51
|
Lechner B, Hageneder S, Schmidt K, Kreuzer MP, Conzemius R, Reimhult E, Barišić I, Dostalek J. In Situ Monitoring of Rolling Circle Amplification on a Solid Support by Surface Plasmon Resonance and Optical Waveguide Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32352-32362. [PMID: 34212712 DOI: 10.1021/acsami.1c03715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growth of surface-attached single-stranded deoxyribonucleic acid (ssDNA) chains is monitored in situ using an evanescent wave optical biosensor that combines surface plasmon resonance (SPR) and optical waveguide spectroscopy (OWS). The "grafting-from" growth of ssDNA chains is facilitated by rolling circle amplification (RCA), and the gradual prolongation of ssDNA chains anchored to a gold sensor surface is optically tracked in time. At a sufficient density of the polymer chains, the ssDNA takes on a brush architecture with a thickness exceeding 10 μm, supporting a spectrum of guided optical waves traveling along the metallic sensor surface. The simultaneous probing of this interface with the confined optical field of surface plasmons and additional more delocalized dielectric optical waveguide modes enables accurate in situ measurement of the ssDNA brush thickness, polymer volume content, and density gradients. We report for the first time on the utilization of the SPR/OWS technique for the measurement of the RCA speed on a solid surface that can be compared to that in bulk solutions. In addition, the control of ssDNA brush properties by changing the grafting density and ionic strength and post-modification via affinity reaction with complementary short ssDNA staples is discussed. These observations may provide important leads for tailoring RCA toward sensitive and rapid assays in affinity-based biosensors.
Collapse
Affiliation(s)
- Bernadette Lechner
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
- CEST Competence Center for Electrochemical Surface Technologies, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Katharina Schmidt
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Mark P Kreuzer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo 1021, San Martín, CP 1650 Provincia de Buenos Aires, Argentina
| | - Rick Conzemius
- Molecular Diagnostics, Health & Environment, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 11, Vienna 1190, Austria
| | - Ivan Barišić
- Molecular Diagnostics, Health & Environment, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| |
Collapse
|
52
|
Fu J, Chiang ELC, Medriano CAD, Li L, Bae S. Rapid quantification of fecal indicator bacteria in water using the most probable number - loop-mediated isothermal amplification (MPN-LAMP) approach on a polymethyl methacrylate (PMMA) microchip. WATER RESEARCH 2021; 199:117172. [PMID: 33991777 DOI: 10.1016/j.watres.2021.117172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 05/22/2023]
Abstract
Fecal contamination of water and its associated pathogens are a major public health concern in both developing and industrialized areas. Fecal indicator bacteria (FIB) are commonly used to assess microbial water quality, but they require a relatively long period of incubation time. Currently, molecular techniques have been applied to rapidly detect FIB. However, these molecular techniques require expensive and sophisticated equipment. In this study, we developed a rapid on-chip gene quantification method based on loop-mediated isothermal amplification (LAMP) PCR. The LAMP assays can measure the target genes of the fecal indicator bacteria (FIB), including E. coli and Enterococcus spp, using the most probable number (MPN) approach. The colorimetric LAMP assay allows for naked-eye observation of the PCR reaction as few as 4 gene copies / well. When the reaction ends, MPN measurement of positive outcomes on the white-based PMMA (polymethacrylic acid) microchips provides the concentrations of the target genes of FIB with a confidence interval. We validated the feasibility of the MPN-LAMP approach by obtaining a strong correlation between the results of the MPN estimations and the qPCR analysis. Moreover, the MPN-LAMP approach was used to quantify the FIB in different environmental water collected from the freshwater reservoirs, beach, agriculture farm, and sewage. Our research demonstrates that the MPN- LAMP method enables us to easily and quickly quantifying FIB genes isolated from the environment without expensive qPCR instruments.
Collapse
Affiliation(s)
- Jing Fu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore
| | - Elaine Li Ching Chiang
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore
| | - Carl Angelo Dulatre Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore
| | - Liyan Li
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
53
|
Multiplex recombinase polymerase amplification assay developed using unique genomic regions for rapid on-site detection of genus Clavibacter and C. nebraskensis. Sci Rep 2021; 11:12017. [PMID: 34103568 PMCID: PMC8187419 DOI: 10.1038/s41598-021-91336-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
Clavibacter is an agriculturally important bacterial genus comprising nine host-specific species/subspecies including C. nebraskensis (Cn), which causes Goss's wilt and blight of maize. A robust, simple, and field-deployable method is required to specifically detect Cn in infected plants and distinguish it from other Clavibacter species for quarantine purposes and timely disease management. A multiplex Recombinase Polymerase Amplification (RPA) coupled with a Lateral Flow Device (LFD) was developed for sensitive and rapid detection of Clavibacter and Cn directly from infected host. Unique and conserved genomic regions, the ABC transporter ATP-binding protein CDS/ABC-transporter permease and the MFS transporter gene, were used to design primers/probes for specific detection of genus Clavibacter and Cn, respectively. The assay was evaluated using 52 strains, representing all nine species/subspecies of Clavibacter, other closely related bacterial species, and naturally- and artificially-infected plant samples; no false positives or negatives were detected. The RPA reactions were also incubated in a closed hand at body temperature; results were again specific. The assay does not require DNA isolation and can be directly performed using host sap. The detection limit of 10 pg (~ 3000 copies) and 100 fg (~ 30 copies) was determined for Clavibacter- and Cn-specific primers/probes, respectively. The detection limit for Cn-specific primer/probe set was decreased to 1 pg (~ 300 copies) when 1 µL of host sap was added into the RPA reaction containing tenfold serially diluted genomic DNA; though no effect was observed on Clavibacter-specific primer/probe set. The assay is accurate and has applications at point-of-need diagnostics. This is the first multiplex RPA assay for any plant pathogen.
Collapse
|
54
|
Dyussembayev K, Sambasivam P, Bar I, Brownlie JC, Shiddiky MJA, Ford R. Biosensor Technologies for Early Detection and Quantification of Plant Pathogens. Front Chem 2021; 9:636245. [PMID: 34150716 PMCID: PMC8207201 DOI: 10.3389/fchem.2021.636245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plant pathogens are a major reason of reduced crop productivity and may lead to a shortage of food for both human and animal consumption. Although chemical control remains the main method to reduce foliar fungal disease incidence, frequent use can lead to loss of susceptibility in the fungal population. Furthermore, over-spraying can cause environmental contamination and poses a heavy financial burden on growers. To prevent or control disease epidemics, it is important for growers to be able to detect causal pathogen accurately, sensitively, and rapidly, so that the best practice disease management strategies can be chosen and enacted. To reach this goal, many culture-dependent, biochemical, and molecular methods have been developed for plant pathogen detection. However, these methods lack accuracy, specificity, reliability, and rapidity, and they are generally not suitable for in-situ analysis. Accordingly, there is strong interest in developing biosensing systems for early and accurate pathogen detection. There is also great scope to translate innovative nanoparticle-based biosensor approaches developed initially for human disease diagnostics for early detection of plant disease-causing pathogens. In this review, we compare conventional methods used in plant disease diagnostics with new sensing technologies in particular with deeper focus on electrochemical and optical biosensors that may be applied for plant pathogen detection and management. In addition, we discuss challenges facing biosensors and new capability the technology provides to informing disease management strategies.
Collapse
Affiliation(s)
- Kazbek Dyussembayev
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Prabhakaran Sambasivam
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Jeremy C. Brownlie
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Muhammad J. A. Shiddiky
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
55
|
Silva G, Tomlinson J, Onkokesung N, Sommer S, Mrisho L, Legg J, Adams IP, Gutierrez-Vazquez Y, Howard TP, Laverick A, Hossain O, Wei Q, Gold KM, Boonham N. Plant pest surveillance: from satellites to molecules. Emerg Top Life Sci 2021; 5:275-287. [PMID: 33720345 PMCID: PMC8166340 DOI: 10.1042/etls20200300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022]
Abstract
Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment.
