51
|
Rath M, Challa KR, Sarvepalli K, Nath U. CINCINNATA-Like TCP Transcription Factors in Cell Growth - An Expanding Portfolio. FRONTIERS IN PLANT SCIENCE 2022; 13:825341. [PMID: 35273626 PMCID: PMC8902296 DOI: 10.3389/fpls.2022.825341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Post-mitotic cell growth is a key process in plant growth and development. Cell expansion drives major growth during morphogenesis and is influenced by both endogenous factors and environmental stimuli. Though both isotropic and anisotropic cell growth can contribute to organ size and shape at different degrees, anisotropic cell growth is more likely to contribute to shape change. While much is known about the mechanisms that increase cellular turgor and cell-wall biomass during expansion, the genetic factors that regulate these processes are less studied. In the past quarter of a century, the role of the CINCINNATA-like TCP (CIN-TCP) transcription factors has been well documented in regulating diverse aspects of plant growth and development including flower asymmetry, plant architecture, leaf morphogenesis, and plant maturation. The molecular activity of the CIN-TCP proteins common to these biological processes has been identified as their ability to suppress cell proliferation. However, reports on their role regulating post-mitotic cell growth have been scanty, partly because of functional redundancy among them. In addition, it is difficult to tease out the effect of gene activity on cell division and expansion since these two processes are linked by compensation, a phenomenon where perturbation in proliferation is compensated by an opposite effect on cell growth to keep the final organ size relatively unaltered. Despite these technical limitations, recent genetic and growth kinematic studies have shown a distinct role of CIN-TCPs in promoting cellular growth in cotyledons and hypocotyls, the embryonic organs that grow solely by cell expansion. In this review, we highlight these recent advances in our understanding of how CIN-TCPs promote cell growth.
Collapse
Affiliation(s)
- Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- *Correspondence: Utpal Nath,
| |
Collapse
|
52
|
Rizwan HM, Shaozhong F, Li X, Bilal Arshad M, Yousef AF, Chenglong Y, Shi M, Jaber MYM, Anwar M, Hu SY, Yang Q, Sun K, Ahmed MAA, Min Z, Oelmüller R, Zhimin L, Chen F. Genome-Wide Identification and Expression Profiling of KCS Gene Family in Passion Fruit ( Passiflora edulis) Under Fusarium kyushuense and Drought Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:872263. [PMID: 35548275 PMCID: PMC9081883 DOI: 10.3389/fpls.2022.872263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 05/02/2023]
Abstract
Plant and fruit surfaces are covered with cuticle wax and provide a protective barrier against biotic and abiotic stresses. Cuticle wax consists of very-long-chain fatty acids (VLCFAs) and their derivatives. β-Ketoacyl-CoA synthase (KCS) is a key enzyme in the synthesis of VLCFAs and provides a precursor for the synthesis of cuticle wax, but the KCS gene family was yet to be reported in the passion fruit (Passiflora edulis). In this study, thirty-two KCS genes were identified in the passion fruit genome and phylogenetically grouped as KCS1-like, FAE1-like, FDH-like, and CER6-like. Furthermore, thirty-one PeKCS genes were positioned on seven chromosomes, while one PeKCS was localized to the unassembled genomic scaffold. The cis-element analysis provides insight into the possible role of PeKCS genes in phytohormones and stress responses. Syntenic analysis revealed that gene duplication played a crucial role in the expansion of the PeKCS gene family and underwent a strong purifying selection. All PeKCS proteins shared similar 3D structures, and a protein-protein interaction network was predicted with known Arabidopsis proteins. There were twenty putative ped-miRNAs which were also predicted that belong to nine families targeting thirteen PeKCS genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation results were highly associated with fatty acid synthase and elongase activity, lipid metabolism, stress responses, and plant-pathogen interaction. The highly enriched transcription factors (TFs) including ERF, MYB, Dof, C2H2, TCP, LBD, NAC, and bHLH were predicted in PeKCS genes. qRT-PCR expression analysis revealed that most PeKCS genes were highly upregulated in leaves including PeKCS2, PeKCS4, PeKCS8, PeKCS13, and PeKCS9 but not in stem and roots tissues under drought stress conditions compared with controls. Notably, most PeKCS genes were upregulated at 9th dpi under Fusarium kyushuense biotic stress condition compared to controls. This study provides a basis for further understanding the functions of KCS genes, improving wax and VLCFA biosynthesis, and improvement of passion fruit resistance.
Collapse
Affiliation(s)
| | - Fang Shaozhong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiaoting Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Bilal Arshad
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Horticulture, College of Agriculture, University of Al-Azhar, Assiut, Egypt
| | - Yang Chenglong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Meng Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammed Y. M. Jaber
- Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus, Palestine
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuai-Ya Hu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agriculture University, Nanjing, China
| | - Qiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiwei Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture-Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Zheng Min
- Department of Horticulture, Fujian Agricultural Vocational College, Fuzhou, China
| | - Ralf Oelmüller
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lin Zhimin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Lin Zhimin,
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Faxing Chen,
| |
Collapse
|
53
|
Mishra S, Sahu G, Shaw BP. Insight into the cellular and physiological regulatory modulations of Class-I TCP9 to enhance drought and salinity stress tolerance in cowpea. PHYSIOLOGIA PLANTARUM 2022; 174:e13542. [PMID: 34459503 DOI: 10.1111/ppl.13542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors are potent growth and developmental regulators in plants, also responsive to various hormonal and environmental stimuli. In this study, we primarily focused on the functional role of TCP9, a nuclear-localised Class-I TCP transcription factor in a drought and heat-tolerant legume crop, cowpea (Vigna unguiculata). Under drought stress, a higher protein expression level of TCP9 was observed in the leaves of the drought-tolerant cowpea cultivar Pusa Komal as compared to the drought-sensitive cultivar TVu-7778. Further, overexpression of VuTCP9 resulted in reduced cell and stomata size, aperture length and width while cell and overall stomatal density in the 35S::VuTCP9 transgenic cowpea lines increased. Phenotypic alterations, such as reduced leaf size and vigour, altered seed coats displaying extension pattern similar to the 'Watson pattern' and delayed senescence were prominent in the transgenic lines. Under normal conditions, the gas exchange and fluorescence measurements indicated reduction in transpiration rate (E), stomatal conductance (gs ) and photosynthetic efficiency (Φ PSII). However, water usage efficiency (WUE) remained unaltered in the transgenic lines as compared to the wild-type (WT) plants. Furthermore, the transgenic lines displayed higher tolerance to oxidative, drought and salinity stress, maintained relatively higher relative water content and lower occurrence of H2 O2 , as compared to the WT plants. Genes related to the jasmonic acid biosynthesis, stomatal development and abiotic stress responsiveness, such as TTG1, NAC25, SPCH and GRP1, increased and LOX2 decreased significantly in the transgenic lines.
Collapse
Affiliation(s)
- Sagarika Mishra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
54
|
Aamir M, Karmakar P, Singh VK, Kashyap SP, Pandey S, Singh BK, Singh PM, Singh J. A novel insight into transcriptional and epigenetic regulation underlying sex expression and flower development in melon (Cucumis melo L.). PHYSIOLOGIA PLANTARUM 2021; 173:1729-1764. [PMID: 33547804 DOI: 10.1111/ppl.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Melon (Cucumis melo L.) is an important cucurbit and has been considered as a model plant for studying sex determination. The four most common sexual morphotypes in melon are monoecious (A-G-M), gynoecious (--ggM-), andromonoecious (A-G-mm), and hermaphrodite (--ggmm). Sex expression in melons is complex, as the genes and associated networks that govern the sex expression are not fully explored. Recently, RNA-seq transcriptomic profiling, ChIP-qPCR analysis integrated with gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathways predicted the differentially expressed genes including sex-specific ACS and ACO genes, in regulating the sex-expression, phytohormonal cross-talk, signal transduction, and secondary metabolism in melons. Integration of transcriptional control through genetic interaction in between the ACS7, ACS11, and WIP1 in epistatic or hypostatic manner, along with the recruitment of H3K9ac and H3K27me3, epigenetically, overall determine sex expression. Alignment of protein sequences for establishing phylogenetic evolution, motif comparison, and protein-protein interaction supported the structural conservation while presence of the conserved hydrophilic and charged residues across the diverged evolutionary group predicted the functional conservation of the ACS protein. Presence of the putative cis-binding elements or DNA motifs, and its further comparison with DAP-seq-based cistrome and epicistrome of Arabidopsis, unraveled strong ancestry of melons with Arabidopsis. Motif comparison analysis also characterized putative genes and transcription factors involved in ethylene biosynthesis, signal transduction, and hormonal cross-talk related to sex expression. Overall, we have comprehensively reviewed research findings for a deeper insight into transcriptional and epigenetic regulation of sex expression and flower development in melons.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Pradip Karmakar
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Sudhakar Pandey
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Binod Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Jagdish Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| |
Collapse
|
55
|
Systematic Characterization of TCP Gene Family in Four Cotton Species Revealed That GhTCP62 Regulates Branching in Arabidopsis. BIOLOGY 2021; 10:biology10111104. [PMID: 34827097 PMCID: PMC8614845 DOI: 10.3390/biology10111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play an essential role in regulating various physiological and biochemical functions during plant growth. However, the function of TCP transcription factors in G. hirsutum has not yet been studied. In this study, we performed genome-wide identification and correlation analysis of the TCP transcription factor family in G. hirsutum. We identified 72 non-redundant GhTCP genes and divided them into seven subfamilies, based on phylogenetic analysis. Most GhTCP genes in the same subfamily displayed similar exon and intron structures and featured highly conserved motif structures in their subfamily. Additionally, the pattern of chromosomal distribution demonstrated that GhTCP genes were unevenly distributed on 24 out of 26 chromosomes, and that fragment replication was the main replication event of GhTCP genes. In TB1 sub-family genes, GhTCP62 was highly expressed in the axillary buds, suggesting that GhTCP62 significantly affected cotton branching. Additionally, subcellular localization results indicated that GhTCP62 is located in the nucleus and possesses typical transcription factor characteristics. The overexpression of GhTCP62 in Arabidopsis resulted in fewer rosette-leaf branches and cauline-leaf branches. Furthermore, the increased expression of HB21 and HB40 genes in Arabidopsis plants overexpressing GhTCP62 suggests that GhTCP62 may regulate branching by positively regulating HB21 and HB40.
