51
|
Medeiros DB, Perez Souza L, Antunes WC, Araújo WL, Daloso DM, Fernie AR. Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthesis during light-induced stomatal opening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018. [PMID: 29543357 DOI: 10.1111/tpj.13889] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Sucrose has long been thought to play an osmolytic role in stomatal opening. However, recent evidence supports the idea that the role of sucrose in this process is primarily energetic. Here we used a combination of stomatal aperture assays and kinetic [U-13 C]-sucrose isotope labelling experiments to confirm that sucrose is degraded during light-induced stomatal opening and to define the fate of the C released from sucrose breakdown. We additionally show that addition of sucrose to the medium did not enhance light-induced stomatal opening. The isotope experiment showed a consistent 13 C enrichment in fructose and glucose, indicating that during light-induced stomatal opening sucrose is indeed degraded. We also observed a clear 13 C enrichment in glutamate and glutamine (Gln), suggesting a concerted activation of sucrose degradation, glycolysis and the tricarboxylic acid cycle. This is in contrast to the situation for Gln biosynthesis in leaves under light, which has been demonstrated to rely on previously stored C. Our results thus collectively allow us to redraw current models concerning the influence of sucrose during light-induced stomatal opening, in which, instead of being accumulated, sucrose is degraded providing C skeletons for Gln biosynthesis.
Collapse
Affiliation(s)
- David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leonardo Perez Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Werner C Antunes
- Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60440-970, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
52
|
Cotrozzi L, Remorini D, Pellegrini E, Guidi L, Nali C, Lorenzini G, Massai R, Landi M. Living in a Mediterranean city in 2050: broadleaf or evergreen 'citizens'? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8161-8173. [PMID: 28616738 DOI: 10.1007/s11356-017-9316-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 05/27/2023]
Abstract
The predicted effects of global change (GC) will be exacerbated in the more densely populated cities of the future, especially in the Mediterranean basin where some environmental cues, such as drought and tropospheric ozone (O3) pollution, already mine seriously plant survival. Physiological and biochemical responses of a Mediterranean, evergreen, isohydric plant species (Quercus ilex) were compared to those of a sympatric, deciduous, anisohydric species (Q. pubescens) under severe drought (20% of the effective daily evapotranspiration) and/or chronic O3 exposure (80 ppb for 5 h day-1 for 28 consecutive days) to test which one was more successful in those highly limiting conditions. Results show that (i) the lower reduction of total leaf biomass of Q. ilex as compared to Q. pubescens when subjected to drought and drought × O3 (on average -59 vs -70%, respectively); (ii) the steeper decline of photosynthesis found in Q. pubescens under drought (-87 vs -81%) and drought × O3 (-69 vs -59%, respectively); (iii) the increments of malondialdehyde (MDA) by-products found only in drought-stressed Q. pubescens; (iv) the impact of O3, found only in Q. pubescens leaves and MDA, can be considered the best probes of the superiority of Q. ilex to counteract the effect of mild-severe drought and O3 stress. Also, an antagonistic effect was found when drought and O3 were applied simultaneously, as usually happens during typical Mediterranean summers. Our dataset suggests that on future, the urban greening should be wisely pondered on the ability of trees to cope the most impacting factors of GC, and in particular their simultaneity.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
53
|
Pieczynski M, Wyrzykowska A, Milanowska K, Boguszewska‐Mankowska D, Zagdanska B, Karlowski W, Jarmolowski A, Szweykowska‐Kulinska Z. Genomewide identification of genes involved in the potato response to drought indicates functional evolutionary conservation with Arabidopsis plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:603-614. [PMID: 28718511 PMCID: PMC5787840 DOI: 10.1111/pbi.12800] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 05/23/2023]
Abstract
Potato is one of the four most important food crop plants worldwide and is strongly affected by drought. The following two pairs of potato cultivars, which are related in ancestry but show different drought tolerances, were chosen for comparative gene expression studies: Gwiazda/Oberon and Tajfun/Owacja. Comparative RNA-seq analyses of gene expression differences in the transcriptomes obtained from drought-tolerant versus drought-sensitive plants during water shortage conditions were performed. The 23 top-ranking genes were selected, 22 of which are described here as novel potato drought-responsive genes. Moreover, all but one of the potato genes selected have homologues in the Arabidopsis genome. Of the seven tested A. thaliana mutants with altered expression of the selected homologous genes, compared to the wild-type Arabidopsis plants, six showed an improved tolerance to drought. These genes encode carbohydrate transporter, mitogen-activated protein kinase kinase kinase 15 (MAPKKK15), serine carboxypeptidase-like 19 protein (SCPL19), armadillo/beta-catenin-like repeat-containing protein, high-affinity nitrate transporter 2.7 and nonspecific lipid transfer protein type 2 (nsLPT). The evolutionary conservation of the functions of the selected genes in the plant response to drought confirms the importance of these identified potato genes in the ability of plants to cope with water shortage conditions. Knowledge regarding these gene functions can be used to generate potato cultivars that are resistant to unfavourable conditions. The approach used in this work and the obtained results allowed for the identification of new players in the plant response to drought.