Collapse
Affiliation(s)
- Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, U.K
| | - Jenny Tomlinson
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, U.K
| | - Nawaporn Onkokesung
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Sarah Sommer
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Latifa Mrisho
- International Institute of Tropical Agriculture, Dar el Salaam, Tanzania
| | - James Legg
- International Institute of Tropical Agriculture, Dar el Salaam, Tanzania
| | - Ian P Adams
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, U.K
| | | | - Thomas P Howard
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Alex Laverick
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Oindrila Hossain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Kaitlin M Gold
- Plant Pathology and Plant Microbe Biology Section, Cornell University, 15 Castle Creek Drive, Geneva, NY 14456, U.S.A
| | - Neil Boonham
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
56
|
Rapid Detection of Pine Pathogens Lecanosticta acicola, Dothistroma pini and D. septosporum on Needles by Probe-Based LAMP Assays. FORESTS 2021. [DOI: 10.3390/f12040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Needle blights are serious needle fungal diseases affecting pines both in natural and productive forests. Among needle blight agents, the ascomycetes Lecanosticta acicola, Dothistroma pini and D. septosporum are of particular concern. These pathogens need specific, fast and accurate diagnostics since they are regulated species in many countries and may require differential management measures. Due to the similarities in fungal morphology and the symptoms they elicit, these species are hard to distinguish using morphological characteristics. The symptoms can also be confused with those caused by insects or abiotic agents. DNA-based detection is therefore recommended. However, the specific PCR assays that have been produced to date for the differential diagnosis of these pathogens can be applied only in a well-furnished laboratory and the procedure takes a relatively long execution time. Surveillance and forest protection would benefit from a faster diagnostic method, such as a loop-mediated isothermal amplification (LAMP) assay, which requires less sophisticated equipment and can also be deployed directly on-site using portable devices. LAMP assays for the rapid and early detection of L. acicola, D. pini and D. septosporum were developed in this work. Species-specific LAMP primers and fluorescent assimilating probes were designed for each assay, targeting the beta tubulin (β-tub2) gene for the two Dothistroma species and the elongation factor (EF-1α) region for L. acicola. Each reaction detected its respective pathogen rapidly and with high specificity and sensitivity in DNA extracts from both pure fungal cultures and directly from infected pine needles. These qualities and the compatibility with inexpensive portable instrumentation position these LAMP assays as an effective method for routine phytosanitary control of plant material in real time, and they could profitably assist the management of L. acicola, D. pini and D. septosporum.
Collapse
|
57
|
Krivitsky V, Granot E, Avidor Y, Borberg E, Voegele RT, Patolsky F. Rapid Collection and Aptamer-Based Sensitive Electrochemical Detection of Soybean Rust Fungi Airborne Urediniospores. ACS Sens 2021; 6:1187-1198. [PMID: 33507747 PMCID: PMC8023804 DOI: 10.1021/acssensors.0c02452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Plants are the central source of food for humans around the world. Unfortunately, plants can be negatively affected by diverse kinds of diseases that are responsible for major economic losses worldwide. Thus, monitoring plant health and early detection of pathogens are essential to reduce disease spread and facilitate effective management practices. Various detection approaches are currently practiced. These methods mainly include visual inspection and laboratory tests. Nonetheless, these methods are labor-intensive, time-consuming, expensive, and inefficient in the early stages of infection. Thus, it is extremely important to detect diseases at the early stages of the epidemic. Here, we would like to present a fast, sensitive, and reliable electrochemical sensing platform for the detection of airborne soybean rust spores. The suspected airborne soybean rust spores are first collected and trapped inside a carbon 3D electrode matrix by high-capacity air-sampling means. Then, a specific biotinylated aptamer, suitable to target specific sites of soybean rust spores is applied. This aptamer agent binds to the surface of the collected spores on the electrode. Finally, spore-bound aptamer units are incubated with a streptavidin-alkaline phosphatase agent leading to the enzymatic formation of p-nitrophenol, which is characterized by its unique electrochemical properties. Our method allows for the rapid (ca. 2 min), selective, and sensitive collection and detection of soybean rust spores (down to the limit of 100-200 collected spores per cm2 of electrode area). This method could be further optimized for its sensitivity and applied to the future multiplex early detection of various airborne plant diseases.
Collapse
Affiliation(s)
- Vadim Krivitsky
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Granot
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Ella Borberg
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ralf T. Voegele
- Institute
of Phytomedicine, University of Hohenheim, Stuttgart 70599, Germany
| | - Fernando Patolsky
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department
of Materials Science and Engineering, the Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
58
|
Buja I, Sabella E, Monteduro AG, Chiriacò MS, De Bellis L, Luvisi A, Maruccio G. Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. SENSORS 2021; 21:s21062129. [PMID: 33803614 PMCID: PMC8003093 DOI: 10.3390/s21062129] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022]
Abstract
Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.
Collapse
Affiliation(s)
- Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | | | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
- Correspondence:
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
59
|
Chen J, Zhang P, Wang H, Shi Y. Identification for adulteration of beef with chicken based on single primer-triggered isothermal amplification. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2019-0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Adulteration of beef with cheap chicken has become a growing problem worldwide. In this study, a quick, single primer-triggered isothermal amplification (SAMP) combined with a fast nucleic acid extraction method was employed to detect the chicken meat in adulterated beef. Chicken from adulterated beef was identified using the chicken species-specific primer designed according to the Gallus gallus mitochondrial conserved sequences. Our SAMP method displayed good specificity and sensitivity in detecting chicken and beef meat DNA–the limit of detection (LOD) of SAMP is 0.33 pg/μL of chicken and beef total DNA and 2% w/w chicken meat in beef. The whole work flow from DNA extraction to signal detection can be finished within 1 h, fulfilling the requirement of on-site meat species identification.
Collapse
Affiliation(s)
- Jiao Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Pansong Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University , Xian 710069 , P. R. China
| | - Haixia Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yanjing Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|
60
|
A Seasonal Study of Koi Herpesvirus and Koi Sleepy Disease Outbreaks in the United Kingdom in 2018 Using a Pond-Side Test. Animals (Basel) 2021; 11:ani11020459. [PMID: 33572469 PMCID: PMC7916346 DOI: 10.3390/ani11020459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cyprinid herpesvirus (CyHV)-3 and carp edema virus (CEV), the causative agents of koi herpesvirus disease and koi sleepy disease, respectively, are emerging DNA viruses infecting koi and common carp. Similarities in their clinical presentation present difficulties for its on-site identification based on gross pathology. Fluorescence real-time loop-mediated isothermal amplification (LAMP) assays for detecting CyHV-3 and CEV DNA were designed to use border inspection posts and local testing by national authorities for outbreak control. The limit of these tests’ detection (102 and 103 viral copies for CyHV-3 and CEV, respectively) allows for the amplification of viral DNA in clinical samples in less than 20 min. The assays’ field performance was tested with 63 common carp mucus swabs taken during disease investigations in 2018, and the results validated with the reference laboratory analysis. Overall, the good performance, ease of use, and cost-effectiveness of these tests make them good candidates for a point of care test. However, further work is required to incorporate reliable internal controls and improve the sensitivity of these tests’ asymptomatic testing. Abstract Fluorescence real-time LAMP assays were designed for the orf43 gene of CyHV-3 European genotype and the p4a gene of the CEV genogroup I. A third LAMP assay to detect the ef1a gene of the host common carp was designed as an internal control. The limit of detection was 102 and 103 viral copies under 25 min for CyHV-3 and CEV, respectively. The specificity of the CyHV-3 LAMP assay was 95.6% of 72 fish herpesviruses tested. Sixty-three non-lethal common carp mucus swabs were collected across 16 sites during disease investigations. DNA extractions were performed in under 10 min using the QuickExtract™ digestion buffer. The LAMP amplification of CyHV-3 DNA in mucus swabs from clinical cases was detected from 4 to 13 min in 13 sites, while a co-infection of CyHV-3 and CEV was confirmed by LAMP in a single site. The LAMP results agreed with the results of the reference laboratory. The common carp ef1a was amplified only in 61% of the mucus swabs collected, preventing its use as a robust internal control to distinguish false negatives from invalid tests. After further optimization, these tests could be implemented for border inspection posts surveillance and decentralizing testing during disease outbreaks.
Collapse
|
61
|
Ali Q, Ahmar S, Sohail MA, Kamran M, Ali M, Saleem MH, Rizwan M, Ahmed AM, Mora-Poblete F, do Amaral Júnior AT, Mubeen M, Ali S. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9002-9019. [PMID: 33464530 DOI: 10.1007/s11356-021-12419-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 05/06/2023]
Abstract
Plant diseases significantly impact the global economy, and plant pathogenic microorganisms such as nematodes, viruses, bacteria, fungi, and viroids may be the etiology for most infectious diseases. In agriculture, the development of disease-free plants is an important strategy for the determination of the survival and productivity of plants in the field. This article reviews biosensor methods of disease detection that have been used effectively in other fields, and these methods could possibly transform the production methods of the agricultural industry. The precise identification of plant pathogens assists in the assessment of effective management steps for minimization of production loss. The new plant pathogen detection methods include evaluation of signs of disease, detection of cultured organisms, or direct examination of contaminated tissues through molecular and serological techniques. Laboratory-based approaches are costly and time-consuming and require specialized skills. The conclusions of this review also indicate that there is an urgent need for the establishment of a reliable, fast, accurate, responsive, and cost-effective testing method for the detection of field plants at early stages of growth. We also summarized new emerging biosensor technologies, including isothermal amplification, detection of nanomaterials, paper-based techniques, robotics, and lab-on-a-chip analytical devices. However, these constitute novelty in the research and development of approaches for the early diagnosis of pathogens in sustainable agriculture.