Collapse
|
56
|
Targeted designing functional markers revealed the role of retrotransposon derived miRNAs as mobile epigenetic regulators in adaptation responses of pistachio. Sci Rep 2021; 11:19751. [PMID: 34611187 PMCID: PMC8492636 DOI: 10.1038/s41598-021-98402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
We developed novel miRNA-based markers based on salt responsive miRNA sequences to detect polymorphisms in miRNA sequences and locations. The validation of 76 combined miRNA + miRNA and miRNA + ISSR markers in the three extreme pistachio populations led to the identification of three selected markers that could link salt tolerance phenotype to genotype and divided pistachio genotypes and Pistacia species into three clusters. This novel functional marker system, in addition to more efficient performance, has higher polymorphisms than previous miRNA-based marker systems. The functional importance of the target gene of five miRNAs in the structure of the three selected markers in regulation of different genes such as ECA2, ALA10, PFK, PHT1;4, PTR3, KUP2, GRAS, TCP, bHLH, PHD finger, PLATZ and genes involved in developmental, signaling and biosynthetic processes shows that the polymorphism associated with these selected miRNAs can make a significant phenotypic difference between salt sensitive and tolerant pistachio genotypes. The sequencing results of selected bands showed the presence of conserved miRNAs in the structure of the mitochondrial genome. Further notable findings of this study are that the sequences of PCR products of two selected markers were annotated as Gypsy and Copia retrotransposable elements. The transposition of retrotransposons with related miRNAs by increasing the number of miRNA copies and changing their location between nuclear and organellar genomes can affect the regulatory activity of these molecules. These findings show the crucial role of retrotransposon-derived miRNAs as mobile epigenetic regulators between intracellular genomes in regulating salt stress responses as well as creating new and tolerant phenotypes for adaptation to environmental conditions.
Collapse
|
57
|
Camoirano A, Alem AL, Gonzalez DH, Viola IL. Arabidopsis thaliana TCP15 interacts with the MIXTA-like transcription factor MYB106/NOECK. PLANT SIGNALING & BEHAVIOR 2021; 16:1938432. [PMID: 34107838 PMCID: PMC8331037 DOI: 10.1080/15592324.2021.1938432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 05/27/2023]
Abstract
MYB106 and MYB16 are MIXTA-like transcription factors that control trichome maturation and cuticle formation in Arabidopsis. In a recent study, we found that the TEOSINTE BRANCHED 1, CYCLOIDEA and PROLIFERATING CELL FACTORS (TCP) transcription factor TCP15 also acts as an important regulator of aerial epidermis specialization in Arabidopsis through the control of trichome development and cuticle formation. TCP15 and MYB106 regulate the expression of common groups of genes, including genes coding for transcription factors and enzymes of the cuticle biosynthesis pathway. In this study, we report that TCP15 physically interacts with MYB106 when both proteins are expressed in yeast cells or Nicotiana bentamiana leaves. Furthermore, we also observed interaction in leaves of Arabidopsis thaliana. Altogether, our findings raise the possibility that TCP15 and MYB106 bind together to the promoters of target genes to exert their action. Our data provide a base to investigate the role of TCP-MIXTA complexes in the context of cuticle development in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Alejandra Camoirano
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Antonela L. Alem
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Daniel H. Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ivana L. Viola
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
58
|
Ren L, Wu H, Zhang T, Ge X, Wang T, Zhou W, Zhang L, Ma D, Wang A. Genome-Wide Identification of TCP Transcription Factors Family in Sweet Potato Reveals Significant Roles of miR319-Targeted TCPs in Leaf Anatomical Morphology. FRONTIERS IN PLANT SCIENCE 2021; 12:686698. [PMID: 34426735 PMCID: PMC8379018 DOI: 10.3389/fpls.2021.686698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 05/08/2023]
Abstract
Plant-specific TCP transcription factors play vital roles in the controlling of growth, development, and the stress response processes. Extensive researches have been carried out in numerous species, however, there hasn't been any information available about TCP genes in sweet potato (Ipomoea batatas L.). In this study, a genome-wide analysis of TCP genes was carried out to explore the evolution and function in sweet potato. Altogether, 18 IbTCPs were identified and cloned. The expression profiles of the IbTCPs differed dramatically in different organs or different stages of leaf development. Furthermore, four CIN-clade IbTCP genes contained miR319-binding sites. Blocking IbmiR319 significantly increased the expression level of IbTCP11/17 and resulted in a decreased photosynthetic rate due to the change in leaf submicroscopic structure, indicating the significance of IbmiR319-targeted IbTCPs in leaf anatomical morphology. A systematic analyzation on the characterization of the IbTCPs together with the primary functions in leaf anatomical morphology were conducted to afford a basis for further study of the IbmiR319/IbTCP module in association with leaf anatomical morphology in sweet potato.
Collapse
Affiliation(s)
- Lei Ren
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Haixia Wu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Tingting Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xinyu Ge
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Tianlong Wang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wuyu Zhou
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou), Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, China
| | - Aimin Wang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
59
|
Noh M, Shin JS, Hong JC, Kim SY, Shin JS. Arabidopsis TCX8 functions as a senescence modulator by regulating LOX2 expression. PLANT CELL REPORTS 2021; 40:677-689. [PMID: 33492497 DOI: 10.1007/s00299-021-02663-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
TCX8 localizes to nucleus and has transcriptional repression activity. TCX8 binds to the promoter region of LOX2 encoding lipoxygenase, causing JA biosynthesis suppression, and thereby delays plant senescence. Conserved CXC domain-containing proteins are found in most eukaryotes. Eight TCX proteins, which are homologs of animal CXC-Hinge-CXC (CHC) proteins, were identified in Arabidopsis, and three of them, TSO1, TCX2/SOL2 and TCX3/SOL1, have been reported to affect cell-cycle control. TCX8, one of the TCX family proteins, was believed to be a TF but its precise function has not been reported. Yeast two-hybrid screening revealed TCP20, a TF that binds to the promoter of LOX2 encoding lipoxygenase, as a strong candidate for interaction with TCX8. We confirmed that TCX8 directly interacts with TCP20 using in vitro pull-down assay and in vivo BiFC and observed that TCX8, as a TF, localizes to nucleus. Using EMSA and by analyzing phenotypes of TCX8-overexpression lines, we demonstrated that TCX8 regulates the expression of LOX2 by binding to either cis-element of LOX2 promoter to which TCP20 or TCP4 binds, affecting JA biosynthesis, and thereby delaying plant senescence. Our study provides new information about the role of TCX8 in modulating plant senescence through regulating LOX2 expression.
Collapse
Affiliation(s)
- Minsoo Noh
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Seok Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Soo Youn Kim
- Bionics Corporation, Seoul, 04778, Republic of Korea.
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
60
|
Mohanty B. Promoter Architecture and Transcriptional Regulation of Genes Upregulated in Germination and Coleoptile Elongation of Diverse Rice Genotypes Tolerant to Submergence. Front Genet 2021; 12:639654. [PMID: 33796132 PMCID: PMC8008075 DOI: 10.3389/fgene.2021.639654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Rice has the natural morphological adaptation to germinate and elongate its coleoptile under submerged flooding conditions. The phenotypic deviation associated with the tolerance to submergence at the germination stage could be due to natural variation. However, the molecular basis of this variation is still largely unknown. A comprehensive understanding of gene regulation of different genotypes that have diverse rates of coleoptile elongation can provide significant insights into improved rice varieties. To do so, publicly available transcriptome data of five rice genotypes, which have different lengths of coleoptile elongation under submergence tolerance, were analyzed. The aim was to identify the correlation between promoter architecture, associated with transcriptional and hormonal regulation, in diverse genotype groups of rice that have different rates of coleoptile elongation. This was achieved by identifying the putative cis-elements present in the promoter sequences of genes upregulated in each group of genotypes (tolerant, highly tolerant, and extremely tolerant genotypes). Promoter analysis identified transcription factors (TFs) that are common and unique to each group of genotypes. The candidate TFs that are common in all genotypes are MYB, bZIP, AP2/ERF, ARF, WRKY, ZnF, MADS-box, NAC, AS2, DOF, E2F, ARR-B, and HSF. However, the highly tolerant genotypes interestingly possess binding sites associated with HY5 (bZIP), GBF3, GBF4 and GBF5 (bZIP), DPBF-3 (bZIP), ABF2, ABI5, bHLH, and BES/BZR, in addition to the common TFs. Besides, the extremely tolerant genotypes possess binding sites associated with bHLH TFs such as BEE2, BIM1, BIM3, BM8 and BAM8, and ABF1, in addition to the TFs identified in the tolerant and highly tolerant genotypes. The transcriptional regulation of these TFs could be linked to phenotypic variation in coleoptile elongation in response to submergence tolerance. Moreover, the results indicate a cross-talk between the key TFs and phytohormones such as gibberellic acid, abscisic acid, ethylene, auxin, jasmonic acid, and brassinosteroids, for an altered transcriptional regulation leading to differences in germination and coleoptile elongation under submergence. The information derived from the current in silico analysis can potentially assist in developing new rice breeding targets for direct seeding.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
61
|
Hao J, Lou P, Han Y, Chen Z, Chen J, Ni J, Yang Y, Jiang Z, Xu M. GrTCP11, a Cotton TCP Transcription Factor, Inhibits Root Hair Elongation by Down-Regulating Jasmonic Acid Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:769675. [PMID: 34880892 PMCID: PMC8646037 DOI: 10.3389/fpls.2021.769675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 05/17/2023]
Abstract
TCP transcription factors play important roles in diverse aspects of plant development as transcriptional activators or repressors. However, the functional mechanisms of TCPs are not well understood, especially in cotton fibers. Here, we identified a total of 37 non-redundant TCP proteins from the diploid cotton (Gossypium raimondii), which showed great diversity in the expression profile. GrTCP11, an ortholog of AtTCP11, was preferentially expressed in cotton anthers and during fiber initiation and secondary cell wall synthesis stages. Overexpression of GrTCP11 in Arabidopsis thaliana reduced root hair length and delayed flowering. It was found that GrTCP11 negatively regulated genes involved in jasmonic acid (JA) biosynthesis and response, such as AtLOX4, AtAOS, AtAOC1, AtAOC3, AtJAZ1, AtJAZ2, AtMYC2, and AtERF1, which resulted in a decrease in JA concentration in the overexpressed transgenic lines. As with the JA-deficient mutant dde2-2, the transgenic line 4-1 was insensitive to 50 μM methyl jasmonate, compared with the wild-type plants. The results suggest that GrTCP11 may be an important transcription factor for cotton fiber development, by negatively regulating JA biosynthesis and response.
