning RI, Martens GJM. Human cortical spheroids with a high diversity of innately developing brain cell types. Stem Cell Res Ther 2023; 14:50. [PMID: 36959625 PMCID: PMC10035191 DOI: 10.1186/s13287-023-03261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) human brain spheroids are instrumental to study central nervous system (CNS) development and (dys)function. Yet, in current brain spheroid models the limited variety of cell types hampers an integrated exploration of CNS (disease) mechanisms. METHODS Here we report a 5-month culture protocol that reproducibly generates H9 embryonic stem cell-derived human cortical spheroids (hCSs) with a large cell-type variety. RESULTS We established the presence of not only neuroectoderm-derived neural progenitor populations, mature excitatory and inhibitory neurons, astrocytes and oligodendrocyte (precursor) cells, but also mesoderm-derived microglia and endothelial cell populations in the hCSs via RNA-sequencing, qPCR, immunocytochemistry and transmission electron microscopy. Transcriptomic analysis revealed resemblance between the 5-months-old hCSs and dorsal frontal rather than inferior regions of human fetal brains of 19-26 weeks of gestational age. Pro-inflammatory stimulation of the generated hCSs induced a neuroinflammatory response, offering a proof-of-principle of the applicability of the spheroids. CONCLUSIONS Our protocol provides a 3D human brain cell model containing a wide variety of innately developing neuroectoderm- as well as mesoderm-derived cell types, furnishing a versatile platform for comprehensive examination of intercellular CNS communication and neurological disease mechanisms.
Collapse
Affiliation(s)
- Kim M A De Kleijn
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands.
- NeuroDrug Research Ltd, 6525ED, Nijmegen, The Netherlands.
| | - Wieteke A Zuure
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
| | | | | | - M Cristina Avramut
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Roman I Koning
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
- NeuroDrug Research Ltd, 6525ED, Nijmegen, The Netherlands
| |
Collapse
|
61
|
Olson KE, Mosley RL, Gendelman HE. The potential for treg-enhancing therapies in nervous system pathologies. Clin Exp Immunol 2023; 211:108-121. [PMID: 36041453 PMCID: PMC10019130 DOI: 10.1093/cei/uxac084] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
While inflammation may not be the cause of disease, it is well known that it contributes to disease pathogenesis across a multitude of peripheral and central nervous system disorders. Chronic and overactive inflammation due to an effector T-cell-mediated aberrant immune response ultimately leads to tissue damage and neuronal cell death. To counteract peripheral and neuroinflammatory responses, research is being focused on regulatory T cell enhancement as a therapeutic target. Regulatory T cells are an immunosuppressive subpopulation of CD4+ T helper cells essential for maintaining immune homeostasis. The cells play pivotal roles in suppressing immune responses to maintain immune tolerance. In so doing, they control T cell proliferation and pro-inflammatory cytokine production curtailing autoimmunity and inflammation. For nervous system pathologies, Treg are known to affect the onset and tempo of neural injuries. To this end, we review recent findings supporting Treg's role in disease, as well as serving as a therapeutic agent in multiple sclerosis, myasthenia gravis, Guillain-Barre syndrome, Parkinson's and Alzheimer's diseases, and amyotrophic lateral sclerosis. An ever-broader role for Treg in the control of neurologic disease has been shown for traumatic brain injury, stroke, neurotrophic pain, epilepsy, and psychiatric disorders. To such ends, this review serves to examine the role played by Tregs in nervous system diseases with a focus on harnessing their functional therapeutic role(s).
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
62
|
Bai Y, Zhou J, Zhu H, Tao Y, Wang L, Yang L, Wu H, Huang F, Shi H, Wu X. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinson's disease via JNK/AKT/NFκB signaling pathway. Phytother Res 2023; 37:848-859. [PMID: 36484427 DOI: 10.1002/ptr.7665] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Isoliquiritigenin (ISL) is a flavonoid with numerous pharmacological properties, including anti-inflammation, yet its role in Parkinson's disease (PD) with microglia-mediated neuroinflammation remains unknown. In this study, the effects of ISL on inhibiting microglia-mediated neuroinflammation in PD were evaluated in the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model of PD and in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our results showed that ISL prevented behavioral deficits and excessive microglial activation in MPTP-treated mice. Moreover, ISL was found to prevent the elevation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and mitigate the phosphorylation of c-Jun N-terminal protein kinase (JNK), protein kinase B (AKT), nuclear factor kappa light-chain enhancer of activated B cells (NFκB), and inhibitor of NFκB protein ɑ (IκBɑ) in the substantia nigra and striatum of MPTP-treated mice and LPS-stimulated BV-2 cells. Meanwhile, in LPS-stimulated BV-2 cells, ISL inhibited the production of inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α). In addition, the agonist of JNK partly abolished the inhibitory effects of ISL in LPS-treated BV-2 cells. Our results demonstrated that ISL inhibits microglia-mediated neuroinflammation in PD models probably through deactivating JNK/AKT/NFκB signaling pathways. The novel findings suggest the therapeutic potential of ISL for microglia-mediated neuroinflammation in PD.
Collapse
Affiliation(s)
- Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jin Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Han Zhu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
63
|
Exosomes: A missing link between chronic systemic inflammation and Alzheimer's disease? Biomed Pharmacother 2023; 159:114161. [PMID: 36641928 DOI: 10.1016/j.biopha.2022.114161] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Exosomes are potent mediators of physiological and pathological processes. In Alzheimer's disease and inflammatory disorders, due to exosomes' distinctive ability to cross the blood-brain barrier, a bidirectional communication between the periphery and the central nervous system exists. Since exosomes can carry various biochemical molecules, this review investigates the role of exosomes as possible mediators between chronic systemic inflammatory diseases and Alzheimer's disease. Exosomes carry pro-inflammatory molecules generated in the periphery, travel to the central nervous system, and target glial and neuronal cells. Microglia and astrocytes then become activated, initiating chronic neuroinflammation. As the aging brain is more susceptible to such changes, this state of neuroinflammation can stimulate neuropathologies, impair amyloid-beta clearance capabilities, and generate dysregulated microRNAs that alter the expression of genes critical in Alzheimer's disease pathology. These processes, individually and collectively, become significant risk factors for the development of Alzheimer's disease.