Collapse
Affiliation(s)
- Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Sunny Ahmar
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Aamir Sohail
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Mohsin Ali
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Hamzah Saleem
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Agha Mushtaque Ahmed
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, 3460000, Talca, Chile.
| | - Antônio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Mustansar Mubeen
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
62
|
Pumford EA, Lu J, Spaczai I, Prasetyo ME, Zheng EM, Zhang H, Kamei DT. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens Bioelectron 2020; 170:112674. [PMID: 33035900 PMCID: PMC7529604 DOI: 10.1016/j.bios.2020.112674] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Early disease detection through point-of-care (POC) testing is vital for quickly treating patients and preventing the spread of harmful pathogens. Disease diagnosis is generally accomplished using quantitative polymerase chain reaction (qPCR) to amplify nucleic acids in patient samples, permitting detection even at low target concentrations. However, qPCR requires expensive equipment, trained personnel, and significant time. These resources are not available in POC settings, driving researchers to instead utilize isothermal amplification, conducted at a single temperature, as an alternative. Common isothermal amplification methods include loop-mediated isothermal amplification, recombinase polymerase amplification, rolling circle amplification, nucleic acid sequence-based amplification, and helicase-dependent amplification. There has been a growing interest in combining such amplification methods with POC detection methods to enable the development of diagnostic tests that are well suited for resource-limited settings as well as developed countries performing mass screenings. Exciting developments have been made in the integration of these two research areas due to the significant impact that such approaches can have on healthcare. This review will primarily focus on advances made by North American research groups between 2015 and June 2020, and will emphasize integrated approaches that reduce user steps, reliance on expensive equipment, and the system's time-to-result.
Collapse
Affiliation(s)
- Elizabeth A Pumford
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Jiakun Lu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Iza Spaczai
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Matthew E Prasetyo
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Elaine M Zheng
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Hanxu Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
63
|
Jones HJ, Shield CG, Swift BM. The Application of Bacteriophage Diagnostics for Bacterial Pathogens in the Agricultural Supply Chain: From Farm-to-Fork. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:176-188. [PMID: 36147287 PMCID: PMC9041468 DOI: 10.1089/phage.2020.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriophages (phages) have great potential not only as therapeutics but as diagnostics. Indeed, they have been developed and used to diagnose and detect bacterial infections, primarily in human clinical settings. The ability to rapidly detect and control bacterial pathogens in agriculture is of primary importance to maintain food security, improve animal health, and prevent the passage of zoonotic pathogens into the human population. Culture-based detection methods are often labor-intensive, and require further confirmatory tests, increasing costs and processing times needed for diagnostics. Molecular detection methods such as polymerase chain reaction are commonly used to determine the safety of food, however, a major drawback is their inability to differentiate between viable and nonviable bacterial pathogens in food. Phage diagnostics have been proven to be rapid, capable of identifying viable pathogens and do not require cultivation to detect bacteria. Phage detection takes advantage of the specificity of interaction between phage and their hosts. Furthermore, phage detection is cost effective, which is vitally important in agricultural supply chains where there is a drive to keep costs down to ensure that the cost of food does not increase. The full potential of phage detection/diagnostics is not wholly realized or commercialized. This review explores the current use and potential future scope of phage diagnostics and their application to various bacterial pathogens across agriculture and food supply chains.
Collapse
Affiliation(s)
- Helen J. Jones
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Christopher G. Shield
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Benjamin M.C. Swift
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
64
|
Li Z, Yu T, Paul R, Fan J, Yang Y, Wei Q. Agricultural nanodiagnostics for plant diseases: recent advances and challenges. NANOSCALE ADVANCES 2020; 2:3083-3094. [PMID: 36134297 PMCID: PMC9417629 DOI: 10.1039/c9na00724e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 07/06/2020] [Indexed: 05/18/2023]
Abstract
Crop diseases caused by pathogenic microorganisms pose severe threats to the global food supply. Effective diagnostic tools for timely determination of plant diseases become essential to the assurance of agricultural sustainability and global food security. Nucleic acid- and antibody-based molecular assays are gold-standard methodologies for the diagnosis of plant diseases, but the analyzing procedures are complex and laborious. The prominent physical or chemical properties of nanomaterials have enabled their use as innovative and high-performance diagnostic tools for numerous plant pathogens and other important disease biomarkers. Engineered nanomaterials have been incorporated into traditional laboratory molecular assays or sequencing technologies that offer notable enhancement in sensitivity and selectivity. Meanwhile, nanostructure-supported noninvasive detection tools combined with portable imaging devices (e.g., smartphones) have paved the way for fast and on-site diagnosis of plant diseases and long-term monitoring of plant health conditions, especially in resource-poor settings.
Collapse
Affiliation(s)
- Zheng Li
- Institute for Advanced Study, Shenzhen University Shenzhen 518060 P. R. China
- Department of Chemical and Biomolecular Engineering, North Carolina State University 911 Partners Way, Campus Box 7905 Raleigh NC 27695 USA
| | - Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University 911 Partners Way, Campus Box 7905 Raleigh NC 27695 USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University 911 Partners Way, Campus Box 7905 Raleigh NC 27695 USA
| | - Jingyuan Fan
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Yuming Yang
- Department of Agrotechnology and Food Sciences, Wageningen University 6708 PB Wageningen The Netherlands
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University 911 Partners Way, Campus Box 7905 Raleigh NC 27695 USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University USA
| |
Collapse
|
65
|
Hu Y, Wilson S, Schwessinger B, Rathjen JP. Blurred lines: integrating emerging technologies to advance plant biosecurity. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:127-134. [PMID: 32610220 DOI: 10.1016/j.pbi.2020.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 05/25/2023]
Abstract
Plant diseases threaten global food security and biodiversity. Rapid dispersal of pathogens particularly via human means has accelerated in recent years. Timely detection of plant pathogens is essential to limit their spread. At the same time, international regulations must keep abreast of advances in plant disease diagnostics. In this review we describe recent progress in developing modern plant disease diagnostics based on detection of pathogen components, high-throughput image analysis, remote sensing, and machine learning. We discuss how different diagnostic approaches can be integrated in detection frameworks that can work at different scales and account for sampling biases. Lastly, we briefly discuss the requirements to apply these advances under regulatory settings to improve biosecurity measures globally.
Collapse
Affiliation(s)
- Yiheng Hu
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Salome Wilson
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - John P Rathjen
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
66
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci 2020; 58:77-100. [PMID: 32609551 DOI: 10.1080/10408363.2020.1781779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety. Use of a smartphone for nucleic acid testing has shown promising progress in endpoint as well as real-time analysis of various disease conditions. The emergence of smartphone-based POC devices together with paper-based sensors, microfluidic chips and digital droplet assays are used currently in many situations to provide quantitative detection of nucleic acid targets. State-of-the-art portable devices are commercially available and rapidly emerging smartphone-based POC devices that allow the performance of laboratory-quality colorimetric, fluorescent and electrochemical detection are described in this review. We present a comprehensive review of smartphone-based POC sensing applications, specifically on microbial diagnostics, assess their performance and propose recommendations for the future.
Collapse
Affiliation(s)
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
67
|
Cano I, McCullough R, Mulhearn B, Gunning S, Waine A, Joiner C, Paley R. Non-lethal loop-mediated isothermal amplification assay as a point-of-care diagnostics tool for Neoparamoeba perurans, the causative agent of amoebic gill disease. JOURNAL OF FISH DISEASES 2020; 43:779-790. [PMID: 32364315 PMCID: PMC7383609 DOI: 10.1111/jfd.13175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Neoparamoeba perurans is the causative agent of amoebic gill disease (AGD). Two loop-mediated isothermal amplification (LAMP) assays targeting the parasite 18S rRNA and the Atlantic salmon EF1α, used as internal control, were designed. The N. perurans LAMP assay did not amplify close relatives N. pemaquidensis and N. branchiphila, or the host DNA. This assay detected 106 copies of the parasite 18S rRNA gene under 13 min and 103 copies under 35 min. Five "fast-and-dirty" DNA extraction methods were compared with a reference method and further validated by TaqMan™ qPCR. Of those, the QuickExtract buffer was selected for field tests. Seventy-one non-lethal gill swabs were analysed from AGD-clinically infected Atlantic salmon. The pathogen was detected under 23 min in fish of gill score >2 and under 39 min for lower gill scores. About 1.6% of the tests were invalid (no amplification of the internal control). 100% of positives were obtained from swabs taken from fish showing gill score ˃3, but only ~50% of positives for lower gill scores. The present LAMP assay could be implemented as a point-of-care test for the on-site identification of N. perurans; however, further work is required to improve its performance for lower scores.