Collapse
|
62
|
Kong Q, Yang Y, Low PM, Guo L, Yuan L, Ma W. The function of the WRI1-TCP4 regulatory module in lipid biosynthesis. PLANT SIGNALING & BEHAVIOR 2020; 15:1812878. [PMID: 32880205 PMCID: PMC7588184 DOI: 10.1080/15592324.2020.1812878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
The plant-specific TCP transcription factors play pivotal roles in various processes of plant growth and development. However, little is known regarding the functions of TCPs in plant oil biosynthesis. Our recent work showed that TCP4 mediates oil production via interaction with WRINKLED1 (WRI1), an essential transcription factor governing plant fatty acid biosynthesis. Arabidopsis WRI1 (AtWRI1) physically interacts with multiple TCPs, including TCP4, TCP10, and TCP24. Transient co-expression of AtWRI1 with TCP4, but not TCP10 or TCP24, represses oil accumulation in Nicotiana benthamiana leaves. Increased TCP4 in transgenic plants overexpressing a miR319-resistant TCP4 (rTCP4) decreased the expression of AtWRI1 target genes. The tcp4 knockout mutant, the jaw-D mutant with significant reduction of TCP4 expression, and a tcp2 tcp4 tcp10 triple mutant, display increased seed oil contents compared to the wild-type Arabidopsis. The APETALA2 (AP2) transcription factor WRI1 is characterized by regulating fatty acid biosynthesis through cross-family interactions with multiple transcriptional, post-transcriptional, and post-translational regulators. The interacting regulator modules control the range of AtWRI1 transcriptional activity, allowing spatiotemporal modulation of lipid production. Interaction of TCP4 with AtWRI1, which results in a reduction of AtWRI1 activity, represents a newly discovered mechanism that enables the fine-tuning of plant oil biosynthesis.
Collapse
Affiliation(s)
- Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- CONTACT Wei Ma School of Biological Sciences, Nanyang Technological University, Singapore637551, Singapore
| |
Collapse
|
63
|
Tarelkina TV, Novitskaya LL, Galibina NA, Moshchenskaya YL, Nikerova KM, Nikolaeva NN, Sofronova IN, Ivanova DS, Semenova LI. Expression Analysis of Key Auxin Biosynthesis, Transport, and Metabolism Genes of Betula pendula with Special Emphasis on Figured Wood Formation in Karelian Birch. PLANTS 2020; 9:plants9111406. [PMID: 33105649 PMCID: PMC7690449 DOI: 10.3390/plants9111406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Auxin status in woody plants is believed to be a critical factor for the quantity and quality of the wood formed. It has been previously demonstrated that figured wood formation in Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hämet-Ahti) is associated with a reduced auxin level and elevated sugar content in the differentiating xylem, but the molecular mechanisms of the abnormal xylogenesis remained largely unclear. We have identified genes involved in auxin biosynthesis (Yucca), polar auxin transport (PIN) and the conjugation of auxin with amino acids (GH3) and UDP-glucose (UGT84B1) in the B. pendula genome, and analysed their expression in trunk tissues of trees differing in wood structure. Almost all the investigated genes were overexpressed in Karelian birch trunks. Although Yucca genes were overexpressed, trunk tissues in areas developing figured grain had traits of an auxin-deficient phenotype. Overexpression of GH3s and UGT84B1 appears to have a greater effect on figured wood formation. Analysis of promoters of the differentially expressed genes revealed a large number of binding sites with various transcription factors associated with auxin and sugar signalling. These data agree with the hypothesis that anomalous figured wood formation in Karelian birch may be associated with the sugar induction of auxin conjugation.
Collapse
|
64
|
Karaaslan ES, Wang N, Faiß N, Liang Y, Montgomery SA, Laubinger S, Berendzen KW, Berger F, Breuninger H, Liu C. Marchantia TCP transcription factor activity correlates with three-dimensional chromatin structure. NATURE PLANTS 2020; 6:1250-1261. [PMID: 32895530 DOI: 10.1038/s41477-020-00766-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/07/2020] [Indexed: 05/04/2023]
Abstract
Information in the genome is not only encoded within sequence or epigenetic modifications, but is also found in how it folds in three-dimensional space. The formation of self-interacting genomic regions, named topologically associated domains (TADs), is known as a key feature of genome organization beyond the nucleosomal level. However, our understanding of the formation and function of TADs in plants is extremely limited. Here we show that the genome of Marchantia polymorpha, a member of a basal land plant lineage, exhibits TADs with epigenetic features similar to those of higher plants. By analysing various epigenetic marks across Marchantia TADs, we find that these regions generally represent interstitial heterochromatin and their borders are enriched with Marchantia transcription factor TCP1. We also identify a type of TAD that we name 'TCP1-rich TAD', in which genomic regions are highly accessible and are densely bound by TCP1 proteins. Transcription of TCP1 target genes differs on the basis gene location, and those in TCP1-rich TADs clearly show a lower expression level. In tcp1 mutant lines, neither TCP1-bound TAD borders nor TCP1-rich TADs display drastically altered chromatin organization patterns, suggesting that, in Marchantia, TCP1 is dispensable for TAD formation. However, we find that in tcp1 mutants, genes residing in TCP1-rich TADs have a greater extent of expression fold change as opposed to genes that do not belong to these TADs. Our results suggest that, besides standing as spatial chromatin-packing modules, plant TADs function as nuclear microcompartments associated with transcription factor activities.
Collapse
Affiliation(s)
| | - Nan Wang
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Natalie Faiß
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Yuyu Liang
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Sascha Laubinger
- Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
| | | | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Holger Breuninger
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
- Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
65
|
Camoirano A, Arce AL, Ariel FD, Alem AL, Gonzalez DH, Viola IL. Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5438-5453. [PMID: 32453824 DOI: 10.1093/jxb/eraa257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Trichomes and the cuticle are two specialized structures of the aerial epidermis that are important for plant organ development and interaction with the environment. In this study, we report that Arabidopsis thaliana plants affected in the function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15 show overbranched trichomes in leaves and stems and increased cuticle permeability. We found that TCP15 regulates the expression of MYB106, a MIXTA-like transcription factor involved in epidermal cell and cuticle development, and overexpression of MYB106 in a tcp14 tcp15 mutant reduces trichome branch number. TCP14 and TCP15 are also required for the expression of the cuticle biosynthesis genes CYP86A4, GPAT6, and CUS2, and of SHN1 and SHN2, two AP2/EREBP transcription factors required for cutin and wax biosynthesis. SHN1 and CUS2 are also targets of TCP15, indicating that class I TCPs influence cuticle formation acting at different levels, through the regulation of MIXTA-like and SHN transcription factors and of cuticle biosynthesis genes. Our study indicates that class I TCPs are coordinators of the regulatory network involved in trichome and cuticle development.
Collapse
Affiliation(s)
- Alejandra Camoirano
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Antonela L Alem
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | |
Collapse
|
66
|
Canales J, Uribe F, Henríquez-Valencia C, Lovazzano C, Medina J, Vidal EA. Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum. BMC PLANT BIOLOGY 2020; 20:385. [PMID: 32831040 PMCID: PMC7444261 DOI: 10.1186/s12870-020-02590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. RESULTS Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. CONCLUSIONS Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.
Collapse
Affiliation(s)
- Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Felipe Uribe
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Henríquez-Valencia
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Lovazzano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Elena A Vidal
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
67
|
He C, Zhang HY, Zhang YX, Fu P, You LL, Xiao WB, Wang ZH, Song HY, Huang YJ, Liao JL. Cytosine methylations in the promoter regions of genes involved in the cellular oxidation equilibrium pathways affect rice heat tolerance. BMC Genomics 2020; 21:560. [PMID: 32799794 PMCID: PMC7430847 DOI: 10.1186/s12864-020-06975-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/06/2020] [Indexed: 11/15/2022] Open
Abstract
Background High temperatures, particularly at night, decrease rice yield and quality. As high nighttime temperatures (HNTs) become increasingly frequent due to climate change, it is imperative to develop rice crops that tolerate HNTs. DNA methylation may represent a potential avenue for HNT-tolerant rice strain development, as this mechanism regulates gene activity and cellular phenotype in response to adverse environmental conditions without changing the nucleotide sequence. Results After HNT exposure, the methylation patterns of cytosines in the CHH context differed noticeably between two coisogenic rice strains with significantly different levels in heat tolerance. Methylation differences between strains were primarily observed on successive cytosines in the promoter or downstream regions of transcription factors and transposon elements. In contrast to the heat-sensitive rice strain, the regions 358–359 bp and 2–60 bp downstream of two basal transcriptional factors (TFIID subunit 11 and mediator of RNA polymerase II transcription subunit 31, respectively) were fully demethylated in the heat-tolerant strain after HNT exposure. In the heat-tolerant strain, HNTs reversed the methylation patterns of successive cytosines in the promoter regions of various genes involved in abscisic acid (ABA)-related reactive oxygen species (ROS) equilibrium pathways, including the pentatricopeptide repeat domain gene PPR (LOC_Os07g28900) and the homeobox domain gene homeobox (LOC_Os01g19694). Indeed, PRR expression was inhibited in heat-sensitive rice strains, and the methylation rates of the cytosines in the promoter region of PRR were greater in heat-sensitive strains as compared to heat-tolerant strains. Conclusions After HNT exposure, cytosines in the CHH context were more likely than cytosines in other contexts to be methylated differently between the heat-sensitive and heat-tolerant rice strains. Methylation in the promoter regions of the genes associated with ABA-related oxidation and ROS scavenging improved heat tolerance in rice. Our results help to clarify the molecular mechanisms underlying rice heat tolerance.
Collapse
Affiliation(s)
- Chao He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Hong-Yu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Yong-Xin Zhang
- South Zhejiang Key Laboratory of Crop Breeding, Institute of Crop Research, Wenzhou Academy of Agricultural Sciences, Wenzhou, 325006, China
| | - Pei Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Li-Li You
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Wen-Bo Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Zhao-Hai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Hai-Yan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| | - Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| |
Collapse
|
68
|
Wang Y, Yu Y, Wang J, Chen Q, Ni Z. Heterologous overexpression of the GbTCP5 gene increased root hair length, root hair and stem trichome density, and lignin content in transgenic Arabidopsis. Gene 2020; 758:144954. [PMID: 32683079 DOI: 10.1016/j.gene.2020.144954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 11/27/2022]
Abstract
Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) is a plant-specific protein family member involved in plant growth and development. However, the functions of most members of the cotton TCP family are unknown. In this study, the GbTCP5 gene encodes a sea-island cotton class II TCP CIN subclass transcription factor. The GbTCP5 transcription factor is located in the nucleus, has transcriptional activation activity, and can bind to TCP II cis-acting elements. GbTCP5 was widely expressed in tissues with the highest transcript level in the calyx. GbTCP5 is expressed at different developmental stages of the fiber and has significantly high transcriptional level expression in the fibers at 20, 30 and 35 days post anthesis (DPA). Heterologous overexpression of the GbTCP5 gene increased root hair length, root hair and stem trichome density, and stem lignin content in transgenic Arabidopsis compared to the wild type (WT). GbTCP5 binds the promoters of the GL3, EGL3, CPC, MYB46, LBD30, CesA4, VND7, CCOMT1, and CAD5 genes to upregulate their expression. Moreover, the homologous genes of these genes are expressed in the fibers of different developmental stages of the sea-island cotton fiber. These results indicate that GbTCP5 regulates root hair development and secondary wall formation in Arabidopsis and may be a candidate gene for improving cotton fiber quality.