Collapse
|
64
|
Masitinib for mild-to-moderate Alzheimer's disease: results from a randomized, placebo-controlled, phase 3, clinical trial. Alzheimers Res Ther 2023; 15:39. [PMID: 36849969 PMCID: PMC9972756 DOI: 10.1186/s13195-023-01169-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/15/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Masitinib is an orally administered tyrosine kinase inhibitor that targets activated cells of the neuroimmune system (mast cells and microglia). Study AB09004 evaluated masitinib as an adjunct to cholinesterase inhibitor and/or memantine in patients with mild-to-moderate dementia due to probable Alzheimer's disease (AD). METHODS Study AB09004 was a randomized, double-blind, two parallel-group (four-arm), placebo-controlled trial. Patients aged ≥50 years, with clinical diagnosis of mild-to-moderate probable AD and a Mini-Mental State Examination (MMSE) score of 12-25 were randomized (1:1) to receive masitinib 4.5 mg/kg/day (administered orally as two intakes) or placebo. A second, independent parallel group (distinct for statistical analysis and control arm), randomized patients (2:1) to masitinib at an initial dose of 4.5 mg/kg/day for 12 weeks that was then titrated to 6.0 mg/kg/day, or equivalent placebo. Multiple primary outcomes (each tested at a significance level of 2.5%) were least-squares mean change from baseline to week 24 in the Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-cog), or the Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory scale (ADCS-ADL). Safety for each masitinib dose level was compared against a pooled placebo population. RESULTS Masitinib (4.5 mg/kg/day) (n=182) showed significant benefit over placebo (n=176) according to the primary endpoint of ADAS-cog, -1.46 (95% CI [-2.46, -0.45]) (representing an overall improvement in cognition) versus 0.69 (95% CI [-0.36, 1.75]) (representing increased cognitive deterioration), respectively, with a significant between-group difference of -2.15 (97.5% CI [-3.48, -0.81]); p<0.001. For the ADCS-ADL primary endpoint, the between-group difference was 1.82 (97.5% CI [-0.15, 3.79]); p=0.038 (i.e., 1.01 (95% CI [-0.48, 2.50]) (representing an overall functional improvement) versus -0.81 (95% CI [-2.36, 0.74]) (representing increased functional deterioration), respectively). Safety was consistent with masitinib's known profile (maculo-papular rash, neutropenia, hypoalbuminemia). Efficacy results from the independent parallel group of titrated masitinib 6.0 mg/kg/day versus placebo (n=186 and 91 patients, respectively) were inconclusive and no new safety signal was observed. CONCLUSIONS Masitinib (4.5 mg/kg/day) may benefit people with mild-to-moderate AD. A confirmatory study has been initiated to substantiate these data. TRIAL REGISTRATION EudraCT: 2010-021218-50. CLINICALTRIALS gov : NCT01872598.
Collapse
|
65
|
Paramanik V, Kurrey K, Singh P, Tiwari S. Roles of genistein in learning and memory during aging and neurological disorders. Biogerontology 2023; 24:329-346. [PMID: 36828983 DOI: 10.1007/s10522-023-10020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023]
Abstract
Genistein (GEN) is a non-steroidal phytoestrogen that belongs to the isoflavone class. It is abundantly found in soy. Soy and its products are used as food components in many countries including India. The present review is focused to address roles of GEN in brain functions in the context of learning and memory as a function of aging and neurological disorders. Memory decline is one of the most disabling features observed during normal aging and age-associated neurodegenerative disorders namely Alzheimer's disease (AD) and Parkinson's disease (PD), etc. Anatomical, physiological, biochemical and molecular changes in the brain with advancement of age and pathological conditions lead to decline of cognitive functions. GEN is chemically comparable to estradiol and binds to estrogen receptors (ERs). GEN acts through ERs and mimics estrogen action. After binding to ERs, GEN regulates a plethora of brain functions including learning and memory; however detailed study still remains elusive. Due to the neuroprotective, anti-oxidative and anti-inflammatory properties, GEN is used to restore or improve memory functions in different animal models and humans. The present review may be helpful to understand roles of GEN in learning and memory during aging and neurological disorders, its direction of research and therapeutic perspectives.
Collapse
Affiliation(s)
- Vijay Paramanik
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India.
| | - Khuleshwari Kurrey
- Department of Psychiatry and Behavioral Sciences, Neurobiology Division, John Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Padmanabh Singh
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| | - Sneha Tiwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| |
Collapse
|
66
|
Gao Q, Ma R, Shi L, Wang S, Liang Y, Zhang Z. Anti-glycation and anti-inflammatory activities of anthocyanins from purple vegetables. Food Funct 2023; 14:2034-2044. [PMID: 36723267 DOI: 10.1039/d2fo03645b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Anthocyanins may be effective bioactive constituents to reduce the potential risk of chronic diseases induced by glycation and inflammation. In the present study, the anti-glycation and anti-inflammatory activities of anthocyanins derived from purple cabbage (PCA), purple sweet potato (PSP), purple corn (PCO) and gynura bicolor (GB) were evaluated. According to the results from the bovine serum albumin (BSA)-fructose and BSA-methylglyoxal (MGO) model, the inhibition effects of anthocyanins on non-enzymatic glycosylation not only acted on the intermediate stage, but also played a certain role in the entire non-enzymatic glycosylation process, among which anthocyanins from PCA exhibited the best inhibitory effect. The anthocyanins from all four purple vegetables could trap MGO effectively (p > 0.05). The anthocyanins also presented a good inhibitory effect on amyloid beta peptide (Aβ)1-42 fibrillation, even better than that of aminoguanidine (AG), in a thermal induction assay. Furthermore, anthocyanins from PCA, PSP, PCO and GB showed significant anti-inflammatory effects, inhibiting pro-inflammatory factor (i.e., NO and TNF-α) production, among which the anthocyanins from PCA and PSP exhibited a higher inhibition effect than the others. This is probably due to the suppression of the TLR4-mediated MyD88 signaling pathway in the lipopolysaccharide (LPS)-induced BV2 cells based on the western blot analysis. Anthocyanins from purple vegetables could be used as a value-added food ingredient for the food industry. Food fortification with anthocyanins might be a promising way to protect humans against various chronic diseases caused by glycation and inflammation.
Collapse
Affiliation(s)
- Qingchao Gao
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Rong Ma
- College of agriculture and animal husbandry, Qinghai University, Xining, 810016, China
| | - Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Shulin Wang
- College of agriculture and animal husbandry, Qinghai University, Xining, 810016, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| |
Collapse
|
67
|
Giffin KA, Lovelock DF, Besheer J. Toll-like receptor 3 neuroimmune signaling and behavior change: A strain comparison between Lewis and Wistar rats. Behav Brain Res 2023; 438:114200. [PMID: 36334783 PMCID: PMC10123804 DOI: 10.1016/j.bbr.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
There are many unanswered questions about the interaction between the immune system and behavior change, including the contributions of individual differences. The present study modeled individual differences in the immune system by comparing inbred Lewis rats, which have dysregulated stress and immune systems, to their genetically diverse parent strain, Wistar rats. The objective was to examine the consequences of an immune challenge on behavior and neuroimmune signaling in both strains. Peripheral administration of the toll-like receptor 3 (TLR3) agonist and viral memetic polyinosinic-polycytidylic acid (poly(I:C)) induced behavior changes in both strains, reducing locomotor activity and increasing avoidance behavior (time on the dark side of the light-dark box). Furthermore, poly(I:C) induced hyperarousal and increased avoidance behavior more in female Lewis than female Wistar rats. Baseline strain differences were also observed: Lewis rats had higher avoidance behavior and lower startle response than Wistars. Lewis rats also had lower levels of peripheral inflammation, as measured by spleen weight. Finally, poly(I:C) increased expression of genes in the TLR3 pathway, cytokine genes, and CD11b, a gene associated with proinflammatory actions of microglia, in the prelimbic cortex and central amygdala, with greater expression of cytokine genes in male rats. Lewis rats had lower baseline expression of some neuroimmune genes, particularly CD11b. Overall, we found constitutive strain differences in immune profiles and baseline differences in behavior, yet poly(I:C) generally induced similar behavior changes in males while hyperarousal and avoidance behavior were heightened in female Lewis rats.