Collapse
Affiliation(s)
- Irene Cano
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Robin McCullough
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Brian Mulhearn
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Susie Gunning
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Ava Waine
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Claire Joiner
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Richard Paley
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| |
Collapse
|
68
|
Natsuhara D, Takishita K, Tanaka K, Kage A, Suzuki R, Mizukami Y, Saka N, Nagai M, Shibata T. A Microfluidic Diagnostic Device Capable of Autonomous Sample Mixing and Dispensing for the Simultaneous Genetic Detection of Multiple Plant Viruses. MICROMACHINES 2020; 11:mi11060540. [PMID: 32466570 PMCID: PMC7344993 DOI: 10.3390/mi11060540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
As an efficient approach to risk management in agriculture, the elimination of losses due to plant diseases and insect pests is one of the most important and urgent technological challenges for improving the crop yield. Therefore, we have developed a polydimethylsiloxane (PDMS)-based microfluidic device for the multiplex genetic diagnosis of plant diseases and pests. It offers unique features, such as rapid detection, portability, simplicity, and the low-cost genetic diagnosis of a wide variety of plant viruses. In this study, to realize such a diagnostic device, we developed a method for the autonomous dispensing of fluid into a microchamber array, which was integrated with a set of three passive stop valves with different burst pressures (referred to as phaseguides) to facilitate precise fluid handling. Additionally, we estimated the mixing efficiencies of several types of passive mixers (referred to as chaotic mixers), which were integrated into a microchannel, through experimental and computational analyses. We first demonstrated the ability of the fabricated diagnostic devices to detect DNA-based plant viruses from an infected tomato crop based on the loop-mediated isothermal amplification (LAMP) method. Moreover, we demonstrated the simultaneous detection of RNA-based plant viruses, which can infect cucurbits, by using the reverse transcription LAMP (RT-LAMP) method. The multiplex RT-LAMP assays revealed that multiple RNA viruses extracted from diseased cucumber leaves were successfully detected within 60 min, without any cross-contamination between reaction microchambers, on our diagnostic device.
Collapse
Affiliation(s)
- Daigo Natsuhara
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
- Correspondence: (D.N.); (T.S.)
| | - Keisuke Takishita
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Kisuke Tanaka
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Azusa Kage
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Ryoji Suzuki
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Yuko Mizukami
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Norikuni Saka
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
- Correspondence: (D.N.); (T.S.)
| |
Collapse
|
69
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic Lateral Flow Immunoassays. Diagnostics (Basel) 2020; 10:E288. [PMID: 32397264 PMCID: PMC7278001 DOI: 10.3390/diagnostics10050288] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
A new generation of magnetic lateral flow immunoassays is emerging as powerful tool for diagnostics. They rely on the use of magnetic nanoparticles (MNP) as detecting label, replacing conventional gold or latex beads. MNPs can be sensed and quantified by means of external devices, allowing the development of immunochromatographic tests with a quantitative capability. Moreover, they have an added advantage because they can be used for immunomagnetic separation (IMS), with improvements in selectivity and sensitivity. In this paper, we have reviewed the current knowledge on magnetic-lateral flow immunoassay (LFIA), coupled with both research and commercially available instruments. The work in the literature has been classified in two categories: optical and magnetic sensing. We have analysed the type of magnetic nanoparticles used in each case, their size, coating, crystal structure and the functional groups for their conjugation with biomolecules. We have also taken into account the analytical characteristics and the type of transduction. Magnetic LFIA have been used for the determination of biomarkers, pathogens, toxins, allergens and drugs. Nanocomposites have been developed as alternative to MNP with the purpose of sensitivity enhancement. Moreover, IMS in combination with other detection principles could also improve sensitivity and limit of detection. The critical analysis in this review could have an impact for the future development of magnetic LFIA in fields requiring both rapid separation and quantification.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
70
|
Lysne D, Jones K, Stosius A, Hachigian T, Lee J, Graugnard E. Availability-Driven Design of Hairpin Fuels and Small Interfering Strands for Leakage Reduction in Autocatalytic Networks. J Phys Chem B 2020; 124:3326-3335. [PMID: 32223244 DOI: 10.1021/acs.jpcb.0c01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA-based circuits and computational tools offer great potential for advanced biomedical and technological applications. However, leakage, which is the production of an output in the absence of an input, widely exists in DNA network. As a new approach to leakage reduction, this study utilizes availability to reduce leakage in an entropy-driven autocatalytic DNA reaction networks. Here, we report the performance improvements resulting from direct tailoring of fuel strand availability through two novel approaches: (1) the addition of interfering domains to fuel strands, and (2) the introduction of separate small interfering strands. The best performing fuel designs resulted in increased performance ratios of up to 22%. Employing small interfering strands (5-12 nucleotides (nt)) improved the performance ratios by up to 21%. Furthermore, the stability of the network using either leakage reduction method matched well with computed availability and experimental results showing Spearman correlation coefficients of -0.84 for modified fuel strands and -0.92 for small interfering strands.
Collapse
Affiliation(s)
- Drew Lysne
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| | - Kailee Jones
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| | - Alma Stosius
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| | - Tim Hachigian
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States.,Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| |
Collapse
|
71
|
Xu H, Xia A, Wang D, Zhang Y, Deng S, Lu W, Luo J, Zhong Q, Zhang F, Zhou L, Zhang W, Wang Y, Yang C, Chang K, Fu W, Cui J, Gan M, Luo D, Chen M. An ultraportable and versatile point-of-care DNA testing platform. SCIENCE ADVANCES 2020; 6:eaaz7445. [PMID: 32426466 PMCID: PMC7176422 DOI: 10.1126/sciadv.aaz7445] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Point-of-care testing (POCT) has broad applications in resource-limited settings. Here, a POCT platform termed POCKET (point-of-care kit for the entire test) is demonstrated that is ultraportable and versatile for analyzing multiple types of DNA in different fields in a sample-to-answer manner. The POCKET is less than 100 g and smaller than 25 cm in length. The kit consists of an integrated chip (i-chip) and a foldable box (f-box). The i-chip integrates the sample preparation with a previously unidentified, triple signal amplification. The f-box uses a smartphone as a heater, a signal detector, and a result readout. We detected different types of DNA from clinics to environment to food to agriculture. The detection is sensitive (<103 copies/ml), specific (single-base differentiation), speedy (<2 hours), and stable (>10 weeks shelf life). This inexpensive, ultraportable POCKET platform may become a versatile sample-to-answer platform for clinical diagnostics, food safety, agricultural protection, and environmental monitoring.
Collapse
Affiliation(s)
- Huan Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Anyue Xia
- First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Dandan Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yiheng Zhang
- Central Laboratory, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaoli Deng
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Weiping Lu
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jie Luo
- Department of Clinical Laboratory, The 954th Hospital of Chinese People's Liberation Army, Xizang 856000, China
| | - Qiu Zhong
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Fengling Zhang
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Lin Zhou
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenqing Zhang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Cheng Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jinhui Cui
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Mingzhe Gan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou 215123, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| |
Collapse
|
72
|
Cheng Y, Tang X, Gao C, Li Z, Chen J, Guo L, Wang T, Xu J. Molecular Diagnostics and Pathogenesis of Fungal Pathogens on Bast Fiber Crops. Pathogens 2020; 9:pathogens9030223. [PMID: 32197350 PMCID: PMC7157645 DOI: 10.3390/pathogens9030223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Bast fibers and products derived from them are undergoing a resurgence in demand in the global market. However, fungal diseases have become an important factor limiting their yield and quality, causing devastating consequences for the production of bast fiber crops in many parts of the world. Thus, there is a high demand for effective control and prevention strategies against fungal pathogens. Having rapid, specific, sensitive, and cost-effective tests that can be used for early and accurate diagnosis of disease agents is an essential step of such strategies. The objective of this study was to review the current status of research on molecular diagnosis of fungal pathogens on bast fiber crops. Our search of PubMed identified nearly 20 genera of fungal pathogens on bast fiber crops, among which the five most common genera were Colletotrichum, Pythium, Verticillium, Fusarium, and Golovinomyces. The gene regions that have been used for molecular identifications of these fungi include internal transcribed spacer (ITS), translation elongation factor 1-α (EF-1α), ß-tubulin, calmodulin (CAL), histone subunit 3 (H3), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), etc. We summarize the molecular assays that have been used to identify these fungi and discuss potential areas of future development for fast, specific, and accurate diagnosis of fungal pathogens on bast fiber crops.