Collapse
Affiliation(s)
- Yi Wang
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Yuehua Yu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Junduo Wang
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, PR China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Zhiyong Ni
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China.
| |
Collapse
|
69
|
Parvathaneni RK, Bertolini E, Shamimuzzaman M, Vera DL, Lung PY, Rice BR, Zhang J, Brown PJ, Lipka AE, Bass HW, Eveland AL. The regulatory landscape of early maize inflorescence development. Genome Biol 2020; 21:165. [PMID: 32631399 PMCID: PMC7336428 DOI: 10.1186/s13059-020-02070-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The functional genome of agronomically important plant species remains largely unexplored, yet presents a virtually untapped resource for targeted crop improvement. Functional elements of regulatory DNA revealed through profiles of chromatin accessibility can be harnessed for fine-tuning gene expression to optimal phenotypes in specific environments. RESULT Here, we investigate the non-coding regulatory space in the maize (Zea mays) genome during early reproductive development of pollen- and grain-bearing inflorescences. Using an assay for differential sensitivity of chromatin to micrococcal nuclease (MNase) digestion, we profile accessible chromatin and nucleosome occupancy in these largely undifferentiated tissues and classify at least 1.6% of the genome as accessible, with the majority of MNase hypersensitive sites marking proximal promoters, but also 3' ends of maize genes. This approach maps regulatory elements to footprint-level resolution. Integration of complementary transcriptome profiles and transcription factor occupancy data are used to annotate regulatory factors, such as combinatorial transcription factor binding motifs and long non-coding RNAs, that potentially contribute to organogenesis, including tissue-specific regulation between male and female inflorescence structures. Finally, genome-wide association studies for inflorescence architecture traits based solely on functional regions delineated by MNase hypersensitivity reveals new SNP-trait associations in known regulators of inflorescence development as well as new candidates. CONCLUSIONS These analyses provide a comprehensive look into the cis-regulatory landscape during inflorescence differentiation in a major cereal crop, which ultimately shapes architecture and influences yield potential.
Collapse
Affiliation(s)
| | | | - Md Shamimuzzaman
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Current address: USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Daniel L. Vera
- The Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306 USA
- Current address: Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306 USA
| | - Brian R. Rice
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306 USA
| | - Patrick J. Brown
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | | |
Collapse
|
70
|
Seven M, Akdemir H. DOF, MYB and TCP transcription factors: Their possible roles on barley germination and seedling establishment. Gene Expr Patterns 2020; 37:119116. [PMID: 32603687 DOI: 10.1016/j.gep.2020.119116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022]
Abstract
Seed germination is a multi-staged complex process during seed plant life cycle, and it is tightly regulated through a coordinated expression of diverse genes in diverse tissues. As regulatory molecules of gene expression, determination of transcription factors is crucial to understanding molecular basis and regulatory network of germination process and seedling establishment. However, limited data on the contributions of these transcription factors to the germination of crop barley (Hordeum vulgare L.) are available. Here, we investigated the expression profiles of selected transcription factors from different families (DOF, MYB and TCP) with qRT-PCR analysis in various tissues including coleoptiles, leaves and roots following the germination. Analysis of MYB and DOF gene expression profiles indicated that there were differing expressions in different aged tissues, HvMYB5 and HvDOF2 being the most outstanding one in the oldest tissue, 15-day-old root. On the other hand, investigated TCP genes were lowly expressed compared to selected MYB and DOF genes, except HvTCP3, where the highest expression was observed in 15-day-old root tissue. The obtained expression profiles illustrate the importance of potential regulatory roles of transcription factors in early developmental stages of barley germination and seedling establishment.
Collapse
Affiliation(s)
- Merve Seven
- Yeditepe University, Department of Genetics and Bioengineering, 34755, Istanbul, Turkey
| | - Hulya Akdemir
- Gebze Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 41400, Kocaeli, Turkey.
| |
Collapse
|
71
|
He J, He X, Chang P, Jiang H, Gong D, Sun Q. Genome-wide identification and characterization of TCP family genes in Brassica juncea var. tumida. PeerJ 2020; 8:e9130. [PMID: 32461831 PMCID: PMC7231505 DOI: 10.7717/peerj.9130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background Teosinte branched1/Cycloidea/proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in Brassica juncea var. tumida, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in B. juncea var. tumida. Methods We identified 62 BjTCP genes from the B. juncea var. tumida genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues. Results Of the 62 BjTCP genes we identified in B. juncea var. tumida, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes. Conclusion We performed the first genome-wide analysis of the TCP gene family of B. juncea var. tumida. Our results have provided valuable information for understanding the classification and functions of TCP genes in B. juncea var. tumida.
Collapse
Affiliation(s)
- Jing He
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Xiaohong He
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Pingan Chang
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Huaizhong Jiang
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| |
Collapse
|
72
|
Ding N, Qin Q, Wu X, Miller R, Zaitlin D, Li D, Yang S. Antagonistic regulation of axillary bud outgrowth by the BRANCHED genes in tobacco. PLANT MOLECULAR BIOLOGY 2020; 103:185-196. [PMID: 32124178 DOI: 10.1007/s11103-020-00983-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
As a key integrator of shoot branching, BRANCHED 1 (BRC1) coordinates and is orchestrated by endogenous and environmental signals involved in the regulation of axillary bud outgrowth. In the present study, we characterized the regulatory roles of five BRC gene members in tobacco (Nicotiana tabacum L.) using CRISPR site-directed mutagenesis and overexpression assays. It was shown that lateral branching was negatively regulated by NtBRC1A-1, 1B-1, and 1B-2, but was unexpectedly promoted by NtBRC2A. Suppression of bud growth may be attained by direct binding of NtBRCs to the Tassels Replace Upper Ears 1 (TRU1) genes. It was speculated that NtBRC2A probably confers a dominant negative effect by interfering with the branching-inhibitory BRC1 genes. Our results suggested that highly homologous gene family members may function antagonistically in the same signaling pathway. However, the molecular mechanism underlying NtBRC2A-mediated outgrowth of axillary buds needs to be further addressed. KEY MESSAGE: Axillary bud outgrowth in general is negatively regulated by the BRANCHED gene. Here we show that the BRANCHED genes play opposing regulatory roles in tobacco lateral branching.
Collapse
Affiliation(s)
- Na Ding
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Qiulin Qin
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Xia Wu
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Robert Miller
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - David Zaitlin
- Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Dandan Li
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
73
|
Krishnatreya DB, Baruah PM, Dowarah B, Bordoloi KS, Agarwal H, Agarwala N. Mining of miRNAs from EST data in Dendrobium nobile. Bioinformation 2020; 16:245-255. [PMID: 32308267 PMCID: PMC7147496 DOI: 10.6026/97320630016245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/05/2022] Open
Abstract
Dendrobium nobile is an orchid species highly popular for its therapeutic properties and is often used as a medicinal herb. Documenting miRNA-target associations in D. nobile is an important step to facilitate functional genomics studies in this species. Therefore, it is of interest to identify miRNA sequences from EST data available in public databases using known techniques and tools. We report 14 potential miRNAs from three ESTs of D. nobile. They belong to 3 miRNA families (miR390, miR528 and miR414) linking to transcription factor regulation, signal transduction, DNA and protein binding, and various cellular processes covering 34 different metabolic networks in KEGG. These results help in the understanding of miRNA-mRNAs functional networks in Dendrobium nobile.
Collapse
Affiliation(s)
| | - Pooja Moni Baruah
- Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014
| | - Bhaskar Dowarah
- Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014
| | | | - Heena Agarwal
- Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014
| |
Collapse
|
74
|
Jannesar M, Seyedi SM, Moazzam Jazi M, Niknam V, Ebrahimzadeh H, Botanga C. A genome-wide identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Sci Rep 2020; 10:5585. [PMID: 32221354 PMCID: PMC7101358 DOI: 10.1038/s41598-020-62108-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in regulating gene expression in response to plant stresses. Given the importance regulatory roles of lncRNAs, providing methods for predicting the function of these molecules, especially in non-model plants, is strongly demanded by researchers. Here, we constructed a reference sequence for lncRNAs in P. vera (Pistacia vera L.) with 53220 transcripts. In total, we identified 1909 and 2802 salt responsive lncRNAs in Ghazvini, a salt tolerant cultivar, after 6 and 24 h salt treatment, respectively and 1820 lncRNAs in Sarakhs, a salt sensitive cultivar, after 6 h salt treatment. Functional analysis of these lncRNAs by several hybrid methods, revealed that salt responsive NAT-related lncRNAs associated with transcription factors, CERK1, LEA, Laccase genes and several genes involved in the hormone signaling pathways. Moreover, gene ontology (GO) enrichment analysis of salt responsive target genes related to top five selected lncRNAs showed their involvement in the regulation of ATPase, cation transporter, kinase and UDP-glycosyltransferases genes. Quantitative real-time PCR (qRT-PCR) experiment results of lncRNAs, pre-miRNAs and mature miRNAs were in accordance with our RNA-seq analysis. In the present study, a comparative analysis of differentially expressed lncRNAs and microRNA precursors between salt tolerant and sensitive pistachio cultivars provides valuable knowledge on gene expression regulation under salt stress condition.
Collapse
Affiliation(s)
- Masoomeh Jannesar
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Mahdi Seyedi
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Maryam Moazzam Jazi
- Research Institute for Endocrine Science (RIES), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hassan Ebrahimzadeh
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Christopher Botanga
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, United States of America
| |
Collapse
|
75
|
Potuschak T, Palatnik J, Schommer C, Sierro N, Ivanov NV, Kwon Y, Genschik P, Davière J, Otten L. Inhibition of Arabidopsis thaliana CIN-like TCP transcription factors by Agrobacterium T-DNA-encoded 6B proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1303-1317. [PMID: 31659801 PMCID: PMC7187390 DOI: 10.1111/tpj.14591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/03/2019] [Indexed: 05/26/2023]
Abstract
Agrobacterium T-DNA-encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T-DNAs with three slightly divergent 6b genes (TE-1-6b-L, TE-1-6b-R and TE-2-6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE-2-6b, but not 2×35S:TE-1-6b-L or 2×35S:TE-1-6b-R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN-like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN-like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE-2-6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw-D plants. Co-expression of green fluorescent protein (GFP)-tagged TCPs with native or red fluorescent protein (RFP)-tagged TE-6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double-hybrid experiments confirmed 6B/TCP binding and showed that TE-1-6B-L and TE-1-6B-R bind a smaller set of TCP proteins than TE-2-6B. A single nucleotide mutation in TE-1-6B-R enlarged its TCP-binding repertoire to that of TE-2-6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE-2-6B targets the TCP4 DNA-binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE-encoded 6b genes.