Collapse
Affiliation(s)
| | | | - Joyce Besheer
- Bowles Center for Alcohol Studies, USA; Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
68
|
Sadaka AH, Canuel J, Febo M, Johnson CT, Bradshaw HB, Ortiz R, Ciumo F, Kulkarni P, Gitcho MA, Ferris CF. Effects of inhaled cannabis high in Δ9-THC or CBD on the aging brain: A translational MRI and behavioral study. Front Aging Neurosci 2023; 15:1055433. [PMID: 36819730 PMCID: PMC9930474 DOI: 10.3389/fnagi.2023.1055433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
With the recent legalization of inhaled cannabis for medicinal and recreational use, the elderly represents one of the newest, rapidly growing cohorts of cannabis users. To understand the neurobiological effects of cannabis on the aging brain, 19-20 months old mice were divided into three groups exposed to vaporized cannabis containing ~10% Δ9-THC, ~10% CBD, or placebo for 30 min each day. Voxel based morphometry, diffusion weighted imaging, and resting state functional connectivity data were gathered after 28 days of exposure and following a two-week washout period. Tail-flick, open field, and novel object preference tests were conducted to explore analgesic, anxiolytic, and cognitive effects of cannabis, respectively. Vaporized cannabis high in Δ9-THC and CBD achieved blood levels reported in human users. Mice showed antinociceptive effects to chronic Δ9-THC without tolerance while the anxiolytic and cognitive effects of Δ9-THC waned with treatment. CBD had no effect on any of the behavioral measures. Voxel based morphometry showed a decrease in midbrain dopaminergic volume to chronic Δ9-THC followed but an increase after a two-week washout. Fractional anisotropy values were reduced in the same area by chronic Δ9-THC, suggesting a reduction in gray matter volume. Cannabis high in CBD but not THC increased network strength and efficiency, an effect that persisted after washout. These data would indicate chronic use of inhaled cannabis high in Δ9-THC can be an effective analgesic but not for treatment of anxiety or cognitive decline. The dopaminergic midbrain system was sensitive to chronic Δ9-THC but not CBD showing robust plasticity in volume and water diffusivity prior to and following drug cessation an effect possibly related to the abuse liability of Δ9-THC. Chronic inhaled CBD resulted in enhanced global network connectivity that persisted after drug cessation. The behavioral consequences of this sustained change in brain connectivity remain to be determined.
Collapse
Affiliation(s)
- Aymen H. Sadaka
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Justin Canuel
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Marcelo Febo
- Department of Psychiatry and Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clare T. Johnson
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Heather B. Bradshaw
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Federica Ciumo
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Michael A. Gitcho
- Department of Biological Sciences, Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
69
|
Costantini E, Carrarini C, Borrelli P, De Rosa M, Calisi D, Consoli S, D’Ardes D, Cipollone F, Di Nicola M, Onofrj M, Reale M, Bonanni L. Different peripheral expression patterns of the nicotinic acetylcholine receptor in dementia with Lewy bodies and Alzheimer's disease. Immun Ageing 2023; 20:3. [PMID: 36647139 PMCID: PMC9843938 DOI: 10.1186/s12979-023-00329-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The diffuse distribution of nicotinic cholinergic receptors (nAChRs) in both brain and peripheral immune cells points out their involvement in several pathological conditions. Indeed, the deregulated function of the nAChR was previously correlated with cognitive decline and neuropsychiatric symptoms in Alzheimer's disease (AD) and Dementia with Lewy bodies (DLB). The evaluation in peripheral immune cells of nAChR subtypes, which could reflect their expression in brain regions, is a prominent investigation area. OBJECTIVES This study aims to evaluate the expression levels of both the nAChR subunits and the main known inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) of patients with DLB and AD to better characterize their involvement in these two diseases. RESULTS Higher gene expression levels of TNFα, IL6 and IL1β were observed in DLB and AD patients in comparison with healthy controls (HC). In our cohort, a reduction of nAChRα4, nAChRβ2 and nAChRβ4 was detected in both DLB and AD with respect to HC. Considering nAChR gene expressions in DLB and AD, significant differences were observed for nAChRα3, nAChRα4, nAChRβ2 and nAChRβ4 between the two groups. Moreover, the acetylcholine esterase (AChE) gene expression was significantly higher in DLB than in AD. Correlation analysis points out the relation between different nAChR subtype expressions in DLB (nAChRβ2 vs nAChRα3; nAChRα4 vs nAChRα3) and AD (nAChRα4 vs nAChRα3; nAChRα4 vs nAChRβ4; nAChRα7 vs nAChRα3; nAChRα7 vs nAChRα4). CONCLUSIONS Different gene expressions of both pro-inflammatory cytokines and nAChR subtypes may represent a peripheral link between inflammation and neurodegeneration. Inflammatory cytokines and different nAChRs should be valid and accurate peripheral markers for the clinical diagnosis of DLB and AD. However, although nAChRs show a great biological role in the regulation of inflammation, no significant correlation was detected between nAChR subtypes and the examined cytokines in our cohort of patients.
Collapse
Affiliation(s)
- E. Costantini
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - C. Carrarini
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - P. Borrelli
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. De Rosa
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. Calisi
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - S. Consoli
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. D’Ardes
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - F. Cipollone
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Di Nicola
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Onofrj
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - M. Reale
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - L. Bonanni
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
70
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
71
|
Ma C, Li H, Lu S, Li X, Wang S, Wang W. Tryptase and Exogenous Trypsin: Mechanisms and Ophthalmic Applications. J Inflamm Res 2023; 16:927-939. [PMID: 36891173 PMCID: PMC9987324 DOI: 10.2147/jir.s402900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Ocular injuries caused by inflammation, surgery or accidents are subject to a physiological healing process that ultimately restores the structure and function of the damaged tissue. Tryptase and trypsin are essential component of this process and they play a role in promoting and reducing the inflammatory response of tissues, respectively. Following injury, tryptase is endogenously produced by mast cells and can exacerbate the inflammatory response both by stimulating neutrophil secretion, and through its agonist action on proteinase-activated receptor 2 (PAR2). In contrast, exogenously introduced trypsin promotes wound healing by attenuating inflammatory responses, reducing oedema and protecting against infection. Thus, trypsin may help resolve ocular inflammatory symptoms and promote faster recovery from acute tissue injury associated with ophthalmic diseases. This article describes the roles of tryptase and exogenous trypsin in affected tissues after onset of ocular injury, and the clinical applications of trypsin injection.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.,Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, People's Republic of China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, UK
| | - Shuai Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenzhan Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
72
|
Portnyagina OY, Ivashkevich DN, Duizen IV, Shevchenko LS, Novikova OD. Effect of Non-Specific Porins from the Outer Membrane of Yersinia pseudotuberculosis on Mice Brain Cortex Tissues. BIOCHEMISTRY (MOSCOW) 2023; 88:142-151. [PMID: 37068878 DOI: 10.1134/s0006297923010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
It was found that a single-dose immunization of mice with Yersinia pseudotuberculosis porins OmpF and OmpC causes development of pathological changes in the deep layers of cerebral cortex characterized by dystrophic changes in the cells against the background of the increasing titer of specific antibodies. At the same time, the increased level of caspase-3 expression is observed in the neurons, which indicates induction of proapoptotic signaling pathways. The obtained results indicate potential ability of nonspecific pore-forming proteins of the outer membrane of Gram-negative bacteria to initiate development of degenerative changes in brain cells.