Collapse
Affiliation(s)
- Marcin Pieczynski
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Anna Wyrzykowska
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Kaja Milanowska
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Dominika Boguszewska‐Mankowska
- Potato Agronomy Department, Plant Breeding and Acclimatization InstituteNational Research InstituteDivision JadwisinPoland
| | - Barbara Zagdanska
- Department of BiochemistryFaculty of Agriculture and BiologyWarsaw University of Life SciencesWarsawPoland
| | - Wojciech Karlowski
- Department of Computational BiologyFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Artur Jarmolowski
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Zofia Szweykowska‐Kulinska
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| |
Collapse
|
54
|
Chung PJ, Jung H, Choi YD, Kim JK. Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics 2018; 19:40. [PMID: 29329517 PMCID: PMC5767043 DOI: 10.1186/s12864-017-4367-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Plant stress responses and mechanisms determining tolerance are controlled by diverse sets of genes. Transcription factors (TFs) have been implicated in conferring drought tolerance under drought stress conditions, and the identification of their target genes can elucidate molecular regulatory networks that orchestrate tolerance mechanisms. RESULTS We generated transgenic rice plants overexpressing the 4 rice TFs, OsNAC5, 6, 9, and 10, under the control of the root-specific RCc3 promoter. We showed that they were tolerant to drought stress with reduced loss of grain yield under drought conditions compared with wild type plants. To understand the molecular mechanisms underlying this tolerance, we here performed chromatin immunoprecipitation (ChIP)-Seq and RNA-Seq analyses to identify the direct target genes of the OsNAC proteins using the RCc3:6MYC-OsNAC expressing roots. A total of 475 binding loci for the 4 OsNAC proteins were identified by cross-referencing their binding to promoter regions and the expression levels of the corresponding genes. The binding loci were distributed among the promoter regions of 391 target genes that were directly up-regulated by one of the OsNAC proteins in four RCc3:6MYC-OsNAC transgenic lines. Based on gene ontology (GO) analysis, the direct target genes were related to transmembrane/transporter activity, vesicle, plant hormones, carbohydrate metabolism, and TFs. The direct targets of each OsNAC range from 4.0-8.7% of the total number of up-regulated genes found in the RNA-Seq data sets. Thus, each OsNAC up-regulates a set of direct target genes that alter root system architecture in the RCc3:OsNAC plants to confer drought tolerance. Our results provide a valuable resource for functional dissection of the molecular mechanisms of drought tolerance. CONCLUSIONS Many of the target genes, including transmembrane/transporter, vesicle related, auxin/hormone related, carbohydrate metabolic processes, and transcription factor genes, that are up-regulated by OsNACs act as the cellular components which would alter the root architectures of RCc3:OsNACs for drought tolerance.
Collapse
Affiliation(s)
- Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, South Korea
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, South Korea.,Present address: NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Yang Do Choi
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| |
Collapse
|
55
|
Versluys M, Kirtel O, Toksoy Öner E, Van den Ende W. The fructan syndrome: Evolutionary aspects and common themes among plants and microbes. PLANT, CELL & ENVIRONMENT 2018; 41:16-38. [PMID: 28925070 DOI: 10.1111/pce.13070] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 05/13/2023]
Abstract
Fructans are multifunctional fructose-based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so-called "fructan syndrome," is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Onur Kirtel
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Ebru Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
56
|
Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nat Ecol Evol 2017; 2:352-358. [PMID: 29255303 PMCID: PMC5777624 DOI: 10.1038/s41559-017-0423-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
As Earth is currently experiencing dramatic climate change, it is of critical interest to understand how species will respond to it. The chance of a species withstanding climate change is likely to depend on the diversity within the species and, particularly, whether there are sub-populations that are already adapted to extreme environments. However, most predictive studies ignore that species comprise genetically diverse individuals. We have identified genetic variants in Arabidopsis thaliana that are associated with survival of an extreme drought event-a major consequence of global warming. Subsequently, we determined how these variants are distributed across the native range of the species. Genetic alleles conferring higher drought survival showed signatures of polygenic adaptation and were more frequently found in Mediterranean and Scandinavian regions. Using geo-environmental models, we predicted that Central European, but not Mediterranean, populations might lag behind in adaptation by the end of the twenty-first century. Further analyses showed that a population decline could nevertheless be compensated by natural selection acting efficiently over standing variation or by migration of adapted individuals from populations at the margins of the species' distribution. These findings highlight the importance of within-species genetic heterogeneity in facilitating an evolutionary response to a changing climate.