Collapse
Affiliation(s)
- Thomas Potuschak
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| | - Javier Palatnik
- IBR‐CONICETPredio CCTOcampo y Esmeralda s/n2000RosarioArgentina
| | - Carla Schommer
- IBR‐CONICETPredio CCTOcampo y Esmeralda s/n2000RosarioArgentina
| | - Nicolas Sierro
- PMI R&DPhilip Morris Products S. A.Quai Jeanrenaud 52000NeuchâtelSwitzerland
| | - Nikolai V. Ivanov
- PMI R&DPhilip Morris Products S. A.Quai Jeanrenaud 52000NeuchâtelSwitzerland
| | - Yerim Kwon
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| | - Jean‐Michel Davière
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| | - Léon Otten
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| |
Collapse
|
76
|
Molecular characterization of teosinte branched1 gene governing branching architecture in cultivated maize and wild relatives. 3 Biotech 2020; 10:77. [PMID: 32058540 DOI: 10.1007/s13205-020-2052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022] Open
Abstract
We sequenced the entire tb1 gene in six maize inbreds and its wild relatives (parviglumis, mexicana, perennis and luxurians) to characterize it at molecular level. Hopscotch and Tourist transposable elements were observed in the upstream of tb1 in all maize inbreds, while they were absent in wild relatives. In maize, tb1 consisted of 431-443 bp 5'UTR, 1101 bp coding sequence and 211-219 bp 3'UTR. In promoter region, mutations in the light response element in mexicana (~ 35 bp and ~ 55 bp upstream of TSS) and perennis (at ~ 35 bp upstream of TSS) were found. A 6 bp insertion at 420 bp downstream of the polyA signal site was present among teosinte accessions, while it was not observed in maize. A codominant marker flanking the 6 bp InDel was developed, and it differentiated the teosintes from maize. In Tb1 protein, alanine (12.7-14.6%) was the most abundant amino acid with tryptophan as the rarest (0.5-0.9%). The molecular weight of Tb1 protein was 38757.15 g/mol except 'Palomero Toluqueno' and HKI1128. R and TCP motifs in Tb1 protein were highly conserved across maize, teosinte and orthologues, while TCP domain differed for tb1 paralogue. Tb1 possessed important role in light-, auxin-, stress-response and meristem identity maintenance. Presence of molecular signal suggested its localization in mitochondria, nucleus and nucleolus. Parviglumis and mexicana shared closer relationship with maize than perennis and luxurians. A highly conserved 59-60 amino acids long bHLH region was observed across genotypes. Information generated here assumes significance in evolution of tb1 gene and breeding for enhancement of prolificacy in maize.
Collapse
|
77
|
Sun L, Zou X, Jiang M, Wu X, Chen Y, Wang Q, Wang Q, Chen L, Wu Y. The crystal structure of the TCP domain of PCF6 in Oryza sativa L. reveals an RHH-like fold. FEBS Lett 2020; 594:1296-1306. [PMID: 31898812 DOI: 10.1002/1873-3468.13727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 11/07/2022]
Abstract
The Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) domain is an evolutionarily conserved DNA binding domain unique to the plant kingdom. To date, the functions of TCPs have been well studied, but the three-dimensional structure of the TCP domain is lacking. Here, we have determined the crystal structure of the TCP domain from OsPCF6. The structure reveals that the TCP domain adopts three short β-strands followed by a helix-loop-helix structure, distinct from the canonical basic helix-loop-helix structure. This folded domain shows high structural similarity to the ribbon-helix-helix (RHH) transcriptional repressors, a family of DNA binding proteins with a conserved 3D structural motif (RHH fold), indicating that TCPs could be reclassified as RHH proteins. Our work will provide insight toward a better understanding of the mechanisms underlying TCP protein function.
Collapse
Affiliation(s)
- Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xiaoming Zou
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Meiqin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xiuling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yayu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qianchao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Qin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
78
|
Bao S, Zhang Z, Lian Q, Sun Q, Zhang R. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence. BMC Genet 2019; 20:91. [PMID: 31801457 PMCID: PMC6892148 DOI: 10.1186/s12863-019-0793-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
Background The plant-specific Teosinte branched1/Cycloidea/Proliferating cell factor (TCP) family of transcription factors is involved in the regulation of cell growth and proliferation, performing diverse functions in plant growth and development. In addition, TCP transcription factors have recently been shown to be targets of pathogenic effectors and are likely to play a vital role in plant immunity. No comprehensive analysis of the TCP family members in potato (Solanum tuberosum L.) has been undertaken, however, and whether their functions are conserved in potato remains unknown. Results To assess TCP gene evolution in potato, we identified TCP-like genes in several publicly available databases. A total of 23 non-redundant TCP transcription factor-encoding genes were identified in the potato genome and subsequently subjected to a systematic analysis that included determination of their phylogenetic relationships, gene structures and expression profiles in different potato tissues under basal conditions and after hormone treatments. These assays also confirmed the function of the class I TCP StTCP23 in the regulation of plant growth and defence. Conclusions This is the first genome-wide study including a systematic analysis of the StTCP gene family in potato. Identification of the possible functions of StTCPs in potato growth and defence provides valuable information for our understanding of the classification and functions of the TCP genes in potato.
Collapse
Affiliation(s)
- Sarina Bao
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Zhenxin Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Qun Lian
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Qinghua Sun
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
79
|
Testone G, Baldoni E, Iannelli MA, Nicolodi C, Di Giacomo E, Pietrini F, Mele G, Giannino D, Frugis G. Transcription Factor Networks in Leaves of Cichorium endivia: New Insights into the Relationship Between Photosynthesis and Leaf Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E531. [PMID: 31766484 PMCID: PMC6963412 DOI: 10.3390/plants8120531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
Abstract
Cichorium endivia is a leafy crop closely related to Lactuca sativa that comprises two major botanical varieties characterized by a high degree of intraspecific morphological variation: var. latifolium with broad leaves (escarole) and var. crispum with narrow crisp curly leaves (endive). To investigate the relationship between leaf morphology and photosynthetic activity, escaroles and endives were used as a crop model due to the striking morphological diversity of their leaves. We constructed a leaf database for transcription factors (TFs) and photosynthesis-related genes from a refined C. endivia transcriptome and used RNA-seq transcriptomic data from leaves of four commercial endive and escarole cultivars to explore transcription factor regulatory networks. Cluster and gene co-expression network (GCN) analyses identified two main anticorrelated modules that control photosynthesis. Analysis of the GCN network topological properties identified known and novel hub genes controlling photosynthesis, and candidate developmental genes at the boundaries between shape and function. Differential expression analysis between broad and curly leaves suggested three novel TFs putatively involved in leaf shape diversity. Physiological analysis of the photosynthesis properties and gene expression studies on broad and curly leaves provided new insights into the relationship between leaf shape and function.
Collapse
Affiliation(s)
- Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elena Baldoni
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Fabrizio Pietrini
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| |
Collapse
|
80
|
Zhang G, Zhao H, Zhang C, Li X, Lyu Y, Qi D, Cui Y, Hu L, Wang Z, Liang Z, Cui S. TCP7 functions redundantly with several Class I TCPs and regulates endoreplication in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1151-1170. [PMID: 30474211 DOI: 10.1111/jipb.12749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 05/24/2023]
Abstract
TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR) proteins, a family of plant-specific transcription factors, play important roles in many developmental processes. However, genetic and functional redundancy among class I TCP limits the analysis of their biological roles. Here, we identified a dominant-negative mutant of Arabidopsis thaliana TCP7 named leaf curling-upward (lcu), which exhibits smaller leaf cells and shorter hypocotyls than the wild type, due to defective endoreplication. A septuple loss-of-function mutant of TCP7, TCP8, TCP14, TCP15, TCP21, TCP22, and TCP23 displayed similar developmental defects to those of lcu. Genome-wide RNA-sequencing showed that lcu and the septuple mutant share many misexpressed genes. Intriguingly, TCP7 directly targets the CYCLIN D1;1 (CYCD1;1) locus and activates its transcription. We determined that the C-terminus of TCP7 accounts for its transcriptional activation activity. Furthermore, the mutant protein LCU exhibited reduced transcriptional activation activity due to the introduction of an EAR-like repressive domain at its C-terminus. Together, these observations indicate that TCP7 plays important roles during leaf and hypocotyl development, redundantly, with at least six class I TCPs, and regulates the expression of CYCD1;1 to affect endoreplication in Arabidopsis.
Collapse
Affiliation(s)
- Guofang Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunguang Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyun Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yuanyuan Lyu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongmei Qi
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanwei Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lin Hu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhenjie Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zheng Liang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang, 050024, China
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
81
|
Perez M, Guerringue Y, Ranty B, Pouzet C, Jauneau A, Robe E, Mazars C, Galaud JP, Aldon D. Specific TCP transcription factors interact with and stabilize PRR2 within different nuclear sub-domains. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110197. [PMID: 31481190 DOI: 10.1016/j.plantsci.2019.110197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Plants possess a large set of transcription factors both involved in the control of plant development or in plant stress responses coordination. We previously identified PRR2, a Pseudo-Response Regulator, as a plant-specific CML-interacting partner. We reported that PRR2 acts as a positive actor of plant defense by regulating the production of antimicrobial compounds. Here, we report new data on the interaction between PRR2 and transcription factors belonging to the Teosinte branched Cycloidea and PCF (TCP) family. TCPs have been described to be involved in plant development and immunity. We evaluated the ability of PRR2 to interact with seven TCPs representative of the different subclades of the family. PRR2 is able to interact with TCP13, TCP15, TCP19 and TCP20 in yeast two-hybrid system and in planta interactions were validated for TCP19 and TCP20. Transient expression in tobacco highlighted that PRR2 protein is more easily detected when co-expressed with TCP19 or TC20. This stabilization is associated with a specific sub-nuclear localization of the complex in Cajal bodies or in nuclear speckles according to the interaction of PRR2 with TCP19 or TCP20 respectively. The interaction between PRR2 and TCP19 or TCP20 would contribute to the biological function in specific nuclear compartments.