Collapse
Affiliation(s)
- Olga Yu Portnyagina
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia.
| | - Darya N Ivashkevich
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Inessa V Duizen
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Ludmila S Shevchenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Olga D Novikova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia
| |
Collapse
|
73
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
74
|
Yuan T, Dong L, Pearsall EA, Zhou K, Cheng R, Ma JX. The Protective Role of Microglial PPARα in Diabetic Retinal Neurodegeneration and Neurovascular Dysfunction. Cells 2022; 11:cells11233869. [PMID: 36497130 PMCID: PMC9739170 DOI: 10.3390/cells11233869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Microglial activation and subsequent pathological neuroinflammation contribute to diabetic retinopathy (DR). However, the underlying mechanisms of microgliosis, and means to effectively suppress pathological microgliosis, remain incompletely understood. Peroxisome proliferator-activated receptor alpha (PPARα) is a transcription factor that regulates lipid metabolism. The present study aimed to determine if PPARα affects pathological microgliosis in DR. In global Pparα mice, retinal microglia exhibited decreased structural complexity and enlarged cell bodies, suggesting microglial activation. Microglia-specific conditional Pparα-/- (PCKO) mice showed decreased retinal thickness as revealed by optical coherence tomography. Under streptozotocin (STZ)-induced diabetes, diabetic PCKO mice exhibited decreased electroretinography response, while diabetes-induced retinal dysfunction was alleviated in diabetic microglia-specific Pparα-transgenic (PCTG) mice. Additionally, diabetes-induced retinal pericyte loss was exacerbated in diabetic PCKO mice and alleviated in diabetic PCTG mice. In cultured microglial cells with the diabetic stressor 4-HNE, metabolic flux analysis demonstrated that Pparα ablation caused a metabolic shift from oxidative phosphorylation to glycolysis. Pparα deficiency also increased microglial STING and TNF-α expression. Taken together, these findings revealed a critical role for PPARα in pathological microgliosis, neurodegeneration, and vascular damage in DR, providing insight into the underlying molecular mechanisms of microgliosis in this context and suggesting microglial PPARα as a potential therapeutic target.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Elizabeth A. Pearsall
- Vision Research Center, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Kelu Zhou
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Rui Cheng
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Correspondence: (R.C.); (J.-X.M.); Tel.: +1-336-716-3914 (R.C.); +1-336-716-4676 (J.-X.M.)
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Correspondence: (R.C.); (J.-X.M.); Tel.: +1-336-716-3914 (R.C.); +1-336-716-4676 (J.-X.M.)
| |
Collapse
|
75
|
Hassan AHE, Kim HJ, Gee MS, Park JH, Jeon HR, Lee CJ, Choi Y, Moon S, Lee D, Lee JK, Park KD, Lee YS. Positional scanning of natural product hispidol's ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases. J Enzyme Inhib Med Chem 2022; 37:768-780. [PMID: 35196956 PMCID: PMC8881063 DOI: 10.1080/14756366.2022.2036737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/03/2022] Open
Abstract
Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated in vitro for their impact on microglia viability, induced production of proinflammatory mediators and MAO-B inhibition mechanism. Amongst tested compounds, 1p was a safe potent competitive reversible MAO-B inhibitor and inhibitor of microglial production of neuroinflammatory mediators; NO and PGE2. In-silico study provided insights into molecular basis of the observed selective MAO B inhibition. This study presents compound 1p as a promising lead compound for management of neurodegenerative disease.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye Rim Jeon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Cheol Jung Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yeonwoo Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Suyeon Moon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
76
|
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 2022; 16:1015556. [PMID: 36439206 PMCID: PMC9693782 DOI: 10.3389/fncel.2022.1015556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system (CNS) neurons are classically considered the functional unit of the brain. Analysis of the physical connections and co-activation of neurons, referred to as structural and functional connectivity, respectively, is a metric used to understand their interplay at a higher level. A myriad of glial cell types throughout the brain composed of microglia, astrocytes and oligodendrocytes are key players in the maintenance and regulation of neuronal network dynamics. Microglia are the central immune cells of the CNS, able to affect neuronal populations in number and connectivity, allowing for maturation and plasticity of the CNS. Microglia and astrocytes are part of the neurovascular unit, and together they are essential to protect and supply nutrients to the CNS. Oligodendrocytes are known for their canonical role in axonal myelination, but also contribute, with microglia and astrocytes, to CNS energy metabolism. Glial cells can achieve this variety of roles because of their heterogeneous populations comprised of different states. The neuroglial relationship can be compromised in various manners in case of pathologies affecting development and plasticity of the CNS, but also consciousness and mood. This review covers structural and functional connectivity alterations in schizophrenia, major depressive disorder, and disorder of consciousness, as well as their correlation with vascular connectivity. These networks are further explored at the cellular scale by integrating the role of glial cell diversity across the CNS to explain how these networks are affected in pathology.
Collapse
Affiliation(s)
- Micaël Carrier
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
- Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
77
|
Sinclair SH, Miller E, Talekar KS, Schwartz SS. Diabetes mellitus associated neurovascular lesions in the retina and brain: A review. FRONTIERS IN OPHTHALMOLOGY 2022; 2:1012804. [PMID: 38983558 PMCID: PMC11182219 DOI: 10.3389/fopht.2022.1012804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 07/11/2024]
Abstract
Diabetes mellitus (DM) is now recognized as a system-wide, autoimmune, inflammatory, microvascular disorder, which, in the retina and brain results in severe multifocal injury now recognized as a leading cause, world-wide, of progressive vision loss and dementia. To address this problem, resulting primarily from variations in glycemia in the prediabetic and overt diabetic states, it must be realized that, although some of the injury processes associated with diabetes may be system wide, there are varying responses, effector, and repair mechanisms that differ from organ to organ or within varying cell structures. Specifically, within the retina, and similarly within the brain cortex, lesions occur of the "neurovascular unit", comprised of focal microvascular occlusions, inflammatory endothelial and pericyte injury, with small vessel leakage resulting in injury to astrocytes, Müller cells, and microglia, all of which occur with progressive neuronal apoptosis. Such lesions are now recognized to occur before the first microaneurysms are visible to imaging by fundus cameras or before they result in detectable symptoms or signs recognizable to the patient or clinician. Treatments, therefore, which currently are not initiated within the retina until edema develops or there is progression of vascular lesions that define the current staging of retinopathy, and in the brain only after severe signs of cognitive failure. Treatments, therefore are applied relatively late with some reduction in progressive cellular injury but with resultant minimal vision or cognitive improvement. This review article will summarize the multiple inflammatory and remediation processes currently understood to occur in patients with diabetes as well as pre-diabetes and summarize as well the current limitations of methods for assessing the structural and functional alterations within the retina and brain. The goal is to attempt to define future screening, monitoring, and treatment directions that hopefully will prevent progressive injury as well as enable improved repair and attendant function.