Collapse
|
57
|
Rippin M, Becker B, Holzinger A. Enhanced Desiccation Tolerance in Mature Cultures of the Streptophytic Green Alga Zygnema circumcarinatum Revealed by Transcriptomics. PLANT & CELL PHYSIOLOGY 2017; 58:2067-2084. [PMID: 29036673 PMCID: PMC5722205 DOI: 10.1093/pcp/pcx136] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Desiccation tolerance is commonly regarded as one of the key features for the colonization of terrestrial habitats by green algae and the evolution of land plants. Extensive studies, focused mostly on physiology, have been carried out assessing the desiccation tolerance and resilience of the streptophytic genera Klebsormidium and Zygnema. Here we present transcriptomic analyses of Zygnema circumcarinatum exposed to desiccation stress. Cultures of Z. circumcarinatum grown in liquid medium or on agar plates were desiccated at ∼86% relative air humidity until the effective quantum yield of PSII [Y(II)] ceased. In general, the response to dehydration was much more pronounced in Z. circumcarinatum cultured in liquid medium for 1 month compared with filaments grown on agar plates for 7 and 12 months. Culture on solid medium enables the alga to acclimate to dehydration much better and an increase in desiccation tolerance was clearly correlated to increased culture age. Moreover, gene expression analysis revealed that photosynthesis was strongly repressed upon desiccation treatment in the liquid culture while only minor effects were detected in filaments cultured on agar plates for 7 months. Otherwise, both samples showed induction of stress protection mechanisms such as reactive oxygen species scavenging (early light-induced proteins, glutathione metabolism) and DNA repair as well as the expression of chaperones and aquaporins. Additionally, Z. circumcarinatum cultured in liquid medium upregulated sucrose-synthesizing enzymes and strongly induced membrane modifications in response to desiccation stress. These results corroborate the previously described hardening and associated desiccation tolerance in Zygnema in response to seasonal fluctuations in water availability.
Collapse
Affiliation(s)
- Martin Rippin
- University of Cologne, Cologne Biocentre, Botanical Institute, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Burkhard Becker
- University of Cologne, Cologne Biocentre, Botanical Institute, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
58
|
Leal-Alvarado DA, Martínez-Hernández A, Calderón-Vázquez CL, Uh-Ramos D, Fuentes G, Ramírez-Prado JH, Sáenz-Carbonell L, Santamaría JM. Identification of up-regulated genes from the metal-hyperaccumulator aquatic fern Salvinia minima Baker, in response to lead exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:86-96. [PMID: 29053962 DOI: 10.1016/j.aquatox.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Lead (Pb) is one of the most serious environmental pollutants. The aquatic fern Salvinia minima Baker is capable to hyper-accumulate Pb in their tissues. However, the molecular mechanisms involved in its Pb accumulation and tolerance capacity are not fully understood. In order to investigate the molecular mechanisms that are activated by S. minima in response to Pb, we constructed a suppression subtractive hybridization library (SSH) in response to an exposure to 40μM of Pb(NO3)2 for 12h. 365 lead-related differentially expressed sequences tags (ESTs) were isolated and sequenced. Among these ESTs, 143 unique cDNA (97 were registered at the GenBank and 46 ESTs were not registered, because they did not meet the GenBank conditions). Those ESTs were identified and classified into 3 groups according to Blast2GO. In terms of metabolic pathways, they were grouped into 29 KEGG pathways. Among the ESTs, we identified some that might be part of the mechanism that this fern may have to deal with this metal, including abiotic-stress-related transcription factors, some that might be involved in tolerance mechanisms such as ROS scavenging, membrane protection, and those of cell homeostasis recovery. To validate the SSH library, 4 genes were randomly selected from the library and analyzed by qRT-PCR. These 4 genes were transcriptionally up-regulated in response to lead in at least one of the two tested tissues (roots and leaves). The present library is one of the few genomics approaches to study the response to metal stress in an aquatic fern, representing novel molecular information and tools to understand the molecular physiology of its Pb tolerance and hyperaccumulation capacity. Further research is required to elucidate the functions of the lead-induced genes that remain classified as unknown, to perhaps reveal novel molecular mechanisms of Pb tolerance and accumulation capacity in aquatic plants.