Collapse
Affiliation(s)
- M Perez
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet-Tolosan, France; Toulouse NeuroImaging Center, INSERM, UPS, Pavillon Baudot, CHU Purpan, Place du Dr Baylac, 31024 Toulouse, France.
| | - Y Guerringue
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet-Tolosan, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
| | - B Ranty
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet-Tolosan, France.
| | - C Pouzet
- Fédération de Recherche FR3450 (Agrobiosciences, Interactions et Biodiversité), Plateforme Imagerie-Microscopie, CNRS, Université Toulouse, 31326, Castanet-Tolosan, France.
| | - A Jauneau
- Fédération de Recherche FR3450 (Agrobiosciences, Interactions et Biodiversité), Plateforme Imagerie-Microscopie, CNRS, Université Toulouse, 31326, Castanet-Tolosan, France.
| | - E Robe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet-Tolosan, France.
| | - C Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet-Tolosan, France.
| | - J P Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet-Tolosan, France.
| | - D Aldon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet-Tolosan, France.
| |
Collapse
|
82
|
Heterologous Expression of GbTCP4, a Class II TCP Transcription Factor, Regulates Trichome Formation and Root Hair Development in Arabidopsis. Genes (Basel) 2019; 10:genes10090726. [PMID: 31546783 PMCID: PMC6771151 DOI: 10.3390/genes10090726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Two class I family teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins from allotetraploid cotton are involved in cotton fiber cell differentiation and elongation and root hair development. However, the biological function of most class II TCP proteins is unclear. This study sought to reveal the characteristics and functions of the sea-island cotton class II TCP gene GbTCP4 by biochemical, genetic, and molecular biology methods. GbTCP4 protein localizes to nuclei, binding two types of TCP-binding cis-acting elements, including the one in its promoter. Expression pattern analysis revealed that GbTCP4 is widely expressed in tissues, with the highest level in flowers. GbTCP4 is expressed at different fiber development stages and has high transcription in fibers beginning at 5 days post anthesis (DPA). GbTCP4 overexpression increases primary root hair length and density and leaf and stem trichomes in transgenic Arabidopsis relative to wild-type plants (WT). GbTCP4 binds directly to the CAPRICE (CPC) promoter, increasing CPC transcript levels in roots and reducing them in leaves. Compared with WT plants, lignin content in the stems of transgenic Arabidopsis overexpressing GbTCP4 increased, and AtCAD5 gene transcript levels increased. These results suggest that GbTCP4 regulates trichome formation and root hair development in Arabidopsis and may be a candidate gene for regulating cotton fiber elongation.
Collapse
|
83
|
van Es SW, van der Auweraert EB, Silveira SR, Angenent GC, van Dijk AD, Immink RG. Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:316-328. [PMID: 30903633 PMCID: PMC6767503 DOI: 10.1111/tpj.14326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 05/17/2023]
Abstract
Members of the Arabidopsis thaliana TCP transcription factor (TF) family affect plant growth and development. We systematically quantified the effect of mutagenizing single or multiple TCP TFs and how altered vegetative growth or branching influences final seed yield. We monitored rosette growth over time and branching patterns and seed yield characteristics at the end of the lifecycle. Subsequently, an approach was developed to disentangle vegetative growth and to determine possible effects on seed yield. Analysis of growth parameters showed all investigated tcp mutants to be affected in certain growth aspects compared with wild-type plants, highlighting the importance of TCP TFs in plant development. Furthermore, we found evidence that all class II TCPs are involved in axillary branch outgrowth, either as inhibitors (BRANCHED-like genes) or enhancers (JAW- and TCP5-like genes). Comprehensive phenotyping of plants mutant for single or multiple TCP TFs reveals that the proposed opposite functions of class I and class II TCPs in plant growth needs revision and shows complex interactions between closely related TCP genes instead of full genetic redundancy. In various instances, the alterations in vegetative growth or in branching patterns result into negative trade-off effects on seed yield that were missed in previous studies, showing the importance of comprehensive and quantitative phenotyping.
Collapse
Affiliation(s)
- Sam W. van Es
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
- Present address:
Department of Plant PhysiologyUmeå Plant Science CentreUmeå University90187UmeåSweden
| | | | - Sylvia R. Silveira
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratório de Biotecnologia VegetalCentro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaSPCEP 13416‐000Brazil
| | - Gerco C. Angenent
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
| | - Aalt D.J. van Dijk
- BiometrisWageningen University and Research6708 PBWageningenThe Netherlands
- BioinformaticsWageningen University and Research6708 PBWageningenThe Netherlands
| | - Richard G.H. Immink
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
| |
Collapse
|
84
|
Genome-Wide Analysis of TCP Family Genes in Zea mays L. Identified a Role for ZmTCP42 in Drought Tolerance. Int J Mol Sci 2019; 20:ijms20112762. [PMID: 31195663 PMCID: PMC6600213 DOI: 10.3390/ijms20112762] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
The Teosinte-branched 1/Cycloidea/Proliferating (TCP) plant-specific transcription factors (TFs) have been demonstrated to play a fundamental role in plant development and organ patterning. However, it remains unknown whether or not the TCP gene family plays a role in conferring a tolerance to drought stress in maize, which is a major constraint to maize production. In this study, we identified 46 ZmTCP genes in the maize genome and systematically analyzed their phylogenetic relationships and synteny with rice, sorghum, and ArabidopsisTCP genes. Expression analysis of the 46 ZmTCP genes in different tissues and under drought conditions, suggests their involvement in maize response to drought stress. Importantly, genetic variations in ZmTCP32 and ZmTCP42 are significantly associated with drought tolerance at the seedling stage. RT-qPCR results suggest that ZmTCP32 and ZmTCP42 RNA levels are both induced by ABA, drought, and polyethylene glycol treatments. Based on the significant association between the genetic variation of ZmTCP42 and drought tolerance, and the inducible expression of ZmTCP42 by drought stress, we selected ZmTCP42, to investigate its function in drought response. We found that overexpression of ZmTCP42 in Arabidopsis led to a hypersensitivity to ABA in seed germination and enhanced drought tolerance, validating its function in drought tolerance. These results suggested that ZmTCP42 functions as an important TCP TF in maize, which plays a positive role in drought tolerance.
Collapse
|
85
|
Arabidopsis Transcription Factor TCP5 Controls Plant Thermomorphogenesis by Positively Regulating PIF4 Activity. iScience 2019; 15:611-622. [PMID: 31078552 PMCID: PMC6548983 DOI: 10.1016/j.isci.2019.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/05/2019] [Accepted: 04/01/2019] [Indexed: 11/24/2022] Open
Abstract
Plants display thermomorphogenesis in response to high temperature (HT). PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is a central integrator regulated by numerous negative regulators. However, the mechanisms underpinning PIF4 positive regulation are largely unknown. Here, we find that TEOSINTE BRANCHED 1/CYCLOIDEA/PCF 5 (TCP5), TCP13, and TCP17 transcription factors promote the activity of PIF4 at transcriptional and post-transcriptional levels. TCP5 is rapidly induced by HT treatment, and TCP5 protein stability increases under HT. The overexpression of TCP5 causes constitutive thermomorphogenic phenotypes, whereas the tcp5 tcp13 tcp17 triple mutant exhibits aberrant thermomorphogenesis. We demonstrate that TCP5 not only physically interacts with PIF4 to enhance its activity but also directly binds to the promoter of PIF4 to increase its transcript. TCP5 and PIF4 share common downstream targets. The tcp5 tcp13 tcp17 mutant partially restores the long hypocotyls caused by PIF4 overexpression. Our findings provide a layer of understanding about the fine-scale regulation of PIF4 and plant thermomorphogenesis.
Collapse
|
86
|
Ethylene Response of Plum ACC Synthase 1 (ACS1) Promoter is Mediated through the Binding Site of Abscisic Acid Insensitive 5 (ABI5). PLANTS 2019; 8:plants8050117. [PMID: 31052513 PMCID: PMC6572237 DOI: 10.3390/plants8050117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
Abstract
The enzyme 1-amino-cyclopropane-1-carboxylic acid synthase (ACS) participates in the ethylene biosynthesis pathways and it is tightly regulated transcriptionally and post-translationally. Notwithstanding its major role in climacteric fruit ripening, the transcriptional regulation of ACS during ripening is not fully understood. We studied fruit ripening in two Japanese plum cultivars, the climacteric Santa Rosa (SR) and its non-climacteric bud sport mutant, Sweet Miriam (SM). As the two cultivars show considerable difference in ACS expression, they provide a good system for the study of the transcriptional regulation of the gene. To investigate the differential transcriptional regulation of ACS1 genes in the SR and SM, their promoter regions, which showed only minor sequence differences, were isolated and used to identify the binding of transcription factors interacting with specific ACS1 cis-acting elements. Three transcription factors (TFs), abscisic acid-insensitive 5 (ABI5), GLABRA 2 (GL2), and TCP2, showed specific binding to the ACS1 promoter. Synthetic DNA fragments containing multiple cis-acting elements of these TFs fused to β-glucuronidase (GUS), showed the ABI5 binding site mediated ethylene and abscisic acid (ABA) responses of the promoter. While TCP2 and GL2 showed constant and similar expression levels in SM and SR fruit during ripening, ABI5 expression in SM fruits was lower than in SR fruits during advanced fruit ripening states. Overall, the work demonstrates the complex transcriptional regulation of ACS1.
Collapse
|
87
|
Cheng Z, Lei N, Li S, Liao W, Shen J, Peng M. The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: A transcriptome analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:9-16. [PMID: 30825725 DOI: 10.1016/j.plaphy.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 05/01/2023]
Abstract
Cassava (Manihot esculenta), an important food crop in tropical areas, is well-adapted to drought conditions, but is sensitive to cold. The expression of MeTCP4, a transcription factor involved in the regulation of plant development and abiotic stresses responses, was altered under cold stress. However, its biological function under abiotic stress responses is still unclear. Here, we show that increased MeTCP4 expression enhances cold stress tolerance in Arabidopsis (Arabidopsis thaliana). To better understand the biological role of MeTCP4, the mRNA from overexpression and wild-type (WT) plants was isolated for whole genome sequencing to identify MeTCP4-mediated cold-responsive genes. Our results identify 1341 and 797 differentially expressed genes (DEGs) affected by MeTCP4 overexpression under normal and cold conditions, respectively. Gene ontology analysis revealed that a portion of the DEGs were involved in reactive oxygen species (ROS) metabolism process after cold treatment. qRT-PCR analysis revealed that the expression of cold-responsive genes and ROS-scavenging-related genes were increased in MeTCP4 overexpression plant, which could be responsible for the reduced ROS levels and enhanced cold resistance observed in transgenic plant. The findings provide insight into mechanisms of MeTCP4-mediated cold stress response, and provide clues for development of low temperature-tolerant cassava cultivars.