Collapse
Affiliation(s)
- Stephen H Sinclair
- Pennsylvania College of Optometry, Salus University, Philadelphia, PA, United States
| | - Elan Miller
- Division of Vascular Neurology, Vickie & Jack Farber Institute for Institute for Neuroscience, Sidney Kimmel Medical College (SKMC) Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran S Talekar
- Department of Radiology, Section of Neuroradiology and ENT Radiology, Clinical Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging at Thomas Jefferson University Hospital and The Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC) Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Stanley S Schwartz
- Department of Endocrinology and Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Main Line Health System, Philadelphia, PA, United States
| |
Collapse
|
78
|
Ikram FZ, Arulsamy A, Retinasamy T, Shaikh MF. The Role of High Mobility Group Box 1 (HMGB1) in Neurodegeneration: A Systematic Review. Curr Neuropharmacol 2022; 20:2221-2245. [PMID: 35034598 PMCID: PMC9886836 DOI: 10.2174/1570159x20666220114153308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) protein is a damage-associated molecular pattern (DAMP) that plays an important role in the repair and regeneration of tissue injury. It also acts as a pro-inflammatory cytokine through the activation of toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE), to elicit the neuroinflammatory response. HMGB1 may aggravate several cellular responses, which may lead to pathological inflammation and cellular death. Thus, there have been a considerable amount of research into the pathological role of HMGB1 in diseases. However, whether the mechanism of action of HMGB1 is similar in all neurodegenerative disease pathology remains to be determined. OBJECTIVE Therefore, this systematic review aimed to critically evaluate and elucidate the role of HMGB1 in the pathology of neurodegeneration based on the available literature. METHODS A comprehensive literature search was performed on four databases; EMBASE, PubMed, Scopus, and CINAHL Plus. RESULTS A total of 85 articles were selected for critical appraisal, after subjecting to the inclusion and exclusion criteria in this study. The selected articles revealed that HMGB1 levels were found elevated in most neurodegeneration except in Huntington's disease and Spinocerebellar ataxia, where the levels were found decreased. This review also showcased that HMGB1 may act on distinctive pathways to elicit its pathological response leading to the various neurodegeneration processes/ diseases. CONCLUSION While there have been promising findings in HMGB1 intervention research, further studies may still be required before any HMGB1 intervention may be recommended as a therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fathimath Zaha Ikram
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia,Address correspondence to this author at the Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia; Tel/Fax: +60 3 5514 4483; E-mail:
| |
Collapse
|
79
|
Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int J Mol Sci 2022; 23:ijms232112958. [PMID: 36361750 PMCID: PMC9658704 DOI: 10.3390/ijms232112958] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
80
|
Liu R, Zhang Z, Chen Y, Liao J, Wang Y, Liu J, Lin Z, Xiao G. Choroid plexus epithelium and its role in neurological diseases. Front Mol Neurosci 2022; 15:949231. [PMID: 36340696 PMCID: PMC9633854 DOI: 10.3389/fnmol.2022.949231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 02/16/2024] Open
Abstract
Choroid plexus epithelial cells can secrete cerebrospinal fluid into the ventricles, serving as the major structural basis of the selective barrier between the neurological system and blood in the brain. In fact, choroid plexus epithelial cells release the majority of cerebrospinal fluid, which is connected with particular ion channels in choroid plexus epithelial cells. Choroid plexus epithelial cells also produce and secrete a number of essential growth factors and peptides that help the injured cerebrovascular system heal. The pathophysiology of major neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, as well as minor brain damage diseases like hydrocephalus and stroke is still unknown. Few studies have previously connected choroid plexus epithelial cells to the etiology of these serious brain disorders. Therefore, in the hopes of discovering novel treatment options for linked conditions, this review extensively analyzes the association between choroid plexus epithelial cells and the etiology of neurological diseases such as Alzheimer's disease and hydrocephalus. Finally, we review CPE based immunotherapy, choroid plexus cauterization, choroid plexus transplantation, and gene therapy.
Collapse
Affiliation(s)
- Ruizhen Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Lin
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
81
|
Abstract
Spirochetes of the genus Borrelia can spread to various organs including the central nervous system. The neurological disease manifestations in these bacterial infections are commonly referred as neuroborreliosis. Currently, long-term antibiotic treatment is the only the United States Food and Drug Administration-approved option for those suffering from neuroborreliosis. Using Borrelia hermsii infection in mice, we have previously established a relapsing fever neuroborreliosis model. In this model, we found that the induction of interleukin (IL)-17A signaling plays a major role in the pathogenesis of relapsing fever neuroborreliosis. We show that anti-IL-17A antibody treatment can ameliorate the pathology. Our data suggest that IL-17A blockade may be a therapeutic strategy for controlling relapsing fever neuroborreliosis. Relapsing fever due to Borrelia hermsii is characterized by recurrent bacteremia episodes. However, infection of B. hermsii, if not treated early, can spread to various organs including the central nervous system (CNS). CNS disease manifestations are commonly referred to as relapsing fever neuroborreliosis (RFNB). In the mouse model of B. hermsii infection, we have previously shown that the development of RFNB requires innate immune cells as well as T cells. Here, we found that prior to the onset of RFNB, an increase in the systemic proinflammatory cytokine response followed by sustained levels of IP-10 concurrent with the CNS disease phase. RNA sequencing analysis of the spinal cord tissue during the disease phase revealed an association of the interleukin (IL)-17 signaling pathway in RFNB. To test a possible role for IL-17 in RFNB, we compared B. hermsii infection in wild-type and IL-17A−/− mice. Although the onset of bacteremia and protective anti-B. hermsii antibody responses occurred similarly, the blood-brain barrier permeability, proinflammatory cytokine levels, immune cell infiltration in the spinal cord, and RFNB manifestations were significantly diminished in IL-17A−/− mice compared to wild-type mice. Treatment of B. hermsii-infected wild-type mice with anti-IL-17A antibody ameliorated the severity of spinal cord inflammation, microglial cell activation, and RFNB. These data suggest that the IL-17 signaling pathway plays a major role in the pathogenesis of RFNB, and IL-17A blockade may be a therapeutic modality for controlling neuroborreliosis.
Collapse
|
82
|
Vizuete AFK, Fróes F, Seady M, Zanotto C, Bobermin LD, Roginski AC, Wajner M, Quincozes-Santos A, Gonçalves CA. Early effects of LPS-induced neuroinflammation on the rat hippocampal glycolytic pathway. J Neuroinflammation 2022; 19:255. [PMID: 36221097 PMCID: PMC9552490 DOI: 10.1186/s12974-022-02612-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1β and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil. .,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Caroline Zanotto
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Carlos Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
83
|
Wu YG, Song LJ, Yin LJ, Yin JJ, Wang Q, Yu JZ, Xiao BG, Ma CG. The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer's disease. Neural Regen Res 2022; 18:947-954. [PMID: 36254973 PMCID: PMC9827789 DOI: 10.4103/1673-5374.355747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer's disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes; these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer's disease. Our literature search found that phenotypic changes occur continuously in Alzheimer's disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer's disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Ge Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jie-Zhong Yu
- Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China,Correspondence to: Cun-Gen Ma, .
| |
Collapse
|
84
|
Crawford LC, Kim S, Karelia D, Sepulveda DE, Morgan DJ, Lü J, Henderson-Redmond AN. Decursinol-mediated antinociception and anti-allodynia in acute and neuropathic pain models in male mice: Tolerance and receptor profiling. Front Pharmacol 2022; 13:968976. [PMID: 36249788 PMCID: PMC9558739 DOI: 10.3389/fphar.2022.968976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Korean scientists have shown that oral administration of Angelica gigas Nakai (AGN) root alcoholic extract and the metabolite of its pyranocoumarins, decursinol, have antinociceptive properties across various thermal and acute inflammatory pain models. The objectives of this study were 1) to assess whether tolerance develops to the antinociceptive effects of once-daily intraperitoneally administered decursinol (50 mg/kg) in acute thermal pain models, 2) to establish its anti-allodynic efficacy and potential tolerance development in a model of chemotherapy-evoked neuropathic pain (CENP) and 3) to probe the involvement of select receptors in mediating the pain-relieving effects with antagonists. The results show that decursinol induced antinociception in both the hot plate and tail-flick assays and reversed mechanical allodynia in mice with cisplatin-evoked neuropathic pain. Tolerance was detected to the antinociceptive effects of decursinol in the hot plate and tail-flick assays and to the anti-allodynic effects of decursinol in neuropathic mice. Pretreatment with either the 5-HT2 antagonist methysergide, the 5-HT2A antagonist volinanserin, or the 5-HT2C antagonist SB-242084 failed to attenuate decursinol-induced antinociception in the tail-flick assay. While pretreatment with the cannabinoid inverse agonists rimonabant and SR144528 failed to modify decursinol-induced anti-allodynia, pretreatment with the opioid antagonist naloxone partially attenuated the anti-allodynic effects of decursinol. In conclusion, our data support decursinol as an active phytochemical of AGN having both antinociceptive and anti-allodynic properties. Future work warrants a more critical investigation of potential receptor mechanisms as they are likely more complicated than initially reported.