Collapse
Affiliation(s)
- Daniel A Leal-Alvarado
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - A Martínez-Hernández
- Colegio de Posgraduados, Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Champotón, Campeche, C. P. 24450, Mexico
| | - C L Calderón-Vázquez
- Instituto Politécnico Nacional-CIIDIR, SINALOA, Boulevard Juan de Dios Bátiz Paredes #250, Colonia San Joachin, Guasave, Sinaloa, Mexico
| | - D Uh-Ramos
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - G Fuentes
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - J H Ramírez-Prado
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - L Sáenz-Carbonell
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - J M Santamaría
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico.
| |
Collapse
|
59
|
Ghosh Dasgupta M, Dharanishanthi V. Identification of PEG-induced water stress responsive transcripts using co-expression network in Eucalyptus grandis. Gene 2017; 627:393-407. [DOI: 10.1016/j.gene.2017.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/12/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022]
|
60
|
Chanroj V, Rattanawong R, Phumichai T, Tangphatsornruang S, Ukoskit K. Genome-wide association mapping of latex yield and girth in Amazonian accessions of Hevea brasiliensis grown in a suboptimal climate zone. Genomics 2017; 109:475-484. [PMID: 28751185 DOI: 10.1016/j.ygeno.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/07/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
Latex yield and growth are the key complex traits in commercial rubber production. The present study is the first to report genome-wide association mapping of latex yield and girth, for 170 Amazonian accessions grown in a suboptimal area characterized by limited rainfall and a lengthy dry season. Targeted sequence enrichment to capture gene transcripts generated 14,155 high quality filtered single nucleotide polymorphisms (SNPs) of which 94.3% resided in coding regions. The rapid decay of linkage disequilibrium over physical and genetic distance found in the accessions was comparable to those previously reported for several outcrossing species. A mixed linear model detected three significant SNPs in three candidate genes involved in plant adaptation to drought stress, individually explaining 12.7-15.7% of the phenotypic variance. The SNPs identified in the study will help to extend understanding, and to support genetic improvement of rubber trees grown in drought-affected regions.
Collapse
Affiliation(s)
- Vipavee Chanroj
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumtani 12121, Thailand
| | - Ratchanee Rattanawong
- Nong Khai Rubber Research Center, Rubber Research Institute of Thailand, Rattanawapi District, Nong Khai, 43120, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, 113 Phaholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumtani 12121, Thailand.
| |
Collapse
|
61
|
Ma Y, Shukla V, Merewitz EB. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLoS One 2017; 12:e0175848. [PMID: 28445484 PMCID: PMC5406032 DOI: 10.1371/journal.pone.0175848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/31/2017] [Indexed: 11/19/2022] Open
Abstract
Creeping bentgrass is an important cool-season turfgrass species sensitive to drought. Treatment with polyamines (PAs) has been shown to improve drought tolerance; however, the mechanism is not yet fully understood. Therefore, this study aimed to evaluate transcriptome changes of creeping bentgrass in response to drought and exogenous spermidine (Spd) application using RNA sequencing (RNA-Seq). The high-quality sequences were assembled and 18,682 out of 49,190 (38%) were detected as coding sequences. A total of 22% and 19% of genes were found to be either up- or down-regulated due to drought while 20% and 34% genes were either up- or down- regulated in response to Spd application under drought conditions, respectively. Gene ontology (GO) and enrichment analysis were used to interpret the biological processes of transcripts and relative transcript abundance. Enriched or differentially expressed transcripts due to drought stress and/or Spd application were primarily associated with energy metabolism, transport, antioxidants, photosynthesis, signaling, stress defense, and cellular response to water deprivation. This research is the first to provide transcriptome data for creeping bentgrass under an abiotic stress using RNA-Seq analysis. Differentially expressed transcripts identified here could be further investigated for use as molecular markers or for functional analysis in responses to drought and Spd.