Collapse
Affiliation(s)
- Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.C.); (X.T.); (C.G.); (Z.L.); (J.C.); (L.G.); (T.W.)
| | - Xiaoyu Tang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.C.); (X.T.); (C.G.); (Z.L.); (J.C.); (L.G.); (T.W.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.C.); (X.T.); (C.G.); (Z.L.); (J.C.); (L.G.); (T.W.)
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.C.); (X.T.); (C.G.); (Z.L.); (J.C.); (L.G.); (T.W.)
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.C.); (X.T.); (C.G.); (Z.L.); (J.C.); (L.G.); (T.W.)
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.C.); (X.T.); (C.G.); (Z.L.); (J.C.); (L.G.); (T.W.)
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.C.); (X.T.); (C.G.); (Z.L.); (J.C.); (L.G.); (T.W.)
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.C.); (X.T.); (C.G.); (Z.L.); (J.C.); (L.G.); (T.W.)
- Department of Biology, McMaster University, Hamilton, L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
73
|
Detection of Helminth Ova in Wastewater Using Recombinase Polymerase Amplification Coupled to Lateral Flow Strips. WATER 2020. [DOI: 10.3390/w12030691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ascaris lumbricoides is a major soil-transmitted helminth that is highly infective to humans. The ova of A. lumbricoides are able to survive wastewater treatment, thus making it an indicator organism for effective water treatment and sanitation. Hence, Ascaris ova must be removed from wastewater matrices for the safe use of recycled water. Current microscopic techniques for identification and enumeration of Ascaris ova are laborious and cumbersome. Polymerase chain reaction (PCR)-based techniques are sensitive and specific, however, major constraints lie in having to transport samples to a centralised laboratory, the requirement for sophisticated instrumentation and skilled personnel. To address this issue, a rapid, highly specific, sensitive, and affordable method for the detection of helminth ova was developed utilising recombinase polymerase amplification (RPA) coupled with lateral flow (LF) strips. In this study, Ascaris suum ova were used to demonstrate the potential use of the RPA-LF assay. The method was faster (< 30 min) with optimal temperature at 37 °C and greater sensitivity than PCR-based approaches with detection as low as 2 femtograms of DNA. Furthermore, ova from two different helminth genera were able to be detected as a multiplex assay using a single lateral flow strip, which could significantly reduce the time and the cost of helminth identification. The RPA-LF system represents an accurate, rapid, and cost-effective technology that could replace the existing detection methods, which are technically challenged and not ideal for on-site detection in wastewater treatment plants.
Collapse
|
74
|
Latvala S, Haapalainen M, Kivijärvi P, Suojala-Ahlfors T, Iivonen S, Hannukkala A. Sampling and PCR method for detecting pathogenic Fusarium oxysporum strains in onion harvest. Lett Appl Microbiol 2020; 70:210-220. [PMID: 31838746 DOI: 10.1111/lam.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023]
Abstract
Fusarium basal rot is a worldwide disease problem in onions, and causes substantial losses in onion production, both during the growing season and in the storage. To minimize the post-harvest losses, a protocol for screening of latent infections with pathogenic Fusarium oxysporum strains from harvested onions was developed. This protocol is based on a dual PCR test with primers specific for the fungal species and new SIX3 primers specific for the onion-pathogenic F. oxysporum strains. A pooled sample containing pieces from 50 harvested symptomless onions was prepared for the dual PCR using microwave disruption of the filamentous Fusarium fungi and Whatman FTATM filter paper matrix technology, or as a reference protocol, by extracting DNA with a commercial kit. The two sample preparation protocols gave consistent results with the tested onion samples. Detection limit of the dual PCR protocol was 100 pg of F. oxysporum DNA, in a mixture with onion DNA, when the FTA card was applied. The new protocol reported here is simple and sensitive enough for routine testing, enabling the detection of latent infections in harvest lots even at the infection levels under 10%. SIGNIFICANCE AND IMPACT OF THE STUDY: Fusarium basal rot causes serious problems in onion production. To minimize post-harvest losses, a simple protocol based on FTATM technology and a dual PCR test with Fusarium oxysporum species-specific and pathogenicity-specific primers was developed. By testing pooled onion samples using this method, latent infections with F. oxysporum can be screened from a representative sample of the harvest. This screening method could be a useful tool to manage the post-harvest losses caused by latent infections with F. oxysporum and, with modification of the PCR protocol, with other Fusarium species pathogenic to onion.
Collapse
Affiliation(s)
- S Latvala
- Natural Resources Institute Finland (Luke), Natural Resources, Jokioinen, Finland
| | - M Haapalainen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - P Kivijärvi
- Natural Resources Institute Finland (Luke), Production Systems, Mikkeli, Finland
| | - T Suojala-Ahlfors
- Natural Resources Institute Finland (Luke), Production Systems, Turku, Finland
| | - S Iivonen
- Natural Resources Institute Finland (Luke), Finnish Organic Research Institute, Mikkeli, Finland
| | - A Hannukkala
- Natural Resources Institute Finland (Luke), Natural Resources, Jokioinen, Finland.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
75
|
Druege U. Overcoming Physiological Bottlenecks of Leaf Vitality and Root Development in Cuttings: A Systemic Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:907. [PMID: 32714348 PMCID: PMC7340085 DOI: 10.3389/fpls.2020.00907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/03/2020] [Indexed: 05/09/2023]
Abstract
Each year, billions of ornamental young plants are produced worldwide from cuttings that are harvested from stock plants and planted to form adventitious roots. Depending on the plant genotype, the maturation of the cutting, and the particular environment, which is complex and often involves intermediate storage of cuttings under dark conditions and shipping between different climate regions, induced senescence or abscission of leaves and insufficient root development can impair the success of propagation and the quality of generated young plants. Recent findings on the molecular and physiological control of leaf vitality and adventitious root formation are integrated into a systemic perspective on improved physiologically-based control of cutting propagation. The homeostasis and signal transduction of the wound responsive plant hormones ethylene and jasmonic acid, of auxin, cytokinins and strigolactones, and the carbon-nitrogen source-sink balance in cuttings are considered as important processes that are both, highly responsive to environmental inputs and decisive for the development of cuttings. Important modules and bottlenecks of cutting function are identified. Critical environmental inputs at stock plant and cutting level are highlighted and physiological outputs that can be used as quality attributes to monitor the functional capacity of cuttings and as response parameters to optimize the cutting environment are discussed. Facing the great genetic diversity of ornamental crops, a physiologically targeted approach is proposed to define bottleneck-specific plant groups. Components from the field of machine learning may help to mathematically describe the complex environmental response of specific plant species.