Collapse
Affiliation(s)
- LaTaijah C. Crawford
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| | - Sangyub Kim
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Deepkamal Karelia
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Diana E. Sepulveda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Daniel J. Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| | - Junxuan Lü
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | | |
Collapse
|
85
|
Methamphetamine Induces Systemic Inflammation and Anxiety: The Role of the Gut–Immune–Brain Axis. Int J Mol Sci 2022; 23:ijms231911224. [PMID: 36232524 PMCID: PMC9569811 DOI: 10.3390/ijms231911224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive drug abused by millions of users worldwide, thus becoming a global health concern with limited management options. The inefficiency of existing treatment methods has driven research into understanding the mechanisms underlying METH-induced disorders and finding effective treatments. This study aims to understand the complex interactions of the gastrointestinal–immune–nervous systems following an acute METH dose administration as one of the potential underlying molecular mechanisms concentrating on the impact of METH abuse on gut permeability. Findings showed a decreased expression of tight junction proteins ZO-1 and EpCAm in intestinal tissue and the presence of FABP-1 in sera of METH treated mice suggests intestinal wall disruption. The increased presence of CD45+ immune cells in the intestinal wall further confirms gut wall inflammation/disruption. In the brain, the expression of inflammatory markers Ccl2, Cxcl1, IL-1β, TMEM119, and the presence of albumin were higher in METH mice compared to shams, suggesting METH-induced blood–brain barrier disruption. In the spleen, cellular and gene changes are also noted. In addition, mice treated with an acute dose of METH showed anxious behavior in dark and light, open field, and elevated maze tests compared to sham controls. The findings on METH-induced inflammation and anxiety may provide opportunities to develop effective treatments for METH addiction in the future.
Collapse
|
86
|
Laudanski K, Liu D, Okeke T, Restrepo M, Szeto WY. Persistent Depletion of Neuroprotective Factors Accompanies Neuroinflammatory, Neurodegenerative, and Vascular Remodeling Spectra in Serum Three Months after Non-Emergent Cardiac Surgery. Biomedicines 2022; 10:2364. [PMID: 36289630 PMCID: PMC9598177 DOI: 10.3390/biomedicines10102364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
We hypothesized that the persistent depletion of neuroprotective markers accompanies neuroinflammation and neurodegeneration in patients after cardiac surgery. A total of 158 patients underwent elective heart surgery with their blood collected before surgery (tbaseline) and 24 h (t24hr), seven days (t7d), and three months (t3m) post-surgery. The patients' serum was measured for markers of neurodegeneration (τau, τaup181-183, amyloid β1-40/β2-42, and S100), atypical neurodegeneration (KLK6 and NRGN), neuro-injury (neurofilament light/heavy, UC-HL, and GFAP), neuroinflammation (YKL-40 and TDP-43), peripheral nerve damage (NCAM-1), neuroprotection (apoE4, BDNF, fetuin, and clusterin), and vascular smoldering inflammation (C-reactive protein, CCL-28 IL-6, and IL-8). The mortality at 28 days, incidence of cerebrovascular accidents (CVA), and functional status were followed for three months. The levels of amyloid β1-40/β1-42 and NF-L were significantly elevated at all time points. The levels of τau, S100, KLK6, NRGN, and NCAM-1 were significantly elevated at 24 h. A cluster analysis demonstrated groupings around amyloids, KLK6, and NCAM-1. YKL-40, but not TDP-43, was significantly elevated across all time points. BDNF, apoE4, fetuin, and clusterin levels were significantly diminished long-term. IL-6 and IL-8 levles returned to baseline at t3m. The levels of CRP, CCL-28, and Hsp-70 remained elevated. At 3 months, 8.2% of the patients experienced a stroke, with transfusion volume being a significant variable. Cardiac-surgery patients exhibited persistent peripheral and neuronal inflammation, blood vessel remodeling, and the depletion of neuroprotective factors 3 months post-procedure.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China
| | - Tony Okeke
- Department of Bioengineering, Drexel University, Philadelphia, PA 19104, USA
| | - Mariana Restrepo
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilson Y. Szeto
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
87
|
Huang G, Lu X, Qiu Y, Bi L, Ye P, Yang M, Shen Y, Jin H, Han J. Hetero-aryl bromide precursor fluorine-18 radiosynthesis and preclinical evaluation of a novel positron emission tomography (PET) tracer [ 18F]GSK1482160. Bioorg Med Chem 2022; 73:116996. [PMID: 36126443 DOI: 10.1016/j.bmc.2022.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
The purinergic P2X7 receptor (P2X7R), an ATP gated ion channel, is an important therapeutic target for various inflammatory immune and neurodegenerative diseases. A novel P2X7R targeting radiotracer GSK1482160 was radiosynthesized by hetero-aryl bromides precursor 10 with [18F]Et4NF, 20-30 % radiochemical yield, > 68 GBq/μmol specific activity, >98 % radiochemical purity. Evaluation in healthy male Sprague-Dawley rats revealed that [18F]GSK1482160 ([18F]11) was stably retained 87.81 %, 72.45 %, and 56.32 % in brain, blood and liver respectively 60-min post-injection. Ex-vivo biodistribution of [18F]11 proved that it was able to target the P2X7R in vivo and there was no defluorination in the major organs. PET/MRI imaging and autoradiography revealed that [18F]11 was able to penetrate the blood-brain barrier (BBB) and to be a promising P2X7R PET radioligand for clinical translation.
Collapse
Affiliation(s)
- Guolong Huang
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaolei Lu
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China
| | - Yifan Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Peizhen Ye
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yanfang Shen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China.
| |
Collapse
|
88
|
Guo X, Zhong K, Zhang J, Hui L, Zou L, Xue H, Guo J, Zheng S, Huang D, Tan M. Gut microbiota can affect bone quality by regulating serum estrogen levels. Am J Transl Res 2022; 14:6043-6055. [PMID: 36247294 PMCID: PMC9556462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Germ-free (GF) animals and animal models of the antibiotic disruption of gut microbiota are widely used to explore studies of gut microbiota-host interactions. The role of gut microbiota in bone growth and development has been well explained in studies on GF mice, indicating that changes in the gut microbiota may affect normal bone developmental processes. The mechanisms, however, are yet unclear. This study aims to clarify the effect of antibiotic treatment disrupting the gut microbiota on bone development in mice and investigate the possible causes of this effect. Our results show that long-term antibiotic feeding significantly alters gut microbiota composition in mice, reduces the bone mineral density of the spinal region, and leads to changes in trabecular microstructure. Interestingly, we found a significant decrease in the serum estrogen levels in mice treated with antibiotics, suggesting that gut microbiota may affect bone quality by regulating serum estrogen levels. These results may help understand how gut ecological dysregulation affects sex hormones and provide a new conception for the clinical treatments of osteoporosis.