Collapse
Affiliation(s)
- Yingmei Ma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Vijaya Shukla
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Emily B. Merewitz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
62
|
Pilati S, Bagagli G, Sonego P, Moretto M, Brazzale D, Castorina G, Simoni L, Tonelli C, Guella G, Engelen K, Galbiati M, Moser C. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network. FRONTIERS IN PLANT SCIENCE 2017; 8:1093. [PMID: 28680438 PMCID: PMC5479058 DOI: 10.3389/fpls.2017.01093] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/06/2017] [Indexed: 05/18/2023]
Abstract
Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This knowledge of the ABA cascade in berry skin contributes not only to the understanding of berry ripening regulation but might be useful to other areas of viticultural interest, such as bud dormancy regulation and drought stress tolerance.
Collapse
Affiliation(s)
- Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
- *Correspondence: Stefania Pilati,
| | - Giorgia Bagagli
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Paolo Sonego
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Daniele Brazzale
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Giulia Castorina
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Laura Simoni
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Graziano Guella
- Department of Physics, Bioorganic Chemistry Lab, University of TrentoTrento, Italy
- Istituto di Biofisica, Consiglio Nazionale delle RicercheTrento, Italy
| | - Kristof Engelen
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Massimo Galbiati
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| |
Collapse
|
63
|
Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A. Comparative Leaf and Root Transcriptomic Analysis of two Rice Japonica Cultivars Reveals Major Differences in the Root Early Response to Osmotic Stress. RICE (NEW YORK, N.Y.) 2016; 9:25. [PMID: 27216147 PMCID: PMC4877341 DOI: 10.1186/s12284-016-0098-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/14/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions and is characterized by a low water-use efficiency and a high sensitivity to a water deficit, with yield reductions occurring at lower stress levels compared to most other crops. To identify genes and pathways involved in the tolerant response to dehydration, a powerful approach consists in the genome-wide analysis of stress-induced expression changes by comparing drought-tolerant and drought-sensitive genotypes. RESULTS The physiological response to osmotic stress of 17 japonica rice genotypes was evaluated. A clear differentiation of the most tolerant and the most sensitive phenotypes was evident, especially after 24 and 48 h of treatment. Two genotypes, which were characterized by a contrasting response (tolerance/sensitivity) to the imposed stress, were selected. A parallel transcriptomic analysis was performed on roots and leaves of these two genotypes at 3 and 24 h of stress treatment. RNA-Sequencing data showed that the tolerant genotype Eurosis and the sensitive genotype Loto mainly differed in the early response to osmotic stress in roots. In particular, the tolerant genotype was characterized by a prompt regulation of genes related to chromatin, cytoskeleton and transmembrane transporters. Moreover, a differential expression of transcription factor-encoding genes, genes involved in hormone-mediate signalling and genes involved in the biosynthesis of lignin was observed between the two genotypes. CONCLUSIONS Our results provide a transcriptomic characterization of the osmotic stress response in rice and identify several genes that may be important players in the tolerant response.
Collapse
Affiliation(s)
- Elena Baldoni
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy.
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| | - Paolo Bagnaresi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, Italy
| | - Franca Locatelli
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy
| | - Monica Mattana
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy
| | - Annamaria Genga
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy.
| |
Collapse
|
64
|
Muthusamy M, Uma S, Backiyarani S, Saraswathi MS, Chandrasekar A. Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1609. [PMID: 27867388 PMCID: PMC5095140 DOI: 10.3389/fpls.2016.01609] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/12/2016] [Indexed: 05/23/2023]
Abstract
In banana, drought responsive gene expression profiles of drought-tolerant and sensitive genotypes remain largely unexplored. In this research, the transcriptome of drought-tolerant banana cultivar (Saba, ABB genome) and sensitive cultivar (Grand Naine, AAA genome) was monitored using mRNA-Seq under control and drought stress condition. A total of 162.36 million reads from tolerant and 126.58 million reads from sensitive libraries were produced and mapped onto the Musa acuminata genome sequence and assembled into 23,096 and 23,079 unigenes. Differential gene expression between two conditions (control and drought) showed that at least 2268 and 2963 statistically significant, functionally known, non-redundant differentially expressed genes (DEGs) from tolerant and sensitive libraries. Drought has up-regulated 991 and 1378 DEGs and down-regulated 1104 and 1585 DEGs respectively in tolerant and sensitive libraries. Among DEGs, 15.9% are coding for transcription factors (TFs) comprising 46 families and 9.5% of DEGs are constituted by protein kinases from 82 families. Most enriched DEGs are mainly involved in protein modifications, lipid metabolism, alkaloid biosynthesis, carbohydrate degradation, glycan metabolism, and biosynthesis of amino acid, cofactor, nucleotide-sugar, hormone, terpenoids and other secondary metabolites. Several, specific genotype-dependent gene expression pattern was observed for drought stress in both cultivars. A subset of 9 DEGs was confirmed using quantitative reverse transcription-PCR. These results will provide necessary information for developing drought-resilient banana plants.