Collapse
|
76
|
Baldi P, La Porta N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. FRONTIERS IN PLANT SCIENCE 2020; 11:570862. [PMID: 33193502 PMCID: PMC7655913 DOI: 10.3389/fpls.2020.570862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 05/14/2023]
Abstract
Early detection of plant diseases is a crucial factor to prevent or limit the spread of a rising infection that could cause significant economic loss. Detection test on plant diseases in the laboratory can be laborious, time consuming, expensive, and normally requires specific technical expertise. Moreover, in the developing countries, it is often difficult to find laboratories equipped for this kind of analysis. Therefore, in the past years, a high effort has been made for the development of fast, specific, sensitive, and cost-effective tests that can be successfully used in plant pathology directly in the field by low-specialized personnel using minimal equipment. Nucleic acid-based methods have proven to be a good choice for the development of detection tools in several fields, such as human/animal health, food safety, and water analysis, and their application in plant pathogen detection is becoming more and more common. In the present review, the more recent nucleic acid-based protocols for point-of-care (POC) plant pathogen detection and identification are described and analyzed. All these methods have a high potential for early detection of destructive diseases in agriculture and forestry, they should help make molecular detection for plant pathogens accessible to anyone, anywhere, and at any time. We do not suggest that on-site methods should replace lab testing completely, which remains crucial for more complex researches, such as identification and classification of new pathogens or the study of plant defense mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary on-site screening that is crucial in the struggle against plant pathogens.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Paolo Baldi,
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), San Michele a/Adige, Trento, Italy
| |
Collapse
|
77
|
Sagcan H, Turgut Kara N. Detection of Potato ring rot Pathogen Clavibacter michiganensis subsp. sepedonicus by Loop-mediated isothermal amplification (LAMP) assay. Sci Rep 2019; 9:20393. [PMID: 31892706 PMCID: PMC6938510 DOI: 10.1038/s41598-019-56680-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022] Open
Abstract
Clavibacter michiganensis subsp. sepedonicus (CMS) is an important bacterial plant pathogen causing potato ring rot disease. Rapid diagnosis of CMS is crucial because of the economic losses caused by serious harvest losses. Although there are serological tests used in the rapid diagnosis of CMS, they are not widely used because of their low sensitivity. The DNA-based PCR methods, which are highly sensitive, do not have the possibility of on-site diagnosis, especially since they require serious laboratory infrastructure. In recent years, scientists have been working on alternative amplification methods to develop DNA-based point of care (POC) diagnostic methods. Accordingly, the loop-mediated isothermal amplification (LAMP) method, which was developed in the early 2000s, provides an important convenience for DNA-based tests to use in the field. Due to the unique design of primers, more amplification products could be create in a shorter time than conventional amplification methods without needing a temperature cycle, and it can be applied with the aid of a simple heater without requiring a laboratory environment. In this study, efficient LAMP method for the detection of CMS has optimized. For device-independent detection of LAMP products, colorimetric method and LFD has used.
Collapse
Affiliation(s)
- Hasan Sagcan
- Istanbul University, Institute of Science, Program of Molecular Biology and Genetics, Istanbul, Turkey
| | - Neslihan Turgut Kara
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, 34134, Istanbul, Turkey.
| |
Collapse
|
78
|
Yang X, Qi YJ, Al-Attala MN, Gao ZH, Yi XK, Zhang AF, Zang HY, Gu CY, Gao TC, Chen Y. Rapid Detection of Alternaria Species Involved in Pear Black Spot Using Loop-Mediated Isothermal Amplification. PLANT DISEASE 2019; 103:3002-3008. [PMID: 31573432 DOI: 10.1094/pdis-01-19-0149-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alternaria species are the most important fungal pathogens that attack various crops as well as fruit trees such as pear and cause black spot disease. Here, a loop-mediated isothermal amplification (LAMP) assay is developed for the detection of Alternaria species. A. alternata cytochrome b (cyt-b) gene was used to design two pairs of primers and amplified a 229-bp segment of Aacyt-b gene. The results showed that LAMP assay is faster and simpler than polymerase chain reaction (PCR). LAMP assay is highly sensitive method for the detection of about 1 pg of genomic DNA of A. alternata by using optimized concentration of MgCl2 (4 mM) in final LAMP reaction. In contrast, the limit of detection was 1 ng of target DNA via conventional PCR. Among the genomic DNA of 46 fungal species, only the tubes containing DNA of Alternaria spp. except A. porri, A. solani, and A. infectoria changed color from orange to yellowish green with SYBR Green I including the main pathogens of pear black spot. The yellowish green color was indicative of DNA amplification. Moreover, LAMP assay was used for testing infected tissues among 22 healthy and diseased pear tissues; the orange color changed to yellowish green for infected tissues only. Altogether, we conclude that cyt-b gene can be used for the detection of Alternaria spp. via LAMP assay, which is involved in pear black spot disease.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Yong-Jie Qi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province, China
| | - Mohamed N Al-Attala
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Plant Pathology Unit, Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Zheng-Hui Gao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province, China
| | - Xing-Kai Yi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province, China
| | - Ai-Fang Zhang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Hao-Yu Zang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Chun-Yan Gu
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Tong-Chun Gao
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| | - Yu Chen
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China
| |
Collapse
|
79
|
Rani A, Donovan N, Mantri N. Review: The future of plant pathogen diagnostics in a nursery production system. Biosens Bioelectron 2019; 145:111631. [DOI: 10.1016/j.bios.2019.111631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
|
80
|
Chen Z, Huang J, Zhang F, Zhou Y, Huang H. Detection of shrimp hemocyte iridescent virus by recombinase polymerase amplification assay. Mol Cell Probes 2019; 49:101475. [PMID: 31655105 DOI: 10.1016/j.mcp.2019.101475] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
Abstract
Shrimp hemocyte iridescent virus (SHIV), which was first identified in white leg shrimp (Litopenaeus vannamei) in China in 2014, can cause extensive shrimp mortality and major economic losses in the shrimp farming industry in China. In this study, a novel real-time isothermal recombinase polymerase amplification (RPA) assay was developed using a TwistAmp exo kit for SHIV detection. First, five primers and a probe were designed for the major capsid protein gene (GenBank: KY681039.1) according to the TwistDx manual; next, the optimal primers were selected by a comparison experiment. The primers and probe were specific for SHIV and did not react with shrimp white spot syndrome virus (WSSV), shrimp infectious hypodermal and hematopoietic necrosis virus (IHHNV), shrimp enterocytozoon hepatopenaei (EHP), and macrobrachium rosenbergii nodavirus (MrNV) samples, as well as pathogens of acute hepatopancreatic necrosis disease (AHPND). The RPA assay reached a detection limit of 11 copies per reaction according to probit regression analysis. In addition, RPA assay detected the positive plasmid samples at concentration of 1000 copies/μL within 16.04 ± 0.72 min at a single low operation temperature (39 °C). The results proved that the proposed RPA method was an accurate, sensitive, affordable, and rapid detection tool that can be suitably applied for the diagnosis of SHIV in field conditions and in resource-poor settings.
Collapse
Affiliation(s)
- Zhengwei Chen
- Laboratory of Information Optics and Optoelectronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, P.R. China; University of Chinese Academy of Sciences, Beijing, P.R. China; Center of Engineering Training, Zhejiang University of Science and Technology, Hangzhou, P.R. China.
| | - Jun Huang
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, P.R. China
| | - Fang Zhang
- Laboratory of Information Optics and Optoelectronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Yang Zhou
- College of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, P.R. China
| | - Huijie Huang
- Laboratory of Information Optics and Optoelectronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, P.R. China; University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
81
|
Kunadiya MB, Dunstan WD, White D, Hardy GESJ, Grigg AH, Burgess TI. A qPCR Assay for the Detection of Phytophthora cinnamomi Including an mRNA Protocol Designed to Establish Propagule Viability in Environmental Samples. PLANT DISEASE 2019; 103:2443-2450. [PMID: 31313641 DOI: 10.1094/pdis-09-18-1641-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytophthora cinnamomi causes root and collar rot in many plant species in natural ecosystems and horticulture. A species-specific primer and probe PCIN5 were designed based on a mitochondrial locus encoding subunit 2 of cytochrome c oxidase (cox2). Eight PCR primers, including three forward and five reverse, were designed and tested in all possible combinations. Annealing temperatures were optimized for each primer pair set to maximize both specificity and sensitivity. Each set was tested against P. cinnamomi and two closely related clade 7 species, P. parvispora and P. niederhauseri. From these tests, five primer pairs were selected based on specificity and, with a species-specific P. cinnamomi probe, used to develop quantitative real-time PCR (qPCR) assays. The specificity of the two most sensitive qPCR assays was confirmed using the genomic DNA of 29 Phytophthora isolates, including 17 isolates of 11 species from clade 7, and representative species from nine other clades (all except clade 3). The assay was able to detect as little as 150 ag of P. cinnamomi DNA and showed no cross-reaction with other Phytophthora species, except for P. parvispora, a very closely related species to P. cinnamomi, which showed late amplification at high DNA concentrations. The efficiency of the qPCR protocol was evaluated with environmental samples including roots and associated soil from plants artificially infected with P. cinnamomi. Different RNA isolation kits were tested and evaluated for their performance in the isolation of RNA from environmental samples, followed by cDNA synthesis, and qPCR assay. Finally, a protocol was recommended for determining the presence of P. cinnamomi in recalcitrant environmental samples.