Collapse
Affiliation(s)
- Xing Guo
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Kai Zhong
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Jianhua Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Lv Hui
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Longfei Zou
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Hao Xue
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Jiang Guo
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Shuling Zheng
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Denghua Huang
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| | - Meiyun Tan
- Department of Orthopedic Surgery, The Affiliated Hospital of Southwest Medical University No. 25 Taiping Road, Luzhou 646000, Sichuan, People's Republic of China
| |
Collapse
|
89
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
90
|
Zhang F, Ran Y, Tahir M, Li Z, Wang J, Chen X. Regulation of N6-methyladenosine (m6A) RNA methylation in microglia-mediated inflammation and ischemic stroke. Front Cell Neurosci 2022; 16:955222. [PMID: 35990887 PMCID: PMC9386152 DOI: 10.3389/fncel.2022.955222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcription modification, widely occurring in eukaryotic mRNA and non-coding RNA. m6A modification is highly enriched in the mammalian brain and is associated with neurological diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD). Ischemic stroke (IS) was discovered to alter the cerebral m6A epi-transcriptome, which might have functional implications in post-stroke pathophysiology. Moreover, it is observed that m6A modification could regulate microglia’s pro-inflammatory and anti-inflammatory responses. Given the critical regulatory role of microglia in the inflammatory processes in the central nervous system (CNS), we speculate that m6A modification could modulate the post-stroke microglial inflammatory responses. This review summarizes the vital regulatory roles of m6A modification in microglia-mediated inflammation and IS. Stroke is associated with a high recurrence rate, understanding the relationship between m6A modification and stroke may help stroke rehabilitation and develop novel therapies in the future.
Collapse
Affiliation(s)
- Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Muhammad Tahir
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- *Correspondence: Xuechai Chen,
| |
Collapse
|
91
|
Cornelison C, Fadel S. Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci 2022; 23:8496. [PMID: 35955631 PMCID: PMC9369181 DOI: 10.3390/ijms23158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer's disease and Parkinson's disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of 'immunomodulation' leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called 'click' or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair.
Collapse
Affiliation(s)
- Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
92
|
Exploring the management approaches of cytokines including viral infection and neuroinflammation for neurological disorders. Cytokine 2022; 157:155962. [PMID: 35853395 DOI: 10.1016/j.cyto.2022.155962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
Considerable evidence supports that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in various neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. The purpose of this study is to discuss the recent research on treating cytokine storm and amyloids, including stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's condition, Multi-sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS). Neuroinflammation observed in neurological disorders has a pivotal role in exacerbating Aβ burden and tau hyperphosphorylation, suggesting that stimulating cytokines in response to an undesirable external response could be a checkpoint for treating neurological disorders. Furthermore, the pro-inflammatory cytokines help our immune system through a neuroprotective mechanism in clearing viral infection by recruiting mononuclear cells. This study reveals that cytokine applications may play a vital role in providing novel regulation and methods for the therapeutic approach to neurological disorders and the causes of the deregulation, which is responsible for neuroinflammation and viral infection. However, it needs to be further investigated to clarify better the mechanisms of cytokine release in response to various stimuli, which could be the central point for treating neurological disorders.
Collapse
|
93
|
Navarrete C, García-Martín A, Correa-Sáez A, Prados ME, Fernández F, Pineda R, Mazzone M, Álvarez-Benito M, Calzado MA, Muñoz E. A cannabidiol aminoquinone derivative activates the PP2A/B55α/HIF pathway and shows protective effects in a murine model of traumatic brain injury. J Neuroinflammation 2022; 19:177. [PMID: 35810304 PMCID: PMC9270745 DOI: 10.1186/s12974-022-02540-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a primary mechanical injury and a secondary injury associated with neuroinflammation, blood-brain barrier (BBB) disruption and neurodegeneration. We have developed a novel cannabidiol aminoquinone derivative, VCE-004.8, which is a dual PPARγ/CB2 agonist that also activates the hypoxia inducible factor (HIF) pathway. VCE-004.8 shows potent antifibrotic, anti-inflammatory and neuroprotective activities and it is now in Phase II clinical trials for systemic sclerosis and multiple sclerosis. Herein, we investigated the mechanism of action of VCE-004.8 in the HIF pathway and explored its efficacy in a preclinical model of TBI. METHODS Using a phosphoproteomic approach, we investigated the effects of VCE-004.8 on prolyl hydroxylase domain-containing protein 2 (PHD2) posttranslational modifications. The potential role of PP2A/B55α in HIF activation was analyzed using siRNA for B55α. To evaluate the angiogenic response to the treatment with VCE-004.8 we performed a Matrigel plug in vivo assay. Transendothelial electrical resistance (TEER) as well as vascular cell adhesion molecule 1 (VCAM), and zonula occludens 1 (ZO-1) tight junction protein expression were studied in brain microvascular endothelial cells. The efficacy of VCE-004.8 in vivo was evaluated in a controlled cortical impact (CCI) murine model of TBI. RESULTS Herein we provide evidence that VCE-004.8 inhibits PHD2 Ser125 phosphorylation and activates HIF through a PP2A/B55α pathway. VCE-004.8 induces angiogenesis in vivo increasing the formation of functional vessel (CD31/α-SMA) and prevents in vitro blood-brain barrier (BBB) disruption ameliorating the loss of ZO-1 expression under proinflammatory conditions. In CCI model VCE-004.8 treatment ameliorates early motor deficits after TBI and attenuates cerebral edema preserving BBB integrity. Histopathological analysis revealed that VCE-004.8 treatment induces neovascularization in pericontusional area and prevented immune cell infiltration to the brain parenchyma. In addition, VCE-004.8 attenuates neuroinflammation and reduces neuronal death and apoptosis in the damaged area. CONCLUSIONS This study provides new insight about the mechanism of action of VCE-004.8 regulating the PP2A/B55α/PHD2/HIF pathway. Furthermore, we show the potential efficacy for TBI treatment by preventing BBB disruption, enhancing angiogenesis, and ameliorating neuroinflammation and neurodegeneration after brain injury.
Collapse
Affiliation(s)
| | | | - Alejandro Correa-Sáez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Francisco Fernández
- FEA Radiodiagnóstico, Sección de Neurorradiología Diagnóstica. Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Pineda
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB-KULeuven, 3000, Louvain, Belgium
| | - Marina Álvarez-Benito
- Unidad de Radiodiagnóstico Y Cáncer de Mama, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA. .,Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain. .,Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
94
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
95
|
Oestreich LKL, O'Sullivan MJ. Transdiagnostic In Vivo Magnetic Resonance Imaging Markers of Neuroinflammation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:638-658. [PMID: 35051668 DOI: 10.1016/j.bpsc.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/13/2023]
Abstract
Accumulating evidence suggests that inflammation is not limited to archetypal inflammatory diseases such as multiple sclerosis, but instead represents an intrinsic feature of many psychiatric and neurological disorders not typically classified as neuroinflammatory. A growing body of research suggests that neuroinflammation can be observed in early and prodromal stages of these disorders and, under certain circumstances, may lead to tissue damage. Traditional methods to assess neuroinflammation include serum or cerebrospinal fluid markers and positron emission tomography. These methods require invasive procedures or radiation exposure and lack the exquisite spatial resolution of magnetic resonance imaging (MRI). There is, therefore, an increasing interest in noninvasive neuroimaging tools to evaluate neuroinflammation reliably and with high specificity. While MRI does not provide information at a cellular level, it facilitates the characterization of several biophysical tissue properties that are closely linked to neuroinflammatory processes. The purpose of this review is to evaluate the potential of MRI as a noninvasive, accessible, and cost-effective technology to image neuroinflammation across neurological and psychiatric disorders. We provide an overview of current and developing MRI methods used to study different aspects of neuroinflammation and weigh their strengths and shortcomings. Novel MRI contrast agents are increasingly able to target inflammatory processes directly, therefore offering a high degree of specificity, particularly if used in conjunction with multitissue, biophysical diffusion MRI compartment models. The capability of these methods to characterize several aspects of the neuroinflammatory milieu will likely push MRI to the forefront of neuroimaging modalities used to characterize neuroinflammation transdiagnostically.