Collapse
Affiliation(s)
- Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, China
| | - Ning Lei
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jie Shen
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
88
|
Spears BJ, Howton TC, Gao F, Garner CM, Mukhtar MS, Gassmann W. Direct Regulation of the EFR-Dependent Immune Response by Arabidopsis TCP Transcription Factors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:540-549. [PMID: 30480481 DOI: 10.1094/mpmi-07-18-0201-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One layer of the innate immune system allows plants to recognize pathogen-associated molecular patterns (PAMPS), activating a defense response known as PAMP-triggered immunity (PTI). Maintaining an active immune response, however, comes at the cost of plant growth and development; accordingly, optimization of the balance between defense and development is critical to plant fitness. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor family consists of well-characterized transcriptional regulators of plant development and morphogenesis. The three closely related class I TCP transcription factors TCP8, TCP14, and TCP15 have also been implicated in the regulation of effector-triggered immunity, but there has been no previous characterization of PTI-related phenotypes. To identify TCP targets involved in PTI, we screened a PAMP-induced gene promoter library in a yeast one-hybrid assay and identified interactions of these three TCPs with the EF-Tu RECEPTOR (EFR) promoter. The direct interactions between TCP8 and EFR were confirmed to require an intact TCP binding site in planta. A tcp8 tcp14 tcp15 triple mutant was impaired in EFR-dependent PTI and exhibited reduced levels of PATHOGENESIS-RELATED PROTEIN 2 and induction of EFR expression after elicitation with elf18 but also increased production of reactive oxygen species relative to Col-0. Our data support an increasingly complex role for TCPs at the nexus of plant development and defense.
Collapse
Affiliation(s)
- Benjamin J Spears
- 1 Division of Plant Sciences, University of Missouri, Columbia, MO 65211-7310, U.S.A
- 2 C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri
| | - T C Howton
- 3 Department of Biology, University of Alabama, Birmingham, AL, 35233, U.S.A.; and
| | - Fei Gao
- 1 Division of Plant Sciences, University of Missouri, Columbia, MO 65211-7310, U.S.A
- 2 C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri
| | - Christopher M Garner
- 2 C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri
- 4 Division of Biological Sciences, University of Missouri
| | - M Shahid Mukhtar
- 3 Department of Biology, University of Alabama, Birmingham, AL, 35233, U.S.A.; and
| | - Walter Gassmann
- 1 Division of Plant Sciences, University of Missouri, Columbia, MO 65211-7310, U.S.A
- 2 C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri
| |
Collapse
|
89
|
Livigni S, Lucini L, Sega D, Navacchi O, Pandolfini T, Zamboni A, Varanini Z. The different tolerance to magnesium deficiency of two grapevine rootstocks relies on the ability to cope with oxidative stress. BMC PLANT BIOLOGY 2019; 19:148. [PMID: 30991946 PMCID: PMC6469136 DOI: 10.1186/s12870-019-1726-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Magnesium (Mg) deficiency causes physiological and molecular responses, already dissected in several plant species. The study of these responses among genotypes showing a different tolerance to the Mg shortage can allow identifying the mechanisms underlying the resistance to this nutritional disorder. To this aim, we compared the physiological and molecular responses (e.g. changes in root metabolome and transcriptome) of two grapevine rootstocks exhibiting, in field, different behaviors with respect to Mg shortage (1103P, tolerant and SO4 susceptible). RESULTS The two grapevine rootstocks confirmed, in a controlled growing system, their behavior in relation to the tolerance to Mg deficiency. Differences in metabolite and transcriptional profiles between the roots of the two genotypes were mainly linked to antioxidative compounds and the cell wall constituents. In addition, differences in secondary metabolism, in term of both metabolites (e.g. alkaloids, terpenoids and phenylpropanoids) and transcripts, assessed between 1103P and SO4 suggest a different behavior in relation to stress responses particularly at early stages of Mg deficiency. CONCLUSIONS Our results suggested that the higher ability of 1103P to tolerate Mg shortage is mainly linked to its capability of coping, faster and more efficiently, with the oxidative stress condition caused by the nutritional disorder.
Collapse
Affiliation(s)
- Sonia Livigni
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, Piacenza, Italy
| | - Davide Sega
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | - Tiziana Pandolfini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Anita Zamboni
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Zeno Varanini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
90
|
Sanz-Carbonell A, Marques MC, Bustamante A, Fares MA, Rodrigo G, Gomez G. Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC PLANT BIOLOGY 2019; 19:78. [PMID: 30777009 PMCID: PMC6379984 DOI: 10.1186/s12870-019-1679-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/07/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND MiRNAs have emerged as key regulators of stress response in plants, suggesting their potential as candidates for knock-in/out to improve stress tolerance in agricultural crops. Although diverse assays have been performed, systematic and detailed studies of miRNA expression and function during exposure to multiple environments in crops are limited. RESULTS Here, we present such pioneering analysis in melon plants in response to seven biotic and abiotic stress conditions. Deep-sequencing and computational approaches have identified twenty-four known miRNAs whose expression was significantly altered under at least one stress condition, observing that down-regulation was preponderant. Additionally, miRNA function was characterized by high scale degradome assays and quantitative RNA measurements over the intended target mRNAs, providing mechanistic insight. Clustering analysis provided evidence that eight miRNAs showed a broad response range under the stress conditions analyzed, whereas another eight miRNAs displayed a narrow response range. Transcription factors were predominantly targeted by stress-responsive miRNAs in melon. Furthermore, our results show that the miRNAs that are down-regulated upon stress predominantly have as targets genes that are known to participate in the stress response by the plant, whereas the miRNAs that are up-regulated control genes linked to development. CONCLUSION Altogether, this high-resolution analysis of miRNA-target interactions, combining experimental and computational work, Illustrates the close interplay between miRNAs and the response to diverse environmental conditions, in melon.
Collapse
Affiliation(s)
- Alejandro Sanz-Carbonell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - María Carmen Marques
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Bustamante
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Pichilingue, Km5 vía Quevedo El Empalme, Mocache, Ecuador
| | - Mario A. Fares
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
91
|
Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, Ogé L, Demotes-Mainard S, Hamama L, Davière JM, Sakr S. BRANCHED1: A Key Hub of Shoot Branching. FRONTIERS IN PLANT SCIENCE 2019; 10:76. [PMID: 30809235 PMCID: PMC6379311 DOI: 10.3389/fpls.2019.00076] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/17/2019] [Indexed: 05/20/2023]
Abstract
Shoot branching is a key process for plant growth and fitness. Newly produced axes result from axillary bud outgrowth, which is at least partly mediated through the regulation of BRANCHED1 gene expression (BRC1/TB1/FC1). BRC1 encodes a pivotal bud-outgrowth-inhibiting transcription factor belonging to the TCP family. As the regulation of BRC1 expression is a hub for many shoot-branching-related mechanisms, it is influenced by endogenous (phytohormones and nutrients) and exogenous (light) inputs, which involve so-far only partly identified molecular networks. This review highlights the central role of BRC1 in shoot branching and its responsiveness to different stimuli, and emphasizes the different knowledge gaps that should be addressed in the near future.
Collapse
Affiliation(s)
- Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Marie-Anne Le Moigne
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Jessica Bertheloot
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Laurent Crespel
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Sabine Demotes-Mainard
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, UPR2357, Université de Strasbourg, Strasbourg, France
| | - Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| |
Collapse
|
92
|
Roy Chowdhury M, Basak J. Tiny Yet Indispensable Plant MicroRNAs Are Worth to Explore as Key Components for Combating Genotoxic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1197. [PMID: 31636646 PMCID: PMC6788304 DOI: 10.3389/fpls.2019.01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
Plants being sessile are always exposed to various stresses including biotic and abiotic stresses. Some of these stresses are genotoxic to cells causing DNA damage by forming lesions which include altered bases, cross-links, and breaking of DNA strands, which in turn hamper the genomic integrity. In order to survive through all these adverse conditions, plants have evolved different DNA repair mechanisms. As seen from the mammalian system and different human diseases, various microRNAs (miRNAs) can target the 3'-untranslated region of mRNAs that code for the proteins involved in DNA repair pathways. Since miRNAs play an important role in plant cells by regulating various metabolic pathways, it can also be possible that miRNAs play an important role in DNA repair pathways too. However, till date, only a handful of plant miRNAs have been identified to play important role in combating genotoxic stresses in plants. Limitation of information regarding involvement of miRNAs in DNA repair as well as in ROS scavenging prompted us to gather information about plant miRNAs specific for these tasks. This mini-review aims to present pertinent literature dealing with different genotoxic stresses that cause genome instability as well as plant specific responses to survive the damage. This is intertwined with the involvement of miRNAs in genotoxic stress in plants, challenges of applying miRNAs as a tool to combat DNA damage along with ways to overcome these challenges, and finally, the future prospective of these understudied aspects.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jolly Basak
- Laboratory of Plant Stress Biology, Department of Biotechnology, Visva-Bharati, University Santiniketan, India
- *Correspondence: Jolly Basak,
| |
Collapse
|
93
|
Identification, Characterization, and Expression Patterns of TCP Genes and microRNA319 in Cotton. Int J Mol Sci 2018; 19:ijms19113655. [PMID: 30463287 PMCID: PMC6274894 DOI: 10.3390/ijms19113655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) gene family is a group of plant-specific transcription factors that have versatile functions in developmental processes and stress responses. In this study, a total of 73 TCP genes in upland cotton were identified and characterizated. Phylogenetic analysis classified them into three subgroups: 50 belonged to PCF, 16 to CIN, and 7 to CYC/TB1. GhTCP genes are randomly distributed in 22 of the 26 chromosomes in cotton. Expression patterns of GhTCPs were analyzed in 10 tissues, including different developmental stages of ovule and fiber, as well as under heat, salt, and drought stresses. Transcriptome analysis showed that 44 GhTCP genes exhibited varied transcript accumulation patterns in the tested tissues and 41 GhTCP genes were differentially expressed in response to heat, salt, and drought stresses. Furthermore, three GhTCP genes of the CIN clade were found to contain miR319-binding sites. An anti-correlation expression of GhTCP21 and GhTCP54 was analyzed with miR319 under salt and drought stress. Our results lay the foundation for understanding the complex mechanisms of GhTCP-mediated developmental processes and abiotic stress-signaling transduction pathways in cotton.