Collapse
Affiliation(s)
- Manisha B Kunadiya
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - William D Dunstan
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Diane White
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Giles E St J Hardy
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Andrew H Grigg
- Alcoa of Australia Ltd., Huntly Mine, Pinjarra, WA 6208, Australia
| | - Treena I Burgess
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
82
|
Radhakrishnan GV, Cook NM, Bueno-Sancho V, Lewis CM, Persoons A, Mitiku AD, Heaton M, Davey PE, Abeyo B, Alemayehu Y, Badebo A, Barnett M, Bryant R, Chatelain J, Chen X, Dong S, Henriksson T, Holdgate S, Justesen AF, Kalous J, Kang Z, Laczny S, Legoff JP, Lesch D, Richards T, Randhawa HS, Thach T, Wang M, Hovmøller MS, Hodson DP, Saunders DGO. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biol 2019; 17:65. [PMID: 31405370 PMCID: PMC6691556 DOI: 10.1186/s12915-019-0684-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023] Open
Abstract
Background Effective disease management depends on timely and accurate diagnosis to guide control measures. The capacity to distinguish between individuals in a pathogen population with specific properties such as fungicide resistance, toxin production and virulence profiles is often essential to inform disease management approaches. The genomics revolution has led to technologies that can rapidly produce high-resolution genotypic information to define individual variants of a pathogen species. However, their application to complex fungal pathogens has remained limited due to the frequent inability to culture these pathogens in the absence of their host and their large genome sizes. Results Here, we describe the development of Mobile And Real-time PLant disEase (MARPLE) diagnostics, a portable, genomics-based, point-of-care approach specifically tailored to identify individual strains of complex fungal plant pathogens. We used targeted sequencing to overcome limitations associated with the size of fungal genomes and their often obligately biotrophic nature. Focusing on the wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (Pst), we demonstrate that our approach can be used to rapidly define individual strains, assign strains to distinct genetic lineages that have been shown to correlate tightly with their virulence profiles and monitor genes of importance. Conclusions MARPLE diagnostics enables rapid identification of individual pathogen strains and has the potential to monitor those with specific properties such as fungicide resistance directly from field-collected infected plant tissue in situ. Generating results within 48 h of field sampling, this new strategy has far-reaching implications for tracking plant health threats. Electronic supplementary material The online version of this article (10.1186/s12915-019-0684-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Nicola M Cook
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Clare M Lewis
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | | | - Bekele Abeyo
- International Maize and Wheat Improvement Center (CIMMYT), Addis Ababa, Ethiopia
| | - Yoseph Alemayehu
- International Maize and Wheat Improvement Center (CIMMYT), Addis Ababa, Ethiopia
| | - Ayele Badebo
- International Maize and Wheat Improvement Center (CIMMYT), Addis Ababa, Ethiopia
| | - Marla Barnett
- Limagrain Cereal Seeds, 2040 SE Frontage Road, Fort Collins, CO, 80525, USA
| | | | - Jeron Chatelain
- Limagrain Cereal Seeds, 2040 SE Frontage Road, Fort Collins, CO, 80525, USA
| | - Xianming Chen
- USDA-ARS and Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | - Jay Kalous
- Limagrain Cereal Seeds, 2040 SE Frontage Road, Fort Collins, CO, 80525, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Szymon Laczny
- BASF Poland, Al. Jerozolimskie 142b, 02-305, Warsaw, Poland
| | | | | | - Tracy Richards
- Limagrain Cereal Seeds, 2040 SE Frontage Road, Fort Collins, CO, 80525, USA
| | - Harpinder S Randhawa
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Tine Thach
- Aarhus University Flakkebjerg, Slagelse, Denmark
| | - Meinan Wang
- USDA-ARS and Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | - David P Hodson
- International Maize and Wheat Improvement Center (CIMMYT), Addis Ababa, Ethiopia
| | | |
Collapse
|
83
|
Freitas TA, Proença CA, Baldo TA, Materón EM, Wong A, Magnani RF, Faria RC. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta 2019; 205:120110. [PMID: 31450419 DOI: 10.1016/j.talanta.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023]
Abstract
Tristeza is a disease that affects citrus crops in general, caused by the Citrus tristeza virus (CTV). It is considered an economically important virus diseases in citrus, which is present in the main citrus producing regions all around the world. Early detection of CTV is crucial to avoid any epidemics and substantial economic losses for the citrus growers. Consequently, the development of rapid, accurate, and sensitive methods capable of detecting the virus in the early stages of the disease is highly desired. Based on that, a low-cost and rapid magneto-immunoassay methodology to detect the capsid protein from CTV (CP-CTV) was proposed. For this, magnetic beads were decorated with antibodies anti-CP-CTV and horseradish peroxidase enzyme (HRP) and applied for the capture and separation of CP-CTV from the sample solutions. The magnetically captured biomarker was detected using a simple disposable microfluidic electrochemical device (DμFED) constructed by rapid prototyping technique and composed by an array of immunosensors. In DμFED, the electrodes were modified with monoclonal antibody anti-CP-CTV and the detection was carried out using amperometry, based on the hydroquinone/H2O2 catalytic redox reaction due to the presence of HRP label in an immune-sandwich structure. The proposed immunoassay presented excellent linearity with a wide linear range of concentration of 1.95-10.0 × 103 fg mL-1 and ultralow detection limit of 0.3 fg mL-1. The disposable device was successfully applied for the detection of Citrus tristeza virus in healthy and infected plant samples, where it showed good agreements with the comparative method of enzyme-linked immunosorbent assay (ELISA). The developed immunoassay methodology showed a sensitive and selective way in the detection of CTV. Hence, it can be considered as a promising analytical alternative for rapid and low-cost diagnosis of Tristeza disease in citrus.
Collapse
Affiliation(s)
- Tayane A Freitas
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Camila A Proença
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thaísa A Baldo
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Elsa M Materón
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Ademar Wong
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Rodrigo F Magnani
- Departamento de Pesquisa & Desenvolvimento, Fundecitrus, Araraquara, SP, 14807-040, Brazil; Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
84
|
Aglietti C, Luchi N, Pepori AL, Bartolini P, Pecori F, Raio A, Capretti P, Santini A. Real-time loop-mediated isothermal amplification: an early-warning tool for quarantine plant pathogen detection. AMB Express 2019; 9:50. [PMID: 31016406 PMCID: PMC6478783 DOI: 10.1186/s13568-019-0774-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 11/10/2022] Open
Abstract
An effective framework for early warning and rapid response is a crucial element to prevent or mitigate the impact of biological invasions of plant pathogens, especially at ports of entry. Molecular detection of pathogens by using PCR-based methods usually requires a well-equipped laboratory. Rapid detection tools that can be applied as point-of-care diagnostics are highly desirable, especially to intercept quarantine plant pathogens such as Xylella fastidiosa, Ceratocystis platani and Phytophthora ramorum, three of the most devastating pathogens of trees and ornamental plants in Europe and North America. To this aim, in this study we developed three different loop mediated isothermal amplification (LAMP) assays able to detect each target pathogen both in DNA extracted from axenic culture and in infected plant tissues. By using the portable instrument Genie® II, the LAMP assay was able to recognize X. fastidiosa, C. platani and P. ramorum DNA within 30 min of isothermal amplification reaction, with high levels of specificity and sensitivity (up to 0.02 pg µL−1 of DNA). These new LAMP-based tools, allowing an on-site rapid detection of pathogens, are especially suited for being used at ports of entry, but they can be also profitably used to monitor and prevent the possible spread of invasive pathogens in natural ecosystems.