Collapse
Affiliation(s)
- Lena K L Oestreich
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michael J O'Sullivan
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; Institute of Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
96
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
97
|
Ortega MA, García-Montero C, Fraile-Martinez O, Alvarez-Mon MA, Gómez-Lahoz AM, Lahera G, Monserrat J, Rodriguez-Jimenez R, Quintero J, Álvarez-Mon M. Immune-Mediated Diseases from the Point of View of Psychoneuroimmunoendocrinology. BIOLOGY 2022; 11:973. [PMID: 36101354 PMCID: PMC9312038 DOI: 10.3390/biology11070973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
Immune-mediated inflammatory diseases (IMIDs) represent a large group of diseases (Crohn's, ulcerative colitis, psoriasis, lupus, and rheumatoid arthritis) evidenced by systemic inflammation and multiorgan involvement. IMIDs result in a reduced quality of life and an economic burden for individuals, health care systems, and countries. In this brief descriptive review, we will focus on some of the common biological pathways of these diseases from the point of view of psychoneuroimmunoendocrinology (PNIE). PNIE consists of four medical disciplines (psychology, nervous system, immune system, and endocrine system), which are key drivers behind the health-disease concept that a human being functions as a unit. We examine these drivers and emphasize the need for integrative treatments that addresses the disease from a psychosomatic point of view.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
| | - Ana Maria Gómez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias (CIBERSAM), 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Roberto Rodriguez-Jimenez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
98
|
Thome AD, Thonhoff JR, Zhao W, Faridar A, Wang J, Beers DR, Appel SH. Extracellular Vesicles Derived From Ex Vivo Expanded Regulatory T Cells Modulate In Vitro and In Vivo Inflammation. Front Immunol 2022; 13:875825. [PMID: 35812435 PMCID: PMC9258040 DOI: 10.3389/fimmu.2022.875825] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vehicles (EVs) are efficient biomarkers of disease and participate in disease pathogenesis; however, their use as clinical therapies to modify disease outcomes remains to be determined. Cell-based immune therapies, including regulatory T cells (Tregs), are currently being clinically evaluated for their usefulness in suppressing pro-inflammatory processes. The present study demonstrates that ex vivo expanded Tregs generate a large pool of EVs that express Treg-associated markers and suppress pro-inflammatory responses in vitro and in vivo. Intravenous injection of Treg EVs into an LPS-induced mouse model of inflammation reduced peripheral pro-inflammatory transcripts and increased anti-inflammatory transcripts in myeloid cells as well as Tregs. Intranasal administration of enriched Treg EVs in this model also reduced pro-inflammatory transcripts and the associated neuroinflammatory responses. In a mouse model of amyotrophic lateral sclerosis, intranasal administration of enriched Treg EVs slowed disease progression, increased survival, and modulated inflammation within the diseased spinal cord. These findings support the therapeutic potential of expanded Treg EVs to suppress pro-inflammatory responses in human disease.
Collapse
Affiliation(s)
- Aaron D Thome
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Jason R Thonhoff
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Weihua Zhao
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Alireza Faridar
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Jinghong Wang
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - David R Beers
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Stanley H Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
99
|
Chen J, Song L, Yang A, Dong G, Zhao XM. Disrupted long-range gene regulations elucidate shared tissue-specific mechanisms of neuropsychiatric disorders. Mol Psychiatry 2022; 27:2720-2730. [PMID: 35379909 DOI: 10.1038/s41380-022-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Neurological and psychiatric disorders have overlapped phenotypic profiles, but the underlying tissue-specific functional processes remain largely unknown. In this study, we explore the shared tissue-specificity among 14 neuropsychiatric disorders through the disrupted long-range gene regulations by GWAS-identified regulatory SNPs. Through Hi-C interactions, averagely 38.0% and 17.2% of the intergenic regulatory SNPs can be linked to target protein-coding genes in brain and non-brain tissues, respectively. Interestingly, while the regulatory target genes in the brain tend to enrich in nervous system development related processes, those in the non-brain tissues are inclined to interfere with synapse and neuroinflammation related processes. Compared to psychiatric disorders, neurological disorders present more prominently the neuroinflammatory processes in both brain and non-brain tissues, indicating an intrinsic difference in mechanisms. Through tissue-specific gene regulatory networks, we then constructed disorder similarity networks in two brain and three non-brain tissues, highlighting both known disorder clusters (e.g. the neurodevelopmental disorders) and unexpected disorder clusters (e.g. Parkinson's disease is consistently grouped with psychiatric disorders). We showcase the potential pharmaceutical applications of the small bowel and its disorder clusters, illustrated by the known drug targets NR1I3 and NFACT1, and their small bowel-specific regulatory modules. In conclusion, disrupted long-range gene regulations in both brain and non-brain tissues contribute to the similarity among distinct clusters of neuropsychiatric disorders, and the tissue-specifically shared functions and regulators for disease clusters may provide insights for future therapeutic investigations.
Collapse
Affiliation(s)
- Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China. .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China. .,Zhangjiang Fudan International Innovation Center, Shanghai, China.
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Guiying Dong
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China. .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China. .,Zhangjiang Fudan International Innovation Center, Shanghai, China.
| |
Collapse
|
100
|
Tabaa MME, Aboalazm HM, Shaalan M, Khedr NF. Silymarin constrains diacetyl-prompted oxidative stress and neuroinflammation in rats: involvements of Dyn/GDNF and MAPK signaling pathway. Inflammopharmacology 2022; 30:961-980. [PMID: 35366745 PMCID: PMC9135832 DOI: 10.1007/s10787-022-00961-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
Neuroinflammation, a major component of many CNS disorders, has been suggested to be associated with diacetyl (DA) exposure. DA is commonly used as a food flavoring additive and condiment. Lately, silymarin (Sily) has shown protective and therapeutic effects on neuronal inflammation. The study aimed to explore the role of Sily in protecting and/or treating DA-induced neuroinflammation. Neuroinflammation was induced in rats by administering DA (25 mg/kg) orally. Results revealed that Sily (50 mg/kg) obviously maintained cognitive and behavioral functions, alleviated brain antioxidant status, and inhibited microglial activation. Sily enhanced IL-10, GDNF and Dyn levels, reduced IFN-γ, TNFα, and IL-1β levels, and down-regulated the MAPK pathway. Immunohistochemical investigation of EGFR and GFAP declared that Sily could conserve neurons from inflammatory damage. However, with continuing DA exposure during Sily treatment, oxidative stress and neuroinflammation were less mitigated. These findings point to a novel mechanism involving the Dyn/GDNF and MAPK pathway through which Sily might prevent and treat DA-induced neuroinflammation.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Minofia Governorate, Sadat city, Egypt
| | - Hamdi M. Aboalazm
- Biochemistry, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, Egypt
| | - Mohamed Shaalan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|