Collapse
|
94
|
Kondhare KR, Malankar NN, Devani RS, Banerjee AK. Genome-wide transcriptome analysis reveals small RNA profiles involved in early stages of stolon-to-tuber transitions in potato under photoperiodic conditions. BMC PLANT BIOLOGY 2018; 18:284. [PMID: 30445921 PMCID: PMC6238349 DOI: 10.1186/s12870-018-1501-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/25/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Small RNAs (sRNAs), especially miRNAs, act as crucial regulators of plant growth and development. Two other sRNA groups, trans-acting short-interfering RNAs (tasiRNAs) or phased siRNAs (phasiRNAs), are also emerging as potential regulators of plant development. Stolon-to-tuber transition in potato is an important developmental phase governed by many environmental, biochemical and hormonal cues. Among different environmental factors, photoperiod has a major influence on tuberization. Several mobile signals, mRNAs, proteins and transcription factors have been widely studied for their role in tuber formation in potato, however, no information is yet available that describes the molecular signals governing the early stages of stolon transitions or cell-fate changes at the stolon tip before it matures to potato. Stolon could be an interesting model for studying below ground organ development and we hypothesize that small RNAs might be involved in regulation of stolon-to-tuber transition process in potato. Also, there is no literature that describes the phased siRNAs in potato development. RESULTS We performed sRNA profiling of early stolon stages (4, 7 and 10 d) under long-day (LD; 16 h light, 8 h dark) and short-day (SD; 8 h light, 16 h dark) photoperiodic conditions. Altogether, 7 (out of 324) conserved and 12 (out of 311) novel miRNAs showed differential expression in early stolon stages under SD vs LD photoperiodic conditions. Key target genes (StGRAS, StTCP2/4 and StPTB6) exhibited differential expression in early stolon stages under SD vs LD photoperiodic conditions, indicative of their potential role in tuberization. Out of 830 TAS-like loci identified, 24 were cleaved by miRNAs to generate 190 phased siRNAs. Some of them targeted crucial tuberization genes such as StPTB1, POTH1 and StCDPKs. Two conserved TAS loci, referred as StTAS3 and StTAS5, which share close conservation with members of the Solanaceae family, were identified in our analysis. One TAS-like locus (StTm2) was validated for phased siRNA generation and one of its siRNA was predicted to cleave an important tuber marker gene StGA2ox1. CONCLUSION Our study suggests that sRNAs and their selective target genes could be associated with the regulation of early stages of stolon-to-tuber transitions in a photoperiod-dependent manner in potato.
Collapse
Affiliation(s)
- Kirtikumar Ramesh Kondhare
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| | - Nilam Namdeo Malankar
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| | - Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| |
Collapse
|
95
|
Liu HL, Wu M, Li F, Gao YM, Chen F, Xiang Y. TCP Transcription Factors in Moso Bamboo ( Phyllostachys edulis): Genome-Wide Identification and Expression Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1263. [PMID: 30344527 PMCID: PMC6182085 DOI: 10.3389/fpls.2018.01263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (T), members of a plant-specific gene family, play significant roles during plant growth and development, as well as in response to environmental stress. However, knowledge about this family in moso bamboo (Phyllostachys edulis) is limited. Therefore, in this study, the first genome-wide identification, classification, characterization, and expression pattern analysis of the TCP transcription factor family in moso bamboo was performed. Sixteen TCP members were identified from the moso bamboo genome using a BLASTP algorithm-based method and verified using the Pfam database. Based on a multiple-sequence alignment, the members were divided into two subfamilies, and members of the same family shared highly conserved motif structures. Subcellular localization and transactivation activity analyses of four selected genes revealed that they were nuclear localized and had self-activation activities. Additionally, the expression levels of several PeTCP members were significantly upregulated under abscisic acid, methyl jasmonate, and salicylic acid treatments, indicating that they play crucial plant hormone transduction roles in the processes of plant growth and development, as well as in responses to environmental stresses. Thus, the current study provides previously lacking information on the TCP family in moso bamboo and reveals the potential functions of this gene family in growth and development.
Collapse
Affiliation(s)
- Huan-Long Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Meng Gao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
96
|
Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N, Kong X, Chen L, Mao L, Li A. Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1282. [PMID: 30298074 PMCID: PMC6160802 DOI: 10.3389/fpls.2018.01282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
The TCP family genes are plant-specific transcription factors and play important roles in plant development. TCPs have been evolutionarily and functionally studied in several plants. Although common wheat (Triticum aestivum L.) is a major staple crop worldwide, no systematic analysis of TCPs in this important crop has been conducted. Here, we performed a genome-wide survey in wheat and found 66 TCP genes that belonged to 22 homoeologous groups. We then mapped these genes on wheat chromosomes and found that several TCP genes were duplicated in wheat including the ortholog of the maize TEOSINTE BRANCHED 1. Expression study using both RT-PCR and in situ hybridization assay showed that most wheat TCP genes were expressed throughout development of young spike and immature seed. Cis-acting element survey along promoter regions suggests that subfunctionalization may have occurred for homoeologous genes. Moreover, protein-protein interaction experiments of three TCP proteins showed that they can form either homodimers or heterodimers. Finally, we characterized two TaTCP9 mutants from tetraploid wheat. Each of these two mutant lines contained a premature stop codon in the A subgenome homoeolog that was dominantly expressed over the B subgenome homoeolog. We observed that mutation caused increased spike and grain lengths. Together, our analysis of the wheat TCP gene family provides a start point for further functional study of these important transcription factors in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Long Mao
- *Correspondence: Long Mao, Aili Li,
| | - Aili Li
- *Correspondence: Long Mao, Aili Li,
| |
Collapse
|
97
|
Andrés-Colás N, Carrió-Seguí A, Abdel-Ghany SE, Pilon M, Peñarrubia L. Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:910. [PMID: 30018625 PMCID: PMC6037871 DOI: 10.3389/fpls.2018.00910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionally overexpressed transcription factors implicated members of the TCP family in the COPT3 differential temporal expression pattern. Particularly, in vitro, TCP16 was found to bind to the COPT3 promoter and down-regulated its expression. Accordingly, TCP16 was mainly expressed at 0 h under copper deficiency and induced at 12 h by copper excess. Moreover, TCP16 overexpression resulted in increased sensitivity to copper deficiency, whereas the tcp16 mutant was sensitive to copper excess. Both copper content and the expression of particular copper status markers were altered in plants with modified levels of TCP16. Consistent with TCP16 affecting pollen development, the lack of COPT3 function led to altered pollen morphology. Furthermore, analysis of copt3 and COPT3 overexpressing plants revealed that COPT3 function exerted a negative effect on TCP16 expression. Taken together, these results suggest a differential daily regulation of copper uptake depending on the external and internal copper pools, in which TCP16 inhibits copper remobilization at dawn through repression of intracellular transporters.
Collapse
Affiliation(s)
- Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Angela Carrió-Seguí
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Salah E. Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Marinus Pilon
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
98
|
Sarvepalli K, Nath U. CIN-TCP transcription factors: Transiting cell proliferation in plants. IUBMB Life 2018; 70:718-731. [PMID: 29934986 DOI: 10.1002/iub.1874] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022]
Abstract
Leaves are the most conspicuous planar organs in plants, designed for efficient capture of sunlight and its conversion to energy that is channeled into sustaining the entire biosphere. How a few founder cells derived from the shoot apical meristem give rise to diverse leaf forms has interested naturalists and developmental biologists alike. At the heart of leaf morphogenesis lie two simple cellular processes, division and expansion, that are spatially and temporally segregated in a developing leaf. In leaves of dicot model species, cell division occurs predominantly at the base, concomitant with the expansion and differentiation of cells at the tip of the lamina that drives increase in leaf surface area. The timing of the transition from one cell fate (division) to the other (expansion) within a growing leaf lamina is a critical determinant of final leaf shape, size, complexity and flatness. The TCP proteins, unique to plant kingdom, are sequence-specific DNA-binding transcription factors that control several developmental and physiological traits. A sub-group of class II TCPs, called CINCINNATA-like TCPs (CIN-TCPs henceforth), are key regulators of the timing of the transition from division to expansion in dicot leaves. The current review highlights recent advances in our understanding of how the pattern of CIN-TCP activity is translated to the dynamic spatio-temporal control of cell-fate transition through the transactivation of cell-cycle regulators, growth-repressing microRNAs, and interactions with the chromatin remodeling machinery to modulate phytohormone responses. Unravelling how environmental inputs influence CIN-TCP-mediated growth control is a challenge for future studies. © 2018 IUBMB Life, 70(8):718-731, 2018.
Collapse
Affiliation(s)
- Kavitha Sarvepalli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
99
|
He H, Van Breusegem F, Mhamdi A. Redox-dependent control of nuclear transcription in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3359-3372. [PMID: 29659979 DOI: 10.1093/jxb/ery130] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/27/2018] [Indexed: 05/03/2023]
Abstract
Redox-dependent regulatory networks are affected by altered cellular or extracellular levels of reactive oxygen species (ROS). Perturbations of ROS production and scavenging homeostasis have a considerable impact on the nuclear transcriptome. While the regulatory mechanisms by which ROS modulate gene transcription in prokaryotes, lower eukaryotes, and mammalian cells are well established, new insights into the mechanism underlying redox control of gene expression in plants have only recently been known. In this review, we aim to provide an overview of the current knowledge on how ROS and thiol-dependent transcriptional regulatory networks are controlled. We assess the impact of redox perturbations and oxidative stress on transcriptome adjustments using cat2 mutants as a model system and discuss how redox homeostasis can modify the various parts of the transcriptional machinery.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
100
|
Wang H, Wang H, Liu R, Xu Y, Lu Z, Zhou C. Genome-Wide Identification of TCP Family Transcription Factors in Medicago truncatula Reveals Significant Roles of miR319-Targeted TCPs in Nodule Development. FRONTIERS IN PLANT SCIENCE 2018; 9:774. [PMID: 29942322 PMCID: PMC6004737 DOI: 10.3389/fpls.2018.00774] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 05/24/2023]
Abstract
TCP proteins, the plant-specific transcription factors, are involved in the regulation of multiple aspects of plant development among different species, such as leaf development, branching, and flower symmetry. However, thus far, the roles of TCPs in legume, especially in nodulation are still not clear. In this study, a genome-wide analysis of TCP genes was carried out to discover their evolution and function in Medicago truncatula. In total, 21 MtTCPs were identified and classified into class I and class II, and the class II MtTCPs were further divided into two subclasses, CIN and CYC/TB1. The expression profiles of MtTCPs are dramatically different. The universal expression of class I MtTCPs was detected in all organs. However, the MtTCPs in CIN subclass were highly expressed in leaf and most of the members in CYC/TB1 subclass were highly expressed in flower. Such organ-specific expression patterns of MtTCPs suggest their different roles in plant development. In addition, most MtTCPs were down-regulated during the nodule development, except for the putative MtmiR319 targets, MtTCP3, MtTCP4, and MtTCP10A. Overexpression of MtmiR319A significantly reduced the expression level of MtTCP3/4/10A/10B and resulted in the decreased nodule number, indicating the important roles of MtmiR319-targeted MtTCPs in nodulation. Taken together, this study systematically analyzes the MtTCP gene family at a genome-wide level and their possible functions in nodulation, which lay the basis for further explorations of MtmiR319/MtTCPs module in association with nodule development in M. truncatula.
Collapse
Affiliation(s)
- Hongfeng Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rong Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yiteng Xu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhichao Lu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chuanen Zhou
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|