Collapse
Affiliation(s)
| | - Subbaraya Uma
- *Correspondence: Subbaraya Uma, Muthusamy Muthusamy,
| | | | | | | |
Collapse
|
65
|
Massange-Sánchez JA, Palmeros-Suárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo NA, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms. PLoS One 2016; 11:e0164280. [PMID: 27749893 PMCID: PMC5066980 DOI: 10.1371/journal.pone.0164280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/22/2016] [Indexed: 11/19/2022] Open
Abstract
Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.
Collapse
Affiliation(s)
- Julio A. Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Paola A. Palmeros-Suárez
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 13.5 Carrretera Los Reyes-Texcoco, C.P. 56250, Coatlinchán Texcoco, Estado de México, México
| | - Isaac Rodríguez-Arévalo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., Mexico
| | - Lino Sánchez-Segura
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Norma A. Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Fulgencio Alatorre-Cobos
- Conacyt Research Fellow-Colegio de Postgraduados, Campus Campeche. Carretera Haltunchen-Edzna Km 17.5, Sihochac, Champoton, 24450, Campeche, México
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| |
Collapse
|
66
|
Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM, Pereira JS. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:54-64. [PMID: 27593463 DOI: 10.1016/j.plantsci.2016.06.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 05/24/2023]
Abstract
Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed.
Collapse
Affiliation(s)
- M M Chaves
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - J M Costa
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - O Zarrouk
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - C Pinheiro
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - C M Lopes
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - J S Pereira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
67
|
Srivastava R, Bajaj D, Malik A, Singh M, Parida SK. Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 2016; 6:33616. [PMID: 27680662 PMCID: PMC5041113 DOI: 10.1038/srep33616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
The RNA-sequencing followed by de-novo transcriptome assembly identified 11621 genes differentially xpressed in roots vs. shoots of a wild perennial Cicer microphyllum. Comparative analysis of transcriptomes between microphyllum and cultivated desi cv. ICC4958 detected 12772 including 3242 root- and 1639 shoot-specific microphyllum genes with 85% expression validation success rate. Transcriptional reprogramming of microphyllum root-specific genes implicates their possible role in regulating differential natural adaptive characteristics between wild and cultivated chickpea. The transcript-derived 5698 including 282 in-silico polymorphic SSR and 127038 SNP markers annotated at a genome-wide scale exhibited high amplification and polymorphic potential among cultivated (desi and kabuli) and wild accessions suggesting their utility in chickpea genomics-assisted breeding applications. The functional significance of markers was assessed based on their localization in non-synonymous coding and regulatory regions of microphyllum root-specific genes differentially expressed predominantly in ICC 4958 roots under drought stress. A high-density 490 genic SSR- and SNP markers-anchored genetic linkage map identified six major QTLs regulating drought tolerance-related traits, yield per plant and harvest-index in chickpea. The integration of high-resolution QTL mapping with comparative transcriptome profiling delineated five microphyllum root-specific genes with non-synonymous and regulatory SNPs governing drought-responsive yield traits. Multiple potential key regulators and functionally relevant molecular tags delineated can drive translational research and drought tolerance-mediated chickpea genetic enhancement.