Collapse
|
85
|
Marzougui A, Ma Y, Zhang C, McGee RJ, Coyne CJ, Main D, Sankaran S. Advanced Imaging for Quantitative Evaluation of Aphanomyces Root Rot Resistance in Lentil. FRONTIERS IN PLANT SCIENCE 2019; 10:383. [PMID: 31057562 PMCID: PMC6477098 DOI: 10.3389/fpls.2019.00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/13/2019] [Indexed: 05/08/2023]
Abstract
Aphanomyces root rot (ARR) is a soil-borne disease that results in severe yield losses in lentil. The development of resistant cultivars is one of the key strategies to control this pathogen. However, the evaluation of disease severity is limited to visual scores that can be subjective. This study utilized image-based phenotyping approaches to evaluate Aphanomyces euteiches resistance in lentil genotypes in greenhouse (351 genotypes from lentil single plant/LSP derived collection and 191 genotypes from recombinant inbred lines/RIL using digital Red-Green-Blue/RGB and hyperspectral imaging) and field (173 RIL genotypes using unmanned aerial system-based multispectral imaging) conditions. Moderate to strong correlations were observed between RGB, multispectral, and hyperspectral derived features extracted from lentil shoots/roots and visual scores. In general, root features extracted from RGB imaging were found to be strongly associated with disease severity. With only three root traits, elastic net regression model was able to predict disease severity across and within multiple datasets (R 2 = 0.45-0.73 and RMSE = 0.66-1.00). The selected features could represent visual disease scores. Moreover, we developed twelve normalized difference spectral indices (NDSIs) that were significantly correlated with disease scores: two NDSIs for lentil shoot section - computed from wavelengths of 1170, 1160, 1270, and 1280 nm (0.12 ≤ |r| ≤ 0.24, P < 0.05) and ten NDSIs for lentil root sections - computed from wavelengths in the range of 630-670, 700-840, and 1320-1530 nm (0.10 ≤ |r| ≤ 0.50, P < 0.05). Root-derived NDSIs were more accurate in predicting disease scores with an R 2 of 0.54 (RMSE = 0.86), especially when the model was trained and tested on LSP accessions, compared to R 2 of 0.25 (RMSE = 1.64) when LSP and RIL genotypes were used as train and test datasets, respectively. Importantly, NDSIs - computed from wavelengths of 700, 710, 730, and 790 nm - had strong positive correlations with disease scores (0.35 ≤r ≤ 0.50, P < 0.0001), which was confirmed in field phenotyping with similar correlations using vegetation index with red edge wavelength (normalized difference red edge, 0.36 ≤ |r| ≤ 0.57, P < 0.0001). The adopted image-based phenotyping approaches can help plant breeders to objectively quantify ARR resistance and reduce the subjectivity in selecting potential genotypes.
Collapse
Affiliation(s)
- Afef Marzougui
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Yu Ma
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Chongyuan Zhang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Rebecca J. McGee
- United States Department of Agriculture-Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman, WA, United States
| | - Clarice J. Coyne
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Unit, Washington State University, Pullman, WA, United States
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Sindhuja Sankaran
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
86
|
Khan M, Wang R, Li B, Liu P, Weng Q, Chen Q. Comparative Evaluation of the LAMP Assay and PCR-Based Assays for the Rapid Detection of Alternaria solani. Front Microbiol 2018; 9:2089. [PMID: 30233554 PMCID: PMC6129767 DOI: 10.3389/fmicb.2018.02089] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/15/2018] [Indexed: 11/28/2022] Open
Abstract
Early blight (EB), caused by the pathogen Alternaria solani, is a major threat to global potato and tomato production. Early and accurate diagnosis of this disease is therefore important. In this study, we conducted a loop-mediated isothermal amplification (LAMP) assay, as well as conventional polymerase chain reaction (PCR), nested PCR, and quantitative real-time PCR (RT-qPCR) assays to determine which of these techniques was less time consuming, more sensitive, and more accurate. We based our assays on sequence-characterized amplified regions of the histidine kinase gene with an accession number (FJ424058). The LAMP assay provided more rapid and accurate results, amplifying the target pathogen in less than 60 min at 63°C, with 10-fold greater sensitivity than conventional PCR. Nested PCR was 100-fold more sensitive than the LAMP assay and 1000-fold more sensitive than conventional PCR. qPCR was the most sensitive among the assays evaluated, being 10-fold more sensitive than nested PCR for the least detectable genomic DNA concentration (100 fg). The LAMP assay was more sensitive than conventional PCR, but less sensitive than nested PCR and qPCR; however, it was simpler and faster than the other assays evaluated. Despite of the sensitivity, LAMP assay provided higher specificity than qPCR. The LAMP assay amplified A. solani artificially, allowing us to detect naturally infect young potato leaves, which produced early symptoms of EB. The LAMP assay also achieved positive amplification using diluted pure A. solani culture instead of genomic DNA. Hence, this technique has greater potential for developing quick and sensitive visual detection methods than do other conventional PCR strategies for detecting A. solani in infected plants and culture, permitting early prediction of disease and reducing the risk of epidemics.
Collapse
Affiliation(s)
- Mehran Khan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiyong Weng
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinghe Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
87
|
Wang HM, Zhao GM, Hou PL, Yu L, He CQ, He HB. Rapid detection of foot-and-mouth disease virus using reverse transcription recombinase polymerase amplification combined with a lateral flow dipstick. J Virol Methods 2018; 261:46-50. [PMID: 30059693 DOI: 10.1016/j.jviromet.2018.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022]
Abstract
Foot-and-mouth disease caused by foot-and-mouth disease virus (FMDV) is one of the most highly contagious diseases of domestic animals, and leads to enormous economic loss. Currently there are two main prevention and control strategies for the disease: eradication of the infected animals in FMDV free countries, and vaccination of the susceptible animals in countries with endemic FMDV infection. Early discovery and diagnosis of the source of infection is therefore integral to the containment of FMDV. In this study, a two-step reverse transcription recombinase polymerase amplification assay combined with lateral flow detection (RPA-LFD) was developed to detect FMDV. With incubation at 38 °C, a region of the 2B gene on the FMDV genome was successfully amplified within 20 min using specific primers and a probe. The amplified RPA product can be visualized on a lateral flow dipstick. The RPA-LFD assay was highly sensitive, detecting down to 10 copies of plasmid DNA. There was no cross-reactivity with other pathogens causing vesicular lesions. In addition, 143 clinical samples were used to compare RPA-LFD with real-time PCR, with 98.6% concordance between the assays. Therefore, the developed RPA-LFD assay provides a rapid, simple, highly promising approach to be used as point-of-care diagnostics in the field.
Collapse
Affiliation(s)
- Hong-Mei Wang
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Gui-Min Zhao
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Pei-Li Hou
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin 150001, China
| | - Cheng-Qiang He
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Hong-Bin He
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
88
|
Calcutt MJ, Lysnyansky I, Sachse K, Fox LK, Nicholas RAJ, Ayling RD. Gap analysis of Mycoplasma bovis disease, diagnosis and control: An aid to identify future development requirements. Transbound Emerg Dis 2018; 65 Suppl 1:91-109. [PMID: 29582590 DOI: 10.1111/tbed.12860] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 01/07/2023]
Abstract
There is a worldwide problem of disease caused by Mycoplasma (M.) bovis in cattle; it has a significant detrimental economic and animal welfare impact on cattle rearing. Infection can manifest as a plethora of clinical signs including mastitis, pneumonia, arthritis, keratoconjunctivitis, otitis media and genital disorders that may result in infertility and abortion. Current diagnosis and control information are reviewed and analysed to identify gaps in knowledge of the causative organism in respect of the disease pathology, diagnosis and control methods. The main considerations are as follows: no vaccines are commercially available; antimicrobial resistance is increasing; diagnostic and antimicrobial sensitivity testing needs to be improved; and a pen-side test would facilitate more rapid diagnosis and implementation of treatment with antimicrobials. More data on host susceptibility, stress factors, immune response and infectious dose levels are required. The impact of asymptomatic carriers, M. bovis survival in the environment and the role of wildlife in transmitting the disease also needs investigation. To facilitate development of vaccines, further analysis of more M. bovis genomes, its pathogenic mechanisms, including variable surface proteins, is required, along with reproducible disease models.
Collapse
Affiliation(s)
| | | | - K Sachse
- Friedrich-Loeffler-Institut, Jena, Germany.,Department of RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität, Jena, Germany
| | - L K Fox
- Washington State University, Pullman, WA, USA
| | | | - R D Ayling
- Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
89
|
Plant Pest Detection Using an Artificial Nose System: A Review. SENSORS 2018; 18:s18020378. [PMID: 29382093 PMCID: PMC5855517 DOI: 10.3390/s18020378] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 11/17/2022]
Abstract
This paper reviews artificial intelligent noses (or electronic noses) as a fast and noninvasive approach for the diagnosis of insects and diseases that attack vegetables and fruit trees. The particular focus is on bacterial, fungal, and viral infections, and insect damage. Volatile organic compounds (VOCs) emitted from plants, which provide functional information about the plant's growth, defense, and health status, allow for the possibility of using noninvasive detection to monitor plants status. Electronic noses are comprised of a sensor array, signal conditioning circuit, and pattern recognition algorithms. Compared with traditional gas chromatography-mass spectrometry (GC-MS) techniques, electronic noses are noninvasive and can be a rapid, cost-effective option for several applications. However, using electronic noses for plant pest diagnosis is still in its early stages, and there are challenges regarding sensor performance, sampling and detection in open areas, and scaling up measurements. This review paper introduces each element of electronic nose systems, especially commonly used sensors and pattern recognition methods, along with their advantages and limitations. It includes a comprehensive comparison and summary of applications, possible challenges, and potential improvements of electronic nose systems for different plant pest diagnoses.
Collapse
|