Collapse
Affiliation(s)
- Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ayushi Malik
- Faculty of Science, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Mohar Singh
- National Bureau of Plant Genetic Resources Regional Station, Shimla, Himachal Pradesh 171004, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
68
|
Simm S, Scharf KD, Jegadeesan S, Chiusano ML, Firon N, Schleiff E. Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on Solanum lycopersicum. Bioinform Biol Insights 2016; 10:185-207. [PMID: 27695302 PMCID: PMC5038615 DOI: 10.4137/bbi.s38425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Collapse
Affiliation(s)
- Stefan Simm
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Sridharan Jegadeesan
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel.; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Luisa Chiusano
- Department of Soil, Plants Environmental and Animal Production Sciences, Laboratory of Computer Aided Biosciences, University of Studies of Naples Federico II, Portici, Naples, Italy
| | - Nurit Firon
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| |
Collapse
|
69
|
Nguyen D, D'Agostino N, Tytgat TOG, Sun P, Lortzing T, Visser EJW, Cristescu SM, Steppuhn A, Mariani C, van Dam NM, Rieu I. Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara. PLANT, CELL & ENVIRONMENT 2016; 39:1485-99. [PMID: 26759219 DOI: 10.1111/pce.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 05/20/2023]
Abstract
In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants.
Collapse
Affiliation(s)
- Duy Nguyen
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per l'orticoltura, 84098, Pontecagnano, (SA), Italy
| | - Tom O G Tytgat
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Pulu Sun
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
- Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet, 42023, Saint-Etienne, France
| | - Tobias Lortzing
- Molecular Ecology Group, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 12163, Berlin, Germany
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Anke Steppuhn
- Molecular Ecology Group, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 12163, Berlin, Germany
| | - Celestina Mariani
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Nicole M van Dam
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Ecology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| |
Collapse
|
70
|
Ksouri N, Jiménez S, Wells CE, Contreras-Moreira B, Gogorcena Y. Transcriptional Responses in Root and Leaf of Prunus persica under Drought Stress Using RNA Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1715. [PMID: 27933070 PMCID: PMC5120087 DOI: 10.3389/fpls.2016.01715] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/31/2016] [Indexed: 05/02/2023]
Abstract
Prunus persica L. Batsch, or peach, is one of the most important crops and it is widely established in irrigated arid and semi-arid regions. However, due to variations in the climate and the increased aridity, drought has become a major constraint, causing crop losses worldwide. The use of drought-tolerant rootstocks in modern fruit production appears to be a useful method of alleviating water deficit problems. However, the transcriptomic variation and the major molecular mechanisms that underlie the adaptation of drought-tolerant rootstocks to water shortage remain unclear. Hence, in this study, high-throughput sequencing (RNA-seq) was performed to assess the transcriptomic changes and the key genes involved in the response to drought in root tissues (GF677 rootstock) and leaf tissues (graft, var. Catherina) subjected to 16 days of drought stress. In total, 12 RNA libraries were constructed and sequenced. This generated a total of 315 M raw reads from both tissues, which allowed the assembly of 22,079 and 17,854 genes associated with the root and leaf tissues, respectively. Subsets of 500 differentially expressed genes (DEGs) in roots and 236 in leaves were identified and functionally annotated with 56 gene ontology (GO) terms and 99 metabolic pathways, which were mostly associated with aminobenzoate degradation and phenylpropanoid biosynthesis. The GO analysis highlighted the biological functions that were exclusive to the root tissue, such as "locomotion," "hormone metabolic process," and "detection of stimulus," indicating the stress-buffering role of the GF677 rootstock. Furthermore, the complex regulatory network involved in the drought response was revealed, involving proteins that are associated with signaling transduction, transcription and hormone regulation, redox homeostasis, and frontline barriers. We identified two poorly characterized genes in P. persica: growth-regulating factor 5 (GRF5), which may be involved in cellular expansion, and AtHB12, which may be involved in root elongation. The reliability of the RNA-seq experiment was validated by analyzing the expression patterns of 34 DEGs potentially involved in drought tolerance using quantitative reverse transcription polymerase chain reaction. The transcriptomic resources generated in this study provide a broad characterization of the acclimation of P. persica to drought, shedding light on the major molecular responses to the most important environmental stressor.
Collapse
Affiliation(s)
- Najla Ksouri
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Sergio Jiménez
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | | | - Bruno Contreras-Moreira
- Laboratory of Computational and Structural Biology, Department of Genetics and Plant Production, Estación Experimental de Aula Dei – Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Fundación ARAIDZaragoza, Spain
- *Correspondence: Yolanda Gogorcena, Bruno Contreras-Moreira,
| | - Yolanda Gogorcena
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- *Correspondence: Yolanda Gogorcena, Bruno Contreras-Moreira,
| |
Collapse
|